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Abstract— The new paradigms brought to the networking 
area by softwarization, not only are revolutionizing research 
and industry, but start deeply impacting on teaching. While in 
the past most of education in basic networking relied upon 
studying theory and learning standard protocols, today the 
hands-on experience is gaining paramount importance. In this 
paper, after briefly explaining how SDN changed the learning 
experience, we present a portable, low-cost, self-contained 
hardware laboratory to experiment with real SDN networks 
based on OpenFlow switches, valuable for both teaching and 
research. We then show some use-case that can be investigated 
within possible projects developed using this testbed. Though 
devised mainly for SDN, we will show that this testbed can 
support experimentation also of traditional switching concepts, 
such as packet classification. Finally, we introduce a short 
demonstration that can be presented live at the conference. 

Keywords— Software Defined Networking, OpenFlow, 
Experimentation 

I. INTRODUCTION 

It is well recognized that softwarization of networks is 
having a major impact on modern telecommunications, not 
only in the domain of academic research, but also in that of 
the industry. This term embodies two important paradigms: 
Software Defined Networking (SDN) and Network Function 
Virtualization (NFV). This inevitably generates consequences 
on teaching, both in lifelong learning programs for 
professional staff and in university courses. Indeed, the 
development of networks using software sits aside or, in some 
cases, even replaces traditional topics of networking in 
courses on fundamental computer networks. As a matter of 
fact, widely-spread textbooks such as [1] [2] already explore 
this technology. 

One of the key strategies in engineering education is the 
use of practical lessons and laboratories to apply students’ 
scientific knowledge. Indeed, practical activities complement 
traditional lectures by elucidating the material taught during 
classes and also improving students’ ability to problem 
solving [3]. Softwarization helps accomplishing this goal and 
brings the big advantage that it makes experimental and 
hands-on activity much easier than in the past. It introduces 
the possibility of direct interaction between the user and the 
network, being the main essence of these new trends. 
Consequently, the need for students and learning staff to use 
this technology naturally arises, which leads to great 
opportunities in teaching. 

Several simulation and emulation tools are available 
nowadays, both open-source (e.g. GNS3 [4], Mininet [5]) and 
offered by vendors (e.g. PacketTracer [6], VIRL[7]), making 
hands-on and testing experience easy to achieve. However, we 
believe that a hardware lab, even if small-scale and low-cost, 
has some clear advantages compared to simulators and 
emulators. First, a hardware lab stimulates, coherently with 
well-known psychological mechanisms, young students and 
researchers to “build their own Internet” [8] with their hands, 
improving their understanding and retention. Secondly, a 
hardware lab has also some relevant technical advantages over 
an emulated environment. In fact, some kind of network 
measurements, typically delay, jitter and bandwidth, are hard 
to be performed or inaccurate in emulated or simulated 
networks. This is due to the influence of the computing 
machine (virtualization server) hosting the emulation tool, 
whose activity may introduce unpredictable spurious effects 
that make the measurements unreliable and hard to reproduce, 
if not meaningless in some cases. 

Fig. 1 depicts the general architecture of SDN technology, 
divided into three layers. The higher layer consists of the 
Network Applications (NAs) that will be performed over the 
SDN controller. The middle layer, called Control Plane (CP), 
is based on a centralized controller that enables the underlying 
networking infrastructure to be abstracted. It therefore 
provides a programmable interface to the network. Lastly, the 
lowest level, called Data Plane (DP) deals with user’s data, as 
it contains the equipment to route and transmit them to from 
the source to the final destination. The communication 
between the network applications and the CP is enabled by 
Northbound interfaces, such as REST API. The CP manages 
the DP forwarding rules and obtains information from the DP 
layer thanks to the Southbound interface. Several protocols 
can be used to implement the Southbound interface. 

For the development of this testbed, we decided to adopt 
OpenFlow [9]. This protocol creates flow tables in switches 
with a set of actions to be executed according to the incoming 
packets. The selection of this particular protocol is due to the 
following reasons. Although OpenFlow is not commercially 
deployed everywhere (for instance, it is common within 
datacenters, but not in the Wide Area Networks – WANs and 
transport networks), it was natively developed to implement 
the SDN architecture. Studying OpenFlow, students can 
therefore have a clear perception of the SDN concept, without 
complications that, for other protocols, derive from back-
compatibility with legacy equipment. On the other hand, 
OpenFlow is quite consolidated and backed by a strong 



organization (Open Networking Forum – ONF), well 
documented (even in textbooks), while other more recent 
alternatives (e.g. P4) do not have the same stability. 

As we have anticipated, the SDN paradigm have changed 
teaching, and it is precisely in the layered structure that we see 
in Fig. 1 that we can find the basis to shape the new hands-on 
approach. The most important feature of the SDN architecture 
in this perspective is having migrated the “intelligence” of the 
network in the network-application layer. While CP and DP 
are rather technology dependent, NA is completely flexible 
and open (assuming that the abstraction provided on the 
Northbound interface is powerful enough). In a teaching 
environment, this layer represents the “dojo” where students 
can better exploit their fantasy and creativeness to develop 
original applications to solve an ample range of networking 
problems. Later in this paper we will present some examples 
of such problems (i.e. packet classification, IP lookup, load 
balancing, failure detection and policy-based flow routing). 
So, the conception of our lab is to provide students with a CP 
and a DP ready to be used, leaving them to focus on the 
development of their network applications.  

Another strength of SDN is the availability of many CP 
implementations based on open-source projects: as detailed 
later on, we relied completely on open-source to implement 
the CP in our lab.  What is instead more peculiar is the 
implementation of the DP, which we decided to build with 
hardware. In this paper we focus on the small hardware 
laboratory, namely MiniLab, that, despite its simplicity and 
low cost, allows us to reproduce a real SDN network. It was 
the result of a cooperative work between research groups of 
Politecnico di Milano (Italy) and Politecnico di Torino (Italy). 
MiniLab enables the student to learn and practice two key 
operations for real networks: 1) how to configure and setup 
various network topologies of switches with their control 
plane (e.g. using various SDN controllers); 2) how to 

implement and test complex network functions and assess 
their actual performance. Based on the experiences of regular 
courses on network engineering in both universities, MiniLab 
was considered to be useful to students for hands-on teaching 
activities. Also, it brought benefits to researchers that are able 
to test algorithms and control-plane solutions. In addition, 
thanks to the reduced size of the lab can be easily portable to 
other places, facilitating its use both in lectures and dedicated 
laboratory practices. 

The remaining of the paper is organized as follows: Sec. II 
describes technical aspects of the testbed, Sec. III explains 
possible projects that could be developed on this testbed, Sec. 
IV presents two demonstrations that will be shown live during 
the paper presentation as examples of possible experiments, 
and Sec. V concludes the paper. 

II. LAB DESCRIPTION 

The network environment was developed by the BONSAI 
Research Group of Politecnico di Milano with collaboration 
of Politecnico di Torino. The testbed comprises 12 Zodiac FX 
Northbound switches [10] based on the OpenFlow protocol 
[9] and 6 hosts that can act as servers and clients for network 
services. The controller accesses the forwarding plane of the 
switches by the OpenFlow communication protocol 
(Southbound interface). In order to forward traffic from one 
port to another of a switch, the controller installs a flow rule 
in the flow table of the switch. 

Any SDN controller supporting OpenFlow on the 
Southbound can be used in this laboratory. Among several 
available open-source controllers, we selected the Ryu SDN 
controller [11]. Ryu is a component-based SDN framework 
application developed in Python. It is particularly suitable for 
educational purposes thanks to its simplicity, flexibility and 
reliability. It provides a well-defined Application 
Programming Interface (API) that allows users to easily 
develop their network applications on the top of Ryu, using 
the Python programming language, which is easier to learn 
and use than other languages. Other SDN controllers more 
sophisticated than Ryu can be used for more advanced 
projects. In particular, the Java-based ONOS [12] and 
OpenDaylight [13] controllers have already been tested in the 
MiniLab and used in research projects. 

In order to experiment with the SDN network testbed, we 
adopted Raspberry PI 3 model B+ computers to act as network 
hosts (see Fig. 2). Each Raspberry is a full-fledge computing 
system, but it is small in size and consumes a limited amount 
of energy. Finally, this device supports generic Linux Debian-
based applications, allowing a wide spectrum of network 
services and applications to be executed. 

In Fig. 2 we show the physical outline of MiniLab. Just for 
sake of illustration, in the picture the OpenFlow nodes are 
connected on the data plane in such a way as to form three 
adjacent rings, but other physical topologies can be easily 
implemented with a proper cabling. The control port of each 
node is connected to the controller via a cable (yellow lines in 
Fig. 2) and through two standard Ethernet switches. In this 
way, we can install the SDN controller in an external laptop 
or PC. 

This solution gives students the opportunity to configure 
and modify the controller, and develop their network 
applications. They can also work at home, by testing their 
software offline (emulating the testbed e.g. throughout 

 
Fig. 1: General SDN architecture. It is  composed by data plane, control 
plane and the network applications. In the picture, some examples of 
applications that could be implemented in the academic environment are 
proposed, including traditional switching (blue) and SDN (green) 
functions. 



Mininet), and then come to the lab with their software ready 
to be installed. Since every Raspberry PI has a built-in Wi-Fi 
dongle, we have setup an ad-hoc Wi-Fi management network, 
inside which we can configure the hosts and the services 
provided by the hosts. 

Finally, the configuration of the switches operates either 
via GUI, or via Command Line Interface (CLI) through a 
serial communication link (COM port). At the moment, the 
configuration using protocols such as OF-Config [14] is not 
supported, but it will be added in future developments. In 
order to promote the compactness and portability of the 
testbed, we have divided the MiniLab into 4 mini-rack 
modules. Each mini-rack contains either 3 hosts (Fig. 3a) or 3 
to 6 switches (Fig. 3b). The racks can be used in different 
manners to operate smaller or larger topologies, according to 
the users’ needs. 

Table I summarizes the hardware specifications of 
MiniLab, specifying the processor, memory, connectivity, 
features and input power used. 

III. USE CASES 

As explained in Sec. I, the use of SDN technology as a 
teaching tool can bring several benefits to learning. First of all, 
such a laboratory enables visualizing in a real scenario the 
application of algorithms that were studied during lectures in 
a simplified manner. Furthermore, students are able to solve 
problems related to networking by studying, planning and 
implementing different algorithms and network applications. 
A number of projects can be exploited in such a laboratory. 
For instance, students can virtualize traditional switching 
functions, such as: IP-address lookup and packet 
classification. On the other hand, thanks to this environment, 
they are also able to implement network applications that 
performs typical SDN network functions, such as: MPLS 
routing, load balancing, node and link failure detection, 
policy-based flow routing, etc. In both cases, students have to 
implement in practice and with “their own hands” the 
algorithms that they learn in the courses, directly experiencing 
in a comparative way concepts such as performance and 
complexity. 

In this section, we describe some use cases divided into 
two scenarios. The first one comprises traditional networking 
function such as packet classification. The second presents 
projects based on SDN, considering failure detection and 
recovery mechanisms, and dynamic flow routing. 

 
Fig. 2: Schema of MiniLab. Gray lines are the Ethernet cables for the 
data plane links. Yellow lines are the Ethernet cables used for the control 
plane. The laptop runs the SDN controller and it is connected to all the 
OpenFlow nodes through Ethernet cables and two interconnected 
standard Ethernet switches. Each host is connected directly to one 
OpenFlow switch. 

  
(a) (b) 

Fig. 3: Photo of MiniLab. The image on the left (a) depicts a mini-rack 
module with three Raspberry PI hosts, while the one on the right (b) 
shows a mini-rack module mounting six Zodiac switches. 

TABLE I.  HARDWARE SPECIFICATIONS OF MINILAB 

Characteristics Raspberry PI Zodiac FX Switch 

Processor 
Broadcom BCM2837B0, Cortex-A53 64-bit SoC @ 
1.4GHz 

Amtel SAM4E8CA. Microchip KSZ8795CLX Managed 
Ethernet Switch 

Memory 1GB SDRAM 128KB SDRAM 

Connectivity 

2.4GHz and 5GHz IEEE 802.11.b/g/n/ac wireless LAN 
Bluetooth 4.2, BLE 
Gigabit Ethernet over USB 2.0 max throughput 300Mbps 
4 x USB 2.0 ports 

4 x 10/100Mbs Ethernet Ports 
USB Serial (COM) and Web-Based Configuration 

Features 

Size: 87 x 58,5mm 
Weight: 49,7grams 
SD card support: Micro SD format for loading operating 
system and data storage 

Size: 100 x 80mm 
Weight: 115 grams 
Compatible with OpenFlow 1.0 & 1.3 

Input Power 5V/2.5A DC via micro USB connector 5V/300 mA DC via micro USB connector 

 



A. Traditional switching functions: packet classification 
with geometric algorithms 

The objective of this project is that students learn how to 
implement, test and evaluate packet classification algorithms, 
normally performed by switches, routers and other network 
equipment to identify flows of packets by recognizing regular 
expressions in the headers. This function is implemented in 
the firmware or the operating system of the switches 
(incidentally, Zodiac switches, being OpenFlow-based, 
themselves internally perform packet classification). In order 
to allow students to develop their own classification function, 
we have to exploit a gimmick. OpenFlow allows us to instruct 
the switches to send incoming packets to the controller, 
instead of processing them directly. So, in this project the 
switches send to the controller a large number of packets. The 
controller classifies the packets and return them to the 
switches. In this way, students can develop packet 
classification as a network application on the top of the 
controller. 

Several algorithms have been proposed in literature for 
packet classification: an ample selection is reported, for 
instance, in [15].  In this paper, we take as example those 
based on geometric classification, and, in particular, two 
implementations known as cross-product [16] and bitmap 
intersection [17]. In this project, students implement the two 
algorithms in the NA layer over the Ryu controller, and then 
test the algorithms in a network topology to understand their 
differences in terms of performance (lookup computation time 
and memory usage). 

In the first step, the project is done in emulated 
environments such as Mininet. The development of the 

algorithms and their testing in Mininet can be done on their 
own. Mininet enables creating large topologies such as the one 
illustrated by Fig. 4a. By instantiating several end-to-end 
flows in this virtual testbed, they can generate a large number 
of packets with many different header attributes, which is 
good to test the algorithms with enough statistical confidence. 
Classifier tables can also be easily scaled to include a variable 
number of rules. At the end of the first step, the collected data 
allows us to experimentally compare the complexity of the 
algorithms. 

In the second step, the physical testbed can be used as a 
small-scale environment to verify how the developed network 
apps work on a physical DP. Since the current version of 
MiniLab has a limited number of OpenFlow switches, ports 
and hosts, it does not allow the same statistic confidence as in 
Mininet. , The topology must be modified, e.g. as represented 
in Fig. 4b, to cope with the testbed limitations (only ring 
topologies can be implemented). Nevertheless, it 
complements students learning thanks to the implementation 
and evaluation of the classification algorithms in a real 
environment, contributing also to the easiness of the results 
visualization and analysis. 

Fig. 5 shows one of the results expected after the 
development of this project. The average time that bitmap and 
cross-product algorithms take to calculate the look-up is very 
similar, although cross-product presents better scalability. 
Results are in good accordance with complexity analysis. 
Classification time-time complexity is O (d · tRL) for the 
crossproduct and O (d · tRL + d · N / w) for the bitmap, where 
N is the number of rules, d is the number of classification 
fields, w is the number of bits used in the bitmap and tRL is the 
time complexity of finding a range in one dimension. In this 
case, d = 2 and is O (log2 2N), since a binary-tree search was 
used to perform range lookup in one dimension. It is important 
to notice that, since the algorithms are embedded in the 
controller and not in the switches, students obtain the similar 
curves when implementing them in a real testbed or in an 
emulated scenario. 

B. SDN Projects 

The projects explained in this section aim at studying SDN 
applications considering two types of operations. The first one 
illustrates a scenario for verifying failure detection and 

 
(a) 

 
(b) 

Fig. 4: Example of topology for packet classification project to be 
implemented in Mininet (a), and a simplified version for MiniLab (b), 
which only supports ring topologies and maximum of six hosts in its 
current status. 

 

Fig. 5: Scalability comparison of average packet-classification time in 
miliseconds of bitmap and crossproduct geometric algorithms according 
to the number of rules used in the classifier. 



recovery operation. The second one consists of testing a flow 
routing algorithm based on dynamic weights associated to the 
carried traffic. They consider the network depicted in Fig. 6 as 
an example, which illustrates a ring topology containing six 
OpenFlow switches connected to four hosts, and managed by 
a Ryu SDN Controller. 

As previously stated, students can develop a series of tests 
to understand multiple functionalities and operation modes of 
SDN in a physical testbed such as MiniLab. Moreover, in 
order to provide a complementary activity and optimize the 
use of the lab amongst the multiple groups, the experiment can 
first be implemented in Mininet. Consequently, they are able 
to build an emulated topology and test the controller and 
application codes before preparing the real scenario. After 
having tested the controller in an emulated environment, 
students can recreate the same topology by connecting the 
available switches and initializing the controller and the 
application. This set of activities helps students obtaining an 
extensive comprehension on the development and 
implementation of SDN solutions. 

1) Failure detection and recovery 
The overall objective of projects on failure detection and 

recovery is to design a centralized system that can react to 
node and link outages in a topology in such a way that it is 
able to restore the connection automatically. To this end, 
students must deploy failure detection and recovery 
mechanisms in the controller, and generate a link or node 
failure to evaluate the network reaction. 

The workflow for the development of this project is the 
following. In the first step, students implement a ring 
topology, such as the one shown in Fig. 6. Then, they 
configure Ryu SDN Controller, including the design of 
functions to fill-in flow and group tables in switches in order 
to enable connection recovery in case of failure. After that, all 
hosts should be able to communicate among themselves. Next, 
a link (or node) fault is caused by physically removing the 
connection between two nodes in order to test the network 
operation in the event of a malfunctioning. In Mininet, this 
fault generation is performed through a script, while in the 
physical testbed, one of the cables is manually disconnected 
from a switch. 

The optimal operation mode is illustrated by Fig. 7. 
Initially, hosts H1 and H2 communicate with each other using 
a single link (see Fig. 7a). In the case in which this link fails, 
the system is able to recover the communication among the 
hosts by the selection of another flow routing path, as depicted 
in Fig. 7b. 

2) SDN with dynamic routing 
The main goal of this use case is to dynamically calculate 

SDN flows according to the traffic information of each 
connection to enable load balancing. For this, students are 
requested to deploy an SDN topology in which Djikstra 
algorithm is used to dynamically compute the optimal path 
between nodes of a weighted network. 

The first step of this project is to implement an exemplary 
ring topology, such as Fig. 6, applying weights for each link 
as proportional to their current available bandwidth. The 
students then configure Ryu SDN Controller in such a way 
that it is able to recalculate the optimal path using Djikstra 
algorithm upon packet arrivals. Each flow table is therefore 
immediately updated according to the selected flow routing. 
Next, they can evaluate the correct functioning of the system 
by opening connections between several hosts and, hence, 
evaluating the different flow routes assigned to these 
connection requests. 

Fig. 8 exemplifies the expected outcome of this 
implementation. At first, H1 requests a connection to H2, the 
shortest path is calculated, and information can be exchanged 

 

Fig. 6: Ring topology with six switches and four hosts managed by a 
Ryu SDN Controller. 

 

(a) 

 
(b) 

Fig. 7: Failure detection and recovery mechanism in a ring topology. 
The image on the top shows its normal operation, in which a working 
(solid) and a backup (dashed) path are calculated for host 1 (H1) to 
transmit data to host 2 (H2). Figure (b) illustrates a failure in the link 
previously used to communicate, and the SDN network is able to 
automatically switch to the backup path. 

 

Fig. 8: Dynamic routing mechanism. After the green flow path is 
assigned between H1 and H2, the controller updates the weights of links 
l1 and l2, and new flow path is assigned avoiding these links via the pink 
path. 



via the green path. The controller then updates the link weights 
considering the current network usage, i.e. the available 
bandwidth of l1 and l2 decreased. Next, when a new demand is 
requested among H3 and H2, the controller takes into account 
current weights to compute the new path, shown in pink. 

IV.DEMO EXPERIMENTS 

We developed two demonstrations to exemplify the usage 
of MiniLab. They involve a self-healing ring and the 
measurement-based flow allocation. 

1) Self-healing ring 
Fig. 9a depicts the testbed setup for the self-healing ring 

experiment. We connected all OpenFlow switches together in 
a ring topology using the white cables. We also connected 
three Raspberry Pi hosts to three switches to monitor whether 
packets reach their destination. The controller was attached to 
the switches by the yellow cables. 

In this experiment, Ryu controller first retrieves the 
physical topology and preconfigures the network to route the 
traffic clockwise from a source to a destination host. Ryu 
provides an interface (Ryu Topology Viewer) that shows the 
topology discovered by the controller (see Fig. 9b) and the 
flow tables installed in each switch. In order to evaluate that 
the packets are being correctly transmitted, we use the ping 
command from one host to another. The switch where the 
destination host is located forwards the packet from the ring 
to the destination, and we therefore observe that it is indeed 
reachable. 

Then, we simulate a single link failure by physically 
disconnecting a random link, as shown in Fig. 9c. The 

controller can no longer retrieve the link between two of the 
hosts, and updates all flow tables. Fig. 9d illustrates the new 
topology from Ryu Topology Viewer without the link that was 
manually detached. By analyzing the ping execution, we 
observe that the destination continued to be reached. Hence, 
the SDN controller is able to automatically restore the 
connection between the two hosts after a link failure. 

This experiment enables students to test and to compare 
different restoration strategies, such as reactive and proactive 
ones. In the reactive strategy, when the switches report the link 
failure, the controller replaces existing forwarding rules and 
configures the new path. In the proactive strategy, the 
controller installs the protection path in advance and 
configures the interfaces to send packets counter-clockwise in 
case of a local failure. 

2) Measurement-based flow allocation 
In the second experiment, we demonstrate a measurement-

based flow allocation, in which the physical network is 
configured as a partial mesh. The controller performs 
topology discovery, and periodically collects link usage 
measurements from the switches. This data is used to build a 
graph of the network with link weights that dynamically 
change over time according to the real-time link usage. When 
the switch reports a new incoming TCP connection to the 
controller, the controller uses this network graph to find the 
minimum congested path to the destination host. Then, it 
installs the desired path on the switches according to the flow 
rule that routes all the connection packets through the chosen 
path. This experiment enables showing the effectiveness of 
self-adapting routing policies implemented in the SDN 
controller. 

 
(a) 

 

 
(c) 

 

 
(b) 

 
(d) 

Fig. 9: Self-healing ring demonstration. Figure (a) presents the testbed setup with OpenFlow switched connected among themselves and to three Raspberry 
Pi hosts to create a ring topology. Figure (b) shows the topology retrieved by the SDN controller in Ryu Topology Viewer. Figure (c) illustrates the link 
failure with the disconnection of a cable from a switch, which is depicted by Ryu Topology Viewer as Figure (d). 



V.CONCLUSIONS 

We presented MiniLab, a self-contained and compact 
laboratory tailored to experiment with real SDN networks. 
MiniLab connects one SDN controller to 12 OpenFlow 
switches and controls the traffic between 6 hosts. All the 
involved hardware devices (Zodiac FX Northbound switches 
and Raspberry PI computers) are low cost, but fully 
programmable. Despite its simplicity, MiniLab is flexible 
enough to perform a large number of experiments, useful not 
only for teaching networking, but also for research in many 
SDN and NFV scenarios. We described some use cases related 
both to traditional switching and to the SDN scenario to 
explain possible usages of this testbed. Thus, we expect it to 
be an effective tool to learn basic and advanced networking 
techniques, with a broad applicability, from optical to wireless 
networks. 

As future work, we expect that the adopted modular 
approach will be scaled to larger networks, involving also 
different communication technologies and mimicking key 
architectures and control schemes of future 5G networks. 
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