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In recent years, there has been a proliferation of online gambling sites, which has made gambling more
accessible with a consequent rise in related problems, such as addiction. Hence, the analysis of the gambling
behavior at both the individual and the aggregate levels has become the object of several investigations. In this
paper, resorting to classical methods of the kinetic theory, we describe the behavior of a multiagent system of
gamblers participating in lottery-type games on a virtual-item gambling market. The comparison with previous,
often empirical, results highlights the ability of the kinetic approach to explain how the simple microscopic rules
of a gambling-type game produce complex collective trends, which might be difficult to interpret precisely by
looking only at the available data.
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I. INTRODUCTION

Gambling is usually perceived as a complex multidimen-
sional activity fostered by several different motivations [1].
Due to the rapid technological developments, in the past
decade the possibility of online gambling has enormously in-
creased [2], leading to the simultaneous rise of related behav-
ioral problems. As remarked in [3], structural characteristics
of online gambling, such as the speed and the availability, have
led to the conclusion that online gambling has a high potential
risk of addiction.

A nonsecondary aspect of the impressive increase in online
gambling sites is related to economic interests. Indeed, the
expansion of the video-gaming industry has resulted in the
formation of a new market, in which gamblers are the actors,
that has reached the level of billions of dollars. The continuous
expansion of this market depends on many well-established
reasons, which include its easy accessibility, low entry barri-
ers, and immediate outcome.

As documented in [4], mathematical modeling of these
relatively new phenomena has attracted the interest of cur-
rent research, with the aim of understanding the aggregate
behavior of a system of gamblers. In the aforementioned
work, the behavior of online gamblers has been studied by
methods of statistical physics. In particular, the analysis has
been focused on a popular type of virtual-item gambling,
the jackpot, i.e., a lottery-type game which occupies a big
portion of the gambling market on the web. As pointed out
in [4], to be able to model the complex online gambling
behavior at both the individual and aggregate levels is quickly
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becoming a pressing need for adolescent gambling prevention
and possibly for virtual gambling regulation.

The gambling data sets used in [4] have been extracted
from the publicly available history page of a gambling site.
The huge number of gambling rounds, as well as the time pe-
riod (more than seven months) taken into account, allowed for
a consistent fitting. In particular, the collected data highlight
that the number of rounds played by each gambler follows
a log-normal distribution and, moreover, that the distribution
function of the winnings exhibits fat tails.

The huge number of gamblers and the well-defined rules
of the game allow us to treat the system of gamblers as a
particular multiagent economic system in which the agents
invest (risk) part of their personal wealth to obtain a marked
improvement of their economic conditions. Unlike classical
models of the trading activity [5], in this gambling economy
particular attention needs to be paid to the behavioral reasons
pushing people to gamble even in the presence of high risks.
By looking at the jackpot game from this perspective and
resorting to the classical modeling of multiagent systems via
kinetic equations of Boltzmann and Fokker-Planck type [5],
we will be able to obtain a detailed interpretation of the data
sets collected in [4].

Our forthcoming analysis will be split in two parts. In the
first part we will discuss the kinetic modeling of gambling
and we will study in particular the distribution in time of
the tickets played and won by the gamblers. Our modeling
approach is largely inspired by the similarities of the jackpot
game with the so-called winner take all game described in
detail in [5] and furthermore by the results obtained in [6,7]
about generalized Maxwellian kinetic equations with multiple
microscopic interactions. Nevertheless, the high number of
gamblers taking part in the game, the presence of a percentage
cut on the winnings operated by the site, and the continuous
refilling of tickets to play introduce essential differences. In
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the second part we will deal with the behavioral aspects
linked to the online gambling. This is a phenomenon that may
be fruitfully described by resorting to a skewed distribution
and consequently may be modeled along the lines of recent
papers [8,9]. The behavioral aspects of the gambling and their
relationships with other economically relevant phenomena
have been discussed in a number of papers (cf., e.g., [10] and
the references therein). Also, the emergence of the skewed
log-normal distribution was noticed before. The novelty of the
present approach is that we enlighten the principal behavioral
aspects at the basis of a reasonable kinetic description.

Returning to the kinetic description of the jackpot game,
it is interesting to remark that some related problems have
been studied before. The presence of the site cut, which can
be regarded as a sort of dissipation, suggests that the time
evolution of the distribution function of the tickets played and
won by the gamblers may be described in a way similar to
other well-known dissipative kinetic models, such as that of
the Maxwell-type granular gas studied by Ernst and Brito [11]
or that of the Pareto tail formation in self-similar solutions
of an economy undergoing recession [12]. However, essential
differences remain. Unlike the situations described in [11,12],
where the loss of the energy or of the mean value, respectively,
was artificially restored by a suitable scaling of the variables,
in the present case the percentage cut on each wager, leading
to an exponential loss of the mean value of the winnings,
is refilled randomly because of the persistent activity of the
gamblers even in the presence of losses. A second difference
concerns the necessity to take into account a high number
of participants in the jackpot game. In [4] it was conjectured
that the shape of the steady-state distribution emerging from
the game rules does not change as the number of participants
increases. Consequently, all models studied there were limited
to the description of the evolution of winnings in a game with
a very small number of gamblers. Here we adopt instead a dif-
ferent strategy, inspired by the model introduced by Bobylev
and Windfall [7]. It is worth mentioning that multiple interac-
tion models of multiagent systems have also been introduced,
in the economic context, to describe the trading behavior of
a group of individuals playing the so-called minority game
[13,14]. We will duly compare the results of our analysis with
this setting in the Conclusion of the paper.

From the detailed kinetic description of the online jackpot
game, and unlike the analysis proposed in [4], we conclude
that the game mechanism does not actually give rise to a
power-law-type steady distribution of the tickets played and
won by the gamblers. The formation of such a fat tail may,
however, be obtained by resorting to a different linearization
of the game, which, while apparently close to the actual
nonlinear version, may be shown numerically to produce quite
different trends.

In more detail, the paper is organized as follows. In Sec. II
we introduce the microscopic model of the jackpot game
with N gamblers and its nonlinear Boltzmann-type kinetic
description with multiple interactions (Sec. II A). Next, in the
limit of N large, we replace the N-interaction dynamics with
a sort of mean-field individual interaction, which gives rise
to a linear Boltzmann-type model (Sec. II B). We study the
large-time trend of the linear model by means of a Fokker-
Planck asymptotic analysis, which shows that no fat tails are

produced at equilibrium (Sec. II C). Finally, by resorting to a
different linearization of the multiple-interaction model based
on the preservation of the first two statistical moments of
the distribution function, we produce an alternative kinetic
model whose equilibrium distribution has indeed a power-
law-type fat tail (Sec. II D). Nevertheless, we argue that such
a linear model does not provide a description of the gam-
bling dynamics completely equivalent to the original multiple-
interaction model and hence it does not describe exactly the
original jackpot game. In Sec. III we discuss a model for
the distribution of the tickets which the gamblers purchase
to participate in successive rounds of the jackpot game. This
study complements previous work on the gambling dynamics,
as it provides the basis to model the refilling of tickets
mentioned above. In Sec. IV we illustrate the evolution of the
real game predicted by the multiple-interaction kinetic model
and that of the various linearized models by means of several
numerical experiments, which confirm the theoretical findings
of the previous sections. Finally, in Sec. V we summarize the
main results of the work.

II. KINETIC MODELS OF JACKPOT GAMES

A. Maxwell-type models

The jackpot game we are going to study is very simple to
describe. At given intervals of time, which may last from a
few seconds to several minutes, the site opens a new round
of the game that the gamblers may attend. The gamblers
participate in the game by placing a bet with a certain number
of lottery tickets purchased with one or several skins deposited
to the gambling site. There is only one winning ticket in
each round of the game. The winning ticket is drawn when
the total number of skins deposited as wagers in that round
exceeds a certain threshold. The draw is based on a uniformly
distributed random number with a range equal to the total
number of tickets purchased in that round. The gambler who
holds the winning ticket wins all the wagers, i.e., the deposited
skins in that round, after a site cut (percentage cut) has been
subtracted.

As usual in the kinetic description, we assume that the
gamblers are indistinguishable [5]. This means that, at any
time t � 0, the state of a gambler is completely characterized
by their wealth, expressed by the number x � 0 of owned
tickets. Consequently, the microscopic state of the gamblers
is fully characterized by the density, or distribution function,
f = f (x, t ).

The precise meaning of the density f is the following.
Given a subdomain D ⊆ R+, the integral∫

D
f (x, t )dx

represents the number of individuals possessing a number x ∈
D of tickets at time t � 0. We assume that the density function
is normalized to one, i.e.,∫

R+
f (x, t )dx = 1,

so that f may be understood as a probability density.
The time evolution of the density f is due to the fact that

rounds are programmed at regular time intervals and gamblers
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continuously upgrade their number of tickets x at each new
round. In analogy with the classical kinetic theory of rarefied
gases, we refer to a single upgrade of the quantity x as an
interaction.

The game has evident similarities with the winner take all
game described in detail in [5], Chap. 5. The main differences
are the presence of a high number of participants and of the
site cut. Indeed, while the microscopic interactions in the
winner take all game are pointwise conservative, any round of
the online jackpot game leads to a loss of the value returned
to the gamblers.

Let us consider a number N of gamblers, with N � 1,
who participate in a sequence of rounds. At the initial time,
the gamblers (indexed by k = 1, . . . , N) buy certain numbers
xk = xk (0) of tickets, with the intention to play for a while.
While it is clear that actually xk ∈ N+, in order to avoid
inessential difficulties, and without loss of generality, we will
consider xk ∈ R+. Moreover, we may fix a unitary price for
the tickets, so as to identify straightforwardly the number of
tickets with the amount of money owned by the gamblers. We
assume that each gambler participates in a round by using only
a small fraction of their tickets, say, εαkxk , where 0 < ε � 1
while the αk’s may be either constant or random coefficients.
In the simplest case, i.e., αk = 1 for all k, the total number of
tickets played by the gamblers in a single round is ε

∑N
k=1 xk .

At fixed time intervals of length �t > 0, a ticket is chosen
randomly. The owner of that ticket wins an amount of money
corresponding to the value of the total number of tickets
played in that round, minus a certain fixed cut operated by
the site. Let us denote by xk (t − 1) the number of tickets
possessed by the kth gambler right before the next round. If
δ > 0 denotes the percentage cut operated by the site, after
the new round the quantities xk (t − 1) update to

xk (t ) = (1 − ε)xk (t − 1)

+ ε(1 − δ)
N∑

j=1

x j (t − 1)I (A(t − 1) − k) (1)

for k = 1, 2, . . . , N . In (1), A(t − 1) ∈ {1, . . . , N} is a dis-
crete random variable giving the index of the winner in the
forthcoming round. Since the winner is chosen by extracting
uniformly one of the played tickets, the random variable
A(t − 1) may be characterized by the law

P(A(t − 1) = k) = xk (t − 1)∑N
j=1 x j (t − 1)

, (2)

with k = 1, 2, . . . , N . Furthermore, in (1) the function I (n),
for n ∈ Z, is defined by

I (0) = 1, I (n) = 0 ∀ n �= 0.

Because of the fixed cut operated by the site, the total
number of tickets, viz., the amount of money, in the hands of
the gamblers diminishes at each round so that, in the long run,
the gamblers remain without tickets to play. On the other hand,
as noticed in the recent analysis in [4], the data published by
the jackpot site certify that this never happens. One may easily
identify at least two explanations. First, gamblers with high
losses are continuously replaced by new gamblers entering
the game. Second, in the presence of repeated losses the

gamblers continuously refill the amount of money available to
their wagers by drawing on their personal reserves of wealth.
Notice that we may easily identify the new gamblers entering
the game with those leaving it by simply assuming that the
number N of gamblers remains constant in time. Taking this
nonsecondary aspect into account, we modify the upgrade rule
(1) as

xk (t ) = (1 − ε)xk (t − 1) + εβYk (t − 1)

+ ε(1 − δ)
N∑

j=1

x j (t − 1)I (A(t − 1) − k), (3)

with k = 1, . . . , N . In (3), β � 0 is a fixed constant, which
identifies the rate of refilling of the tickets. Moreover, the
Yk’s are non-negative, independent and identically distributed
random variables giving the number of refilled tickets. In
agreement with [4], and as explained in full detail in Sec. III,
one can reasonably assume that the random variables Yk are
log-normally distributed.

The upgrade rules (2) and (3) lead straightforwardly to a
Boltzmann-type kinetic model describing the time evolution
of the density f (x, t ) of a population of gamblers who play
an N-player jackpot game, independently and repeatedly,
according to the interaction

x′
k = (1 − ε)xk + εβYk + ε(1 − δ)

N∑
j=1

x jI (A − k) (4)

for k = 1, 2, . . . , N and where A ∈ {1, . . . , N} is a discrete
random variable with the law

P(A = k) = xk∑N
j=1 x j

, k = 1, . . . , N.

In (4), the quantity xk represents the number of tickets, hence
the amount of money, put into the game by the kth gambler,
while the quantity x′

k is the new number of tickets owned by
the kth gambler after the draw of the winning ticket.

Starting from the microscopic interaction (4), the study
of the time evolution of the distribution function f may
be obtained by resorting to kinetic collisionlike models [5].
Specifically, the evolution of any observable quantity ϕ, i.e.,
any quantity which may be expressed as a function of the
microscopic state x, is given by the Boltzmann-type equation

d

dt

∫
R+

ϕ(x) f (x, t )dx

= 1

τN

∫
RN+

N∑
k=1

〈ϕ(x′
k ) − ϕ(xk )〉

N∏
j=1

f (x j, t )dx j, (5)

where τ denotes a relaxation time and 〈·〉 is the average
with respect to the distributions of the random variables Yk

and A contained in (4). Note that the interaction term on the
right-hand side of (5) takes into account the whole set of
gamblers, and consequently it depends on the N-product of the
density functions f (x j, t ), j = 1, . . . , N . Thus, the evolution
of f obeys a highly nonlinear Boltzmann-type equation.

Remark 1. In the classical kinetic theory of rarefied gases,
the binary collision integral depends on a nonconstant col-
lision kernel, which selects the collisions according to the
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relative velocities of the colliding particles. Conversely, the
interaction integral in (5) has a constant kernel, chosen equal
to 1 without loss of generality. This corresponds, in the jargon
of the classical kinetic theory, to consideration of Maxwellian
interactions. Remarkably, in the case of the jackpot game,
this assumption corresponds perfectly to the description of the
game under investigation, since one may realistically assume
that the numbers of tickets played by different gamblers are
uncorrelated.

Choosing ϕ(x) = 1 in (5) yields

d

dt

∫
R+

f (x, t )dx = 0,

meaning that the total mass of the system is conserved in time.
It is worth pointing out that, as a matter of fact, this is the only
conserved quantity in (5).

In order to better understand the time evolution of f , as
well as the role of the site cut, we begin by considering the
situation in which the gamblers do not refill their tickets,
which corresponds to letting β = 0. In this case, the interac-
tions (4) being linear in the xk’s, we can compute explicitly
the evolution in time of the mean number of tickets

m(t ) :=
∫
R+

x f (x, t )dx

owned by the gamblers. Indeed, since〈
N∑

k=1

x′
k

〉
= (1 − ε)

N∑
k=1

xk + ε(1 − δ)
N∑

j=1

x j

N∑
k=1

P(A = k)

= (1 − εδ)
N∑

k=1

xk, (6)

choosing ϕ(x) = x in (5), we obtain

dm

dt
= −εδ

τ
m. (7)

As expected, the presence of a percentage cut δ > 0 in the
jackpot game leads to an exponential decay to zero of the
mean number of tickets at a rate proportional to εδ

τ
.

As far as higher-order moments of the distribution function
f are concerned, analytic results may be obtained at the cost of
more complicated computations, due to the nonlinearity of the
Boltzmann-type equation (5). This unpleasant fact is evident
by computing, e.g., the second-order moment, i.e., the energy
of the system, which amounts to choosing ϕ(x) = x2 in (5). In
this case, we have〈

N∑
k=1

(x′
k )2

〉
= [(1 − ε)2 + 2ε(1 − ε)(1 − δ)]

N∑
k=1

x2
k

+ ε2(1 − δ)2

(
N∑

k=1

xk

)2

. (8)

Note that the term (
∑N

k=1 xk )2, once integrated against the N
product of the distribution functions, produces a dependence
on both the second moment and the square of the first moment,
whose decay law has been established in (7).

It is now clear that, while giving a precise picture of
the evolution of the jackpot game, the highly nonlinear
Boltzmann-type equation (5) may essentially be treated only
numerically.

B. Linearized model

A considerable simplification occurs in the presence of a
large number N of participants in the game. In this situation,
at any time t > 0 we have

N∑
k=1

xk = N
1

N

N∑
k=1

xk ≈ Nm(t ). (9)

In practice, if N is large enough we may approximate the
empirical mean number of tickets 1

N

∑N
k=1 xk of the gamblers

participating in a round of the game with the theoretical
mean number of tickets m owned by the entire population of
potential gamblers. Hence, still considering for the moment
the case β = 0, the interaction (4) may be restated as

x′
k = (1 − ε)xk + εN (1 − δ)m(t )I (Ã − k) (10)

for k = 1, 2, . . . , N and where Ã ∈ {1, . . . , N} is the discrete
random variable with the (approximate) law

P(Ã = k) ≈ xk

Nm(t )
, k = 1, . . . , N.

Remark 2. Owing to the approximation (9), the usual
properties P(Ã = k) � 1 and

∑N
k=1 P(Ã = k) = 1 may be

fulfilled, in general, only in a mild sense, which however
becomes tighter and tighter as N grows. We refrain from
investigating precisely the proper order of magnitude of N
because, as we will see in a moment, we will be mostly
interested in the asymptotic regime N → ∞.

Before proceeding further, we observe that in a recent
paper [7] the linearization resulting from considering a large
number of gamblers was proposed in an economic context.
The same type of approximation was also used in [15] to
linearize a Boltzmann-type equation describing the exchange
of goods according to microeconomic principles.

The main consequence of the interaction rule (10) is that
the each postinteraction number of tickets x′

k depends linearly
only on the preinteraction number xk and on the (theoretical)
mean number of tickets m(t ). Plugging (10) into (5) leads
then to a linear Boltzmann-type equation. In particular, the
time evolution of the observable quantities ϕ = ϕ(x) is now
given by

d

dt

∫
R+

ϕ(x) f (x, t )dx = 1

τ

∫
R+

〈ϕ(x′) − ϕ(x)〉 f (x, t )dx,

(11)

where

x′ = (1 − ε)x + εN (1 − δ)m(t )I (Ā − 1) (12)

and the random variable Ā ∈ {0, 1} is such that

P(Ā = 1) = x

Nm(t )
. (13)

In practice, since it is no longer necessary to label the single
gamblers participating in a round of the jackpot game, we use
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Ā simply to decide whether the randomly chosen gambler x
wins (Ā = 1) or not (Ā = 0) in that round.

Equation (11) allows for a simplified and explicit compu-
tation of the statistical moments of the distribution function
f . In particular, it gives the right evolution of the first moment
like in (7). We remark, however, that the simplified interaction
rules (12) and (13) have two main weak points. First, since
the mean value m(t ) follows the decay given by (7), and thus
it is in particular nonconstant in time, the interaction (12)
features an explicit dependence on time. Second, if ε is fixed
independently of N , the number εN of tickets played in a
single game tends to blow up as N increases. At that point,
the kinetic model does not represent the target jackpot game
anymore. Therefore, while maintaining the fundamental linear
characteristics, which make the model amenable to analytical
investigations, it is essential to combine the large number of
gamblers in each round with a simultaneously small value of
ε. Indeed, it is realistic to assume that the product εN , which
characterizes the percent of the number of tickets played in
each game, remains finite for every N � 1 and ε � 1. We
express this assumption by letting ε ∼ κN−1, where κ > 0 is
a constant, so that

lim
N→∞

εN = κ. (14)

Remark 3. Notice that the rate of decay of the mean value
m in the linear model (11), which, as already observed, equals
that of the nonlinear model given by (7), is bounded away
from zero for any value of ε if and only if τ ∼ ε. Therefore,
in order to maintain the correct decay of the mean value for
any value of ε and N in the linearized model, we will assume,
without loss of generality, that τ = ε.

We are now ready to reinclude in the dynamics also the
refilling of money operated by the gamblers drawing on their
personal reserves of wealth. Assuming a very large number
N � 1 of gamblers together with (14) and taking also Re-
mark 3 into account, the jackpot game with refilling is well
described by the linear kinetic equation

d

dt

∫
R+

ϕ(x) f (x, t )dx

= 1

ε

∫
R2+

〈ϕ(x′) − ϕ(x)〉 f (x, t )
(y)dx dy, (15)

where

x′ = (1 − ε)x + εβY + κ (1 − δ)m(t )I (Ā − 1), (16)

with Ā ∈ {0, 1} and, recalling (13),

P(Ā = 1) = ε
x

κm(t )
.

From (15) we define by 
 : R+ → R+ the probability density
function of the random variable Y describing the refilling or
money operated by the gamblers. Motivated by the discussion
contained in Sec. III, we assume that 
 is a log-normal
probability density function. This agrees with the behavior of
the gamblers observed in [4] and ensures that the moments of
Y are all finite. In particular,

M :=
∫
R+

y
(y)dy < +∞. (17)

Taking ϕ(x) = x in (15), we obtain that the mean number
of tickets owned by the gamblers obeys now the equation

dm

dt
= −δm + βM,

whence

m(t ) = m0e−δt + βM

δ
(1 − e−δt ), (18)

with m0 := m(0) � 0. Remarkably, m does not depend on ε.
Moreover, in the presence of refilling, m is uniformly bounded
in time from above and from below:

min

{
m0,

βM

δ

}
� m(t ) � max

{
m0,

βM

δ

}
.

Note that, for β, M > 0, the mean number of tickets m no
longer decays to zero but tends asymptotically to the value
βM
δ

.
Choosing now ϕ(x) = e−iξx, where ξ ∈ R and i is the

imaginary unit, we obtain the Fourier-transformed version of
the kinetic equation (15),

∂t f̂ (ξ, t ) = 1

ε

∫
R2+

〈e−iξx′ − e−iξx〉 f (x, t )
(y)dx dy, (19)

where, as usual, f̂ denotes the Fourier transform of the distri-
bution function f :

f̂ (ξ, t ) :=
∫
R+

f (x, t )e−iξxdx.

Taking (13) into account, the right-hand side of (19) can be
written as the sum of two contributions

Aε (ξ, t ) = 1

ε

∫
R+

(e−iεβξy − 1)
∫
R+

[
e−iξ [(1−ε)x+κ (1−δ)m(t )] εx

κm(t )
+ e−i(1−ε)ξx

(
1 − εx

κm(t )

)]
f (x, t )dx 
(y)dy,

Bε (ξ, t ) = 1

ε

∫
R+

[
(e−iξ [(1−ε)x+κ (1−δ)m(t )] − e−iξx )

εx

κm(t )
+ (e−i(1−ε)ξx − e−iξx )

(
1 − εx

κm(t )

)]
f (x, t )dx.

In the limit ε → 0+, viz., N → ∞, we obtain

lim
ε→0+

Aε (ξ, t ) = −iβMξ f̂ (ξ, t )

and

lim
ε→0+

Bε (ξ, t ) =
[

i

κm(t )
(e−iκm(t )(1−δ)ξ − 1) − ξ

]
∂ξ f̂ (ξ, t ),
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which shows that, for N � 1 and in the regime (14), the non-
linear kinetic model (5) with the scaling τ = ε (cf. Remark
3) is well approximated by the Fourier-transformed linear
equation

∂t f̂ =
[

i

κm(t )
(e−iκm(t )(1−δ)ξ − 1) − ξ

]
∂ξ f̂

− iβMξ f̂ . (20)

This equation may be used to compute recursively the time
evolution of the statistical moments of f , upon recalling the
relationship

mn(t ) :=
∫
R+

xn f (x, t )dx = in∂n
ξ f̂ (0, t ), n ∈ N, (21)

and to check their possible blowup indicating the formation of
fat tails in f .

C. Explicit steady states and boundedness of moments

To gain further information on (20) in the physical variable
x, let us consider at first the case in which the constant
κ is small, say, κ � 1. Expanding the exponential function
appearing in (20) in a Taylor series up to the second order, we
obtain [

i

κm(t )
(e−iκm(t )(1−δ)ξ − 1) − ξ

]
∂ξ f̂

≈
[
−δξ − iκm(t )

2
(1 − δ)2ξ 2

]
∂ξ f̂ . (22)

Within this approximation, we can return from (20) to the
physical variable x by the inverse Fourier transform. In par-
ticular, we get

∂t f (x, t ) = κ (1 − δ)2m(t )

2
∂2

x [x f (x, t )]

+ ∂x[(δx − βM ) f (x, t )], (23)

which is a Fokker-Planck-type equation with variable diffu-
sion coefficient. Notice that the mean value of the solution to
(23) coincides with (18). In particular, if m0 = βM

δ
then the

mean value remains constant in time:

m(t ) ≡ βM

δ
∀ t > 0.

In this simple case, (23) has a stationary solution, say,
f∞ = f∞(x), which is easily found by solving the differential
equation

κ (1 − δ)2

2

βM

δ
∂x(x f∞) + (δx − βM ) f∞ = 0

and which turns out to be a  probability density function

f∞(x) =
(

2δ2

κ (1−δ)2βM

)2δ/κ (1−δ)2


(

2δ
κ (1−δ)2

) x2δ/κ (1−δ)2−1e−2δ2/κ (1−δ)2βMx.

(24)
Since f∞ has moments bounded of any order, we conclude
that no fat tail is produced in this case.

In the general case, i.e., without invoking the approxima-
tion (22), we may check that the same qualitative asymptotic

trend emerges by resorting to the following argument. Let us
define

D(ξ, t ) := i

κm(t )
(e−iκm(t )(1−δ)ξ − 1) − (1 − δ)ξ

so that (20) may be rewritten as

∂t f̂ = D(ξ, t )∂ξ f̂ − δξ∂ξ f̂ − iβMξ f̂ . (25)

The function D(ξ, t ) satisfies

D(0, t ) = ∂ξ D(0, t ) = 0,

while, for n � 2,

∂n
ξ D(0, t ) = [iκm(t )]n−1(1 − δ)n,

and further, owing to the Leibniz rule,

∂n
ξ [D(ξ, t )∂ξ f̂ (ξ, t )]|ξ=0 =

n∑
k=2

(
n

k

)
∂k
ξ D(0, t )∂n−k+1

ξ f̂ (0, t ).

(26)

Notice that the highest-order derivative of f̂ appearing on the
right-hand side of (26) is of order n − 1. Therefore, taking
the nth ξ derivative of (25) and computing in ξ = 0, while
recalling (21), yields, for n � 2,

dmn

dt
= −nδmn + E (m1, . . . , mn−1), (27)

where E is a term containing only moments of order equal to at
most n − 1. The exact expression of E may be obtained from
(21)–(26) but, in any case, (27) shows recursively that the
statistical moments of f of any order are uniformly bounded
in time if they are bounded at the initial time. Therefore, we
conclude that fat tails do not form also in the general case
described by (20).

Remark 4. The uniform boundedness of all moments of
f has been actually proved only for the linearized kinetic
model (11) and (12) in the limit regime ε → 0+, viz., N →
∞. Nevertheless, the result so obtained suggests that also
the “real” kinetic model, described by the highly nonlinear
Boltzmann-type equation (5), may behave in the same way.
This is in contrast to the conclusions drawn in [4], where,
resorting to some simplified models, the authors justify the
formation of power-law tails in the distribution of the gambler
winnings.

D. Are power-law tails correct?

As briefly outlined in Remark 4, the solution to the lin-
earized kinetic model of the jackpot game does not possess fat
tails. In order to investigate the possible reasons behind the fat
tails apparently observed in [4], in the following we introduce
an alternative linear kinetic model of the jackpot game, still
derived from the microscopic interaction (4), whose equilib-
rium density exhibits indeed power-law-type fat tails. This
model may be obtained by resorting to a different linearization
of (5). Nevertheless, as observed via numerical experiments
in Sec. IV, such a linearized equation, while apparently very
close to the original nonlinear model, produces a quite differ-
ent large-time trend compared to the one described by (20).

Let us fix β = 0 in (4) and let us assume, without loss
of generality, that the extracted winner is the gambler k = 1.
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Then

x′
1 = (1 − ε)x1 + ε(1 − δ)

N∑
j=1

x j,

x′
k = (1 − ε)xk, k = 2, 3, . . . , N,

which implies [cf. also (8)]

N∑
k=1

(x′
k )2 = (1 − ε)2

N∑
k=1

x2
k + 2ε(1 − ε)(1 − δ)x1

N∑
k=1

xk

+ ε2(1 − δ)2

(
N∑

k=1

xk

)2

.

Taking into account the expression (6) of the mean value, we
obtain

N
∑N

k=1 (x′
k )2( ∑N

k=1 x′
k

)2 = (1 − ε)2

(1 − εδ)2

N
∑N

k=1 x2
k( ∑N

k=1 xk
)2 + Nε2(1 − δ)2

+ 2Nε(1 − ε)(1 − δ)
x1∑N

k=1 xk

≈ N
∑N

k=1 x2
k( ∑N

k=1 xk
)2

for N � 1 large and consequently ε � 1 small. Indeed,

x1∑N
k=1 xk

=
1
N x1

1
N

∑N
k=1 xk

≈ x1

Nm(t )
N→∞−−−→ 0.

In other words, for a large number N of gamblers and a
correspondingly small percentage ε of tickets played in a
single game, the relationship (14) implies that the quantity

χ := N
∑N

k=1 x2
k( ∑N

k=1 xk
)2 (28)

may be regarded approximately as a collision invariant of the
interaction (4). Since(

N∑
k=1

xk

)2

� N
N∑

k=1

x2
k ,

it follows that χ � 1. Note that this result does not depend on
the choice of the winner in each round of the jackpot game.

Using (14) and (28) in (8), in this asymptotic approxima-
tion we obtain〈

N∑
k=1

(x′
k )2

〉
= [(1 − ε)2 + 2ε(1 − ε)(1 − δ)]

N∑
k=1

x2
k

+ ε(1 − δ)2 κ

χ

N∑
k=1

x2
k

=
[

(1 − εδ)2 + ε(1 − δ)2

(
κ

χ
− ε

)] N∑
k=1

x2
k ,

(29)

whence, choosing ϕ(x) = x2 in (5),

dm2

dt
=

[
ε

(
(1 − δ)2 κ

χ
− 2

)
− ε2(1 − 2δ)

]
m2. (30)

This equation shows that the ratio κ/χ is of paramount
importance to classify the large-time trend of the energy of
the distribution f , hence also of f itself. Indeed, the sign of
the coefficient

c(κ, χ, ε) := ε

(
(1 − δ)2 κ

χ
− 2

)
− ε2(1 − 2δ)

determines if f converges asymptotically in time to a Dirac δ

centered in x = 0 [when c(κ, χ, ε) < 0] or if it spreads over
the whole positive real line [when c(κ, χ, ε) > 0].

This discussion suggests a consistent way to eliminate the
time dependence in the interaction (12) while preserving the
main macroscopic properties of the jackpot game, such as
the right time evolutions of the mean [cf. (7)] and of the
energy [cf. (30)]. Specifically, we proceed as follows. For all
observable quantities ϕ = ϕ(x), we consider the linear kinetic
model (11) with the linear interaction rule

x′ = (1 − εδ)x + √
εxηε, (31)

where ε > 0. In (31), ηε is a discrete random variable
taking only the two values −√

ε(1 − δ) and Mε/
√

ε with
probabilities

P(ηε = −√
ε(1 − δ)) = 1 − pε, P

(
ηε = Mε√

ε

)
= pε,

where pε ∈ [0, 1] and Mε > 0 are two constants to be properly
fixed.

We interpret the rule (31), together with the prescribed
values of ηε , as follows: A gambler, who enters the game
with a number of tickets (viz., an amount of money) equal
to εx, may win a jackpot equal to (Mε − εδ)x with probability
pε . The gambler may also lose the amount εx put into the
game with probability 1 − pε . In particular, we determine pε

by imposing 〈ηε〉 = 0, which guarantees that (31) reproduces
the correct evolution of the mean provided by (12) [indeed, in
such a case we have 〈x′〉 = (1 − εδ)x]. We find then

pε = ε(1 − δ)

Mε + ε(1 − δ)
.

Using this, we discover 〈η2
ε 〉 = Mε (1 − δ), whence

〈(x′)2〉 = [(1 − εδ)2 + ε(1 − δ)Mε]x2. (32)

A comparison between formulas (29) and (32) allows us to
conclude that the choice

Mε = (1 − δ)

(
κ

χ
− ε

)

further implies a time evolution of the energy identical to (30).
Notice that the positivity of Mε is guaranteed by choosing ε �
1 small enough.

After deriving the linearized model for β = 0, we may
reinclude the refilling of tickets or money in the interaction
rule

x′ = (1 − εδ)x + εβY + √
εxηε, (33)
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where, as stated in Sec. II B, the random variable Y ∈ R+
is described by a prescribed log-normal probability density
function 
 : R+ → R+. Within this approximation of the dy-
namics, the evolution of the distribution function g = g(x, t )
of the tickets (viz., the money) played and won by a large
number of gamblers participating in the jackpot game is then
described by the linear kinetic equation [cf. also (15)]

d

dt

∫
R+

ϕ(x)g(x, t )dx

= 1

τ

∫
R2+

〈ϕ(x′) − ϕ(x)〉g(x, t )
(y)dx dy, (34)

with x′ given by (33).

1. Fokker-Planck description of the jackpot game

The linear kinetic equation (34) describes the evolution of
the distribution function due to interactions of the type (33).
As discussed in Sec. II B, for large values of the number N
of gamblers participating in a round, and therefore, in view
of (14), a small value of ε, the interaction (33) produces a
small variation in the number of tickets owned by a gambler.
We say then that, in such a regime, the interaction (33) is
quasi-invariant or grazing. Consequently, a finite (i.e., non-
infinitesimal) evolution of the distribution function g may be
observed only if each gambler participates in a huge number
of interactions (33) during a fixed period of time. This is
achieved by means of the scaling τ ∼ ε like in Sec. II B (cf.
Remark 3).

In this scaling, the kinetic model (34) is shown to approach
its continuous counterpart given by a Fokker-Planck-type
equation [5,16–19]. In the present case, (34) is well approx-
imated by the weak form of a different linear Fokker-Planck
equation with variable coefficients

d

dt

∫
R+

ϕ(x)g(x, t )dx

=
∫
R+

(
−ϕ′(x)(δx − βM ) + σ̃

2
ϕ′′(x)x2

)
g(x, t )dx,

(35)

where M is the mean refilling of tickets [cf. (17)] and where
we have defined

σ̃ := lim
ε→0+

Mε = (1 − δ)
κ

χ
.

Then, provided the boundary terms produced by the integra-
tion by parts vanish, (35) may be recast in a strong form as

∂t g(x, t ) = σ̃

2
∂2

x [x2g(x, t )]

+ ∂x[(δx − βM )g(x, t )]. (36)

This equation describes the evolution of the distribution func-
tion g of the number of tickets x ∈ R+ played by the gamblers
at time t > 0 in the limit of the grazing interactions. The
advantage of this equation over (34) is that its unique steady
state g∞ with unitary mass may be explicitly computed:

g∞(x) =
( 2βM

σ̃

)1+2δ/σ̃


(
1 + 2δ

σ̃

) e−2βM/σ̃x

x2+2δ/σ̃
. (37)

We observe that this is an inverse  probability density func-
tion with parameters linked to the details of the microscopic
interaction (33).

Remark 5. A comparison between (23) and the Fokker-
Planck equation (36) shows that, while the drift term is the
same, the coefficient of the diffusion term is proportional to x
in (23) and to x2 in (36). This difference determines, in the lat-
ter case, the formation of fat tails, which is consistent with the
claim made in [4]. Nevertheless, as briefly explained before,
the approach based on the interaction (33) leading to (36) in
the quasi-invariant regime does not actually describe exactly
the jackpot game. Indeed, it admits that all gamblers may win
simultaneously, although with a very small probability.

2. The case β = 0

Further explicit computations on the Fokker-Planck equa-
tion (36) may be done in the case β = 0, which corresponds to
the situation in which gamblers enter the game with a certain
number of tickets, viz., amount of money, and use only those
tickets, viz., money, to play. Then the distribution function
g = g(x, t ) solves the equation

∂t g(x, t ) = σ̃

2
∂2

x [x2g(x, t )] + δ∂x[xg(x, t )]. (38)

Setting

g̃(x, t ) := e−δt g(e−δt x, t ),

which is easily checked to be in turn a distribution function
with unitary mass at each time t > 0, we see that g̃ solves the
diffusion equation

∂t g̃(x, t ) = σ̃

2
∂2

x [x2g̃(x, t )], (39)

with the same initial datum as that prescribed to (38), because
g̃(x, 0) = g(x, 0).

The unique solution to (39) corresponding to an initial
datum g0(x) is given by the expression

g̃(x, t ) =
∫
R+

1

z
g0

(
x

z

)
Lt (z)dz, (40)

where

Lt (x) := 1√
2πσ̃ tx

exp

(
−

(
log x + σ̃

2 t
)2

2σ̃ t

)

is a log-normal probability density. Indeed, (39) possesses a
unique source-type solution given by a log-normal density
with unit mean, which at time t = 0 coincides with a Dirac
δ centered in x = 1 (cf. [20]).

Both the mass and the mean of (40) are conserved in
time, while initially bounded moments of order n � 2 grow
exponentially at rate n(n − 1). Moreover, (40) can be shown
to converge in time to Lt (x) in various norms (see [20]).

Starting from (40), we easily obtain that the unique solu-
tion to the original Fokker-Planck equation (38) is given by

g(x, t ) =
∫
R+

1

z
g0

(
x

z

)
L̃t (z)dz, (41)
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where

L̃t (x) = 1√
2πσ̃ tx

exp

(
−

[
log x + (

δ + σ̃
2

)
t
]2

2σ̃ t

)
. (42)

Note that, as expected, the mean value of the log-normal
density (42) decays exponentially in time:∫

R+
xL̃t (x)dx = e−δt .

Consequently, if Xt ∼ g(x, t ) is a stochastic process with
probability density equal to the solution of (38), the mean of
Xt decays exponentially to zero at the same rate and

〈Xt 〉 =
∫
R+

xg(x, t )dx = e−δt 〈X0〉.

Taking advantage of the representation formula (41), we can
easily compute also higher-order moments of the solution. In
particular, the variance of Xt is equal to〈

X 2
t

〉 − 〈Xt 〉2 = 〈
X 2

0

〉
e(σ̃−2δ)t − 〈X0〉2e−2δt .

From here we see that the large-time trend of the variance
depends on the sign of the quantity σ̃ − 2δ. If σ̃ < 2δ, the
variance converges exponentially to zero, and thus all gam-
blers tend, in the long run, to lose all their tickets (viz.,
money). Conversely, if σ̃ > 2δ, the variance blows up for
large times. This situation is analogous to the winner take
all behavior [5], where the asymptotic steady state is a Dirac
δ centered in zero but at any finite time a small decreasing
number of gamblers possesses a huge number of tickets,
sufficient to sustain the growth of the variance.

III. AGENT BEHAVIOR ON GAMBLING

A nonsecondary aspect of the online gambling is related to
the behavioral trends of the gamblers. The data analysis in [4]
focuses in particular on two characteristics of the gambling
activity: first, the waiting time, defined as the time, measured
in seconds, between successive bets by the same gambler, and
second, the number of rounds played by individual gamblers.
The study of this second aspect may shed light on the reasons
behind a high gambling frequency and therefore also on
possible addiction problems caused by gambling.

The fitting of the number of rounds played by individual
gamblers during the period covered by gambling logs allowed
the authors of [4] to conclude that the number of rounds is
well described by a log-normal distribution. This result is in
agreement with other studies (cf., e.g., [10] and references
therein) where the mean gambling frequency is put in close
relation with the alcohol consumption. Starting from the
pioneering contribution [21], it has long been acknowledged
that there exists a positive correlation between the level of
alcohol consumption in a population and the proportion of
heavy drinkers in the society. This relationship is known under
several names, such as the total consumption model or the
single distribution theory. Previous research has also found
that its validity is not limited to the alcohol consumption but
extends to different human phenomena.

In some recent papers [8,9] we introduced a kinetic de-
scription of a number of human behavioral phenomena, which

recently has been applied also to the study of alcohol con-
sumption [22]. The modeling assumptions in [22] allowed us
to classify the alcohol consumption distribution as a gener-
alized  probability density, which includes the log-normal
distribution as a particular case. Recalling that, as discussed
above, alcohol consumption shows many similarities to the
gambling activity and taking inspiration from [9,22], we
may explain exhaustively two main phenomena linked to the
gambler behavior: on the one hand, the distribution of the
number of tickets which individual gamblers play (including
the refilling) in a single round of the jackpot game, and on the
other hand, the distribution of the number of rounds played by
individual gamblers in time.

A. Kinetic modeling and value functions

The evolution of the number density of tickets which the
gamblers purchase to participate in successive rounds of the
jackpot game may still be treated by resorting to the principles
of statistical mechanics. Specifically, one can think of the
population of gamblers as a multiagent system: Each gambler
undergoes a sequence of microscopic interactions, through
which the individual updates the personal number of tickets.
In order to keep the connection with the classical kinetic
theory of rarefied gases, these interactions obey suitable and
universal rules, which, in the absence of well-defined physical
laws, are designed so as to take into account at best some of
the psychological aspects related to gambling.

Due to the nature of the game, the players know that there is
a high probability to lose and a small one to win. For this rea-
son, they are usually prepared to participate in a sequence of
rounds, hoping to win in at least one of them. The involvement
in the game pushes the gamblers to participate in successive
rounds by purchasing an increasing number of tickets, so as to
increase the probability to win. On the other hand, the attempt
to safeguard the personal wealth suggests that they fix an a
priori upper bound to the number of tickets purchased. These
two aspects, clearly in conflict, are characteristic of a typical
human behavior, which has been recently modeled in similar
situations [8,9,22]. There the microscopic interactions have
been built by taking inspiration from the pioneering analysis
by Kahneman and Twersky [23] about decisional processes
under risk.

In the present case, the aforementioned safeguarding ten-
dency may be modeled by assuming that the gamblers have
in mind an ideal number w̄ > 0 of tickets to buy in each
round and simultaneously a threshold w̄L > w̄ which they
had better not exceed in order to avoid a (highly probable)
excessive loss of money. Hence, the natural tendency of the
gamblers to increase their number of tickets w > 0 bought for
the forthcoming rounds has to be coupled with the limit value
w̄L, which it would be wise not to exceed. Following [8,9], we
may realize a gambler update via the following rule:

w′ = w − �

(
w

w̄L

)
w + wη. (43)

In (43), w and w′ denote the numbers of tickets played in
the last round and in the forthcoming one, respectively. The
function � plays the role of the so-called value function in the
prospect theory by Kahneman and Twersky [23]. Specifically,
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FIG. 1. Function � given in (44).

it determines the update of the number of tickets in a skewed
way, so as to reproduce the behavioral aspects discussed
above. Analogously to [8], we let

�(s) := μ
sα − 1

sα + 1
, s � 0, (44)

where μ, α ∈ (0, 1) are suitable constants characterizing the
agent behavior. In particular, μ denotes the maximum varia-
tion in the number of tickets allowed in a single interaction
(43), indeed

|�(s)| � μ∀ s � 0. (45)

Hence, a small value of μ describes gamblers who buy a
regular number of tickets in each round.

The function � given in (44) maintains most of the phys-
ical properties required for the value function in the prospect
theory [23] and is particularly suited to the present situation.
In the microscopic interaction (43), the minus sign in front
of � is related to the fact that the desire to increase the
probability to win pushes a gambler to increase the number
w of purchased tickets when w < w̄L. At the same time, the
tendency to safeguard the personal wealth induces the gambler
to reduce the number of purchased tickets when w > w̄L.
Moreover, the function � is such that

−�(1 − �s) > �(1 + �s) ∀�s ∈ (0, 1)

(cf. Fig. 1). This inequality means that if two gamblers are
at the same distance from the limit value w̄L from below and
from above, respectively, the gambler starting from below will
move closer to the optimal value w̄L than the gambler starting
from above. In other words, it is typically easier for gamblers
to allow themselves to buy more tickets when the optimal
threshold has not been exceeded than to limit themselves
when the optimal threshold has already been exceeded.

Finally, in order to take into account a certain amount of
human unpredictability in buying tickets in a new round, it is
reasonable to assume that the new number of tickets may be
affected by random fluctuations, expressed by the term wη in
(43). Specifically, η is a centered random variable

〈η〉 = 0, 〈η2〉 = λ > 0,

meaning that the random fluctuations are negligible on av-
erage. Moreover, to be consistent with the necessary non-
negativity of w′, we assume that η > −1 + μ, i.e., that the
support of η is bounded from the left.

Remark 6. The behavior modeled by (43), which in prin-
ciple concerns only the losers, may actually be applied also
to the unique winner. Indeed, if the winner remains into the
game, the pleasure to play will be dominant, so it is reasonable
to imagine that the future behavior will not depend too much
on the number of tickets gained in the last round.

Remark 7. The discussion set forth applies also to the mod-
eling of the number of rounds played by individual gamblers
in a fixed period of time, which has been considered in [4]. In
particular, we may assume that the gamblers establish a priori
to play for a limited number of times, in order to spend only
a certain total amount of money; however then, as it happens
in the single game, it is more difficult to stop than to continue.
This can be well described by the rule (43) and by the value
function (44), where now w represents the number of rounds
played in the time period.

Let now h = h(w, t ) be the distribution function of the
number of tickets purchased by a gambler in a certain round
of the jackpot game. As anticipated at the beginning of this
section, its time evolution may be obtained by resorting to
kinetic collisionlike models [5] based on (43). In particular,
since the interaction (43) depends only on the behavior of a
single gambler, h obeys a linear Boltzmann-type equation of
the form

d

dt

∫
R+

ϕ(w)h(w, t )dw

= 1

τ

∫
R+

〈ϕ(w′) − ϕ(w)〉h(w, t )dw (46)

[cf. (11)], where the constant τ > 0 measures the interaction
frequency and ϕ is any observable quantity.

Since the elementary interaction (43) is nonlinear with
respect to w, the only conserved quantity in (46) is obtained
from ϕ(w) = 1,

d

dt

∫
R+

h(w, t )dw = 0,

which implies that the solution to (46) remains a probability
density at all times t > 0 if it is so at the initial time t = 0.
The evolution of higher-order moments is difficult to compute
explicitly. As a representative example let us take ϕ(w) = w,
which provides the evolution of the mean number of tickets
purchased by the gamblers over time:

m(t ) :=
∫
R+

wh(w, t )dw.

Since

〈w′ − w〉 = μ
wα − w̄α

L

wα + w̄α
L

w,

we obtain

dm

dt
= μ

τ

∫
R+

wα − w̄α
L

wα + w̄α
L

wh(w, t )dw. (47)

This equation is not explicitly solvable. However, in view of
(45), m remains bounded at any time t > 0 provided it is so
initially, with the explicit upper bound (cf. [9])

m(t ) � m0e(μ/τ )t ,
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where m0 := m(0). From (47) it is however not possible to
deduce whether the time variation of m is or is not monotone.

Taking now ϕ(w) = w2 in (46) and considering that

〈(w′)2 − w2〉 =
[
�2

(
w

w̄L

)
− 2�

(
w

w̄L

)
+ λ

]
w2

� (3μ + λ)w2

because of (45) together with 0 < μ < 1, we see that the
boundedness of the energy at the initial time implies that of the
energy at any subsequent time t > 0, with the explicit upper
bound

m2(t ) � m2,0e/[(3μ+λ)τ ]t ,

where m2,0 := m2(0).

B. Fokker-Planck description and equilibria

The linear kinetic equation (46) is valid for every choice
of the parameters α, μ, and λ, which characterize the micro-
scopic interaction (43). In real situations, however, a single
interaction, namely, a participation in a new round of the
jackpot game, does not induce a marked change in the value
of w. This situation is close to that discussed in Sec. II D 1,
where we called these interactions grazing collisions [5,19].

Similarly to Sec. II D 1, we may easily take such a small-
ness into account by scaling the microscopic parameters in
(43) and (46) as

α → εα, λ → ελ, τ = ε, (48)

where 0 < ε � 1. A thorough discussion of these scaling
assumptions may be found in [8,17]. In particular, here we
mention that the rationale behind the coupled scaling of the
parameters α and λ and of the frequency of the interactions τ

is the following: Since the scaled interactions are grazing, and
consequently produce a very small change in w, a finite (i.e.,
noninfinitesimal) variation of the distribution function g may
be observed only if each gambler participates in a very large
number of interactions within a fixed period of time.

As already observed in Sec. II D 1, when grazing inter-
actions dominate, the kinetic model (46) is well approxi-
mated by a Fokker-Planck type equation [5,19]. Exhaustive
details on such an approximation in the kinetic theory of
socioeconomic systems may be found in [17]. In short, the
mathematical idea is the following: If ϕ is sufficiently smooth
and w′ ≈ w because interactions are grazing, one may expand
ϕ(w′) in a Taylor series about w. Plugging such an expansion
into (46) with the value function (44) and taking the scaling
(48) into account, one obtains

d

dt

∫
R+

ϕ(w)h(w, t )dw

=
∫
R+

(
−αμ

2
ϕ′(w)w log

w

w̄L
+ λ

2
ϕ′′(w)w2

)

× h(w, t )dw + 1

ε
Rε (w, t ),

where Rε is a remainder such that 1
ε
Rε → 0 as ε → 0+ (cf.

[17]). Therefore, under the scaling (48), the kinetic equation

(46) is well approximated by the equation

d

dt

∫
R+

ϕ(w)h(w, t )dw

=
∫
R+

(
−αμ

2
ϕ′(w)w log

w

w̄L
+ λ

2
ϕ′′(w)w2

)
h(w, t )dw.

This equation may be recognized as the weak form of the
Fokker-Planck equation with variable coefficients

∂t h(w, t )

= λ

2
∂2
w[w2h(w, t )] + αμ

2
∂w

(
w log

w

w̄L
h(w, t )

)
, (49)

upon assuming that the boundary terms produced by the
integration by parts vanish. Like in Sec. II D 1, the Fokker-
Planck description (49) is advantageous over the original
Boltzmann-type equation (46) because it allows for an ex-
plicit computation of the steady-state distribution function,
say, h∞ = h∞(w). The latter solves the first-order ordinary
differential equation

λ

2

d

dw
[w2h∞(w)] + αμ

2
w log

w

w̄L
h∞(w) = 0,

whose unique solution with unitary mass is

h∞(w) = 1√
2πσw

exp

(
− (log w − θ )2

2σ

)
, (50)

where

σ := λ

αμ
, θ := log w̄L − σ.

Therefore, in very good agreement with the observations
made in [4], the equilibrium distribution function predicted by
the microscopic rule (43) with the value function (44) in the
grazing interaction regime is a log-normal probability density,
whose mean and variance are easily computed from the known
formulas for log-normal distributions:

m∞ := w̄Le−σ/2, Var(g∞) := w̄2
L(1 − e−σ ).

In particular, these quantities are fractions of w̄L and w̄2
L,

respectively, depending only on the ratio σ = λ
αμ

between the
variance λ of the random fluctuation η and the portion αμ

of the maximum rate μ of variation in the number of tickets
purchased by a gambler in a single round. If

σ > 2 log
w̄L

w̄
,

then the asymptotic mean m∞ is lower than the fixed ideal
number w̄ of tickets to be purchased in each round. This
identifies a population of gamblers capable of not being too
deeply involved in the jackpot game.

Figure 2 shows that the asymptotic profile (50) describes
excellently the large-time distribution of the Boltzmann-type
equation (46) in the quasi-invariant regime, i.e., ε small in
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(a)

(b)

FIG. 2. Comparison of (50) with the numerically computed
large-time solution (at the computational time T = 10) to the
Boltzmann-type equation (46). The value function is (44) with μ =
0.5 and α = 1. Moreover, the binary interaction is (43) with λ = 1

10
and wL = eλ/2μ. We considered the quasi-invariant scaling (48) with
(a) ε = 10−1 and (b) ε = 10−2.

(48). The solution to (46) has been obtained numerically via a
standard Monte Carlo method.

IV. NUMERICAL TESTS

In this section we provide numerical insights into the vari-
ous models discussed before, resorting to direct Monte Carlo
methods for collisional kinetic equations and to the recent
structure preserving methods for Fokker-Planck equations.
For a comprehensive presentation of these numerical methods,
the interested reader is referred to [5,24–26].

We begin by integrating the multiple-interaction
Boltzmann-type model (5) so as to assess its equivalence
with the linearized model (15) in the case N � 1 with
εN = κ > 0, as predicted theoretically in Sec. II B. Next we
also test numerically the consistency of the Fokker-Planck
equation (23) with the linearized Boltzmann-type equation
(15). Subsequently, we investigate the kinetic model with
fat tails discussed in Sec. II D 1. In particular, we evaluate
numerically some discrepancies that it presents with the other
models.

A. Test 1: Multiple-interaction Boltzmann-type model and its
linearized version

The multiple-interaction Boltzmann-type equation (5) can
be fruitfully written in strong form, to put in evidence the gain

and loss parts of the integral operator

∂t f (x, t )

= 1

ε

〈∫
RN−1

(
1

J

N∏
k=1

f (′xk, t ) −
N∏

k=1

f (xk, t )

)
dx2 · · · dxN

〉

= 1

ε
Q+( f , . . . , f )(x, t ) − 1

ε
f (x, t ), (51)

where Q+ is the gain operator

Q+( f , . . . , f )(x, t ) := 1

ε

〈∫
RN−1

N∏
k=1

1

J
f (′xk, t ) dx2 . . . dxN

〉

and J is the Jacobian of the transformation (4) from the prein-
teraction variables {′xk}N

k=1 to the postinteraction variables
{xk}N

k=1. We discretize (51) in time through a forward scheme
on the mesh t n := n�t , �t > 0. With the notation f n(x) :=
f (x, t n), we obtain the following semidiscrete formulation:

f n+1(x) =
(

1 − �t

ε

)
f n(x) + �t

ε
Q+( f n, . . . , f n)(x).

By choosing �t = ε, the loss part disappears and at each time
step only the gain operator Q+ needs to be computed.

We recall that the multiple-interaction microscopic dynam-
ics are given by (4). In particular, motivated by the results
of Sec. III, we choose the Yk’s as independent and identi-
cally distributed random variables with log-normal probability
density:


(y) = 1√
4πy

exp

(
− (log y + 1)2

2

)
. (52)

A comparison with (50) shows that this corresponds to σ = 2
and w̄L = e, so M = 〈Yk〉 = 1 for all k.

In parallel, we consider the linearized Boltzmann-type
equation (15), which we have shown to be formally equiv-
alent to the multiple-interaction model for a large number
of gamblers N . The semidiscrete-in-time formulation of the
linearized model reads

f n+1(x) =
(

1 − �t

ε

)
f n(x) + �t

ε

〈∫
R+

1

J
f n(′x) dx

〉
,

where now the microscopic dynamics are given by (16) with
κ = εN and Y ∼ 
(y) like before [cf. (52)].

In both cases, we solve the interaction dynamics by a
Monte Carlo scheme, considering a random sample of 106

particles with initial uniform distribution in the interval [0,2],
thus f0(x) := f (x, 0) = 1

21[0,2](x), where 1 denotes the char-
acteristic function.

In Fig. 3 we compare the evolutions of the two models
in the time interval t ∈ [0, 2] for δ = 0.2 and β = 0 in (4)
and (16) [cf. also (10)], i.e., in particular, with no refilling. In
Fig. 4 we perform the same test in the larger-time interval t ∈
[0, 25] for δ = β = 0.2, i.e., by including also the refilling.
In both cases, we see clearly that if N is sufficiently large,
the linearized model is able to catch the multiple-interaction
dynamics at each time, whereas differences can be observed
if N is relatively small.
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FIG. 3. Test 1: Without refilling. Evolution at different times
(a) t = 0.1 and (b) t = 2 of the multiple-interaction Boltzmann-type
model with either N = 5 gamblers (open circles) or N = 100 gam-
blers (open triangles) and of its linearized version (closed circles)
in the time interval [0,2] for δ = 0.2 and β = 0. We considered
κ = 0.1.

Moreover, in the linearized model, we know that the mean
number of tickets owned by the gamblers during the jackpot
game is given by (18). In Fig. 5 we show instead the time evo-
lution of the mean of the solution to the multiple-interaction
Boltzmann-type model for several choices of the refilling
parameter β. We observe good agreement with the theoretical
results and in particular we see that the mean value tends
indeed asymptotically to βM

δ
, as expected.

B. Test 2: Fokker-Planck approximation for large N

In the case ε, κ � 1, the interactions (16) are quasi-
invariant, and hence the linearized Boltzmann-type model
(15) is well described by the Fokker-Planck equation (23).
In the case of a constant mean value m(t ) ≡ m0 = βM

δ
of the

number of tickets owned by the gamblers, the steady distribu-
tion is the  probability density function (24). In this section
we compare numerically the large-time distributions produced

(a) (b)

(c)

FIG. 4. Test 1: With refilling. Evolution at different times (a) t =
1, (b) t = 5, and (c) t = 25 of the multiple-interaction Boltzmann-
type model with either N = 5 gamblers (open circles) or N = 100
gamblers (open triangles) and of its linearized version (closed cir-
cles) in the time interval [0,25] for δ = β = 0.2 [log-normal refilling
sampled from (52)]. We considered κ = 0.1.

0 5 10 15 20 25
0

0.5

1

1.5

FIG. 5. Evolution of the mean number of tickets m(t ) in the time
interval [0,25] for δ = 0.2, κ = 0.1, and several choices of β.

by either the multiple-interaction Boltzmann-type model (5)
or the linearized Boltzmann-type model (15) with (24).

Like before, we consider a uniform initial distribution
f0(x) in the interval [0,2] and moreover a random variable Y
log-normally distributed according to (52), thus in particular
with mean M = 1. We also set β = δ = 0.2 in the micro-
scopic interactions (4) and (16), so the mean value of the
ticket distribution is always m0 = βM

δ
= 1, consistently with

the Fokker-Planck regime in which we are able to compute
explicitly the steady distribution (24).

In Fig. 6(a) we compare the large-time distribution of the
multiple-interaction Boltzmann-type model for an increasing
number of gamblers participating in each round of the jackpot
game (N = 102 and N = 103, respectively) with the asymp-
totic  probability density (24) computed from the Fokker-

(a) (b)

(c) (d)

FIG. 6. Test 2. (a) and (b) Comparison of the steady distribu-
tion of the multiple-interaction Boltzmann-type model (5) with the
Fokker-Planck asymptotic distribution (24) (solid line) and its log-
log plot [in (b)] for N = 102 (open circles), N = 103 (closed circles),
and fixed κ = 0.1. (c) and (d) Comparison of the steady distribution
of the linearized Boltzmann-type model (15) with the Fokker-Planck
asymptotic distribution (24) (solid line) and its log-log plot for κ =
0.1 (open circles) and κ = 0.01 (closed circles).
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(a) (b)

FIG. 7. Test 3. (a) Estimate of the approximate collision invariant
χ [cf. (28)]. (b) A log-log plot of the distributions (24) and (37).

Planck equation. We clearly see that, for N large enough, the
Fokker-Planck steady solution provides a good approximation
of the equilibrium distribution of the real multiple-interaction
model. In Fig. 6(b) we show the log-log plot of the same
distributions, which allows us to appreciate that in particular
the Fokker-Planck solution reproduces correctly the tail of
the equilibrium distribution of the multiple-interaction model,
thereby confirming that no fat tails have to be expected in the
distribution of the tickets owned by the gamblers.

In Fig. 6(c) we compare instead the large-time distribution
of the linearized Boltzmann-type model with the asymptotic
 probability density (24) for decreasing values of κ (κ = 0.1
and κ = 0.01, respectively). In Fig. 6(d) we show the log-
log plot of the same distributions to stress, in particular, the
goodness of the approximation of the tail provided by (24).

C. Test 3: Fat-tail case

In Sec. II D 1 we derived the alternative linear Boltzmann-
type model (33)–(34), which preserves some of the main
macroscopic properties of the original multiple-interaction
model (4) and (5). In particular, it accounts for the right
evolution of the first and second moments of the distribution
function.

We grounded such a derivation on the consideration that,
for N large and ε small, the quantity χ defined in (28)
may be treated approximately as a collision invariant of the
N-gambler dynamics. In Fig. 7(a) we test numerically this
assumption by taking N = 102 and some values of the scaling
parameter ε decreasing from 10−2 to 10−4. In particular,
since χ depends actually on the evolving microscopic states
x1, . . . , xN of the agents, we plot the time evolution of χ

for t ∈ [0, 25]. Such a time evolution is computed with the
Monte Carlo method described in Sec. IV A, starting from an
initial sample of S = 106 particles. Therefore, we get N = 102

subsamples of S/N = 104 particles, each of which produces
a Monte Carlo estimate of the time trend of χ . From these
samples we compute finally the average time trend of χ ,
namely, each of the curves plotted in Fig. 7(a). Consistently
with our theoretical findings, we observe that, for ε small
enough, χ may be actually regarded as a collision invariant.

In the quasi-invariant limit, the solution to the linear
Boltzmann-type model (33)–(34) has been shown to approach
that of the Fokker-Planck equation (36). Its explicitly com-
putable steady state is the inverse  probability density (37),
which, unlike the equilibrium distribution (24) approximating

(a) (b)

(c) (d)

FIG. 8. Test 3. Comparison between the time evolutions of the
Boltzmann-type model (33) and (34) (open circles) and of its Fokker-
Planck approximation (36) (stars) in the quasi-invariant regime at
times (a) t = 1, (b) t = 5, (c) t = 10, and (d) t = 25. The following
parameters have been used: β = δ = 0.2, M = 1, and κ = 10−2. The
value of the approximate collision invariant χ is estimated from the
multiple-interaction Boltzmann-type model like in Fig. 7.

the trend of the multiple-interaction model for large N , ex-
hibits a fat tail. In Fig. 7(b) we show the log-log plot of the
distributions (24) and (37), which stresses the difference in
their tails.

In order to check the consistency of the Fokker-Planck
regime described, in the quasi-invariant limit, by (36) with the
Boltzmann-type model (33) and (34), in Fig. 8 we show the
time evolution of the distribution function g computed with
both models for t ∈ [0, 25], starting from an initial uniform
distribution for x ∈ [0, 2]. In both cases, we treat χ as a
collision invariant of the N-gambler model. Thus, we first
computed the value of χ from the model (4) and (5) (with
N = 104) and then we used it in the binary rules (33), where
χ determines the values that ηε can take, and in the diffusion
coefficient σ̃ of (36). From Fig. 8 we see that the two models
remain close to each other at every time and approach the
same steady distribution for large times, as expected.

Finally, we quantify the distance between the solution f to
the Fokker-Planck equation (23), which reproduces the large-
time trend of the multiple-interaction Boltzmann-type model
(4) and (5) [cf. Test 2 in Sec. IV B and the solution g to Fokker-
Planck equation (36), which describes instead the large-time
trend of the linear diffusive Boltzmann-type model (33) and
(34)]. We consider in particular the relative L1 error

Eκ (t ) :=
∫
R+

|g(x, t ) − f (x, t )|
f (x, t )

dx (53)

for several values of the constant κ [cf. (14)], which appears
as a coefficient in both Fokker-Planck equations. In particular,
we consider κ = 10−1, 10−2, 10−3 and we take f (x, 0) =
g(x, 0) = 1

21[0,2](x) as the initial (uniform) distribution. By
means of semi-implicit structure preserving (SP) methods,
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10-2
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FIG. 9. Test 3. Relative L1 error (53) between the solutions to
the Fokker-Planck equations (23) and (36). The numerical solution
of both models is obtained by means of semi-implicit SP methods
over the computational domain [0,10] in the x variable, with �t =
�x = 10/Nx and Nx = 401 nodes.

we guarantee the positivity and the large-time accuracy of
the numerical solution to both models. (The interested reader
is referred to [26] for further details on this numerical tech-
nique.) From Fig. 9 we see that Eκ decreases with κ , although
its order of magnitude remains non-negligible. Hence, the
diffusive model with fat tails may approach, in a sense, the
nondiffusive one with slim tails, but visible differences remain
between them as a consequence of the fact that the diffusive
model describes a jackpot game which is not completely
equivalent to the real one caught by the nondiffusive model.

V. CONCLUSION

In this paper we introduced and discussed kinetic models of
online jackpot games, i.e., lottery-type games which occupy a
big portion of the web gambling market. Unlike the classical
kinetic theory of rarefied gases, where binary collisions are
dominant, in this case the game is characterized by simulta-
neous interactions among a large number N � 1 of gamblers,
which leads to a highly nonlinear Boltzmann-type equation
for the evolution of the density of the gambler’s winnings.
When participating in repeated rounds of the jackpot game,
the gamblers continuously refill the number of tickets avail-
able to play and at the same time their winnings undergo
a percentage cut operated by the site which administers the
game. Hence, through the study of the evolution of the mean
number of tickets and its variance, one realizes that the solu-
tion of the model should approach in time a nontrivial steady
state describing the equilibrium distribution of the gambler’s
winnings.

In the limit N → ∞, we showed that the multiple-
interaction kinetic model can be suitably linearized so as to get
access to analytical information about the large-time trend of
its solution. We proposed two different linearizations, which,
while apparently both consistent with the original nonlinear
model, exhibit marked differences for large times. The so-
lution to the linear model presented in Sec. II B converges
towards a steady state with all moments bounded. In some

cases, such a steady state can be written explicitly in the form
of a  probability density function. Conversely, the solution
to the linear model considered in Sec. II D converges towards
a steady state in the form of an inverse  probability density
function, hence with Pareto-type fat tails. We explained the
different trend of the second model as a consequence of a
too strong loss of correlation among the gamblers, which is
instead present in the original nonlinear multiple-interaction
model and also in its linear approximation proposed in
Sec. II B. Numerical results showed indeed that the solution
to this linear model is in perfect agreement with that to the
fully nonlinear kinetic model.

The main conclusion which can be drawn from the present
analysis is that the wealth economy of a multiagent system in
which the trading activity relies on the rules of the jackpot
game does not lead to a stationary distribution exhibiting
Pareto-type fat tails, as it happens instead in a real economy.
Unlike the real trading economy, where the small richest part
of the population owns a relevant percentage of the total
wealth, in the economy of the jackpot game the class of rich
people is still very small but it does not own a consistent
percentage of the total wealth (measured in terms of tickets
played and won in time). In other words, it is exceptional to
become rich by just playing the jackpot game and in such a
case it is further exceptional to become very rich.

A nonsecondary conclusion of the present analysis is that
the rules of the jackpot game imply a strong correlation among
the gamblers participating in the game. Indeed, in each round
of the game there is just one gambler who wins while all the
other gamblers lose. Any approximation of the fully nonlinear
model needs to take into account this aspect. This is clearly
in contrast with a real trading economy, where the agents may
instead take advantage simultaneously of their trading activity.

It is further interesting to compare the online gambling
dynamics studied here with the market ecology among differ-
ent types of traders depicted by the so-called minority game
[13,14]. Connections with the so-called Kolkata restaurant
problem have been discussed in [27]. The latter is a stylized
model of a financial market, in which a group of N ∈ N
traders is divided into two categories: the producers, who
use the market to exchange goods, and the speculators, who
aim to gain from the fluctuations of the market. Both types
of users operate by either selling or buying. However, the
producers exhibit an essentially deterministic behavior, while
the speculators may choose among different strategies, taking
advantage of past trading experiences. Furthermore, they may
decide not to trade if they estimate that the market is not
offering convenient opportunities. The revenue of each trade
is modeled in such a way that the minority of the agents
obtains the greatest reward. Such an idea is motivated, e.g.,
by the fact that, in the presence of a large number of buyers,
the sellers, who are the minority, may raise the price of their
goods. Such dynamics may be rephrased, in the language of
a game, by saying that in each round (viz., trade) at most
�N

2 − 1� players (viz., traders) may win (viz., earn). With this
interpretation, we notice that, unlike the online gambling, the
minority game allows several players to win in a single round.
Not by chance, then, in [13] the authors found, by means of
numerical simulations, that the statistical distribution of the
revenues exhibits a fat tail. A theoretical explanation of this
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fact may be based on the conclusions above, in particular
on the fact that a small probability of a few players winning
simultaneously in a single round is enough to generate fat-
tailed distributions (cf. Sec. II D). Furthermore, in the case of
the minority game, some players are assumed to learn from
previous rounds, which implies a refinement of their game
strategy towards the maximization of their incomes. This is
a further element which may enhance the formation of a fat
tail in the revenue distribution. In the case of online gambling,
learning processes are actually not reported in the behavioral
analysis [4]. On the other hand, it can be easily argued that
addiction issues strongly prevent effective forms of learning
by the gamblers.
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