
18 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Portable MiniLab for Hands-on Experimentation with Software Defined Networking / Troia, Sebastian; Maria Moreira
Zorello, Ligia; Maier, Guido; Verticale, Giacomo; Giaccone, Paolo. - ELETTRONICO. - (2019). (Intervento presentato al
convegno IEEE International conference on telecommunications (ConTEL) tenutosi a Graz, Austria nel 3-5 July 2019)
[10.1109/ConTEL.2019.8848560].

Original

Portable MiniLab for Hands-on Experimentation with Software Defined Networking

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/ConTEL.2019.8848560

Terms of use:

Publisher copyright

©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2742941 since: 2020-02-27T11:23:48Z

IEEE

Portable MiniLab for Hands-on Experimentation
with Software Defined Networking

Sebastian Troia(1), Ligia Maria Moreira Zorello(1), Guido Maier(1), Giacomo Verticale(1), Paolo Giaccone(2)

(1) Politecnico di Milano, Dipartimento di Elettronica Informazione e Bioingegneria (DEIB), Italy
{sebastian.troia, ligiamaria.moreira,guido.maier,giacomo.verticale}@polimi.it

(2) Politecnico di Torino, Dipartimento di Elettronica e Telecomunicazioni (DET), Italy
paolo.giaccone@polito.it

Abstract— The new paradigms brought to the networking
area by softwarization, not only are revolutionizing research
and industry, but start deeply impacting on teaching. While in
the past most of education in basic networking relied upon
studying theory and learning standard protocols, today the
hands-on experience is gaining paramount importance. In this
paper, after briefly explaining how SDN changed the learning
experience, we present a portable, low-cost, self-contained
hardware laboratory to experiment with real SDN networks
based on OpenFlow switches, valuable for both teaching and
research. We then show some use-case that can be investigated
within possible projects developed using this testbed. Though
devised mainly for SDN, we will show that this testbed can
support experimentation also of traditional switching concepts,
such as packet classification. Finally, we introduce a short
demonstration that can be presented live at the conference.

Keywords— Software Defined Networking, OpenFlow,
Experimentation

I. INTRODUCTION

It is well recognized that softwarization of networks is
having a major impact on modern telecommunications, not
only in the domain of academic research, but also in that of
the industry. This term embodies two important paradigms:
Software Defined Networking (SDN) and Network Function
Virtualization (NFV). This inevitably generates consequences
on teaching, both in lifelong learning programs for
professional staff and in university courses. Indeed, the
development of networks using software sits aside or, in some
cases, even replaces traditional topics of networking in
courses on fundamental computer networks. As a matter of
fact, widely-spread textbooks such as [1] [2] already explore
this technology.

One of the key strategies in engineering education is the
use of practical lessons and laboratories to apply students’
scientific knowledge. Indeed, practical activities complement
traditional lectures by elucidating the material taught during
classes and also improving students’ ability to problem
solving [3]. Softwarization helps accomplishing this goal and
brings the big advantage that it makes experimental and
hands-on activity much easier than in the past. It introduces
the possibility of direct interaction between the user and the
network, being the main essence of these new trends.
Consequently, the need for students and learning staff to use
this technology naturally arises, which leads to great
opportunities in teaching.

Several simulation and emulation tools are available
nowadays, both open-source (e.g. GNS3 [4], Mininet [5]) and
offered by vendors (e.g. PacketTracer [6], VIRL[7]), making
hands-on and testing experience easy to achieve. However, we
believe that a hardware lab, even if small-scale and low-cost,
has some clear advantages compared to simulators and
emulators. First, a hardware lab stimulates, coherently with
well-known psychological mechanisms, young students and
researchers to “build their own Internet” [8] with their hands,
improving their understanding and retention. Secondly, a
hardware lab has also some relevant technical advantages over
an emulated environment. In fact, some kind of network
measurements, typically delay, jitter and bandwidth, are hard
to be performed or inaccurate in emulated or simulated
networks. This is due to the influence of the computing
machine (virtualization server) hosting the emulation tool,
whose activity may introduce unpredictable spurious effects
that make the measurements unreliable and hard to reproduce,
if not meaningless in some cases.

Fig. 1 depicts the general architecture of SDN technology,
divided into three layers. The higher layer consists of the
Network Applications (NAs) that will be performed over the
SDN controller. The middle layer, called Control Plane (CP),
is based on a centralized controller that enables the underlying
networking infrastructure to be abstracted. It therefore
provides a programmable interface to the network. Lastly, the
lowest level, called Data Plane (DP) deals with user’s data, as
it contains the equipment to route and transmit them to from
the source to the final destination. The communication
between the network applications and the CP is enabled by
Northbound interfaces, such as REST API. The CP manages
the DP forwarding rules and obtains information from the DP
layer thanks to the Southbound interface. Several protocols
can be used to implement the Southbound interface.

For the development of this testbed, we decided to adopt
OpenFlow [9]. This protocol creates flow tables in switches
with a set of actions to be executed according to the incoming
packets. The selection of this particular protocol is due to the
following reasons. Although OpenFlow is not commercially
deployed everywhere (for instance, it is common within
datacenters, but not in the Wide Area Networks – WANs and
transport networks), it was natively developed to implement
the SDN architecture. Studying OpenFlow, students can
therefore have a clear perception of the SDN concept, without
complications that, for other protocols, derive from back-
compatibility with legacy equipment. On the other hand,
OpenFlow is quite consolidated and backed by a strong

organization (Open Networking Forum – ONF), well
documented (even in textbooks), while other more recent
alternatives (e.g. P4) do not have the same stability.

As we have anticipated, the SDN paradigm have changed
teaching, and it is precisely in the layered structure that we see
in Fig. 1 that we can find the basis to shape the new hands-on
approach. The most important feature of the SDN architecture
in this perspective is having migrated the “intelligence” of the
network in the network-application layer. While CP and DP
are rather technology dependent, NA is completely flexible
and open (assuming that the abstraction provided on the
Northbound interface is powerful enough). In a teaching
environment, this layer represents the “dojo” where students
can better exploit their fantasy and creativeness to develop
original applications to solve an ample range of networking
problems. Later in this paper we will present some examples
of such problems (i.e. packet classification, IP lookup, load
balancing, failure detection and policy-based flow routing).
So, the conception of our lab is to provide students with a CP
and a DP ready to be used, leaving them to focus on the
development of their network applications.

Another strength of SDN is the availability of many CP
implementations based on open-source projects: as detailed
later on, we relied completely on open-source to implement
the CP in our lab. What is instead more peculiar is the
implementation of the DP, which we decided to build with
hardware. In this paper we focus on the small hardware
laboratory, namely MiniLab, that, despite its simplicity and
low cost, allows us to reproduce a real SDN network. It was
the result of a cooperative work between research groups of
Politecnico di Milano (Italy) and Politecnico di Torino (Italy).
MiniLab enables the student to learn and practice two key
operations for real networks: 1) how to configure and setup
various network topologies of switches with their control
plane (e.g. using various SDN controllers); 2) how to

implement and test complex network functions and assess
their actual performance. Based on the experiences of regular
courses on network engineering in both universities, MiniLab
was considered to be useful to students for hands-on teaching
activities. Also, it brought benefits to researchers that are able
to test algorithms and control-plane solutions. In addition,
thanks to the reduced size of the lab can be easily portable to
other places, facilitating its use both in lectures and dedicated
laboratory practices.

The remaining of the paper is organized as follows: Sec. II
describes technical aspects of the testbed, Sec. III explains
possible projects that could be developed on this testbed, Sec.
IV presents two demonstrations that will be shown live during
the paper presentation as examples of possible experiments,
and Sec. V concludes the paper.

II. LAB DESCRIPTION

The network environment was developed by the BONSAI
Research Group of Politecnico di Milano with collaboration
of Politecnico di Torino. The testbed comprises 12 Zodiac FX
Northbound switches [10] based on the OpenFlow protocol
[9] and 6 hosts that can act as servers and clients for network
services. The controller accesses the forwarding plane of the
switches by the OpenFlow communication protocol
(Southbound interface). In order to forward traffic from one
port to another of a switch, the controller installs a flow rule
in the flow table of the switch.

Any SDN controller supporting OpenFlow on the
Southbound can be used in this laboratory. Among several
available open-source controllers, we selected the Ryu SDN
controller [11]. Ryu is a component-based SDN framework
application developed in Python. It is particularly suitable for
educational purposes thanks to its simplicity, flexibility and
reliability. It provides a well-defined Application
Programming Interface (API) that allows users to easily
develop their network applications on the top of Ryu, using
the Python programming language, which is easier to learn
and use than other languages. Other SDN controllers more
sophisticated than Ryu can be used for more advanced
projects. In particular, the Java-based ONOS [12] and
OpenDaylight [13] controllers have already been tested in the
MiniLab and used in research projects.

In order to experiment with the SDN network testbed, we
adopted Raspberry PI 3 model B+ computers to act as network
hosts (see Fig. 2). Each Raspberry is a full-fledge computing
system, but it is small in size and consumes a limited amount
of energy. Finally, this device supports generic Linux Debian-
based applications, allowing a wide spectrum of network
services and applications to be executed.

In Fig. 2 we show the physical outline of MiniLab. Just for
sake of illustration, in the picture the OpenFlow nodes are
connected on the data plane in such a way as to form three
adjacent rings, but other physical topologies can be easily
implemented with a proper cabling. The control port of each
node is connected to the controller via a cable (yellow lines in
Fig. 2) and through two standard Ethernet switches. In this
way, we can install the SDN controller in an external laptop
or PC.

This solution gives students the opportunity to configure
and modify the controller, and develop their network
applications. They can also work at home, by testing their
software offline (emulating the testbed e.g. throughout

Fig. 1: General SDN architecture. It is composed by data plane, control
plane and the network applications. In the picture, some examples of
applications that could be implemented in the academic environment are
proposed, including traditional switching (blue) and SDN (green)
functions.

Mininet), and then come to the lab with their software ready
to be installed. Since every Raspberry PI has a built-in Wi-Fi
dongle, we have setup an ad-hoc Wi-Fi management network,
inside which we can configure the hosts and the services
provided by the hosts.

Finally, the configuration of the switches operates either
via GUI, or via Command Line Interface (CLI) through a
serial communication link (COM port). At the moment, the
configuration using protocols such as OF-Config [14] is not
supported, but it will be added in future developments. In
order to promote the compactness and portability of the
testbed, we have divided the MiniLab into 4 mini-rack
modules. Each mini-rack contains either 3 hosts (Fig. 3a) or 3
to 6 switches (Fig. 3b). The racks can be used in different
manners to operate smaller or larger topologies, according to
the users’ needs.

Table I summarizes the hardware specifications of
MiniLab, specifying the processor, memory, connectivity,
features and input power used.

III. USE CASES

As explained in Sec. I, the use of SDN technology as a
teaching tool can bring several benefits to learning. First of all,
such a laboratory enables visualizing in a real scenario the
application of algorithms that were studied during lectures in
a simplified manner. Furthermore, students are able to solve
problems related to networking by studying, planning and
implementing different algorithms and network applications.
A number of projects can be exploited in such a laboratory.
For instance, students can virtualize traditional switching
functions, such as: IP-address lookup and packet
classification. On the other hand, thanks to this environment,
they are also able to implement network applications that
performs typical SDN network functions, such as: MPLS
routing, load balancing, node and link failure detection,
policy-based flow routing, etc. In both cases, students have to
implement in practice and with “their own hands” the
algorithms that they learn in the courses, directly experiencing
in a comparative way concepts such as performance and
complexity.

In this section, we describe some use cases divided into
two scenarios. The first one comprises traditional networking
function such as packet classification. The second presents
projects based on SDN, considering failure detection and
recovery mechanisms, and dynamic flow routing.

Fig. 2: Schema of MiniLab. Gray lines are the Ethernet cables for the
data plane links. Yellow lines are the Ethernet cables used for the control
plane. The laptop runs the SDN controller and it is connected to all the
OpenFlow nodes through Ethernet cables and two interconnected
standard Ethernet switches. Each host is connected directly to one
OpenFlow switch.

(a) (b)

Fig. 3: Photo of MiniLab. The image on the left (a) depicts a mini-rack
module with three Raspberry PI hosts, while the one on the right (b)
shows a mini-rack module mounting six Zodiac switches.

TABLE I. HARDWARE SPECIFICATIONS OF MINILAB

Characteristics Raspberry PI Zodiac FX Switch

Processor
Broadcom BCM2837B0, Cortex-A53 64-bit SoC @
1.4GHz

Amtel SAM4E8CA. Microchip KSZ8795CLX Managed
Ethernet Switch

Memory 1GB SDRAM 128KB SDRAM

Connectivity

2.4GHz and 5GHz IEEE 802.11.b/g/n/ac wireless LAN
Bluetooth 4.2, BLE
Gigabit Ethernet over USB 2.0 max throughput 300Mbps
4 x USB 2.0 ports

4 x 10/100Mbs Ethernet Ports
USB Serial (COM) and Web-Based Configuration

Features

Size: 87 x 58,5mm
Weight: 49,7grams
SD card support: Micro SD format for loading operating
system and data storage

Size: 100 x 80mm
Weight: 115 grams
Compatible with OpenFlow 1.0 & 1.3

Input Power 5V/2.5A DC via micro USB connector 5V/300 mA DC via micro USB connector

A. Traditional switching functions: packet classification
with geometric algorithms

The objective of this project is that students learn how to
implement, test and evaluate packet classification algorithms,
normally performed by switches, routers and other network
equipment to identify flows of packets by recognizing regular
expressions in the headers. This function is implemented in
the firmware or the operating system of the switches
(incidentally, Zodiac switches, being OpenFlow-based,
themselves internally perform packet classification). In order
to allow students to develop their own classification function,
we have to exploit a gimmick. OpenFlow allows us to instruct
the switches to send incoming packets to the controller,
instead of processing them directly. So, in this project the
switches send to the controller a large number of packets. The
controller classifies the packets and return them to the
switches. In this way, students can develop packet
classification as a network application on the top of the
controller.

Several algorithms have been proposed in literature for
packet classification: an ample selection is reported, for
instance, in [15]. In this paper, we take as example those
based on geometric classification, and, in particular, two
implementations known as cross-product [16] and bitmap
intersection [17]. In this project, students implement the two
algorithms in the NA layer over the Ryu controller, and then
test the algorithms in a network topology to understand their
differences in terms of performance (lookup computation time
and memory usage).

In the first step, the project is done in emulated
environments such as Mininet. The development of the

algorithms and their testing in Mininet can be done on their
own. Mininet enables creating large topologies such as the one
illustrated by Fig. 4a. By instantiating several end-to-end
flows in this virtual testbed, they can generate a large number
of packets with many different header attributes, which is
good to test the algorithms with enough statistical confidence.
Classifier tables can also be easily scaled to include a variable
number of rules. At the end of the first step, the collected data
allows us to experimentally compare the complexity of the
algorithms.

In the second step, the physical testbed can be used as a
small-scale environment to verify how the developed network
apps work on a physical DP. Since the current version of
MiniLab has a limited number of OpenFlow switches, ports
and hosts, it does not allow the same statistic confidence as in
Mininet. , The topology must be modified, e.g. as represented
in Fig. 4b, to cope with the testbed limitations (only ring
topologies can be implemented). Nevertheless, it
complements students learning thanks to the implementation
and evaluation of the classification algorithms in a real
environment, contributing also to the easiness of the results
visualization and analysis.

Fig. 5 shows one of the results expected after the
development of this project. The average time that bitmap and
cross-product algorithms take to calculate the look-up is very
similar, although cross-product presents better scalability.
Results are in good accordance with complexity analysis.
Classification time-time complexity is O (d · tRL) for the
crossproduct and O (d · tRL + d · N / w) for the bitmap, where
N is the number of rules, d is the number of classification
fields, w is the number of bits used in the bitmap and tRL is the
time complexity of finding a range in one dimension. In this
case, d = 2 and is O (log2 2N), since a binary-tree search was
used to perform range lookup in one dimension. It is important
to notice that, since the algorithms are embedded in the
controller and not in the switches, students obtain the similar
curves when implementing them in a real testbed or in an
emulated scenario.

B. SDN Projects

The projects explained in this section aim at studying SDN
applications considering two types of operations. The first one
illustrates a scenario for verifying failure detection and

(a)

(b)

Fig. 4: Example of topology for packet classification project to be
implemented in Mininet (a), and a simplified version for MiniLab (b),
which only supports ring topologies and maximum of six hosts in its
current status.

Fig. 5: Scalability comparison of average packet-classification time in
miliseconds of bitmap and crossproduct geometric algorithms according
to the number of rules used in the classifier.

recovery operation. The second one consists of testing a flow
routing algorithm based on dynamic weights associated to the
carried traffic. They consider the network depicted in Fig. 6 as
an example, which illustrates a ring topology containing six
OpenFlow switches connected to four hosts, and managed by
a Ryu SDN Controller.

As previously stated, students can develop a series of tests
to understand multiple functionalities and operation modes of
SDN in a physical testbed such as MiniLab. Moreover, in
order to provide a complementary activity and optimize the
use of the lab amongst the multiple groups, the experiment can
first be implemented in Mininet. Consequently, they are able
to build an emulated topology and test the controller and
application codes before preparing the real scenario. After
having tested the controller in an emulated environment,
students can recreate the same topology by connecting the
available switches and initializing the controller and the
application. This set of activities helps students obtaining an
extensive comprehension on the development and
implementation of SDN solutions.

1) Failure detection and recovery
The overall objective of projects on failure detection and

recovery is to design a centralized system that can react to
node and link outages in a topology in such a way that it is
able to restore the connection automatically. To this end,
students must deploy failure detection and recovery
mechanisms in the controller, and generate a link or node
failure to evaluate the network reaction.

The workflow for the development of this project is the
following. In the first step, students implement a ring
topology, such as the one shown in Fig. 6. Then, they
configure Ryu SDN Controller, including the design of
functions to fill-in flow and group tables in switches in order
to enable connection recovery in case of failure. After that, all
hosts should be able to communicate among themselves. Next,
a link (or node) fault is caused by physically removing the
connection between two nodes in order to test the network
operation in the event of a malfunctioning. In Mininet, this
fault generation is performed through a script, while in the
physical testbed, one of the cables is manually disconnected
from a switch.

The optimal operation mode is illustrated by Fig. 7.
Initially, hosts H1 and H2 communicate with each other using
a single link (see Fig. 7a). In the case in which this link fails,
the system is able to recover the communication among the
hosts by the selection of another flow routing path, as depicted
in Fig. 7b.

2) SDN with dynamic routing
The main goal of this use case is to dynamically calculate

SDN flows according to the traffic information of each
connection to enable load balancing. For this, students are
requested to deploy an SDN topology in which Djikstra
algorithm is used to dynamically compute the optimal path
between nodes of a weighted network.

The first step of this project is to implement an exemplary
ring topology, such as Fig. 6, applying weights for each link
as proportional to their current available bandwidth. The
students then configure Ryu SDN Controller in such a way
that it is able to recalculate the optimal path using Djikstra
algorithm upon packet arrivals. Each flow table is therefore
immediately updated according to the selected flow routing.
Next, they can evaluate the correct functioning of the system
by opening connections between several hosts and, hence,
evaluating the different flow routes assigned to these
connection requests.

Fig. 8 exemplifies the expected outcome of this
implementation. At first, H1 requests a connection to H2, the
shortest path is calculated, and information can be exchanged

Fig. 6: Ring topology with six switches and four hosts managed by a
Ryu SDN Controller.

(a)

(b)

Fig. 7: Failure detection and recovery mechanism in a ring topology.
The image on the top shows its normal operation, in which a working
(solid) and a backup (dashed) path are calculated for host 1 (H1) to
transmit data to host 2 (H2). Figure (b) illustrates a failure in the link
previously used to communicate, and the SDN network is able to
automatically switch to the backup path.

Fig. 8: Dynamic routing mechanism. After the green flow path is
assigned between H1 and H2, the controller updates the weights of links
l1 and l2, and new flow path is assigned avoiding these links via the pink
path.

via the green path. The controller then updates the link weights
considering the current network usage, i.e. the available
bandwidth of l1 and l2 decreased. Next, when a new demand is
requested among H3 and H2, the controller takes into account
current weights to compute the new path, shown in pink.

IV.DEMO EXPERIMENTS

We developed two demonstrations to exemplify the usage
of MiniLab. They involve a self-healing ring and the
measurement-based flow allocation.

1) Self-healing ring
Fig. 9a depicts the testbed setup for the self-healing ring

experiment. We connected all OpenFlow switches together in
a ring topology using the white cables. We also connected
three Raspberry Pi hosts to three switches to monitor whether
packets reach their destination. The controller was attached to
the switches by the yellow cables.

In this experiment, Ryu controller first retrieves the
physical topology and preconfigures the network to route the
traffic clockwise from a source to a destination host. Ryu
provides an interface (Ryu Topology Viewer) that shows the
topology discovered by the controller (see Fig. 9b) and the
flow tables installed in each switch. In order to evaluate that
the packets are being correctly transmitted, we use the ping
command from one host to another. The switch where the
destination host is located forwards the packet from the ring
to the destination, and we therefore observe that it is indeed
reachable.

Then, we simulate a single link failure by physically
disconnecting a random link, as shown in Fig. 9c. The

controller can no longer retrieve the link between two of the
hosts, and updates all flow tables. Fig. 9d illustrates the new
topology from Ryu Topology Viewer without the link that was
manually detached. By analyzing the ping execution, we
observe that the destination continued to be reached. Hence,
the SDN controller is able to automatically restore the
connection between the two hosts after a link failure.

This experiment enables students to test and to compare
different restoration strategies, such as reactive and proactive
ones. In the reactive strategy, when the switches report the link
failure, the controller replaces existing forwarding rules and
configures the new path. In the proactive strategy, the
controller installs the protection path in advance and
configures the interfaces to send packets counter-clockwise in
case of a local failure.

2) Measurement-based flow allocation
In the second experiment, we demonstrate a measurement-

based flow allocation, in which the physical network is
configured as a partial mesh. The controller performs
topology discovery, and periodically collects link usage
measurements from the switches. This data is used to build a
graph of the network with link weights that dynamically
change over time according to the real-time link usage. When
the switch reports a new incoming TCP connection to the
controller, the controller uses this network graph to find the
minimum congested path to the destination host. Then, it
installs the desired path on the switches according to the flow
rule that routes all the connection packets through the chosen
path. This experiment enables showing the effectiveness of
self-adapting routing policies implemented in the SDN
controller.

(a)

(c)

(b)

(d)

Fig. 9: Self-healing ring demonstration. Figure (a) presents the testbed setup with OpenFlow switched connected among themselves and to three Raspberry
Pi hosts to create a ring topology. Figure (b) shows the topology retrieved by the SDN controller in Ryu Topology Viewer. Figure (c) illustrates the link
failure with the disconnection of a cable from a switch, which is depicted by Ryu Topology Viewer as Figure (d).

V.CONCLUSIONS

We presented MiniLab, a self-contained and compact
laboratory tailored to experiment with real SDN networks.
MiniLab connects one SDN controller to 12 OpenFlow
switches and controls the traffic between 6 hosts. All the
involved hardware devices (Zodiac FX Northbound switches
and Raspberry PI computers) are low cost, but fully
programmable. Despite its simplicity, MiniLab is flexible
enough to perform a large number of experiments, useful not
only for teaching networking, but also for research in many
SDN and NFV scenarios. We described some use cases related
both to traditional switching and to the SDN scenario to
explain possible usages of this testbed. Thus, we expect it to
be an effective tool to learn basic and advanced networking
techniques, with a broad applicability, from optical to wireless
networks.

As future work, we expect that the adopted modular
approach will be scaled to larger networks, involving also
different communication technologies and mimicking key
architectures and control schemes of future 5G networks.

ACKNOWLEDGMENT

The work leading to these results has been supported by
the European Community under grant agreement no. 761727
Metro-Haul project and by Politecnico di Milano funds for
innovative teaching. The authors thank the students of the
“Software Defined Networking” and “Switching and
Routing” classes.

REFERENCES
[1] J. F. Kurose, K. W. Ross, Computer Networking: A Top-Down

Approach, 7th ed, Pearson, 2017.

[2] W. Stallings, Foundations of Modern Networking: SDN, NFV, QoE,
IoT, and Cloud, 1st ed, Addison-Wesley Professionalm, 2015.

[3] A. S. Vaughan, P. L. Lewin, A. M. Macdonald, "Virtual experiments:
Providing students with a unique online laboratory experience," in
European Workshop on Microelectronics Education (EWME),
Southampton, UK, 2016, pp. 1–4, 2016.

[4] GNS3, “The Software that Empowers Network Professionals,”
Internet: https://www.gns3.com/ [Apr. 11, 2019].

[5] Mininet Team, “Mininet,” Internet: http://mininet.org/ [Apr. 11, 2019].

[6] Cisco, “Cisco Packet Tracer,” Internet:
https://www.netacad.com/courses/packet-tracer [Apr. 11, 2019].

[7] Cisco, “Virtual Internet Routing Lab,” Internet: http://virl.cisco.com/
[Apr. 11, 2019].

[8] L. Yan, N. McKeown, “Learning Networking by Reproducing
Research Results,” ACM SIGCOMM Computer Communication
Review, vol. 47, n. 2, pp. 19–26, 2017.

[9] N. McKeown et al., “OpenFlow: enabling innovation in campus
networks”, ACM SIGCOMM Computer Communication Review, vol.
38, n. 2, pp. 69–74, 2008.

[10] Northbound Networks, “ZODIAC FX,” Internet:
https://northboundnetworks.com/products/zodiac-fx [Mar. 11, 2019].

[11] RUY SDN Framework, “Component-Based Software Defined
Networking Framework: Build SDN Agilely,” Internet:
https://osrg.github.io/ryu/ [Mar. 11, 2019].

[12] P. Berde et al., “ONOS: Towards an Open, Distributed SDN OS,” in:
ACM HotSDN, Chicago, USA, 2014, pp. 1–6.

[13] J. Medved, A. Tkacik, R. Varga, K. Gray, “Opendaylight: Towards a
Model-Driven SDN Controller Architecture,” in IEEE International
Symposium on a World of Wireless, Mobile and Multimedia Networks
(WoWMoM), 2014, pp 1–6.

[14] R. Krejci, T. Cejka, M. Vasko, S. Natarajan, “OF-CONFIG interface
to Open vSwitch,” Internet: https://github.com/openvswitch/of-config
Sept. 9 2015 [Mar. 11, 2019].

[15] H. Jonathan Chao and Bin Liu, High Performance Switches and
Routers, 2007 John Wiley & Sons, Inc.

[16] V. Srinivasan, G. Varghese, S. Suri, M. Waldvagel, “Fast and scalable
layer four switching,” in: ACM SIGCOMM, Vancouver, Canada,
1998, pp 191–202.

[17] T. V. Lakshman, D. Stiliadis, “High-speed policy-based packet
forwarding using efficient multi-dimensional range matching,” in
ACM SIGCOMM,Vancouver, Canada, 1998, pp. 203–214.

