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Abstract

A control-oriented model for mobility-on-demand systems is here proposed. The

system is first described through dynamical stochastic state-space equations, and

then suitably simplified in order to obtain a control-oriented model, on which

two control strategies based on Model Predictive Control are designed. The for-

mer aims at keeping the expected value of the number vehicles parked in stations

within prescribed bounds; the latter specifically accounts for stochastic fluctua-

tions about the expected value. The model includes the possibility of weighting

the control effort, leading to control solutions that may trade off efficiency and

cost. The models and control strategies are validated over a dataset of logged trips

of ToBike, the bike-sharing systems in the city of Turin, Italy.
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1. Introduction1

Mobility-on-Demand (MOD) systems are becoming pervasive in cities of any2

size. As of December 2016, bike- and car-sharing programs had been adopted by3

more than 1,000 cities worldwide [1]. As of July 2017, Car2Go, the largest car-4

sharing company in the world, has 2,500,000 registered users and a fleet of nearly5

14,000 vehicles in 26 locations in North America, Europe, and Asia [2].6

The concept behind a MOD system is straightforward: a user requires a vehi-7

cle, picks it up from a designated location, executes the trip, drops off the vehicle8

at her/his destination. MOD systems can be station-based, with vehicles parked at9

fixed locations (stations), or floating, with vehicles parked with no constraints, at10

the user’s wish.11

As required to all service providers, MOD systems should be designed to meet12

the customer demand, which is extremely heterogeneous due to several factors,13

such as the time of the day, the season, commuting patterns, up-hill or down-hill14

stations (for bikes) [3, 4, 5]. The impossibility of meeting the customer demand is15

usually caused by a lack of vehicles at some locations and a corresponding surplus16

of vehicles somewhere else. This issue can be mitigated through the implemen-17

tation of repositioning policies, also called rebalancing. Rebalancing strategies18

are typically obtained as the solution of suitable optimization problems. In bike-19

sharing systems, most of the works in the literature assume that one or more trucks20

are available to redistribute bikes over the city, aiming at maximizing the system21

performance while keeping the repositioning effort at a minimum. In car-sharing22

systems, rebalancing is operated on a single-vehicle basis by operators [6].23

Rebalancing is often executed during time periods where traffic is low, espe-24

cially at night. This activity, called static rebalancing, assumes that vehicles are25
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not used by customers during repositioning operations, or that their use is negligi-26

ble with respect to the rebalancing flows. In bike-sharing systems, repositioning27

is usually executed by trucks able to displace high volumes of bikes, even within28

relatively long distances [7, 8, 9, 10, 11, 12, 12, 13, 14, 15, 16]. Dynamic reposi-29

tioning, on the other hand, assumes that customers are traveling while rebalancing30

operations occur, and the effects of such travels are not negligible. This kind of31

repositioning is usually performed with smaller vehicles and/or over shorter dis-32

tances [17, 18, 19, 20]. Users may also be involved in system rebalancing through33

incentives [21]. For example, in Paris, Velib+ offers rewards to people moving34

bikes up-hill [22].35

Optimization algorithms informing repositioning strategies are based on suit-36

able models of the MOD system. Several modeling techniques have been pro-37

posed in the literature, mostly based on statistical and data-driven approaches, to38

account for the stochasticity of the system under exam [23, 24, 25, 26, 27]. Most39

of these works, however, rely on models with limited analytical tractability, due40

to the lack of specific dynamical equations.41

In this paper, a novel control-oriented model for a station-based MOD sys-42

tem is proposed, extending preliminary results presented in [28]. In its general43

formulation, the system is described by a dynamical model with stochastic state44

variables in discrete time. The model quantifies vehicle flows between different45

locations and accounts for stochasticity in customer demand and traveling times.46

Hence, it is used to derive two MPC-based techniques [29]: first, a linear and time-47

invariant approximation of the model is derived. Such a model is used to control48

the expected values of the state variables, representing the expected quantity of49

vehicles at each station. Then, interval analysis is leveraged to develop a robust50
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control strategy on the stochastic model, thus accounting for the fluctuations about51

the expected values.52

The design of the mentioned control strategies yields constrained optimiza-53

tion problems, with the objective of maintaining the number of vehicles within54

prescribed bounds at each location. As a solution to these problems, vehicle flows55

that tend to rebalance the system are derived. These flows can then be used to56

devise incentive-based strategies, or to set up rebalancing campaigns operated by57

trucks or other transportation means.58

Even though the proposed approach is conceived for station-based systems, it59

can be effectively applied to free-floating systems, via a suitable tessellation of the60

operational space. Location-based rebalancing can be also useful when stations61

are close to each other, and users can effortlessly move through groups of stations62

to seek for suitable pick-up or drop-off locations. This is the case, for example, of63

the ToBike bike-sharing systems, located in the city of Turin (Italy), on which the64

proposed approach is validated using one year of logged user trip data.65

This paper extends preliminary results presented in [28] along several direc-66

tions: i) the dynamical model is better formalized, and a more in-depth theoretical67

treatment is offered; ii) the control of the expected value is expanded and includes68

now a detailed study of steady-state conditions; iii) a robust control strategy based69

on interval modeling is devised; iv) model and control validation are performed70

on a real dataset of one year of logged trips provided by ToBike.71

The paper is structured as follows. In Section 2 the modeling rationale, model72

parameters, nomenclature, and modeling assumptions toward the realization of a73

control-oriented model are given. Section 3 introduces the control-oriented model,74

studying in detail the dynamics of the expected value of the state variables and the75
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steady-state conditions. In Section 4, two MPC-based control strategies, first on76

the expected value of the space variables, and then, on robust bounds of the state77

variables, are proposed. The ToBike MOD system and the dataset adopted for val-78

idation, along with relevant data analysis techniques are described in Section 5.79

Section 6 comprehensively validates our model and assesses its performance, us-80

ing the ToBike dataset. Conclusions are finally drawn in Section 7.81

2. Control- and simulation-oriented models of the MOD system82

A MOD system is here modeled as a network composed by nodes, represent-83

ing the vehicle stations, and links between nodes, representing the vehicle routes.84

The set S of station nodes is composed by N stations, and the set L is composed85

by N2 links between any two station nodes in S . A link (i, j) between departure86

station i and destination station j does not necessarily represent a specific physical87

route, but rather the ensemble of all routes that are typically traveled by customers88

moving from i to j.89

The generic link (i, j) is characterized by its state vi j(t), representing the car-90

dinality of the set Vi j(t) of all the vehicles en route from i to j at time t, and by the91

(random) fraction q̃i j(t,δ )∈ [0,1] of the vi j(t) vehicles that reach their destination92

j within the time interval (t, t +δ ].93

The generic node i is characterized by its state zi(t), denoting the number of94

vehicles parked (and hence available for pick up) at station i at time t, and by95

the instantaneous mean rate µi(t) ∈ R+ of random service requests that arrive at96

station i at time t. Analogously, 1/µi(t) describes the mean of the random inter-97

arrival time of service requests at station i. The station throughput λi(t) is instead98

the mean rate at which vehicles depart from station i. In reality, it always holds99
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that λi(t) ≤ µi(t), since not all the service requests may be fulfilled, due to the100

fact that there may exist station-empty periods in which no vehicles are available101

at the station, and hence no departure is possible from the station, even if demand102

from customers exists. This issue is further discussed in Section 2.1.4.103

If a customer request is generated at station i at time t, and if station i has a104

vehicle available, then the customer picks up that vehicle and starts a trip towards105

a destination station j. The selection of the destination is modeled via a set of106

(possibly time-varying) routing probabilities, i.e., it is assumed that at time t and107

for each station i, there exist probabilities pi j(t) ∈ R+, with ∑ j pi j(t) = 1, such108

that a generic customer departing from i chooses destination j with probability109

pi j(t).110

S1

S2

S3
I11

I12

I21

I22

I32

I23
I13

I31

I33

Figure 1: Example of network modeling a MOD system with three stations S1,S2,S3, and corre-

sponding itinerary links Ii j.

2.1. Simplifying assumptions for a “control-oriented” model111

A real-life MOD system is hardly representable by a simple mathematical112

model. For one thing, any stochastic representation of, say, the transit times or113

of the customer requests, is only an approximation of reality. Also, a key aspect114

in station-based MOD systems is that a station state zi(t) may reach its physical115
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limits, that is, zi(t) may be equal to zero (empty state) or to cmax
i (full state), where116

cmax
i is the maximum capacity of the station (typically, the number of physical117

slots available for parking the vehicles in station i). When zi(t) = 0, customer118

requests at the i-th station cannot be fulfilled and must be turned down. Similarly,119

when zi(t) = cmax
i , vehicles arriving at station i at time t are unable to park their120

vehicles, and must therefore wait, or be diverted to some other stations that have121

available parking slots. The two issues just mentioned are indeed a manifestation122

of a common problem in MOD systems known as “station imbalance,” a situation123

in which certain stations are over-requested as departure stations, and thus quickly124

become empty, and other stations are over-requested as destination stations, and125

thus quickly become full. Strong imbalance severely affects the usability (and the126

economic profitability) of the system.127

Clearly, it is possible to build a sophisticated model that tries to mimic as128

close as possible the behavior of the real system. This is what is usually called a129

simulation model, which is needed for testing policies and assessing the system130

performance via simulations. Such a model is a proxy of reality, and it may be131

used in place of reality, whenever this is needed. The model presented in this132

paper, on the other hand, has a different goal: to develop a control model, that133

is, a model whose primary purpose is to help in the design of control strategies134

(e.g., rebalancing policies) for the system. A good control model should be simple135

enough to allow for the effective synthesis of the control law, although this may136

come at the expense of approximations. In the end, however, the performance of137

the control law should be tested and evaluated on the real system, or on a proxy138

of it (i.e., the simulation model).139

With this in mind, the main simplifying assumptions used to construct the140
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control-oriented model of the MOD system are introduced in the following.141

2.1.1. Piece-wise constant parameters142

The model discussed so far has time-varying parameters, matching the fact143

that rates, routing probabilities and transit times of a real-world system are likely144

not constant over time. However, dealing with continuously time-varying parame-145

ters is impractical for our purposes of system optimization. Previous analyses per-146

formed on logged service data suggest that system parameters can be conveniently147

approximated as piece-wise constant functions [23, 24], where each constant part148

corresponds to a subset of the day. Motivated by this observation, constant param-149

eters over each given period are here considered.150

2.1.2. Exponential inter-departure times151

Departures from each station i follow a counting process with instantaneous152

rate λi(t). For simplicity, it is specifically assumed that they form a Poisson153

process of rate λi(t), although this latter assumption is not critical for our de-154

velopments. Assuming that each vehicle departing from i at time t chooses its155

destination j with probability pi j(t) implies that vehicles departing from i with156

destination j at time t also follow a Poisson process with rate pi j(t)λi(t).157

2.1.3. Densities for link arrival proportions158

As previously discussed, the transit of vehicles through the (i, j) link is mod-

eled by assuming that, at each given t and given δ , only a (random) fraction

q̃i j(t,δ ) ∈ [0,1] of the vi j(t) vehicles reach their destination j within the time

interval (t, t +δ ]. Letting

qi j(t,δ )
.
= E

{
q̃i j(t,δ )

}
∈ [0,1],
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it is assumed that q̃i j(t,δ ) is statistically independent from vi j(t). The characteri-159

zation of q̃i j(t,δ ) should be done via a specific statistical analysis of log data from160

the real (or simulated) system. If the average transit times τi j(t) are estimated for161

each link (i, j), for instance, then one may choose the expected proportion as162

qi j(t,δ ) = 1− e−δ/τi j(t), or simply as qi j(t,δ ) = δ/τi j(t), for δ ≤ τi j(t).163

2.1.4. No blocking164

It is assumed, for the purpose of the control model, that stations have unlimited165

capacity, i.e., cmax
i =+∞, ∀i. Also, it is fictiously assumed that customer demand166

is always satisfied. The motivation for these assumptions is explained in the fol-167

lowing. In reality, a station state zi(t) remains bounded in [0,cmax
i ] at all times.168

When one of the two limits in the interval is attained, the station is “blocked”, in169

the sense that no operations can occur until an event (i.e., a departure for a full170

station or arrival for an empty station) that takes the station state back within the171

prescribed capacity limits happens. Reproducing the “blocking” condition in our172

control-oriented model would prevent us from developing a time-driven model173

and hinder the tractability of the model. Hence, we here admit that variables174

zi(t) are allowed to go beyond the boundaries, while penalizing out-of-boundary175

behavior is penalized in the control design phase. Thus, the control action is rein-176

forced until the imbalance situation is compensated. Letting zi(t)> cmax
i implies,177

in practice, to assume that there are always enough parking slots at the station,178

and letting zi(t) < 0 implies to assume that there are always enough vehicles at179

the stations; this just implies that unavailable vehicles are borrowed from some-180

where in order to satisfy the demand. The rebalancing control policy, however,181

will be designed to minimize such out-of-boundary situations.182
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3. The MOD control model183

Under the assumptions of Section 2.1, the following quantities are defined:184

• ∆ is the time period during which the system parameters are assumed to be185

constant, as discussed in Section 2.1.1.186

• nh is a convenient positive integer number used to divide the whole simula-187

tion time T in equally spaced time intervals of duration δ = T/nh.188

• di j(t +δ ) is the number of vehicles driven by users that depart from i with

destination j in the time interval (t, t + δ ]. According to the assumption in

Section 2.1.2, di j(t +δ ) has a Poisson probability mass

Prob{di j(t +δ ) = k}= 1
k!
(pi j(t)λi(t)δ )ke−pi j(t)λi(t)δ ,

for k = 0,1, . . . . (1)

• ri j(t) is the number of “control” vehicles (i.e., vehicles used for rebalancing189

purposes) that are moved from i to j as dictated by the rebalancing control190

strategy. From a modeling point of view, these are considered to be “in-191

jected” in the (i, j) link during the interval (t, t +δ ]. Contrary to di j(t +δ ),192

ri j(t) is a deterministic quantity that is determined by the control algorithm193

at time t. It is assumed that δ is sufficiently small with respect to the aver-194

age link transit times τi j, so that there is a (practically) zero probability that195

any of the di j(t +δ ) or of the ri j(t) vehicles reaches its destination by time196

t +δ .197

• ai j(t+δ ) is the number of vehicles, among the ones in Vi j(t), that reach the

j-th station by time t+δ . According to the assumption in Section 2.1.3, the
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count ai j(t +δ ) can be written equivalently in terms of the random propor-

tion q̃i j(t,δ ) as

ai j(t +δ ) = q̃i j(t,δ )vi j(t), (2)

where q̃i j(t,δ ) is a random parameter with expected value qi j(t,δ ). Equa-198

tion (2) simply states that the number of vehicles in Vi j(t) that reach the j-th199

station by time t +δ is a (random) fraction of the whole number of vehicles200

in Vi j(t), and this fraction is, on average, equal to qi j(t,δ ). We observe that201

the quantity ai j(t +δ ) is implicitly allowed to be real valued.202

Table 1 summarizes the notation of main variables used in this paper.203

The discrete-time equations that regulate the system behavior can now be writ-204

ten. For i, j = 1, . . . ,N, straightforward conservation arguments yield205

vi j(t +δ ) = vi j(t)−ai j(t +δ )+di j(t +δ )+ ri j(t)

z j(t +δ ) = z j(t)+∑
i

ai j(t +δ )−∑
h

(
d jh(t +δ )+ r jh(t)

)
.

The following equations are obtained using (2):206

vi j(t +δ ) = (1− q̃i j(t,δ ))vi j(t)+

+di j(t +δ )+ ri j(t) (3)

z j(t +δ ) = z j(t)+∑
i

q̃i j(t,δ )vi j(t)+

−∑
h

(
d jh(t +δ )+ r jh(t)

)
. (4)

The system above is a linear, discrete-time, stochastic one in the z j and vi j state207

variables, with stochastic inputs given by the di j departures, and control inputs208

given by the rebalancing departures ri j. Given initial conditions, Eqs. (3)-(4) can209

be used to propagate forward in time the (random) system states. In the following,210
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Variable Description

N Number of stations

t Discrete time index

∆ Time interval in which system parameters are assumed to be constant

δ Sampling interval

nh Time horizon used for optimization in MPC

vi j(t) Number of vehicles en route from station i to station j at time t

q̃i j(t,δ ) Fraction of vi j(t) vehicles that reach station j within the interval (t, t +δ )

qi j(t,δ ) Average value of q̃i j(t,δ )

ai j(t +δ ) Number of vehicles that reach station j from station i by time t +δ

µi(t) Instantaneous mean rate of service request at station i at time t

λi(t) Instantaneous mean rate of station i throughput

pi j(t) Routing probability from station i to station j at time t

cmin
i ,cmax

i Bounds for the desired number of vehicles available at station i

ri j(t) Number of “control” (rebalancing) vehicles

to be displaced from station i to station j at time t

Table 1: Nomenclature of the main variables used in the paper.

the dynamics of the expected value of the model state variables will be derived and211

used to design the first MPC-based controller.212

4. MPC-based rebalancing213

4.1. The expected state dynamics214

Observing that ∑h d jh(t + δ ) is Poisson with parameter ∑h p jhλ jδ = λ jδ ,215

denoting expected quantities with an overbar (i.e., v̄i j(t)
.
= E

{
vi j(t)

}
, z̄ j(t)

.
=216
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E
{

z j(t)
}

, etc.), and recalling that q̃i j(t,δ ) and vi j(t) are assumed to be statisti-217

cally independent, the evolution of the expected value of the state equations in218

(3)-(4) can be written as219

v̄i j(t +δ ) = (1−qi j(t,δ ))v̄i j(t)+

+pi j(t)λi(t)δ + ri j(t) (5)

z̄ j(t +δ ) = z̄ j(t)+∑
i

qi j(t,δ )v̄i j(t)+

−λ j(t)δ −∑
h

r jh(t). (6)

Equations (5)-(6) constitute a linear, discrete-time, deterministic dynamical sys-220

tem in the expected state variables z̄ j(t) and v̄i j(t), with inputs given by the mean221

departure rates λi(t), and control inputs given by the rebalancing departures ri j(t).222

4.2. Steady-state behavior223

Assume that the rebalancing inputs are constant, i.e., ri j(t) = ri j, ∀t, and that224

the system parameters pi j, qi j, and λ j, i, j = 1, . . . ,N, remain constant. In such225

case, the following equations hold:226

v̄i j(t +δ ) = (1−qi j(δ ))v̄i j(t)+ pi jλiδ + ri j (7)

z̄ j(t +δ ) = z̄ j(t)+∑
i

qi j(δ )v̄i j(t)−λ jδ −∑
h

r jh. (8)

Since 1−qi j(δ )< 1, the discrete time recursion (7) is asymptotically stable, and

has a constant input term equal to pi jλiδ + ri j. Therefore, v̄i j(t + kδ ) approaches

a steady-state value for k→∞, independently from the initial condition v̄i j(t), and

this value is

v̄i j
(ss) =

pi jλiδ + ri j

qi j(δ )
. (9)
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Plugging the steady-state value (9) into (8), a steady-state for z̄ j
(ss) exists when

z̄ j
(ss) = z̄ j

(ss)+δ ∑
i

pi jλi−λ jδ +∑
i

ri j−∑
h

r jh.

This steady state condition is satisfied if the following flow equilibrium holds for227

all j = 1, . . . ,N:228

δ ∑
i

pi jλi +∑
i

ri j = λ j +∑
h

r jh. (10)

Since (8) is a pure discrete-time integrator, the actual steady-state value depends229

on the initial conditions and on the transient of v̄i j(t + kδ ). Incidentally, it can230

be observed that if δ � ∆, since the system parameters pi j and λ j, i, j = 1, . . . ,N,231

remain constant within an interval of duration ∆, it may be assumed that v̄i j(t+kδ )232

and z̄ j(t + kδ ) will rapidly attain their steady-state value.233

4.3. Control of the expected value234

The adopted cost function is the total weighted rebalancing effort over the

considered time horizon

JT =
nh−1

∑
k=0
‖vec(W◦R(t + kδ ))‖1,

where R(t + kδ ) is the matrix containing in row i and column j the rebalancing

departures ri j(t + kδ ), W ∈ RN,N is a weight matrix with nonnegative elements,

the operator vec(·) indicates the operation of vectorization of a matrix, the opera-

tor “◦” indicates the Hadamard product, and ‖·‖1 indicates the 1-norm of a vector.

The weight matrix can be used to specify the relative cost of rebalancing between

different pairs of stations, due for example to high displacement time, level of traf-

fic, steep routes, etc. For simplicity and to enhance readability, and without loss of
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generality, in this work we set W as the all-one matrix and we omit the vectoriza-

tion notation, so that we define ‖R(t + kδ )‖1
.
= ‖vec(R(t + kδ ))‖1. The control

goal is to maintain the expected states z̄ j(t + kδ ) within given limits [cmin
j ,cmax

j ],

at all times, while minimizing the rebalancing effort. Letting

R
.
= {R ∈ RN,N : R≥ 0, and Rii = 0, i = 1, . . . ,N},

the following optimization problem is solved:235

min
R(t),...,R(t+(nh−1)δ )∈R

∑
nh−1
k=0 ‖R(t + kδ )‖1

s.t.: z̄ j(t + kδ ) ∈ [cmin
j ,cmax

j ],

for j = 1, . . . ,N, and k = 1, . . . ,nh,

where z̄ j(t + kδ ) is given by the recursion in (5)-(6), initialized with given initial236

conditions z̄ j(t), v̄i j(t), i, j = 1, . . . ,N.237

Imposing strict feasibility for the state limits z̄ j(t + kδ ) ∈ [cmin
j ,cmax

j ] may

result in infeasibility, or in a too high rebalancing effort for most of the possi-

ble scenarios. A more flexible approach is therefore to consider a trade-off be-

tween rebalancing effort and constraint satisfaction, by introducing slack variables

s j(t + kδ ). Slack variables are used in this case to allow a certain degree of vio-

lation of the station capacity constraint against a mitigation of the control effort.

The state constraint is firstly rewritten as∣∣∣∣∣z̄ j(t + kδ )−
cmax

j + cmin
j

2

∣∣∣∣∣≤ cmax
j − cmin

j

2
,
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and then the problem is relaxed to

min
nh−1

∑
k=0

∑
j

s j(t + kδ )+ γ‖R(t + kδ )‖1

s.t.:

∣∣∣∣∣z̄ j(t + kδ )−
cmax

j + cmin
j

2

∣∣∣∣∣≤ cmax
j − cmin

j

2
+ s j(t + kδ ),

s j(t +δ )≥ 0, . . . ,s j(t +nhδ )≥ 0,

for j = 1, . . . ,N, and k = 1, . . . ,nh,

R(t), . . . ,R(t +(nh−1)δ ) ∈R,

(11)

where γ ≥ 0 is a tunable trade-off parameter between the rebalancing effort and238

satisfaction of the capacity constraints. Variables s j(t + kδ ) represent the amount239

of allowed capacity violation at the j-th station at time t + kδ . Ideally, the op-240

timization problem should lead to a sharp satisfaction of the capacity constraint,241

hence, the minimized cost function should entail slack variables equal to zero.242

However, some scenarios might allow a much reduced control effort, if some of243

the capacity constraints are relaxed. In this case, the optimization algorithm would244

attain a value of the objective function such that some of the slack variables settle245

to a nonzero value, implying that the capacity constraint is violated by an amount246

equal to such a value. The trivial constraints on the nonnegativity of the slack247

variables and on the feasibility of the control actions complete the definition of248

the problem.249

4.4. MPC based on robust interval modeling250

Although the control procedure illustrated in Section 4.3 is an efficient way251

to control the expected values of the state variables, the stochastic nature of the252

system may lead to fluctuations that take the system dynamics out of the desired253
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behavior during specific realizations. This issue is here mitigated through the254

introduction of a robust control scheme based on interval analysis.255

The stochastic information on di j(t,δ ) in (1) can be used to obtain an interval256

of probabilistic confidence on this parameter, and hence it is possible to use inter-257

val analysis to unroll in time a confidence tube to bound the state of the dynamical258

system (3)-(4). Then, MPC will be applied to control the resulting dynamics. The259

obtained control scheme will guarantee the attainment of the control objective260

with the desired confidence level.261

Fixing a probability level η , quantities di j
min(t,δ ) and di j

max(t,δ ) denote the262

extremes of confidence intervals of probability η for the random variable di j(t,δ ).263

Due to the linearity of (3)-(4) in di j(t,δ ), two conservative bounds within which264

state variables vi j(t) and z j(t) will be contained with probability η can be easily265

obtained. Denoting these bounds with vi j
min(t), vi j

max(t), z j
min(t), and z j

max(t),266

their dynamics is described by267

vi j
min(t +δ ) = (1− q̃i j(t,δ ))vi j

min(t)+

+di j
min(t +δ )+ ri j(t) (12)

z j
min(t +δ ) = z j

min(t)+∑
i

q̃i j(t,δ )vi j
min(t)+

−∑
h

(
d jh

max(t +δ )+ r jh(t)
)

(13)

and268

vi j
max(t +δ ) = (1− q̃i j(t,δ ))vi j

max(t)+

+di j
max(t +δ )+ ri j(t) (14)

z j
max(t +δ ) = z j

max(t)+∑
i

q̃i j(t,δ )vi j
max(t)+

−∑
h

(
d jh

min(t +δ )+ r jh(t)
)
. (15)
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The optimization problem that implements the MPC strategy is analogous to269

that of Section 4.3, with the difference that the algorithm considers now a larger270

set of constraints to impose that the two extremes of fluctuations are bounded271

between two given capacity limits:272

min
R(t),...,R(t+(nh−1)δ )∈R

∑
nh−1
k=0 ‖R(t + kδ )‖1

s.t.: z j
min(t + kδ ) ∈ [cmin

j ,cmax
j ],

z j
max(t + kδ ) ∈ [cmin

j ,cmax
j ],

for j = 1, . . . ,N, and k = 1, . . . ,nh.

Similarly to Section 4.3, two sets of slack variables, denoted as s j
max(t) and

s j
min(t), are used to establish a trade-off between feasibility, rebalancing effort,

and constraint satisfaction. The optimization problem is therefore relaxed to

min
nh−1

∑
k=0

∑
j
[s j

max(t + kδ )+ s j
min(t + kδ )]+ γ‖R(t + kδ )‖1

s.t.:

∣∣∣∣∣ z j
max(t + kδ )−

cmax
j + cmin

j

2

∣∣∣∣∣≤ cmax
j − cmin

j

2
+ s j

max(t + kδ ),∣∣∣∣∣z j
min(t + kδ )−

cmax
j + cmin

j

2

∣∣∣∣∣≤ cmax
j − cmin

j

2
+ s j

min(t + kδ ),

s j
max(t +δ )≥ 0, . . . ,s j

max(t +nhδ )≥ 0,

s j
min(t +δ )≥ 0, . . . ,s j

min(t +nhδ )≥ 0,

for j = 1, . . . ,N, and k = 1, . . . ,nh,

R(t), . . . ,R(t +(nh−1)δ ) ∈R,

(16)

where the constraints have the same meaning of Eq. 11.273
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5. ToBike system description, data analysis, and parameter identification274

ToBike has been Turin’s (Italy) bike-sharing system since 2010. It comprises275

more than 160 stations and 2000 bikes. Stations contain a variable number of276

docking slots. About 8000 trips per day are executed by more than 20,000 cus-277

tomers within an area of approximately 300 square kilometers. No reservation278

system is available, but users can use a mobile app to check the number of bikes279

and docking slots available at a given station. A user that wishes to travel can pick280

up an available bike at any station, cycle toward a destination station and dock it281

to an available docking slot. Bike stations are very dense in the urban territory, es-282

pecially around the city center. Thus, in most of the cases, the availability of bikes283

is much efficiently and representatively computed over groups of stations, rather284

than on single ones. Toward the design of an effective control algorithm, stations285

have therefore been grouped in clusters, according to their geographic location.286

Clustering has been performed via a k-means algorithm [30] and a Voronoi tes-287

sellation, partitioning the city territory in N = 10 groups of stations, based on the288

Euclidean distance between them. Such a distance is evaluated on the azimuthal289

equidistant projection [31] of the geographical coordinates, with the azimuth set290

on the geometric center of the stations. A similar partition strategy can be used291

to apply our modeling and control approach to free-floating systems, i.e., systems292

where vehicles are not obliged to be picked up and dropped off at stations and bal-293

ancing should be pursued over urban zones to be determined according to given294

criteria [32].295
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Figure 2: Voronoi tessellation of the urban territory for vehicle rebalancing strategies, obtained

through our clustering algorithm. Each point represents a station. The color code indicates the

station groups obtained with a k-means algorithm.

After the grouping procedure, each selected location contains a different num-296

ber of stations. For simulation purposes, the initial number of bikes in each loca-297

tion and the location capacity constraints cmin
j , cmax

j are set up to be proportional298

to the number of stations that each group contains, denoted as N j, j = 1 . . .10.299

Table 2 summarizes such values for the selected locations.300

Data analysis confirms the intuition that bike trips have a strong seasonal-301

ity along the day, week, and year time-scales, and that there exist recurrent time302

periods with a travel activity close to zero. A significant and dynamically rich303

dataset is therefore obtained by filtering out from the database the time periods304

in which usage is extremely low and can be approximated to zero. In particular,305

all the trips occurred in 2015 during all workdays from 8AM to 8PM are con-306

sidered, excluding January, February (when bikes are almost not used due to the307

low temperatures), and August (holiday month in Italy for the majority of peo-308

ple). Furthermore, all the rebalancing operations made by ToBike operators are309

removed from the database.310

A piece-wise constant identification of the parameters is performed, with a311
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location N j z j(0) cmin
j cmax

j

1 8 80 40 120

2 19 190 95 285

3 18 180 90 270

4 6 60 30 90

5 17 170 85 255

6 11 110 55 165

7 20 200 100 300

8 11 110 55 165

9 10 100 50 150

10 11 110 55 165

Table 2: Summary of location parameters: number of stations after the clustering procedure (N j),

initial number of bikes at the beginning of each simulation (z j(0)), lower and upper capacity

bounds (cmin
j , cmax

j ).

time period of ∆ = 1 hour. Specifically, λi(t) is estimated as the average number312

of bikes per minute that leave location i in the hourly time-window that contains313

t; pi j(t) is estimated as the fraction of bikes that leave i and arrive in j in the314

hourly time-window that contains t. Data analysis leads to the observation that315

travel durations are not affected by the time of the day. Thus, the dependency on t316

of q̃i j(t,δ ) can be neglected, and according to section 2.1.3, such quantity can be317

estimated as q̃i j(δ ) = 1−e−δ/τi j , where τi j is the average transit time over the link318

(i, j). This simplification would likely not apply to car sharing systems, where car319

trip durations are heavily affected by traffic conditions. More details and alternate320

approaches on the identification of the system parameters can be found in our321
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previous works [23, 24].322

Due to the mentioned choices in the data analysis phase, a day-long simulation323

consists of twelve instances of simulation of Eqs. (3)-(4), where parameters are324

considered to vary in an hourly piece-wise constant fashion and the initial value325

of state variables in each simulation phase after the first one is set equal to the326

final value of the preceding one. Figure 3(a) shows the outcome of a Monte Carlo327

simulation campaign executed over 100 daily independent simulations, illustrating328

the distribution of the percentage variation of the number of bikes with respect to329

the initial value zi(0), in absence of control action, i.e., ri j(t)≡ 0, ∀i, j, t. It can be330

observed that the system dynamics tends to evolve toward imbalance conditions,331

with some locations that tend to fill in at the expense of others, which tend to332

become empty. Figure 3(c) illustrates more in detail this condition, by plotting the333

trend of the number of bikes in location 4 over a day, that is, z4(t), highlighting334

the trend for this location to fill up as long as time progresses.335

In order to assess the performance of the proposed control algorithms, a stress336

test is first carried out in open loop, by proportionally increasing the original λi(t)337

estimated from trip data to the value αλi(t), where the stress factor α > 1, for338

all stations at all times, simulates a perturbation upon the usual operational con-339

ditions. Since this is an open loop test, rebalancing inputs are considered null at340

any time, that is, ri j(t)≡ 0, ∀i, j, t.341

In the proposed simulation, the stochastic equations (3)-(4) are simulated se-342

lecting α = 4 and generating departures according to Eq. (1). The application343

of such increased departure rates yields an important imbalance on all locations,344

as can be observed by comparing Figs. 3(a) and 3(b). It can be observed that345

even the application of smaller values of the stress factor α to departure rates im-346
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plies important imbalance throughout the stations. To this aim, Fig. 3(d) plots the347

trend of the global imbalance parameter fE as a function of the stress factor α .348

Such a global imbalance parameter is defined as the average number of bikes, per349

time-step δ , that exceeds the prescribed capacity bounds at each location. More350

specifically, it is computed as fE = ∑
nh−1
k=0 ∑ j s j (t + kδ )/nh. It can be observed351

that important imbalances are revealed for values of α slightly greater than the352

unity, to then grow rapidly as the stress factor α increases.353

6. Results354

In this section, we present extensive numerical results to assess the perfor-355

mance of the proposed rebalancing strategies. The main performance parameters356

here analyzed are summarized in Table 3.357

Variable Description

γ Trade-off between rebalancing accuracy and control effort

η Confidence interval for the attainment of the robust control objective

fE Random variable expressing the global imbalance per time step

fR Random variable expressing the global control effort per time step

Rlink Random variable expressing the total control effort per link

Dlink Random variable expressing the total traffic intensity per link

Table 3: Nomenclature of the main performance parameters used in the paper.

6.1. Control of the expected values358

The first set of numerical experiments concerns the application of the MPC-359

based control of the expected values of the state variables, as described in Sec-360
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tion 4.3. Notably, the optimization program (11) is solved to generate the control361

inputs, which are in turn applied to Eqs. (3)-(4) to simulate the dynamical sys-362

tem response. Fixing a time horizon of nh time units, the whole control sequence363

{Ri j(t), Ri j(t +δ ), · · · , Ri j(t +nhδ )} is generated solving (11)1. Then, only the364

control action Ri j(t) is applied to the simulator in Eqs. (3)-(4). At each time step,365

the simulator selects the number of bikes di j(t) moving from i to j according to a366

Poisson process with expected value λi(t)pi j(t) plus the control operation Ri j(t).367

The number of bikes arriving from i to j are selected via a probabilistic round-368

ing [33] of qi j(δ )vi j(t − 1). Here and henceforth, the whole simulation time is369

fixed to T = 12 hours, and the time-step to δ = 15 minutes, unless differently370

specified. The MPC control strategy is executed over a shrinking observation371

window with duration T = 12 hours, and with a prediction horizon nh = 48 time372

units, that is, 12 hours.373

An extensive Monte Carlo simulation campaign is executed to validate the374

proposed approach, achieving satisfactory results. One hundred independent sim-375

ulations are performed, randomized in the realizations of the vehicle departures,376

starting from the initial conditions of Table 2. Figure 4 exemplifies the obtained377

results, illustrating the trend of the occupancy of two locations (variables z4 and378

z7) over a 12 hours interval, from 8AM to 8PM, in uncontrolled and controlled379

situations, respectively. The two locations have different spatial characteristics:380

location 4 is peripheral, whereas location 7 is central. As can be observed from381

the figure, in uncontrolled mode location 4 tends to become empty at the begin-382

ning of the workday, whereas it tends to fill up later on. Location 7, as expected,383

1We remark that the actual length of the prediction horizon nh can eventually change in time,

due to the shrinking of the remaining simulation time.
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exhibits the opposite behavior. Both occupancy values are clearly outside the384

fixed desired occupancy, which would allow an efficient usage of the system, see385

Figs. 4 (a) and (c). The application of the proposed control strategy with a trade-386

off parameter set as γ = 0.1 leads to the results illustrated in Figs. 4 (b) and (d). It387

can be observed that, for both locations, the desired control performance in terms388

of the average value of state variables is attained. However, the effects of stochas-389

ticity cannot always be neglected. The average value of z7, in fact, lays in a central390

region within the two prescribed bounds and, as a consequence, stochastic varia-391

tions are also contained within those bounds. On the other hand, the control action392

tends to keep the average value of z4 very close to the lower bound, implying that393

stochastic fluctuations lead to bound violations for about half of the trials.394

This issue is successfully tackled in the next Section, where the results of395

the robust control strategy based on interval modeling defined in Section 4.4 are396

reported.397

6.2. MPC control based on robust interval modeling398

In this Section, numerical results obtained using the MPC control based on399

robust interval modeling, defined in Section 4.4, are reported. Similarly to the400

previous section, the whole control sequence over a time horizon of nh = 48 time401

units is obtained by solving the optimization program (16), then only the current402

control input is applied to the system, the rest of the sequence is discarded, the403

system is simulated using Eqs. (3)-(4), the time index is updated and the control404

loop resumed.405

Two parameters are important to assess the performance of the proposed con-406

trol strategy: the trade-off parameter γ and the probability η , which in turn defines407

probabilistic bounds for the state variables (see Section 6.2). Besides the global408

25



imbalance parameter fE previously defined, a parameter representative of the con-409

trol effort is considered, that is, the average number of bikes displaced for control410

purposes per time-step δ , computed as fR = JT/nh.411

The first assessment of the system performance consists of the evaluation of412

the two performance parameters as a function of the two control parameters. To413

this aim, the contour plots of Fig. 5, obtained performing 10 independent simula-414

tions for pairs of values of η and γ , selected over a two-dimensional grid spanning415

20 values for each variable. The control effort is illustrated in Fig. 5(a). As in-416

tuition may suggest, directly from inspection of problem (16), larger values of γ417

imply a lower control effort. Parameter η has not, in general, a great influence418

on the control effort. However, its main role is to set a feasibility threshold on419

the control problem solution, and this threshold monotonically changes with η .420

Fixing a given value for η , in fact, implies fixing an estimate of the stochastic421

fluctuation of the state variables with a certain probability. Fixing a value for η ,422

increasing γ implies the willingness to solve the control problem with a lower423

control effort. When the prescribed control effort is too small, problem (16) be-424

comes unfeasible and the control objective cannot be attained. Increasing η , on425

the other hand, implies to consider greater stochastic fluctuations. Therefore, the426

limit for which the control problem is unfeasible is reached for lower values of γ .427

Figure 5(b), on the other hand, is representative of the rebalancing performance.428

It can be observed that, in general and as expected, a high control effort implies429

an excellent balancing performance. Focusing on the rebalancing parameter fE430

alone, it can be observed that for intermediate values of the trade-off parameter431

(between about 0 and 6), fE has a minimum for fixed γ , depending on η . This432

implies that there exists a range for the confidence interval of stochastic variabil-433
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ity that yields the best performance. This can be explained considering that, for434

very low values of η the control reduces to the control of the median value of the435

state variable, whereas, on the other hand, high values of η tend to overestimate436

the stochastic variability with the only effect of increasing the control effort and437

decreasing the control performance. For high values of γ , on the other hand, the438

performance with respect to η is monotonically decreasing. This is due to the fact439

that the main aim is to control the system assuming a high stochastic fluctuation440

and a low control effort, yielding unsatisfactory performance.441

Figure 6 offers more elements of assessment and comparison with the previous442

control technique. For comparison purposes, Fig. 6(a) plots the two performance443

parameters, fR vs. fE . Each curve is plotted as a function of the trade-off param-444

eter γ , which varies in logarithmic steps in the interval γ ∈ [0.1,100], for three445

fixed values of the confidence probability η : 0.01, 0.5, and 0.99. The following446

observations are in order: i) increasing the values of γ generally improves the sys-447

tem performance, both in terms of control effort and in terms of system balancing,448

however, this effect tend to saturate and further increases of γ become practically449

ineffective; and ii) the method based on robust interval modeling improves the450

performance of the control of the expected value for intermediate values of η ,451

implying that there exists an optimal value for η , which guarantees the best im-452

provement with respect to the control of the expected value. Figure 6(b) offers453

a direct insight on the occupancy state z4 of location 4. Results are obtained in454

the same conditions of the control of the expected value (see Fig. 4(b)) and for455

η = 0.5. It can be observed that the control technique based on robust interval456

modeling outperforms the control technique based on expected values practically457

everywhere. However, a limited number of realizations of the simulations still458
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yield an occupancy status slightly out of the prescribed bounds. This is an effect459

of stochasticity, which can be hardly totally eradicated.460

More insight on the rebalancing effort is offered in Fig. 7. Specifically, in461

Fig. 7(a), the trend of the number of bikes that travel in the system is plotted462

versus time. Namely, the number of bikes that are displaced by users’ trips is463

displayed along with the corresponding number of bikes displaced for rebalanc-464

ing purposes, for both the control on the expected value and the control based on465

robust interval modeling. Most importantly, it is observed that the rebalancing466

traffic is much less than the users’ traffic, implying that the control is efficient.467

An observation of the opposite phenomena, on the other hand, would imply that468

almost every trip executed by a user should be compensated by a rebalancing trip,469

which is extremely costly and not in the spirit of a MOD system. A detailed il-470

lustration of the rebalancing trips in time is given in Fig. 7(b). There, it can be471

observed that the rebalancing activity using robust interval modeling is higher and472

has a greater variance than the control of the expected value, in order to compen-473

sate for the state variable stochasticity. Also, the rebalancing activity presents an474

important peak, corresponding to an intense rebalancing activity to compensate475

for the commuters’ trips from peripheral to central locations at the start of the476

working day. Then, a lower and almost steady activity is realized, to compensate477

for the reduced number of trips. A slight increase toward the end of the work-478

ing day tends to compensate for the traffic imbalance from the city center to the479

peripheral areas. The peak at the end of the day is less evident than that at the480

beginning of the day, since the system is more balanced by the predictive rebal-481

ancing activity throughout the day. It can be verified that the intra-day pattern of482

user trips is scarcely correlated with the number of rebalancing operations. This483

28



counterintuitive observation implies that the rebalancing operations are not very484

dependent on the traffic, and this is due to the prediction capabilities of the model.485

The morning peak in the rebalancing operations, in fact, is present because the486

algorithm cannot be very accurate when it is initialized and starts the prediction.487

Figures 7(c) and 7(d) focus on the activity over the network links, that is, over the488

routes that connect one station to another. Figure 7(c) illustrates the cumulative489

distribution function (CDF) of the random variable Rlink, obtained summing all490

the rebalancing operations per link, over the entire time span and averaged over491

100 independent simulations, for both the control of the expected value and that492

based on robust interval modeling. Interestingly, while the control based on ro-493

bust interval modeling overall performs more rebalancing actions than that based494

on the expected value, these actions are concentrated on a fewer number of links.495

In fact, it can be verified that around the 40% of links experience a control ac-496

tivity close to zero in the robust control case. On the other hand, the control of497

the expected value performs rebalancing actions on almost all links of the system498

during one day. In conclusion, the control based on robust interval modeling is499

more efficient than that based on the expected value. Figure 7(d) plots the CDF of500

the random variable Dlink, obtained summing all the user trips per link, over the501

entire time span and averaged over 100 independent simulations. The CDF plot502

of Fig. 7(d) confirms that user traffic is much higher than the rebalancing activity503

and that it equally occurs over most of the link during the day.504

Figure 8 focuses on the performance assessment with respect to local perturba-505

tions of the user demand, in space and time. The figures are obtained by selecting506

a random number ν of pairs of locations and time instants (i, t), and by impos-507

ing an instantaneous increment of the user demand λi(t). Selected instantaneous508
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increments for this set of simulations are 10% and 20%. Figure 8(a) illustrates509

the result obtained with the control of the expected value, while Fig. 8(b) refers510

to the control based on robust interval modeling. As intuition may suggest, with511

both control strategies the imbalance parameter fE tends to increase when the de-512

mand increase is more frequent in time and space. It can also be observed that513

the trend in the detriment of performance is almost linear with the number of per-514

turbations. However, the performance attained with the control based on robust515

interval modeling is better than that attained through the control of the expected516

value.517

The last set of simulations in Fig. 9 deal with a reduction of the traffic speed518

over a randomly selected fraction of links. In particular, the value of variable519

qi j(δ ) over the selected links is reduced by 20%, that is, qi j(δ )→ 0.8qi j(δ ). It can520

be observed that, while the control of the expected value improves its performance521

with a slow down of a growing number of links (Fig. 9(a)), the performance of the522

control based on robust interval modeling is nearly not affected by such a variation523

(Fig. 9(b)). This is due to the fact that the control of the expected value is more524

prone to compensate for stochasticity, which is not explicitly accounted for, if it525

has more time available to implement the control strategy. On the other hand,526

the control based on robust interval modeling explicitly accounts for stochasticity,527

and the time available to compensate occurring variations is not relevant.528

6.3. Investigation on seasonality patterns and the role of the time-horizon529

In this section, we investigate on the periodicity of the system dynamics and530

the sensitivity of the performance of the control strategy with respect to the length531

of the MPC time horizon nh. Here, we use a simulation time of a workweek, i.e.,532

5 consecutive days. Our simulations start at midnight on the first day and end at533
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midnight on the fifth day. To be consistent we the previous sections, and in view of534

the fact that no substantial differences in the system parameters have been revealed535

over different workdays, the input traffic parameters, λi(t) and pi j(t) are repeated536

each day until the end of the simulation, whereas the rest of the quantities are537

simulated over a week through the stochastic model. The first simulation regards538

the effect of the MPC time horizon on the violation of the capacity constraints. In539

Fig. 10(a), we compare the outcome of two sets of Monte Carlo simulations, ex-540

ecuted by applying the robust interval control method with an MPC time horizon541

of 2 and 12 hours, respectively. We plot the difference between the average values542

of the slack variables computed using the two time horizons. Such variables, we543

recall, quantify the number of violations of capacity constraints. We observe a544

slight trend whereby the 12-hours time horizon is advantageous over the 2-hours545

one, and such an advantage increases as long as the simulation time increases.546

However, the advantage is contained in the order of magnitude of fractions of ve-547

hicles per time unit. A more evident advantage of longer time-horizons resides548

in the magnitude of the control effort. Figure 10(b) illustrates the trend of the549

global control effort fR, computed over Monte Carlo simulations, as a function550

of the MPC time horizon. In this case, the advantage in terms of control effort is551

apparent, since it monotonically decreases with increasing length of the the time552

horizon. We report that no relevant differences are observed applying the control553

of the nominal values, hence, the related results are not reported here for brevity.554

The most advantageous time horizon of 12 hours has been used to study the sys-555

tem behavior over a working week. Notably, Fig. 10(c) illustrates the distribution556

densities of the overall customer departures and overall rebalancing activity. We557

observe that the proposed model concentrates most of the rebalances after the558
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morning utilization peak, and overnight. Other times in the day involve a very559

moderate rebalancing action. This implies that efficient rebalancing can be per-560

formed with two different means: during the peak, with trucks, able to displace561

a high number of vehicles in a short time. Off-peak, on the other hand, the low-562

intensity rebalancing can be executed using smaller vehicles, like carts, or through563

incentives to users.564

7. Conclusions565

In this work, a novel control-oriented model able to describe the dynamics of566

MOD systems, either station-based or using floating locations, is introduced. The567

model enables analytical tractability, since it is described with dynamical equa-568

tions in the state-space, using stochastic state variables. Reasonable simplifying569

assumptions lead to the definition of two MPC-based control strategies. First, a570

control of the expected value of the state variables is devised. Then, a robust con-571

trol strategy that explicitly accounts for stochastic fluctuations via robust interval572

modeling is proposed. The model has been validated and its performance assessed573

on a real dataset of logged trips, made available by ToBike, one of the bike-sharing574

providers in Turin, Italy. Model parameters can be identified with relatively sim-575

ple data processing operations. Both control methods lead to satisfactory results576

with a relatively low control effort. The slightly higher computational complex-577

ity of the robust controller based on interval modeling is fully repaid by a more578

efficient performance under different point of views. First, the control attains the579

expected results in most of the cases, despite the presence of important stochas-580

tic fluctuations. Second, even though the robust control usually displaces more581

vehicles than the control based on the expected values, those vehicles are moved582
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among a smaller set of routes, implying a control action that is more spatially583

concentrated. This obviously helps the design of rebalancing policies based on584

the displacement of large quantities of vehicles using trucks. Finally, the robust-585

ness of the proposed control methods to randomly applied perturbations and traffic586

slowdowns has been assessed, observing a gentle degradation of the performance,587

which makes the proposed methods promising for applications to real cases.588

Future directions in our research contemplate the realization of optimized re-589

balancing strategies based on the rebalancing flows given by the solution of the590

optimization problems defined in this work. The typical rebalancing pattern ob-591

tained in this study exhibits a strong peak in the early morning and a less intense,592

and almost steady rebalancing activity throughout the day. This observation sug-593

gests that mixed rebalancing policies based on massive displacements in the first594

hours of the morning, e.g. operated by high-capacity trucks, followed by human-595

based rebalancing with less volume and frequency, e.g., achieved through incen-596

tives or gamification, may constitute viable and efficient strategies to make MOD597

systems effective, efficient, and available at any time of the day, increasing both598

the customer satisfaction and the provider revenues.599
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[14] G. Erdoğan, M. Battarra, R. W. Calvo, An exact algorithm for the static641

rebalancing problem arising in bicycle sharing systems, European Journal of642

Operational Research 245 (3) (2015) 667–679.643

[15] A. Faghih-Imani, R. Hampshire, L. Marla, N. Eluru, An empirical analysis644

of bike sharing usage and rebalancing: Evidence from Barcelona and Seville,645

Transportation Research Part A: Policy and Practice 97 (2017) 177–191.646

35



[16] T. Raviv, M. Tzur, I. A. Forma, Static repositioning in a bike-sharing sys-647

tem: models and solution approaches, EURO Journal on Transportation and648

Logistics 2 (3) (2013) 187–229.649

[17] C. Contardo, C. Morency, L.-M. Rousseau, Balancing a dynamic public650

bike-sharing system, vol. 4, Cirrelt Montreal, 2012.651

[18] J. Schuijbroek, R. C. Hampshire, W.-J. Van Hoeve, Inventory rebalancing652

and vehicle routing in bike sharing systems, European Journal of Operational653

Research 257 (3) (2017) 992–1004.654

[19] D. Chemla, F. Meunier, T. Pradeau, R. W. Calvo, H. Yahiaoui, Self-655

service bike sharing systems: simulation, repositioning, Tech. Rep., pric-656

ing. Tech. Rep. hal-00824078, Centre dEnseignement et de Recherche en657
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Figure 3: Outcome of an open-loop stress test on the departure rates λi(t) performed over 100

independent daily Monte Carlo simulations, without the application of control actions. (a) per-

centage variations, with respect to their initial values zi(0), of the number of bikes at considered

locations, with the original departure rates λi(t) estimated from logged trip data; (b) same as (a),

under the stress test with departures rate proportionally increased by a stress factor α = 4; (c)

detailed trend, for zone 4, of the state variable z4(t) with original departure rates. Boxes represent

the 25-75 percentile range, whiskers represent extreme values, and orange lines the median ones.

Continuous horizontal lines indicate the location capacity limits. In (d), trend of the global imbal-

ance parameter fE as a function of the stress factor α . The blue line indicates the mean value, the

band indicates the 25-75 percentile range.
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Figure 4: Monte Carlo simulations of the ToBike system in a 12 hours time interval, from 8AM to

8PM. Results are obtained over 100 independent simulations. (a),(b) occupancy for location 4 and

location 7, respectively, in uncontrolled mode. (c),(d) simulation for with control on the expected

values for the same locations. The continuous upper and lower lines in each plot indicate the

desired upper and lower capacity bound for the locations. Boxes represent the 25−75 percentile

range, whiskers represent extreme values, and orange lines the median ones.
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Figure 5: Performance of the MPC control based on robust interval modeling: (a) global control

effort as a function of η and γ; (b) global imbalance indicator for the same parameters. Each

value is a mean of 10 independent simulations with a robust control. White regions in panel (a)

corresponds to unfeasible solutions of the optimization problem.
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Figure 6: Performance assessment and comparison of the control technique based on robust in-

terval modeling. In (a), performance curves fE vs. fR, plotted for a logarithmic interval of

γ ∈ [0.1,100], and for η = 0.01,0.5,0.99. The blue plot corresponds to the performance of the

control method based on the expected value, described in Section 6.1. In (b), trend of the oc-

cupancy state z4 over a 12 hours interval, from 8AM to 8PM. Results are obtained in the same

condition of the control of the expected value and setting η = 0.5.
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Figure 7: Control performance assessment performed over 100 independent simulations, for γ =

0.1 and η = 0.5. In panel (a), the green line illustrates the average number of user trips over

time during a whole day, from 8AM to 8PM. The orange and the blue lines illustrate the average

number of rebalancing operations during the same day, using the control of the expected value and

that based on robust interval training, respectively. Panel (b) illustrates the control activity only,

where the vertical bars indicate one standard deviation. Panel (c) illustrates the CDF of the random

variable Rlink, representative of the control activities over the network links. Panel (d) illustrates

the CDF of the random variable Dlink, representative of the user trips over the network links.
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Figure 8: Control performance under instantaneous variations of user demand in time and space.

The figures show the effect on global imbalance parameter ( fE ) caused by an instantaneous per-

centage increment of the departure rate that affect a randomly selected subset of size ν consisting

of pairs of stations and time instants. Blue dots refer to a demand increment of 10%, orange dots

refer to an increment of 20%. Results are obtained averaging over 30 independent simulations.

Dots indicate the mean, bars indicate one standard deviation, the dotted line is a linear fit. Panel

(a) refers to the control of the expected value, panel (b) to the control based on robust interval

modeling.
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Figure 9: Effects of a local reduction of 20% of the link speed imposed to a random fraction of

links. In panel (a), results are obtained via the application of the control of the expected value; in

panel (b), via the application of the control with robust interval modeling. Each point is obtained

as the average of 30 independent Monte Carlo simulations. Bars indicate one standard deviation.
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Figure 10: System characterization with respect to the MPC time horizon and weekly periodicity.

Results are averaged over 10 independent Monte Carlo simulations. (a) Difference between the

overall violation of the capacity constraints with a 2- and 12-hour time horizon; (b) Global control

effort fR as a function of the time-horizon (the bands quantifies the 95% confidence interval); (c)

Distribution of the rebalancing operations (red) and expected number of departures (blue) as a

function of time, along a workweek, using a 12-hours time horizon.
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