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An Optimization-enhanced MANO

for Energy-efficient 5G Networks
Francesco Malandrino, Senior Member, IEEE, Carla Fabiana Chiasserini, Fellow, IEEE,

Claudio Casetti, Senior Member, IEEE, Giada Landi, Marco Capitani

Abstract—5G network nodes, fronthaul and backhaul alike,
will have both forwarding and computational capabilities. This
makes energy-efficient network management more challenging,
as decisions such as activating or deactivating a node impact
on both the ability of the network to route traffic and the
amount of processing it can perform. To this end, we formulate
an optimization problem accounting for the main features of
5G nodes and the traffic they serve, allowing joint decisions
about (i) the nodes to activate, (ii) the network functions they
run, and (iii) the traffic routing. Our optimization module is
integrated within the management and orchestration framework
of 5G, thus enabling swift and high-quality decisions. We test
our scheme with both a real-world testbed based on OpenStack
and OpenDaylight, and a large-scale emulated network whose
topology and traffic come from a real-world mobile operator,
finding it to consistently outperform state-of-the art alternatives
and closely match the optimum.

Index Terms—5G, MANO, optimization, energy efficiency.

I. INTRODUCTION

Among the disruptive changes introduced by 5G networks,

a major one is represented by the blurring of the distinction

between forwarding equipment (e.g., switches) and computa-

tional facilities (e.g., servers). Indeed, backhaul and fronthaul

nodes of 5G networks (hereinafter referred to as B/F nodes)

will be endowed with computational, storage, and networking

capabilities, allowing them to run any virtual network function

(VNF), from switches to video transcoders. VNFs are subse-

quently combined into VNF graphs, which define the services

made available to higher network layers or third parties (e.g.,

vertical industries operating in the automotive, e-health, or

media domain).

In this context, the entities of the management and orches-

tration (MANO) framework are in charge of making and im-

plementing a set of complex decisions, including (i) activation

of B/F nodes, so as to minimize the energy they consume,

hence the costs for the operator; (ii) which VNF instances

each B/F node shall run, in order to honor the delay constraints

associated with the supported services; (iii) how traffic should

be routed through the links connecting the B/F nodes. In

traditional networks, these decisions could be made separately,

owing to the fact that they concern different sets of equipment.
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Fig. 1. Logical graph for vEPC. Solid lines correspond to user traffic, dashed
lines to control traffic.

Network design problems took as an input a static traffic

matrix and, similarly, server placement problems assumed a

known and immutable network topology. In 5G, on the other

hand, decisions – e.g., activating or deactivating a B/F node

– affect both the forwarding and computational capabilities

of the network. It follows that traditional approaches may be

ineffective, and often not even viable.

The nature of 5G traffic further exacerbates this challenge.

Indeed, as exemplified in Fig. 1, traffic flows in 5G need to

traverse a logical graph whose vertices are VNFs; such graphs

can have arbitrary complexity and are not restricted to being

chains or directed acyclic graphs (DAGs). The task of the

MANO entities can be described as matching such a logical

graph with a physical graph whose vertices are B/F nodes

and whose edges are the links, be them physical or virtual,

that connect them. Such a matching must account for the fact

that the quantity of traffic does not remain constant across

processing steps (i.e., VNFs); in other words, the usual flow

conservation laws do not hold.

Fig. 1, depicting the VNFs composing the virtual Evolved

Packet Core (vEPC), depicts a typical example of this sit-

uation. Data-plane traffic flows from the remote radio head

(RRH) to the eNodeB (eNB), and thence to the Packet/Service

Gateway (P/S-GW). However, such a flow generate additional

control-plane flows, e.g., going from the eNB to the Home

Subscriber Server (HSS) through the Mobility Management

Entity (MME). Even data traffic may not remain constant: as

an example, firewalls and deep packet inspection (DPI) VNFs

can drop some flows, thereby decreasing the network traffic

from a processing step to the next.

Along with these challenges, the hybrid nature of 5G

network nodes and their ability to be programmed through

software results in significant opportunities, including the

possibility to optimize the management of the network. Indeed,

optimization is traditionally used in network design, but it is

regarded to as too complex for their real-time management. In

our work, we depart from this vision and integrate optimiza-



tion within the MANO framework, thereby allowing its entities

to make and implement high-quality and real-time decisions.

The main contributions of our paper are as follows:

• a model, capturing the unique features of 5G network

nodes (e.g., their hybrid nature) and of the traffic they

serve (e.g., no flow conservation);

• a problem formulation, allowing us to make joint deci-

sions on (i) B/F node activation, (ii) number and place-

ment of the VNF instances, and (iii) traffic routing;

• a solution concept, named OptiLoop, predicated on inte-

grating optimization in the loop of the decisions made by

MANO entities, namely the NFV orchestrator (NFVO);

• two implementations of OptiLoop, one within a real-

world testbed based on OpenStack and OpenDaylight, and

one within a larger-scale network emulated in Mininet.

The remainder of this paper is organized as follows. We

review related work in Sec. II, and explain how our own

work fits within the management and orchestration (MANO)

framework proposed by ETSI in Sec. III. Next, we present our

system model and problem formulation in Sec. IV, and detail

the OptiLoop solution strategy in Sec. V. We then describe

our testbeds’ architecture, reference scenario and benchmarks

in Sec. VI, present numerical results in Sec. VII, and conclude

the paper in Sec. VIII.

II. RELATED WORK

Many works on VNF placement and traffic routing, in-

cluding [1]–[3], take the approach of matching VNF and

physical topology graphs, also proposing efficient solution

strategies for the ensuing mixed-integer linear programming

(MILP) problems. The optimization objectives are: minimizing

network usage in [1], minimizing VNF deployment cost in [2],

minimizing CAPEX and OPEX in [3]. The later work [4] takes

an iterative approach, making VNF placement and routing

decisions when a request arrives. [5] takes the VNF placement

as given and focuses on scheduling and routing.

Other works focus on the interaction between mobile op-

erators and third parties using their services. As an example,

[6] considers a market where operators bid to serve incoming

demands. Among energy-aware works, [7] seeks to optimize

VNF placement and job scheduling in order to minimize

energy consumption. However, the algorithm presented in [7]

optimizes the server utilization but neglects the energy con-

sumed by network elements such as B/F nodes.

Among the services that can be provided through

SDN/NFV-based networks, a prominent example is the EPC.

As suggested by the survey in [8], ILP and MILP are the

most popular modeling tools, and heuristic algorithms the

most popular solution strategy. A common theme [9]–[11]

is splitting EPC elements, e.g., the Packet Gateway (P-GW)

and Service Gateway (S-GW), into separate sub-elements, one

dealing with control traffic and the other with user traffic.

[12] finds that such an approach reduces the total cost of

ownership. Interestingly, other works, e.g., [13], [14], take the

opposite approach and merge P-GW and S-GW in a single

entity (the P/S-GW). [13] focuses on the MME and proposes

to implement it through four separate VNFs, whose number

can vary so as to accommodate traffic fluctuations. Closer to

our own effort is the recent work in [15], which studies the

problem of placing the VNFs implementing the main EPC

network functions – S-GW, P-GW and MME – across the

available physical machines, subject to limits on their power

and link capacity. A preliminary version [16] of this work

addressed the same problem, albeit in simpler scenarios and

with a more limited scope.

A. Novelty

Our approach is novel with respect to the above works in

several important ways:

1) first and foremost, the scope of our work: we jointly

account for (i) the number and placement of VNF

instances, (ii) traffic routing, and (iii) network manage-

ment, e.g., activating/deactivating B/F nodes and links;

2) at the modeling level: accounting for the complexity of

5G traffic, with requests that originate at a network end-

point and traverse multiple VNFs, triggering additional

requests as they do so (hence the quantity of traffic

changes across processing steps);

3) as far as objectives are concerned: adopting energy-

saving as our priority and using detailed and realistic

energy models, instead of proxy metrics as in [7];

4) from a solution strategy viewpoint: optimizing in the

loop, i.e., using optimization as a tool rather than a mere

analysis technique;

5) at implementation level: validating and testing our ap-

proach through a testbed based on OpenDaylight and

OpenStack.

III. OPTILOOP AND THE ETSI MANO FRAMEWORK

The management and orchestration (MANO) framework,

standardized by ETSI in [17], includes a set of decision-

making entities (functional blocks) in charge of managing

NFV-based networks, along with the interfaces (reference

points) between them. The high-level goal of the framework

is to map the key performance indicators (KPIs) chosen

by the verticals, e.g., maximum end-to-end latency, into de-

cisions concerning the network resources, e.g., the activa-

tion/deactivation of (virtual) servers and the placement of

VNFs therein. In the following, we present a short overview of

the framework and then, in Sec. III-A, discuss the relationship

between the NFV orchestrator, one of the most important

MANO entities, and OptiLoop.

Fig. 2, taken from [17], shows the decision-making entities

of the MANO framework (within the blue area), along with the

non-MANO entities they interact with. OSS/BSS (Operation

and Business Support Services), at the top-left corner, are the

contact point between verticals and mobile operators: they

collect the vertical requirements, expressed through end-to-

end KPIs, and convey them, through the Os-Ma-nfvo reference

point, to the NFV Orchestrator (NFVO). The NFVO itself is

arguably one of the most important entities of the MANO

framework, and is in charge of the orchestration decisions.

Specifically, given the vertical requirements and the state of

the network infrastructure, the NFVO determines:

2



Fig. 2. The NFV-MANO architectural framework. Source: [17]

• how many instances of each VNF to deploy;

• where in the network infrastructure they shall run;

• the features of the virtual network connecting the VNF

instances, e.g., the bandwidth of the links to traverse

between them.

Through the Or-vnfm interface, these decisions are sent to

the VNFM (VNF Manager), which takes care of instantiating

the VNFs, requesting to the VIM (Virtual Infrastructure Man-

ager) the needed resources, e.g., virtual machines or virtual

links. The VIM, in turn, interacts with the NFVI (NFV Infras-

tructure), which includes the servers running the VNFs and the

hypervisors managing them. The VNFM also communicates

with a non-MANO entity called EM (Element Manager), in

charge of FCAPS (Fault, Configuration, Accounting, Perfor-

mance and Security) management, in order to configure the

VNFs or collect/monitor KPIs from them.

A. The NFVO: input, output, and decisions

The NFVO is in charge of most of the orchestration tasks

in the MANO framework. Owing to its importance, in the

following we detail the decisions it is in charge of, along

with the input information it has access to; such pieces of

information correspond, respectively, to the output and input

of OptiLoop.

The main input data used by the NFVO is the NSD

(Network Service Descriptor), a data structure defined in [17,

Sec. 6.2.1]. NSDs contain a graph description of the VNFs

needed by each service, called VNFFG (VNF Forwarding

Graph) [17, Sec. 6.5.1] along with deployment flavor in-

formation, including the maximum latency acceptable for

each service [17, Sec. 6.2.1.3]. Furthermore, the NFVO has

access to information on the network infrastructure, e.g., the

state and capabilities of network and computing resources

available at the NFV infrastructure, including details about

the connectivity among the servers where the VNFs will be

allocated.

Using all the above, the NFVO makes decisions about:

• the status of network infrastructure elements, e.g., servers;

• VNF lifecycle management [17, Sec. 7.2] about the VNFs,

including the host they run at;

• routing, accounting for the capacity and delay of virtual

links.

Such decisions will correspond to decision variables in our

system model, as detailed next.

IV. SYSTEM MODEL

Our model is based on two graphs, a logical one and a

physical one. For simplicity, we describe it with reference to

unidirectional traffic; notice however that our model and our

results also account for bidirectional traffic. Tab. I summarizes

all the notation we introduce below.

A. The logical graph

The logical graph, exemplified in Fig. 1, describes where,

i.e., which endpoint, the traffic comes from, and how it is

processed. Its vertices are either endpoints e ∈ E or VNFs v ∈

V. With reference to Fig. 1, we have E = {RRH}, and V =

{eNB,P/S-GW,MME,HSS}.

On the logical graph, we have logical flows l(e, v1, v2)

representing data originating from endpoint e and going from

VNF v1 to VNF v2. Additionally, with an abuse of notation,

we indicate with l(e, v) flows that start from endpoint e and

are first processed at VNF v, e.g., from the RRH to the eNB

in Fig. 1. Note that keeping track of the endpoint at which

flows originate, i.e., having an e index in our variables, serves

a manifold purpose. First, it allows our model to account

for the fact that different types of traffic (i.e., originating

from different endpoints) may need different processing, i.e.,

traverse different VNF graphs. Furthermore, such VNF graphs

may overlap; in this case, keeping track of the origin of

the flows makes it possible to distinguish them even if they

traverse the same VNF. Finally, it allows routing each flow in

a different way, in both the logical and the physical graph.
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Fig. 3. Example implementation of the logical graph in Fig. 1 over a physical
network. Each line corresponds to a physical flow, i.e., to a τ-variable; their
color and style match the logical flows in Fig. 1.

Notice that different traffic flows coming from the same

physical endpoint can be distinguished by associating them

to different logical endpoints.

Another important aspect of the system is that there is no

flow conservation in the logical graph. As an example, in

Fig. 1 we see a user flow of 1 traffic unit going from the

RRH to eNB and thence to the gateway, which triggers some

additional control traffic from the eNB and the gateway to

the MME. Indeed, the following generalized flow conservation

law holds for each endpoint e and VNFs v2, v3:

l(e, v2, v3)=
∑

v1∈V

l(e, v1, v2)χ(v1, v2, v3) + l(e, v2)χ(e, v2, v3).

The above expression represents the logical flow originated at

endpoint e, outgoing from VNF v2 and directed to VNF v3.

Such a quantity is equal to the sum between logical flows

entering v2, from either a VNF v1 or the endpoint e itself, mul-

tiplied by a factor χ. In particular, χ(v1, v2, v3) is used to quan-

tify the amount of logical flow directed to v3 that is generated

when traffic coming from v1 is processed at VNF v2. With ref-

erence to the eNB in Fig. 1, we have χ(RRH, eNB,P/S-GW) =

1, while χ(RRH, eNB,MME) = 0.3. Similarly, for the

gateway, we have χ(eNB,P/S-GW,MME) = 0.2. At the

MME we have flow conservation, i.e., χ(eNB,MME,HSS) =

χ(P/S-GW,MME,HSS) = 1. In χ(e, v2, v3), we abuse the

notation and allow the first index of χ to be an endpoint

instead of a VNF. We remark that χ-values lower than one can

also represent, e.g., a firewall dropping some of the incoming

traffic. Also notice that χ-values different from one can happen

for both control traffic (e.g., the eNB in Fig. 1) and user traffic

(as in the case of the firewall).

B. The physical graph

In the physical graph, vertices correspond to the end-

points e ∈ E and the B/F nodes c ∈ C. In general, B/F nodes

have computational capabilities k(c); B/F nodes that cannot

host any VNF (e.g., switches) have k(c) = 0. Fig. 3 presents

a possible implementation of the logical VNF graph in Fig. 1,

where VNFs are placed on each of the two B/F nodes with

processing capabilities. For simplicity, we present our model

with reference to the case where multiple VNF instances can

be deployed across different nodes, but at most one instance

of each VNF can be deployed at each B/F node.

Traffic traversing link (i, j) ∈ L ⊆ (C ∪ E)2 is also

subject to a network delay Di, j . Such a delay is static, i.e.,

every unit of traffic traversing link (i, j) incurs a delay Di, j .

Furthermore, links (i, j) have a bandwidth Bi, j , corresponding

to the maximum amount of traffic that can go from B/F node i

to B/F node j without generating congestion.

Our main variable is represented by physical

flows τi, j (e, v1, v2), representing the amount of traffic

that was originated from endpoint e, last visited VNF v1, will

next visit VNF v2, and is now traveling on link (i, j). Recall

that we have to keep track of the flow originating endopint,

in order to model traffic routing. If the flow has never been

processed, i.e., it is going from e ∈ E to its first VNF v ∈ V,

we will conventionally set v1 = v2 = v and write τi, j (e, v, v).

Given a B/F node c ∈ C, we denote by tc(e, v1, v2) the

amount of traffic that is just transiting by c (i.e., it is not

processed at c) and it was originated at e, last visited VNF v1

and will next visit VNF v2. Similarly, pc(e, v1, v2) is the traffic

that is processed at B/F node c, it was originated at e, and

last visited VNF v1. Note that pc(e, v1, v2) > 0 implies that an

instance of VNF v2 is deployed at c.

Traffic being processed at VNF v is subject to a delay D(v).

Normally, processing delay is linked to the amount of re-

sources (e.g., CPU) allocated to each VNF, and such an

amount depends on the other VNFs deployed at the same

B/F node. In our case, however, energy is the main metric

of interest, and we can therefore assume that no VNF will be

allocated more resources than the minimum amount required

by the VNF itself.

A first constraint we need to impose is that, given a generic

VNF v2, the traffic originated at e, that has been processed

through VNF v1 and is entering B/F node c, is either (i)

processed at an instance of v2 located in c, or (ii) transiting

by c while being routed toward an instance of v2. Thus, for

any c, e, v1, v2, we have:
∑

(i,c)∈L

τi,c (e, v1, v2) = tc(e, v1, v2) + pc(e, v1, v2). (1)

A similar constraint concerns the traffic outgoing from c. For

any c, endpoint e and VNFs v2, v3, we have:
∑

(c, j)∈L

τc, j (e, v2, v3)=tc(e, v2, v3)+
∑

v1∈V

pc(e, v1, v2)χ(v1, v2, v3)

(2)

where v2 is the last VNF that traffic visited, either before

arriving at c (if traffic just transits by c) or at c itself (if

v2 is deployed therein, i.e., pc(e, v1, v2) > 0). v3 instead is the

VNF that traffic will visit next. In other words, (1)–(2) enforce

ordinary flow conservation for the traffic that is transiting

at c, i.e., using c as a traditional switch, and generalized flow

conservation for the traffic that is processed at c.

Next, we need to ensure that we only use active B/F nodes

and links, and their capacity is not exceeded. We define

two sets of binary variables, xi, j and yc , indicating whether

link (i, j) and B/F node c are active or not.

For links, we need to impose:

xi, j ≤ min
{
yi, yj

}
, ∀(i, j) ∈ L , (3)

i.e., no link can be active if either of its ends is off, and
∑

e∈E

∑

v1 ,v2∈V

τi, j (e, v1, v2) ≤ xi, j Bi, j , ∀(i, j) ∈ L. (4)
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TABLE I
NOTATION

Symbol Type Meaning

E Set Set of network endpoints

C Set Set of B/F nodes

L Set Set of links

V Set Set of VNFs

Bi , j Parameter Bandwidth of link (i, j) ∈ L
Di , j Parameter Delay of link (i, j) ∈ L
χ(v1, v2, v3) Parameter How much traffic resulting from the processing at VNF v2, which was previously processed at VNF v1, is meant

to be next processed at VNF v3

δ(c, v) Binary var. Whether we deploy VNF v ∈ V at B/F node c ∈ C

f0 Function Energy consumption due to placing a VNF at a B/F node

fidle Function Energy consumption due to activating a B/F node

fproc Function Traffic-dependent energy consumption due to processing

fsw, flink Function Traffic-dependent energy consumption at switches and links

k(c) Parameter Computational capability of B/F node c ∈ C

l(e, v1, v2) Parameter Logical flow originated at e ∈ E and going from VNF v1 ∈ V to VNF v2 ∈ V

l(e, v) Parameter Logical flow originating at e ∈ E and first being processed at VNF v ∈ V

pc (e, v1, v2) Continuous var. How much traffic coming from users connected to endpoint e ∈ E for service that was last processed at VNF v1 is
processed by an instance of VNF v2 deployed at B/F node c

r(v) Parameter Computational capability required to process one traffic unit of VNF v ∈ V

ρ(c) Parameter Computational capability consumed by one unit of traffic transiting by B/F node (SW switch) c ∈ C

τi , j(e, v1, v2) Continuous var. How much traffic coming from users connected to endpoint e ∈ E that was last processed at VNF v1 and meant to
be next processed at VNF v2 goes through link (i, j) ∈ L

tc (e, v1, v2) Continuous var. How much traffic originating from e that was last processed at VNF v1 and meant to be next processed at VNF v2

transits (without processing) by B/F node c ∈ C

xi , j Binary var. Whether link (i, j) ∈ L is active

yc Binary var. Whether B/F node c ∈ C is active

With regard to processing, inactive B/F nodes cannot host

any VNF. We track this through a binary variable δ(c, v)

expressing whether an instance of VNF v is deployed at B/F

node c, and impose:

δ(c, v) ≤ yc, ∀c ∈ C, v ∈ V. (5)

Additionally, no processing can be done for VNFs that are not

deployed at a given B/F node:

pc(e, v1, v2) ≤ δ(c, v2)k(c), ∀c ∈ C, e ∈ E, v1, v2 ∈ V . (6)

Finally, each traffic unit processed by VNF v requires r(v)

computational capability, and, assuming c is a software switch,

each unit of traffic switched by c consumes ρ(c) CPU. Clearly,

the computational capability of each B/F node c must be

sufficient for both, i.e., for any B/F node c,

∑

e∈E

∑

v1∈V

∑

v2∈V

[

r(v2)pc(e, v1, v2)+

+ ρ(c)
∑

(c, j)∈L

τc, j (e, v1, v2)

]

≤ k(c), (7)

where ρ(c) multiplies the total traffic outgoing from c.

Next, we ensure that the delay of the traffic originated at

any endpoint e does not exceed a threshold Dmax(e):

∑
i, j∈L

∑
v1 ,v2∈V

Di, jτi, j (e, v1, v2)
∑

v∈V l(e, v)
+

+

∑
v1 ,v2∈V

∑
c∈C D(v2)pc(e, v1, v2)∑
v∈V l(e, v)

≤ Dmax(e). (8)

The two terms on the left hand side of (8) correspond to the

network and processing delay, respectively. The first term of

(8) is a summation of terms in the form Di, j
τi , j
l

, each rep-

resenting the delay incurred by traversing link (i, j) weighted

by the fraction of traffic traversing it. Similarly, the second

term of (8) is a summation of terms in the form D(v)
pc

l(e,v) ,

weighting the processing delay of VNF v by the fraction of

traffic processed by it.

At last, logical and physical flows have to match. To this

end, it is sufficient to impose that, for each logical flow l(e, v)

going from endpoint e to VNF v, there are corresponding

physical flows of the type τe, j (e, v, v), such that:

l(e, v) =
∑

(e, j)∈L

τe, j (e, v, v), ∀e ∈ E, v ∈ V . (9)

Eq. (9) ensures that the traffic injected from endpoints to B/F

nodes on the physical graph matches the logical traffic going

from endpoints to VNFs. Thanks to the flow conservation con-

straints (1)–(2), this also implies that such traffic is processed

and transformed as dictated by the χ-parameters, i.e., that all

physical flows match their logical counterpart.

C. Energy and objective

There are five contributions to the overall energy consump-

tion we are interested in tracking:

• activating a B/F node, resulting in a consumption of fidle;

• placing a VNF on a B/F node, resulting in a consump-

tion f0 due to, e.g., virtual machines overhead;

• using said VNF, resulting in a consumption of fproc

depending on the computational resources used;

• switching traffic at a B/F node, resulting in a consumption

of fsw depending on the traffic switched by the node;

• having traffic going through links, resulting in a consump-

tion of flink depending on the traffic over each link.
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The corresponding energy consumption is:

Eidle =

∑

c∈C

fidle (yc) ; E0 =

∑

c∈C

∑

v2∈V

f0 (δ(c, v2)) ;

Eproc =

∑

c∈C

fproc

(
∑

v2∈V

r(v)
∑

e∈E

∑

v1∈V

pc(e, v1, v2)

)

;

Esw =

∑

c∈C

fsw

(
∑

e∈E

∑

v1 ,v2∈V

τc, j (e, v1, v2)

)

;

Elink =

∑

(i, j)∈L

flink

(
∑

e∈E

∑

v1 ,v2∈V

τi, j (e, v1, v2)

)

.

Given all this, our objective can be written as:

min
x,y

E = E0 + Eproc + Eidle + Esw + Elink, (10)

subject to the following constraints:

l(e, v2, v3)=
∑

v1∈V

l(e, v1, v2)χ(v1, v2, v3) + l(e, v2)χ(e, v2, v3)

∑

(i ,c)∈L

τi ,c(e, v1, v2) = tc (e, v1, v2) + pc (e, v1, v2)

∑

(c , j )∈L

τc , j(e, v2, v3)=tc (e, v2, v3)+
∑

v1∈V

pc (e, v1, v2)χ(v1, v2, v3)

∑

e∈E

∑

v1 ,v2∈V

τi , j(e, v1, v2) ≤ xi , jBi , j

δ(c, v) ≤ yc ; l(e, v) =
∑

(e , j )∈L

τe , j(e, v, v)

pc (e, v1, v2) ≤ δ(c, v2)k(c) ; xi , j ≤ min
{
yi , y j

}

∑

e∈E

∑

v1∈V

∑

v2∈V


r(v2)pc (e, v1, v2)+ρ(c)

∑

(c , j )∈L

τc , j(e, v1, v2)


≤k(c)

∑
i , j∈L

∑
v1 ,v2∈V

Di , jτi , j(e, v1, v2)
∑

v∈V l(e, v)
+

+

∑
v1 ,v2∈V

∑
c∈C D(v2)pc (e, v1, v2)

∑
v∈V l(e, v)

≤ Dmax(e)

D. Multiple VNF instances

So far, we have presented our problem formulation with

reference to the case that at most one instance of each VNF

can be placed at each B/F node. This is true in many cases;

however, there are situations (e.g., coexisting services with

isolation requirements) when we may need to place multiple

instances of the same VNF at the same B/F node. In the

following, we extend our model to describe such a case.

To begin with, we need to distinguish VNFs from VNF

instances. To this end, we introduce a new set W = {w}

representing the VNF instances, and indicate as V(w) ∈ V

the type of instance w, i.e., the VNF w is an instance of.

Furthermore, we need to account for the fact that logical

flows happen between VNFs, while physical flows happen

between VNF instances and processing takes place at VNF

instances. Therefore, we need to replace:

• τi,c (e, v1, v2) with τi,c(e,w1,w2), where w1,w2 ∈ W;

Initial
solution

fixProblems
procedure

saveEnergy
procedure

wait

traffic demand changes...

Fig. 4. The OptiLoop strategy. We begin by obtaining an initial feasible
solution, as described in Sec. V-A. After that, we periodically check the
current solution for problems (procedure fixProblems, described in Alg. 1)
and for opportunities to deactivate some B/F nodes and/or links (procedure
saveEnergy, described in Alg. 2).

• tc(e, v1, v2) with = tc(e,w1,w2);

• pc(e, v1, v2) with = pc(e,w1,w2).

In order to guarantee that physical and logical flows match,

we also need to replace (9) with:

l(e, v) =
∑

(e, j)∈L

∑

w∈W:V (w)=v

τe, j (e,w,w), ∀e ∈ E, v ∈ V,

(11)

where, in (11), the second summation accounts for all in-

stances w of VNF v.

Finally, (2) needs to be changed in order to represent the

fact that that data can flow from any instance of a VNF to any

instance of the next VNF in the logical graph:

∑

(c, j)∈L

∑

w2 ,w3 ∈W :
V (w2)=v2

V (w3)=v3

τc, j (e,w2,w3) =
∑

w2 ,w3 ∈W :
V (w2)=v2

V (w3)=v3

tc(e,w2,w3)+

+

∑

w1∈W :
V (w1)=v1

∑

w2 ,w3∈W :
V (w2)=v2

V (w3)=v3

pc(e,w1,w2)χ(v1, v2, v3). (12)

In (12), notice how the χ-variable, which concerns logical

flows, has as its indices VNFs in V, while the τ- and p-

variables have as indices VNF instances in W.

V. THE OPTILOOP STRATEGY

The problem stated in Sec. IV falls into the MILP category,

and is thus impractical to solve in real time. We can however

solve its relaxed version, where binary variables are allowed

to take any value in [0,1]. Optimal solutions to the relaxed

models cannot be directly used to manage (or plan) a network;

however, they can provide useful guidelines.

Our basic idea of is to leverage the software-defined nature

of our network to make an optimizer interact with SDN

controllers and NFVOs, i.e., optimize problems as a part of our

network management strategy. Our solution strategy is called

OptiLoop (for Optimization in the Loop) and it includes the

following steps, as outlined in Fig. 4: (i) we initialize the

system with a feasible (albeit potentially suboptimal) solution,

as detailed in Sec. V-A; (ii) after that, we periodically:

1) check that the network configuration is adequate to the

current (and/or predicted) demand;

2) if not so, activate additional VNFs, B/F nodes, and/or

links as needed;

3) check whether there are B/F nodes and/or links that can

be deactivated in order to save energy;

4) if so, update the current network configuration accord-

ingly.
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Sec. V-A explains how we obtain the initial solution, i.e.,

Item (i) above. Items (1)–(2) and (3)–(4) correspond to the

fixProblems and saveEnergy procedures respectively,

which are described in Sec. V-B and Sec. V-C.

It is worth pointing out that the fixProblems and

saveEnergy procedures are designed to take no action if

no action is warranted, and therefore there is no harm in

cascading them. As an example, fixProblems will never

take any action the first time it is executed after an initial

solution is generated, as that solution is guaranteed to be

feasible. Similarly, saveEnergy is unlikely to find elements

to deactivate if fixProblems just had to activate some.

A. Initial solution

The initial solution used to initialize OptiLoop has to be

feasible, but does not have to be optimal. It can come from

one of the heuristics we reviewed in Sec. II, or it can be

obtained by solving a version of our problem where:

1) all B/F nodes and links are active, i.e., yc = 1,∀c ∈ C

and xi, j = 1,∀(i, j) ∈ L;

2) there is an instance of all VNFs deployed at each B/F

node, i.e., δ(c, v) = 1,∀c ∈ C, v ∈ V.

The resulting solution will be highly suboptimal, as we are

likely to needlessly activate B/F nodes and/or links and to

place useless VNF instances, all of which increase the power

consumption. On the plus side, the problem is LP, as all binary

variables are fixed; furthermore, the following property holds.

Property 1: If a problem instance is feasible, then there is

at least one feasible solution where the x, y and δ variables

are all set to 1.

Proof: Let us consider a feasible solution S0, where some

of the binary variables are set to zero and others to one. By

hypothesis, S0 is feasible. What we need to prove is that

changing all binary variables to one can never make us violate

a constraint. This follows by inspection of (3), (4), (5), (6):

if they hold for the variable values in S0, then they will also

hold when all binary variables are set to one.

In other words, setting all binary variables to one is an easy

way to obtain a feasible solution to our problem to start with.

This solution can be vastly improved, as discussed next.

B. The fixProblems procedure

The high-level goal of the fixProblems procedure is to

check whether the current network configuration can cope with

the current (and projected) traffic demand. If this is not the

case, then we take one or more of the following actions: (i)

activating additional B/F nodes; (ii) activating additional links;

(iii) deploying additional VNF instances.

Specifically, as detailed in Alg. 1, we take as an input the

current solution Scurr. We then proceed, in Line 1–Line 4,

to create a new instance P of the problem, where all binary

variables are fixed to their values in Scurr. In Line 5, we

solve such a problem: if it is feasible, then no action is

required and the algorithm exits (Line 7). Otherwise, we look

at why the problem is infeasible, by inspecting its irreducible

inconsistent subsystem (IIS), i.e., the subset of constraints such

Algorithm 1 The fixProblems procedure.

Require: Scurr

1: P ← new problem()

2: P .fix(xi, j ← xcurr
i, j , ∀(i, j) ∈ L)

3: P .fix(yc ← y
curr
c , ∀c ∈ C)

4: P .fix(δ(c, v) ← δcurr(c, v), ∀c ∈ C, v ∈ V)

5: solve(P)

6: if P .is feasible then

7: return

8: if (4)∈ P .IIS then

9: P .relax(xi, j : xcurr
i, j = 0)

10: P .relax(yc : ycurr
c = 0)

11: x̃, ỹ← solve(P)

12: (i⋆, j⋆)←choose from L with prob. x̃i, j
13: P .fix(xi⋆ , j⋆ ← 1)

14: P .fix(yi ← 1; yj ← 1)

15: goto Line 5

16: if (7)∈ P .IIS then

17: P .relax(y(c) : ycurr(c) = 0)

18: P .relax(δ(c, v) : δcurr(c, v) = 0)

19: δ̃ ← solve(P)

20: c⋆, v⋆←choose from C ×V with prob. δ̃(c, v)

21: P .fix(y(c⋆) ← 1)

22: P .fix(δ(c⋆, v⋆) ← 1)

23: goto Line 5

that removing any of them would make the problem feasible.

This set allows us to discriminate between the different reasons

that can make the network unable to operate properly (hence,

the problem infeasible).

If constraint (4) (mandating that no link is used for more

than its capacity) is in the IIS, then we need to activate some

more links and/or B/F nodes. To decide which ones, we relax

all x- and y-variables related to B/F nodes and links that

were inactive in Scurr (Line 9–Line 10) and solve the new

problem (Line 11). We then choose one link to activate, with

a probability proportional to its relaxed x̃i, j value, and fix to 1

the corresponding x-value and the y-values of its endpoints

(Line 12–Line 14). We then go back to Line 5 and test the

new solution (Line 15). If it is still infeasible, we will activate

further network elements until feasibility is achieved.

We proceed in a similar way if constraint (7) is in the IIS,

i.e., if we have a computational capability issue. We relax

variables y and δ, allowing for more B/F nodes to be activated

and VNFs to be deployed if needed, and solve the new problem

obtaining the relaxed values δ̃ (Line 17–Line 19). We then

have to decide which VNF to place and where. We do so by

selecting a B/F node c⋆ and a VNF v
⋆ at random, with a

probability proportional to the relaxed values δ̃(c, v), and fix

the corresponding y and δ-variable to 1 (Line 20–Line 22).

Finally, we go back to testing the new solution (Line 23).

Note that all problems we solve in Alg. 1 are LP: in Line 5,

Line 11 and Line 19 all binary variables are either fixed or

relaxed. Such problems can be therefore solved in polynomial

time (embedded [18] optimization on low-power hardware is

now commonplace in several application domains).
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Algorithm 2 The saveEnergy procedure.

Require: Scurr

1: P ← new problem()

2: P .fix(xi, j ← 0, ∀(i, j) ∈ L : xcurr
i, j = 0)

3: P .fix(yc ← 0, ∀c ∈ C : ycurr
c = 0)

4: P .fix(δ(c, v) ← 0, ∀c ∈ C, v ∈ V : δ(c, v) = 0)

5: P .relax(xi, j , ∀(i, j) ∈ L : xcurr
i, j = 1)

6: P .relax(yc, ∀c ∈ C : ycurr
c = 1)

7: P .relax(δ(c, v), ∀c ∈ C, v ∈ V : δ(c, v) = 1)

8: solve(P)

9: (x⋆, y⋆) ← arg min(x,y)∈L : xcurr
x ,y=1 x̃i, j

10: c⋆← arg minc∈C : ycurr(c)=1 ỹ(c)

11: d⋆, v⋆← arg minc,v∈C×V : δcurr(c,v)=1 δ̃(c, v)

12: P2 ← copy(P)

13: if x̃i⋆ , j⋆ < ỹ(c⋆) ∧ x̃i⋆ , j⋆ < δ̃(d
⋆, v⋆) then

14: P2.fix(xi⋆ , j⋆ ← 0)

15: if ỹ(c⋆) < x̃i⋆ , j⋆ ∧ ỹ(c⋆) < δ̃(d⋆, v⋆) then

16: P2.fix(y(c⋆) ← 0)

17: P2.fix(xi, j ← 0, ∀(i, j) ∈ L : i = c⋆ ∨ j = c⋆)

18: P2.fix(δ(c, v) ← 0, ∀c ∈ C, v ∈ V : c = c⋆)

19: if δ̃(d⋆, v⋆) < x̃i⋆ , j⋆ ∧ δ̃(d
⋆, v⋆) < ỹ(c⋆) then

20: P2.fix(δ(d⋆, v⋆) ← 0)

21: solve(P2)

22: if P2.is feasible then

23: P ← P2

24: goto Line 1

25: else

26: return P

C. The saveEnergy procedure

We can think of the saveEnergy procedure as the dual of

fixProblems. Our aim is to identify B/F nodes and/or links

that can be deactivated, as well as VNF instances that can be

removed from the B/F nodes they run into. The objective is to

reduce our power consumption without impairing our ability to

serve the traffic, i.e., without making the problem infeasible.

As in the fixProblems procedure, we solve a sequence

of LP problems with fixed or relaxed variables, obtaining

guidance on the decisions we should make and their effects.

In Alg. 2, we take the current solution Scurr as an input.

We then create an instance P of the problem where the binary

variables that in the current solution have value 0 are fixed to

0 (Line 2–Line 4), and those that have currently value 1 are

relaxed (Line 5–Line 7). This is because we are not looking

for new nodes/links to activate, but for elements to deactivate.

We do so by solving the problem instance P (Line 8); note

that all binary variables therein are fixed or relaxed, so the

problem is LP.

In Line 9–Line 11 we identify the link, B/F node, and

pair of B/F node and VNF that are active in the current

solution and have the lowest value of the associated relaxed

variable (respectively x̃i, j , ỹ(c), and δ̃(c, v)). Intuitively, these

are the elements that most likely can be deactivated without

impairing network functionality. We check this by creating a

copy of problem instance P and fixing to 0 the binary variable

associated to the element with the lowest value of the relaxed

variables (Line 12–Line 20). If that element is a B/F node,

we also need to deactivate the links using it and the VNF

instances it hosts (Line 17–Line 18).

The difference between P and P2 is that exactly one

element that was active in P is deactivated in P2, hence P2

is also LP. In Line 21, we solve P2 and check if it is feasible.

If that is the case, then we use P2 as our new solution, and

try to further enhance it (Line 23–Line 24). Otherwise, the

algorithm returns P, the last feasible solution we tried.

In summary, Alg. 2 deactivates zero or more elements, i.e.,

B/F nodes, links, or VNF instances. The element to deactivate

is chosen based on the value taken by the corresponding

relaxed variable, and after each change we check that the

resulting configuration can serve its load, i.e., the problem

instance is feasible.

D. Computational complexity

The fixProblems and saveEnergy procedures are run

in order to react to changes in the network load; therefore, it

is important that the decisions they make are swift as well as

effective. To this end, we can prove that both procedures have

polynomial worst-case computational complexity, as stated by

the following theorem:

Theorem 1: The fixProblems (Alg. 1) and

saveEnergy (Alg. 2) procedures have polynomial

worst-case computational complexity.

Proof: The proof follows by inspection of Alg. 1 and

Alg. 2. The algorithms contain no loops, i.e., each of the

instructions therein is executed at most once. Among the

instruction, all perform elementary operations, except:

• finding the minimum of a set, which requires sorting and

has complexity O(n log n), n being the set size;

• solving convex optimization problems, which has poly-

nomial, namely, cubic computational complexity [19].

Thus, the overall complexity of the fixProblems and

saveEnergy procedures is polynomial, namely, cubic.

Theorem 1 ensures that the fixProblems and

saveEnergy can be used to make swift and effective

decisions in reaction to traffic changes. Indeed, convex

optimization problems are routinely [19] solved in embedded

applications with real-time requirements.

VI. TESTBEDS, SCENARIO AND BENCHMARKS

We validate and evaluate OptiLoop through two testbeds.

We study the interaction between OptiLoop, the SDN con-

troller, and the NFVO in a small-scale testbed with real hard-

ware, described in Sec. VI-A. For our performance evaluation

we instead use a larger, emulated testbed based on the real-

world topology of a mobile operator, as detailed in Sec. VI-B.

In all experiments, the reference VNF graph is the vEPC

service described in Fig. 1.

A. Real-world testbed

The architecture and topology of our real-world testbed are

described in Fig. 5. OpenDaylight (Beryllium version) and

OpenStack (Mitaka version) are used to control a network
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(a) (b)

Fig. 5. Architecture (left) and topology (right) of the real-world testbed. Fig. 5(b) also indicates the paths used in our path instantiation experiments, discussed
in Sec. VII-A1.

(a) (b)

Fig. 6. Architecture (left) and topology (right) of the emulation-based topology. Mininet is used to emulate a network whose topology and traffic match those
of a real-world network operator, as discussed in Sec. VI-B1. The size of pink dots is proportional to the traffic generated by the corresponding endpoint.

TABLE II
REAL-WORLD TESTBED, PATH INSTANTIATION EXPERIMENT: POWER CONSUMPTION [W]

Condition Switch ♯1 Switch ♯2 Switch ♯3 Switch ♯4 Switch ♯5 Switch ♯6 All switches

All paths off 21.0299 21.0281 21.02183 20.9614 20.9678 21.0173 125.9841

Path 1 on, no traffic 35.0349 20.9888 35.0096 21.0168 20.9670 34.9968 167.9023

Path 1 on, with traffic 35.4876 21.0455 35.6104 20.9996 21.0180 35.4558 168.2835

Paths 1–2 on, no traffic 35.0309 34.9947 34.9646 20.9988 20.9869 34.9846 181.9242

Paths 1–2 on, with traffic 35.2771 35.2135 35.6386 21.0171 20.9685 35.2783 182.1381

Paths 1–3 on, no traffic 34.9826 34.9894 34.9645 20.9861 20.9693 35.0037 181.9220

Paths 1–3 on, with traffic 35.6249 35.7221 35.5753 21.0042 20.9898 35.5849 183.6007

made of six Lagopus software switches (with DPDK sup-

port enabled for faster switching) and three physical servers,

connected as shown in Fig. 5(b). The OpenDaylight SDN

controller configures the data plane, by activating/deactivating

links and switches via SNMP protocol and configuring the

forwarding rules via OpenFlow 1.3 protocol. A custom-built

NFVO – integrated with the VNFM (VNF manager) and VIM

(Virtual Interface Manager) OpenStack modules – manages

the VMs that run the VNFs. Specifically, the NFVO provides

RESTful interfaces that allows the orchestration of network

services. Services themselves are is composed by multiple

VNFs, which are interconnected through the specification of

a VNF graph. A detailed description of its architecture and

implementation can be found in [20, Sec. 2.6]. We adopt the

OpenAirInterface [14] vEPC implementation, including the

four VNFs in Fig. 1.

OptiLoop is implemented as a standalone application, writ-

ten in Java and including two main components, devoted

to monitoring and decision-making. OptiLoop interacts with

both OpenDaylight and the NFVO through their REST APIs,

gathering up-to-date information on the status of switches,

links, physical servers and VNFs. When a decision is made, it

communicates it to OpenDaylight (if the decision concerns

link activation/deactivation) or the NFVO (if the decision

9



Fig. 7. Real-world testbed, path instantiation experiment: evolution of the
power consumption of the whole network as the three paths are instantiated.
Screenshot from the network orchestrator GUI.

TABLE III
REAL-WORLD TESTBED, PROVISIONING EXPERIMENT: DELAYS [S]

Time Component Maximum Minimum Average

OptiLoop 15.117 6.144 9.729

Server activation 0.111 0.068 0.086

Switch activation 2.660 0.871 1.824

Virtual links creation 31.797 21.953 27.369

Single VNF creation 38.823 30.235 31.476

Creation of all VNFs 49.738 31.883 38.384

Network path setup 0.065 0.050 0.056

Single VNF configuration 187.199 53.854 105.860

Configuration of all VNFs 316.992 86.885 216.591

Total NS instantiation 404.868 164.036 299.522

concerns VNF deployment or server activation/deactivation).

The decision-making component essentially implements Alg. 1

and Alg. 2, using the Gurobi solver for optimization. Since

Gurobi features Java bindings, using it within the OptiLoop

application is as simple as importing a library.

B. Emulated testbed

Our performance evaluation is carried out through an emu-

lated testbed based on Mininet, the de facto standard solution

to study SDN-based networks. Its architecture is summarized

in Fig. 6(a): similarly to the previous case, OptiLoop interacts

with the OpenDaylight controller for network management,

and directly with Mininet via its Python API to turn servers

and switches on and off. Notice that the actual VNFs are not

implemented in Mininet; the traffic they serve is emulated via

iperf and the energy consumption is estimated from our

real-world testbed, as detailed in Sec. VII-A1 next.

The switches and servers emulated by Mininet reproduce the

real-world topology of a major mobile operator, as detailed

in Sec. VI-B1. Links and servers are implemented through

the TCLink and CPULimitedHost Mininet classes, which

allow us to assign them bandwidth, delay and computational

capability matching those of their real-world counterparts. All

iperf-generated traffic is based on the real-world traffic

figures we have access to.

1) Network topology and traffic: Our reference topology,

displayed in Fig. 6(b), represents the real-world topology of

a major mobile network operator. It includes 42 endpoints

and 51 B/F nodes, with each endpoint connected to exactly

two B/F nodes. A total of 1,497 antennas are connected to

the endpoints. In the trace, per-endpoint traffic varies be-

tween 23.3 Mbit/s and 148.9 Mbit/s. In order to model future

network conditions, we increase such values by accounting

for the 22% annual growth rate foreseen by Cisco [21] for

the next five years, thus obtaining per-endpoint traffic values

varying between 74 Mbit/s and 473 Mbit/s per endpoint, with

a 82:18 downlink/uplink proportion. The dataset we use only

represents a snapshot of the network conditions, i.e., traffic

demand does not change over time.

Based on the real-world vEPC implementation [14] we

consider a total of four VNFs, namely eNB, MME, HSS, and

a gateway implementing both the P-GW and S-GW functions.

Notice that in [14] no VNF is split into user- and control-

plane sub-entities. We set our χ-values, expressing how traffic

gets transformed as it travels between VNFs, leveraging the

analysis in [10]; in particular, the fraction of control traffic

going to the MME is given by χ(eNB,P/S-GW,MME) = 0.32.

Still based on [10], we set the link bandwidth Bi, j to

10 Gbit/s for endpoint-to-node links and 100 Gbit/s for node-

to-node ones. Based on [10] and [22], we assume that each

B/F node can process 100 Gbit of traffic every second. Since

our scenario is constrained by B/F node and link capacity, we

ignore network and processing delays.

2) Benchmark solutions: We compare OptiLoop with three

alternatives:

• what is done in real-world systems, i.e., keeping all

network elements active regardless of traffic, indicated

as All on in the plots;

• the optimal solution obtained by brute-force, i.e., trying

all possible combinations of network elements to activate,

indicated as Optimal in the plots;

• a state-of-the-art approach based on consolidation, based

on [7] and indicated as Consolidation in the plots.

The consolidation procedure used in [7] consists of three-

stage decision process. For every flow, it first looks for an

already-deployed VNF to serve the flow; if none can be

found, it deploys a new instance of the VNF at an already

active B/F node. If no suitable node is found, it activates a

new one. Also, the procedure activates any additional B/F

nodes needed to ensure connectivity between endpoints and

the serving B/F nodes. It is interesting to notice how all stages

of the consolidation design process have the same goals of

our fixProblems procedure, namely, ensuring that there is

enough computational capability (steps 1 and 2) and network

capacity (step 3) to process the incoming traffic. There is no

equivalent for the saveEnergy procedure, i.e., already-made

decisions are never reconsidered.

VII. RESULTS

We start this section by summarizing, in Sec. VII-A, the

power consumption and delay figures we obtain from the real-

world testbed described in Sec. VI-A. We then present, in
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Fig. 8. Mininet experiments with real-world topology: energy savings obtained as a function of traffic (left); spare computational capabilities of the active
topology (CCAT) (center); number of hops traveled by requests (right).
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Fig. 9. Mininet experiments with real-world topology: breakdown of energy
consumption for the consolidation-based (“Cons.”), OptiLoop (“OL”), and
optimal (“Opt.”) strategies.

Sec. VII-B, a performance evaluation of OptiLoop carried out

by emulating a real-world topology in Mininet, as described

in Sec. VI-B.

A. Results from the real-world testbed

There are two main types of information we seek to obtain

from the real-world testbed described in Sec. VI-A:

• the power consumption associated with B/F nodes, broken

down in idle and processing power;

• the delay associated with changes to the network, e.g.,

activating a link or instantiating a new VM.

We measure the above quantities through two experiments,

namely, a path instantiation experiment and a service provi-

sioning one, as described next.

1) Path instantiation experiment: In this experiment, we

start with all equipment – switches and servers – in sleeping

mode. We then instantiate, one by one, the three paths shown

in Fig. 5(b), activating additional switches as needed. Finally,

we generate bidirectional flows of 1 Gbyte/s between each pair

of endpoints, so as to ascertain the impact of traffic on the

power consumption.

The evolution of the power consumption in our real-world

testbed is exemplified in Fig. 7. In the beginning, when

all network elements are in sleeping mode, the total power

consumption is around 280 W. Activating new servers results

in an increase in power consumption, as can be expected.

More interestingly, instantiating a new path results in a power

increase only if it requires activating a new switch, as is the

case of path 1 and path 2. As we can see from Fig. 5(b),

path 3 requires no extra switches with respect to path 1 and

path 2, and therefore instantiating it results in no additional

consumption.

Tab. II provides a more analytical view of the power con-

sumed by the switches in different states. When all equipment

is in sleeping mode (first row), each switch consumes roughly

21 W of power. Instantiating path 1 (second row) requires

activating switches 1–3 and 6, whose power consumption

jumps to 35 W; activating additional paths has the same effect

on the other switches. We can also observe that sending

traffic over the instantiated paths has a noticeable, but minor,

effect: routing 1 Gbyte/s of traffic results in an additional

consumption of around 0.5 W per switch. Finally, notice that

the last column of Tab. II does not match the line in Fig. 7

since the latter also includes the consumption of the physical

servers, i.e., 80 W in sleeping mode and roughly 120 W when

active.

2) Service provisioning experiment: In the service provi-

sion experiment, we are interested in measuring the delay

associated with performing changes to the network, including

path instantiation and service provisioning. To this end, we use

the network described in Sec. VI-A to provide the virtual EPC

(vEPC) service, consisting of the VNFs depicted in Fig. 1, as

implemented in [14].

Doing so requires three main steps, namely (i) making

VNF placement and traffic routing decisions, i.e., running

OptiLoop; (ii) setting up the required paths, similar to the

path instantiation experiment described in Sec. VII-A1; (iii)

instantiating and configuring the VMs that run the VNFs. The

aspect we are chiefly interested in is the relative importance of

such delay components. The results are summarized in Tab. III.

A first, important observation is that OptiLoop only accounts

for a small fraction (roughly 3%) of the total delay; in other

words, the energy savings it brings come at a modest price in

terms of additional delay.

Among the other delay components, we can observe that

VM configuration and, to a lesser extent, virtual link creation

dominate the total delay. It is also interesting to notice the

values labeled “Creation of all VNFs” and “Configuration

of all VNFs”, which are substantially less than four times

the creation (resp. configuration) of a single VNF. This is
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Fig. 10. Mininet experiments with real-world topology: number of deployed instances for the eNB and P/S-GW VNFs (left); average number of VNFs
deployed in each B/F node (center); average traffic processed at each B/F node (right).

Fig. 11. Scaled-up network topology. As in Fig. 6, blue dots indicate B/F
nodes, pink ones indicate endpoints, and the size of pink dots is proportional
to the traffic generated by the corresponding endpoint.

because, once decisions are made by OptiLoop, they can be

implemented in a parallel fashion.

B. Emulation-based performance evaluation

The first answer we seek from the performance evaluation

carried out through the emulated testbed concerns the mag-

nitude of possible energy savings. In Fig. 8(left), we vary

the traffic demand between 0.5 and 3 times the real-world

amount, and study how much energy we can save compared

to what is done today, i.e., leaving all B/F nodes and links

active. We can observe that OptiLoop yields dramatic savings,

consistently very close to the optimum, while consolidation

does not perform as well. An intuitive reason is that OptiLoop

accounts for all the three main contributions to energy con-

sumption (processing, idle power, and networking), while the

consolidation-based approach focuses on keeping the number

of active B/F nodes low.

Fig. 8(center) shows the spare computational capability of

the active topology (CCAT); intuitively, this is a measure of

how much power is being wasted, i.e., how inefficient the

network management strategy is. The consolidation algorithm

has the highest spare CCAT, because of the higher number of

B/F nodes that have to be activated in order to guarantee con-

nectivity. The spare CCAT yielded by OptiLoop is much lower,

and very close to the optimum. It is interesting to remark that

even the optimum leaves substantial spare CCAT. This is due

to the fact that some B/F nodes have to be active in order to

keep the topology connected, even if they do not have to host

any VNF. Fig. 8(right) depicts how many hops data travels

across the network. OptiLoop again matches the optimum,

while the consolidation strategy results in substantially longer

paths, due to the fact that VNF placement decisions are made

without accounting for connectivity.

We now use the power consumption we measure from our

real-world testbed (Sec. VII-A) to extrapolate the total power

that the emulated network would consume. Fig. 9 breaks such

a consumption into its main components, namely, processing,

networking, and idle power. Note that these components

have comparable magnitude, i.e., none of them dominates

the overall consumption. It follows that network management

strategies have to account for them all. We can also see that the

processing component never changes across strategies, since

the amount of traffic to process is always the same. The

difference between the strategies lies mostly in the networking

component (longer paths in Fig. 8(right) correspond to higher

consumption) and, to a lesser extent, in the idle energy. In

other words, it is important to place VNFs close to the traffic

they have to serve, while at the same time activating as few

B/F nodes as possible.

Dropping the “all on” strategy to keep plots easy to read,

Fig. 10(left) and Fig. 10(center) show that placing VNFs

close to the traffic they serve also means placing many of

them. This goes against the traditional concept of activating

only the strictly required number of elements, and it is a

direct consequence of the features of modern, software-based

networks. Indeed, there is little or no penalty for placing an

underutilized VNF instance on an already active B/F node,

while there is a significant energy cost for transferring even

modest amounts of data between B/F nodes. Indeed, we

can say that OptiLoop outperforms state-of-the-art alternatives

because it properly accounts for the unique features of 5G,

thus being more aggressive in deploying VNFs.

Comparing Fig. 10(left) to Fig. 10(center), we can see that

OptiLoop deploys more VNFs than the optimum, but the

number of VNFs per B/F node is similar. This is because

OptiLoop activates slightly more B/F nodes than the optimum,

as confirmed by Fig. 10(right) showing that the average

amount of traffic processed per B/F node is slightly lower

in OptiLoop.
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Fig. 12. Mininet experiments with scaled-up topology: savings obtained as a function of traffic (left); spare computational capabilities of the active topology
(CCAT) (center); energy consumption breakdown (right). Traffic multipliers are referred to the scaled-up traffic, i.e., five times the traffic in the original trace
described in Sec. VI-B1.

C. Scaled-up network topology

In the following, we investigate the performance of Op-

tiLoop when used on larger-scale network topologies. To this

end, based on indications from the mobile operator that pro-

vided us with the original topology described in Sec. VI-B1,

we generate a scaled-up version thereof. Specifically, we

operate as follows:

1) we replace each B/F node of the original topology with

a ring of five B/S nodes;

2) we place an additional 160 endpoints connected to

6,000 additional antennas;

3) we connect each additional endpoint to two randomly-

chosen B/S nodes;

4) we set the traffic requested by the additional antennas

in such a way that the traffic distribution matches the

original one, scaled up by a factor of five.

The resulting topology, depicted in Fig. 11, has over 200

B/F nodes serving traffic coming from 7,500 antennas. The

results yielded by OptiLoop and the consolidation algorithm

are reported in Fig. 12. Notice that there are no “optimal”

curves, as computing the optimum for the scaled-up topology

proved utterly impractical.

Fig. 12(left) shows that, as the topology gets larger, Op-

tiLoop – and, to a lesser extent, consolidation – yield more

savings, almost reaching 50%. Intuitively, this is connected

to the fact that in larger topologies it is easier to maintain

connectivity while deactivating a substantial fraction of B/F

nodes. This is confirmed by Fig. 12(center), showing that the

spare CCAT, i.e., the unused computational power in the active

network, is proportionally lower than in the original topology.

Indeed, as we can see from Fig. 8(center), the spare CCAT

with the original topology reaches 2,500 units under OptiLoop,

while in Fig. 12(center) it is below 10,000 units in spite of

the topology being five times larger.

Finally, Fig. 12(right) breaks the total power consumption

into its main components. By comparing it with Fig. 9, we

can observe that:

• the processing power is exactly five times larger than

in the original topology, as that component is strictly

proportional to the traffic to serve;

• the idle power is proportionally lower since, as observed

earlier, there are fewer B/F nodes activated only for sake

of connectivity;

• the networking power is proportionally larger, as data are

more likely to travel a longer path to the serving B/F

node.

The latter two items suggest that networking power and idle

power are, to a certain extent, antithetical, and it can be hard

to minimize both at the same time.

VIII. CONCLUSION

We considered two of the unique features of 5G networks,

namely, the hybrid nature of their nodes (which have both

forwarding and computational capabilities) and the fact that

the traffic to serve changes across processing steps. Such

features require the entities in the MANO layer, and especially

the NFVO, to make joint decisions about (i) which B/F nodes

to activate, (ii) the VNF instances they run, and (iii) how to

route traffic between VNFs and the nodes running them. We

formulated a system model and optimization problem, that

enable us to make all such decisions with the objective to

minimize the energy consumption of the network. We further

proposed OptiLoop, a solution concept based on integrating

optimization within the MANO entities, allowing them to

make decisions by repeatedly solving relaxed optimization

problems.

We validated OptiLoop through a real-world testbed based

on OpenDaylight and OpenStack, and further evaluated its

performance through a large-scale emulated network whose

topology and traffic are based on those of a major network

operator. OptiLoop was shown to outperform state-of-the-art

approaches and closely track the optimum, while representing

only a minor contribution to the total network delay.
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