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Abstract 

This paper deals with the nonlinear system identification of structures exhibiting distributed nonlinearities, 

which has become of great interest recently, due to the continuous interest to improve the performance of 

structures. This brings the need for designing lighter and more flexible structural elements, which are usually 

characterized by moderate and large deformation, resulting in a distributed nonlinear behavior. In this 

framework, system identification remains a particularly challenging problem, especially when experimental 

measurements are considered. This work proposes a method to perform such a task, based on a convenient 

model order reduction of the considered structure, followed by a nonlinear system identification algorithm. 

The methodology is validated on a very thin beam undergoing large-amplitude oscillations, firstly using 

numerical data and then considering an experimental test bench. On the experimental side, the nonlinearity is 

first characterized using just the measured data, in order to acquire information that would help the 

identification process. Eventually, nonlinear system identification is performed in the reduced-order domain. 

An ad-hoc version of the nonlinear subspace identification (NSI) algorithm is used, but the presented 

methodology can also be applied with other nonlinear identification tools. Results confirm the goodness of the 

identification strategy in obtaining a reliable model which takes into account the distributed nonlinear behavior.  

 

Keywords: nonlinear system identification; distributed nonlinearity; subspace identification; nonlinear beam; 

large deformations  
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1. Introduction 

The study of large-amplitude vibrations of mechanical structures has a long tradition, especially when 

considering the mathematical modeling and the finite element representation. The reader can refer to the work 

of A.H. Nayfeh and P.F. Pai [1] for an extensive literature review about nonlinear beams, plates and shells. 

Despite this being a known phenomenon, the importance of dealing with geometrical nonlinearity has 

increased in the last years, becoming a key aspect to consider in the design and analysis of many structural 

applications, such as helicopter blades, large wind turbines, deployable solar panels, antennas for space 

applications and cylindrical shells [2,3].  

Generally, geometrical nonlinearity arises when a structure undergoes large-amplitude vibrations, resulting in 

a distributed nonlinear strain-displacement relation [4]. In the case of thin-walled structures, this creates a 

coupling between bending and in-plane stretching deformations. The resulting dynamical behavior is then 

nonlinear, including hardening/softening effects and modal interactions. In this framework, a nonlinear model 

is very often obtained by projecting the physical domain onto a reduced-order basis, forming a reduced-order 

model [5]. Clearly, choosing the right projection basis is a key step to obtain a reliable model for the considered 

application. A well-known choice from the linear theory consists in considering the linear normal modes 

(LNMs) as a projection space. For nonlinear systems, such an approach has some limitations, because LNMs 

do not decouple the equations of motion and are able to reproduce the motion for moderately large amplitudes 

of vibrations only [6]. Other possibilities are the use of nonlinear normal modes and modal derivatives [6], 

which enrich the projection space allowing a more complete nonlinear model. Whatever reduced-order basis 

is used, the model parameters should then be retrieved, and this is done in the present work starting from 

experimental data.  

While the existing literature on numerical studies about large-amplitude vibrations is quite rich, the same 

cannot be stated when experimental measurements are considered. Indeed, identifying a reliable model from 

experimental data is always a challenging task, and this is particularly true when the structure behaves 

nonlinearly. Several methods have been developed in the last decades to identify nonlinear dynamical 

structures with localized nonlinearities, and the reader can refer to [7,8] for an extensive literature review. The 

different methods are generally based on different assumptions, but they are generally not meant to work in 

the case of a distributed nonlinear behavior. A few recent works deal with this problem, but their application 
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is generally restricted to harmonic excitations under the assumption of no modal couplings. In [9] the 

experimental identification of a beam undergoing large-amplitude vibrations is reported, considering the first 

bending mode and fitting the nonlinear frequency response function (FRF) via harmonic balance method. In 

[10] an experimental diesis-like structure showing a geometrical nonlinear behavior is considered, and its 

model parameters estimated under the assumption of no internal resonances fitting again the nonlinear FRF. 

In [11], the nonlinear normal modes of a shell-like structure are sought by applying the restoring force surface 

method, however gaining conspicuous modelling errors. All the methods presented in [9–11] work in the modal 

domain. Also, they rely on not so powerful nonlinear system identification algorithms, which may struggle in 

the case of multiple modes interactions.  

In this paper, a novel methodology is presented to identify structures exhibiting distributed nonlinearities using 

experimental data under a broadband gaussian excitation. Therefore, multiple modes are excited 

simultaneously, and no restrictions about the possible internal interactions are made. This is accomplished by 

extracting the nonlinear model directly from the measurements via nonlinear system identification in the modal 

domain, using an appropriate algorithm. Thus, the LNMs are first extracted from the measurements and then 

they are used to obtain the nonlinear reduced-order model. An ad-hoc version of the nonlinear subspace 

identification (NSI) algorithm [12,13] working in the reduced-order domain is used, but the presented 

methodology can in principle be applied with other nonlinear identification tools. In its original form, NSI has 

proved to be a robust and powerful method for dealing with localized nonlinearities [14], and thus it seems a 

convenient choice for the problem presented here. The whole methodology is validated on experimental data 

of a very thin beam exhibiting a distributed nonlinear behavior. 

2. Nonlinear system identification strategy 

The purpose of this paper is to perform an experimental identification of a structure exhibiting a distributed 

nonlinear behavior. To do so, the measured data is first projected onto a reduced-order domain using the LNMs 

as projection basis. Therefore, the obtained modal model is used as the reference model for the identification 

algorithm. If a black-box identification method is used, the data itself is generally enough to perform the 

identification, as no further a priori information is required. On the other hand, if a white/gray-box 

identification technique is adopted, then the input-output data has to be linked to some a priori knowledge 
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about the dynamical behavior of the structure. This is the case of the nonlinear subspace identification (NSI) 

method [12,13], which requires the knowledge of the nonlinear basis functions .  

Whatever algorithm is used, there are some key steps which stay the same in the nonlinear identification 

strategy. In particular, the LNMs are needed in order to build the reduced-order domain. It is important to 

highlight that the LNMs have to be computed just in the points where the sensors are located. In other words, 

a full analytical description of the mode shapes is not needed. This implies that a low-excitation level test 

should be performed first to extract the modal parameters using a linear identification algorithm. The nonlinear 

identification strategy is summarized in Figure 1. 

 

Figure 1: Flowchart of the nonlinear system identification strategy. 

NSI is used in the following to identify the nonlinear model and a brief description of the method is here 

reported. 

 Nonlinear subspace identification (NSI) in the modal domain 

NSI is a gray-box identification tool able to perform the nonlinear system identification of vibrating mechanical 

structures. It was developed in both time and frequency domains with the names of TNSI [12] and FNSI [13], 

respectively. The two methods share the same background and differ in the domain in which they operate, each 

one having advantages and disadvantages depending on the specific situation [14]. In this paper, the authors 

will generally refer to NSI to address the family of methods, unless specified otherwise. The NSI method relies 

on the feedback interpretation of nonlinear mechanical systems [15], treating the nonlinear restoring force as 
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a feedback to the underlying linear system. Considering a generic continuous nonlinear system, this is 

equivalent to writing: 

𝑀 [
𝜕2

𝜕𝑡2
w(𝐱, 𝑡)] + 𝐶𝑣 [

𝜕

𝜕𝑡
w(𝐱, 𝑡)] + 𝐾[w(𝐱, 𝑡)] = f(𝐱, 𝑡) − f nl(w, ẇ),  𝐱 ∈ 𝒟 (1) 

where w(𝐱, 𝑡) is the displacement of the spatial coordinate 𝐱 in the domain 𝒟; 𝑀 and 𝐾 are the mass and 

stiffness linear differential operators [16], 𝐶𝑣 is the proportional viscous damping operator, and f(𝐱, 𝑡) is the 

forcing input. The term f nl(w, ẇ) represents the nonlinear restoring force, i.e. the nonlinear part of the 

equation. It is put into the right-hand side so that it becomes a feedback to the underlying linear system on the 

left-hand side and it is generally a function of both displacements w and velocities ẇ. For the case studied 

here, a distributed nonlinear behavior is considered and the LNMs ϕ are used to operate in the modal domain. 

Using the expansion theorem, the solution of eq. (1) can be expressed as: 

w(𝐱, 𝑡) ≅ ∑ ϕj(𝐱)ηj(𝑡)

N

j=1

 (2) 

where ηj(t) is the jth modal coordinate and a total of N LNMs are taken into account. This choice is very 

common when dealing with distributed nonlinearities due to its simplicity. However, it should be highlighted 

that LNMs do not decouple the equations of motion in a nonlinear setting. A good accuracy is preserved for 

moderately-large amplitude vibrations and when large rotations are not present [17]. This idea is deepened in 

sections 3 and 4, where the application of this methodology to a nonlinear beam showing axial-bending 

coupling is considered. Applying the modal transformation expressed by eq. (2) to eq. (1) and under the 

assumption of self-adjoint operators, the following set of equations can be obtained: 

mrη̈r + crη̇r + krηr = qr − qr
nl,  r = 1, 2, … , N (3) 

where mr, cr and kr are the modal mass, damping and stiffness respectively, and qr(𝑡) = ∫ ϕr(𝐱)f(𝐱, 𝑡)𝑑𝒟
𝒟

 

is the modal force. The nonlinearity is now expressed by the term qr
nl(𝑡) = ∫ ϕr(𝐱)f nl(ϕ, η, η̇)𝑑𝒟

𝒟
. It is 

assumed hereafter that this term can be written as a linear-in-the-parameters basis function expansion up to a 

certain number J:  

qr
nl = ∑ qj,r

nl

J

j=1

= ∑ Γj,r bj,r

J

j=1

 (4) 



7 

 

Each contribution qj,r
nl  contains an unknown coefficient Γj,r and a nonlinear basis function bj,r that is supposed 

to be known. The expression of bj,r for the practical application examined in this work is derived in section 3. 

Eq. (3) can be seen as a system having J nonlinearities for each mode 𝑟, which are treated as feedbacks to the 

underlying linear modal model. The extended modal input vector 𝐪r
e(𝑡) can be defined as: 

𝐪r
e(𝑡) = [qr(𝑡)  b1,r(𝑡)  …  bJ,r(𝑡)]

T
 (5) 

The subscript r is omitted hereafter to ease the notation, stating that all the steps refer to a single mode. If a 

state vector 𝛌 = [η   η̇]T is defined, a nonlinear discrete time state-space formulation can be retrieved: 

{
𝛌(𝜏 + 1) = 𝐀𝛌(𝜏) + 𝐁e𝐪e(𝜏)

η(𝜏) = 𝐂𝛌(𝜏) + 𝐃e𝐪e(𝜏)       
 (6) 

where 𝜏 is the sampled time and the superscript e stands for extended. The matrices 𝐀, 𝐁e, 𝐂, 𝐃e are the state, 

extended input, output and extended direct feedthrough matrices, respectively. It follows from eq. (6) that 

recasting the nonlinear feedbacks into the extended modal input vector results in a multi-input system, with 

J + 1 forcing functions. Also, eq. (6) represents in principle a single-degree-of-freedom system in the case of 

linear systems, as it is the result of the modal transformation. The model order in the state-space formulation 

is then theoretically equal to two. Therefore, the abovementioned matrices can be written as follows, assuming 

that displacements are measured: 

𝐀 = [
0 1

−mr
−1kr −mr

−1cr
] ∈ ℝ2×2,  𝐁e = [

0 0 … 0
mr

−1 mr
−1Γ1,r … mr

−1ΓJ,r
] ∈ ℝ2×(J+1) 

 

𝐂 = [1 0] ∈ ℝ1×2,  𝐃e = [0 0 … 0] ∈ ℝ1×(J+1) 

(7) 

Subspace identification can be performed to identify the state-space matrices, rearranging the measured 

displacements into Hankel-type block matrices. The idea is borrowed from the linear subspace identification 

theory (SI)  [18,19], and detailed steps in the nonlinear case can be found in [12]. If the identification is 

performed in the frequency domain (FNSI), the discrete Fourier transform is first applied to eq. (6). A detailed 

formulation of FNSI is reported in [13].  

For nonlinear systems, the LNMs can be used as a reduction basis in a Galerkin sense, but they do not guarantee 

a full decoupling. In the following, no assumption is made about the order of the modal model and stabilization 

diagrams will be used in the practical application to select the best model order on a case-by-case basis [14].  
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Once a state-space model 𝐀, 𝐁e, 𝐂, 𝐃e is identified, the final step is the estimation of the nonlinear coefficients 

Γj and of the FRF of the underlying linear (and modal) system H(𝜔). In particular, the extended FRF matrix 

𝐇e(𝜔) can be obtained from: 

𝐇e(ω) = 𝐃e + 𝐂(z𝐈 − 𝐀)−1𝐁e,  z = e𝑖ωΔt (8) 

where I is the identity matrix and 𝑖 is the imaginary unit. 𝐇e(𝜔) has the same structure as the extended force 

vector 𝐪e: 

𝐇e(𝜔) = [H(𝜔), Γ1 
idH(𝜔), … , ΓJ 

idH(𝜔)] (9) 

so that its first block H(𝜔) is the FRF of the underlying linear (and modal) system. The nonlinear coefficients 

Γj
id can eventually be deduced from the remaining blocks [12]. Note that this operation results in frequency-

dependent and complex-valued coefficients. Since the coefficients Γj are real quantities, the ratio between the 

real part of Γj
id and its imaginary part is a meaningful tool to assess the quality of the identification outcome, 

as the imaginary part should be zero in absence of noise and of modeling errors [12].  

If the steps described in eqs. (3)-(9) are repeated for each participating mode r, a set of N nonlinear modal 

state-space models {𝐀, 𝐁e, 𝐂, 𝐃e}r is obtained together with the full matrix of coefficients 𝚪id.  

A further improvement of the method can be obtained by minimizing the errors over the residuals of the outputs 

[20]. First, the outputs in the modal domain ηid are generated using the identified state-space model and the 

measured (modal) input. Then, the difference between those and the measured modal outputs η is minimized 

in a least-square sense tuning the identified state-space matrices. This minimization can be carried out either 

in time or frequency domain. The latter also allows to choose a weighting function so as to give more 

importance to particular frequency ranges. For instance, the minimization problem in the time domain can be 

written as:  

𝜃 = arg min
θ

∑|η(𝜏) − ηid(𝜏)|
2

𝜏

 (10) 

where 𝜃 = vec([𝐀 𝐁e 𝐂  𝐃e]) and the vector operation vec(⋅) stacks the column of a matrix on top of 

each other. The physical nonlinear model can eventually be assembled by computing the direct modal 

transformation, as in Figure 1. Thus, the simulated physical outputs wid can be computed from eq. (2) when 

the modal outputs ηid are considered. The FRF of the physical underlying linear system, called G(𝜔), can be 
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computed similarly by summing the contributions of the considered modes expressed by the modal FRFs 

Hr(𝜔) of eq. (9), with r = 1, … , N, and knowing the corresponding LNMs. 

3. Geometrically nonlinear beam: a modal model 

A slender beam undergoing large flexural vibrations is considered. The governing equation is reported in eq. 

(11) [1]: 

μ
∂2w

∂𝑡2
+ c𝑣

∂w

∂𝑡
+ EI

∂4w

∂𝑥4
− EA (

∂u

∂𝑥
+

1

2
 (

∂w

∂𝑥
)

2

 )
∂2w

∂𝑥2
= f(𝑡) δ(𝑥 − 𝑥f) (11) 

where w(𝑥, 𝑡) is the flexural displacement, u(𝑥, 𝑡) is the axial displacement, μ is the linear density (kg/m), c𝑣 

is the viscous damping parameter (Ns/m), E is the Young’s modulus (Pa),   is the moment of inertia (m4), A 

is the transversal section of the beam (m2), f(𝑡) is the external punctual force (N) applied at position 𝑥f and δ 

is the  irac’s delta. It should be noted that eq. (11) has the same form of eq. (1), where the linear operators 

and the nonlinear function are made explicit according to the considered case and the spatial coordinate 𝑥 has 

one dimension.  

This equation is originally derived neglecting inertial and curvature nonlinear terms thanks to the slenderness 

assumption. Also, a proportional viscous damping is considered to account for dissipation. When the flexural 

deflection is large, the axial force plays a significant role in carrying transverse loads, and geometrical 

nonlinearities couple the equations governing the extension and bending vibrations [21]. This phenomenon is 

expressed in eq. (11) by the nonlinear term, which depends on a varying tensile force T(x,t) acting on the beam: 

T(𝑥, 𝑡) = EA (
∂u

∂𝑥
+

1

2
 (

∂w

∂𝑥
)

2

) (12) 

If the beam has fixed edges, i.e. it is simply supported or clamped, the nonlinear term produces a stretching 

effect and eq. (11) can be written as [1, pp. 224-225]: 

μ
∂2w

∂𝑡2
+ c𝑣

∂w

∂𝑡
+ EI

∂4w

∂𝑥4
−

EA

2l
(∫ (

∂w

∂𝑥
)

2

𝑑𝑥
l

0

 )
∂2w

∂𝑥2
= f(𝑡) δ(𝑥 − 𝑥f) (13) 

where l is the length of the beam (m). Note that a similar expression can also be obtained in the case of non-

ideal boundary conditions, which is the case of realistic non-perfect clamps [9]. Solutions to eq. (13) can be 

found projecting the physical domain onto a convenient reduced-order basis. If linear normal modes ϕ(𝑥) are 
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chosen as projection space, this operation is simply the modal transformation expressed in eq. (2). Eq. (13) can 

then be multiplied by a generic eigenfunction ϕr(𝑥) and integrated over the spatial domain, yielding: 

μ ∫ (ϕr ∑ ϕjη̈j
j

) 𝑑𝑥 

l

+ c𝑣 ∫ (ϕr ∑ ϕjη̇j
j

) 𝑑𝑥 

l

+ EI ∫ (ϕr ∑ ϕj
IVηj

j
) 𝑑𝑥 

l

−
EA

2l
∫ϕr [∫ (∑ ϕj

Iηj
j

)

2

𝑑𝑥

l

⋅ ∑ ϕj
IIηj

j
] 𝑑𝑥 

l

= qr(𝑡)  

(14) 

In general, the integral ∫(∑ ϕj
Iηjj )

2
𝑑𝑥

l

 contains all the terms of the summation: 

∫(∑ ϕj
Iηj

J

j=1

)

2

𝑑𝑥

l

=  ∫(∑ ϕk
I ηk

J

k=1

) ( ∑ ϕm
I ηm

J

m=1

) 𝑑𝑥

l

 (15) 

As in eq. (4), the number of nonlinear couplings is defined by the index J. Note that J is a user-defined quantity 

and it cannot exceed N, when N modes are taken into the solution. It is assumed in the following that the off-

diagonal terms of the summation (i.e. the integrals ∫ ϕk
I ϕm

I

𝑙
𝑑𝑥, with k ≠ m) can be neglected. This is true, for 

instance, for the simply-supported case [22]. In the case of more complex boundary conditions, the off-

diagonal contributions might be non-zeros, and they should be included in the description of the nonlinearity 

as well. A practical example of how this can be done in the identification process will be given in section 5.2.2. 

Eq. (14) can therefore be written as: 

mrη̈r + crη̇r + krηr −
EA

2l
∑(αjηj

2) βrηr

J

j=1

= qr,  r = 1, 2, … , N (16) 

where the notation is the same of eq. (3), and the coefficients αj and βr are equal to: 

αj = ∫ϕj
I2

𝑑𝑥
l

,  βr = ∫ϕrϕr
II𝑑𝑥

l

 (17) 

Equivalent formulations to eq. (16) can be found in [5,9,22]. The nonlinear coefficients αj and βr depend only 

on the geometrical properties of the beam and the boundary conditions, and they can be recast into a matrix 𝚪: 

𝚪 =
EA

2l
[

α1β1 ⋯ α1βN

⋮ ⋱ ⋮
αJβ1 ⋯ αJβN

]  ∈ ℝJ×N (18) 

Thus, eq. (16) can be written as: 
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mrη̈r + crη̇r + krηr − ∑(Γj,rηj
2)ηr

J

j=1

= qr,  r = 1, 2, … , N (19) 

The model described by eq. (19) is validated numerically in the following section. The nonlinear part of eq. 

(19) is then used as an a priori information for the experimental identification of a nonlinear beam conducted 

with NSI (section 5). 

 Numerical validation 

The proposed model, expressed by eq. (19), is validated numerically by comparing its outcome with a 

geometrically exact FE model based on a local frame approach [23]. A clamped-clamped beam having the 

properties reported in Table 1 is considered. The beam is excited with a frequency sweep over the first mode 

considering two different amplitudes. The lowest excitation level can be considered as linear, with an 

amplitude of 0.01 N. Instead, the higher excitation level is noticeably nonlinear, with an amplitude of 0.1 N. 

The corresponding natural frequency is 20.75 Hz, and the sweep goes from 16 Hz to 28 Hz with a rate of 0.1 

Hz/s. As for the discretization, 40 nodes are considered for the FE model and a sampling frequency of 5000 

Hz is used. It should be noted that the number of nodes is not defined in the proposed approach, as it is a 

continuous model relying on a mode superposition approach. On the other hand, the number of modes retained 

is a crucial parameter. In this case, N=J=3 modes are included.  

Table 1: Properties of the numerical beam 

Length 

(mm) 

Width 

(mm) 

Thickness 

(mm) 

Young’s Modulus 

(MPa) 

Density 

(kg/m3) 

Viscous damping 

(Ns/m) 

500 20 1 200 7800 0.47 

The values of the coefficients Γj,r computed analytically using eq. (18) are reported in Figure 2. The off-

diagonal terms are neglected in the considered model, as just the first mode is excited. The matrix 𝚪 is 

symmetric in the case of fixed edges, and the magnitudes of its entries increase together with the considered 

mode. 
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Figure 2: Analytical coefficients Γj,r of the numerical beam. The background color of each entry is 

proportional to its magnitude.  

The excitation is applied at 5 cm from one end, and the response is computed at the mid-span node. Time 

integration is performed with the Generalized-α method [24] for both approaches with no numerical damping 

(αm = αf = 0, γ = 1 2⁄ , β = 1 4⁄ ). The outcome of the proposed approach and of the FE model are reported 

in Figure 3. 

 

Figure 3: Time response of the numerical beam with different excitation levels. Black line: proposed 

approach; blue line: FEM. a) linear excitation level with zoom around the resonance peak; b) nonlinear 

excitation level with zoom around the jumping frequency. 

The response computed with the mode superposition approach well matches the one computed with the local 

frames FEM for the lowest excitation level. There is still a minor difference in Figure 3a around the resonance 
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peak, which is allegedly due to the different beam models used by the two approaches. While the mode 

superposition method is based on the Euler-Bernoulli formulation, the local frames FE method is based on the 

Timoshenko formulation. The two formulations are indeed very similar for slender beams like the one 

considered here, but there is still a slight difference in the computation of the natural frequency, which is 

approximately 20.82 Hz for the local frame FEM against 20.75 Hz for the proposed approach, leading to a 

small phase shift (~ 0.3%). As for the nonlinear level in Figure 3b, a characteristic hardening effect coming 

from the stretching of the neutral axis is visible and the two methods well agree, though some difference is 

present around the jumping frequency for the same reasons as before. The maximum frequency shift between 

the two responses is in this case approximately 0.2%, while the percentage RMS difference in amplitude is 

around 3%. 

4. The experimental setup 

The experimental setup involves a clamped-clamped slender beam instrumented with accelerometers and 

excited with a shaker. A sketch of the test rig is reported in Figure 4.  

 

Figure 4: Sketch of the experimental test rig. 

The properties of the beam are reported in Table 2, while a picture of the experimental setup can be seen in 

Figure 5. 

Table 2: Properties of the experimental beam 

Length (mm) Width (mm) Thickness (mm) Material 

479 20 0.75 Carbon steel 
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Figure 5: Photo of the experimental test rig. 

A total of 8 accelerometers are used, plus a load cell on the head of the shaker to record the input. The position 

of the sensors is summarized in Table 3. 

Table 3: Position of the sensors along the length of the beam and type. 

Sensor # Distance from the right end (mm) Type Name Weight (g) 

S1 15 Impedance head Dytran 5860B 60 

S2  35 

Accelerometer  Dytran 3035B2 2.5 

S3 105 

S4 175 

S5 245 

S6 315 

S7 385 

S8 455 

The beam is excited with a random phase multisine input [25] encompassing the first three bending modes. 

The chosen frequency range is from 14 Hz to 100 Hz. The sampling frequency is fs = 6400 Hz, and a total of 

M = 5 realizations with P = 6 periods and Ns = 65536 spectral lines per period are considered. The different 

periods and realizations are used in the following section to characterize the nonlinearity. Several forcing levels 

are considered, ranging from a linear behavior (f0 = 0.2 N RMS) to a highly nonlinear one (f0 = 3 N RMS). 

 Characterization of the nonlinearity 

Figure 6a represents the acceleration of the fifth sensor over the first realization for different forcing levels in 

the time domain. The corresponding experimental FRF is depicted in Figure 6b together with the coherence 

function 𝛾2. As expected, a distinctive hardening effect can be seen in Figure 6b on the excited modes when 

moving from low to high excitation levels, together with a decrease of the coherence, especially around the 

resonance regions. 
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Figure 6: First realization output of sensor 5 and corresponding FRFs for different forcing levels f0. 

Purple line: f0 = 0.2 N; Yellow line: f0 = 1 N; Red line: f0 = 1.7 N; Blue line: f0 = 3 N. a) Time 

domain; b) Experimental FRF (inertance) in dB scales (ref. 1 g2/N) and coherence plot. 

Moreover, as a random-phase multisine is a periodic signal, the periodicity of the output can be investigated 

as well. By analyzing the variations of the periodic input and output signals over the measurements of the 

repeated periods, the sample mean and the sample covariance of the input and the output disturbing noise can 

be calculated, as a function of the frequency. Although the disturbing noise varies from one period to the other, 

the nonlinear distortions do not [26]. This means that noise and nonlinear distortions can be separated to 

actually check how the nonlinear system behaves. Also, the amount of even and odd nonlinearities can be 

detected by carefully choosing the excited frequency lines. If the input spectrum contains only odd frequency 

lines and some of them are randomly missing, then these should not be present in the output if the system is 

linear. This kind of multisine is generally called odd-random multisine. When the system behaves nonlinearly, 

even nonlinearities (if any) show up at the even frequencies because an even number of odd frequencies is 

added together. Odd nonlinearities are present only at the odd frequencies because an odd number of odd 

frequencies is added together. At the odd frequencies that are not excited at the input, the odd nonlinear 
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distortions become visible at the output because the linear part of the model does not contribute to the output 

at these frequencies [26].  

The measured output in the frequency domain is reported in Figure 7 for several odd-random multisine levels. 

The spectra of the disturbing noise and of the odd and even nonlinearities are also shown. It can be seen that 

the levels of noise and nonlinearities are similar for the lowest forcing level (Figure 7a), while their difference 

becomes more important as the forcing level increases. In particular, the level of the nonlinearities for the two 

highest inputs is very high when compared to the total output (Figure 7c,d).  

 

Figure 7: Odd-random multisine output for different forcing levels in dB scales (ref. 1 g2/Hz). Black line: 

Output spectrum; green line: disturbance noise level; blue dots: odd nonlinearities; red dots: even 

nonlinearities. a) f0 = 0.2 N; b) f0 = 1 N; c) f0 = 1.7 N; d) f0 = 3 N. 

This is clearer in Figure 8, showing the total distortions of the outputs for the two highest levels. It can be seen 

that the amount of the total distortions is very high, comparable to the level of the output in the resonance 

regions.  
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Figure 8: Odd-random multisine output for different forcing levels in dB scales (ref. 1 g2/Hz). Black line: 

Output spectrum; green line: disturbance noise level; light blue dots: total distortions level. a) f0 = 1.7 N; 

b) f0 = 3 N. 

Also, it is clear from Figure 7 that both odd and even nonlinearities are present for all the different levels, 

though odd nonlinearities seem to be slightly more important. This result is not expected from the adopted 

model (eq. (19)), which has no even features. That is because, generally, even nonlinearities are associated 

with some asymmetry in the response, which in principle should not appear in the case of a clamped-clamped 

beam. Nevertheless, there might be several sources of even behavior when the real structure is considered: 

imperfection of the clamps, possible non-planarity of the section of the beam along its length, the added mass 

of the shaker and the accelerometers on one side of the beam, nonlinear damping. It is not straightforward to 

investigate the effects related to each source, but even nonlinearities should be taken into account when 

proceeding with the system identification.  

5. Results 

The experimental setup described in section 4 is used to perform the nonlinear system identification. The beam 

is excited with a full random phase multisine ranging over the first three bending modes. The full multisine is 

chosen here instead of the odd-random (section 4.1) to maximize the number of spectral lines for a fixed 
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acquisition length. The tests are conducted using the same parameters of section 4. A low-amplitude test is 

first performed to extract the LNMs (as in Figure 1), followed by a high-amplitude test to exploit the full 

nonlinear behavior. Here, 4 realizations out of 5 are used as a training set for the identification, while the last 

one is used as a validation set. 

 Identification of the LNMs 

A linear subspace identification (SI) technique is used to identify the LNMs of the beam. The RMS value of 

the input force is f0 = 0.2 N, and the experimental FRF (receptance) related to the 2nd sensor is reported in 

Figure 9 together with the noise level and the total distortion level. Since all the sensors exhibit similar 

distortion levels, just one sensor is shown. 

 

Figure 9: Experimental FRF (receptance) related to sensor 2 in dB scales (ref. 1 m/N), f0 = 0.2 N (RMS). 

Black line: FRF; green line: disturbance noise level; light blue dots: total distortions level. 

Some difference can be noted between the total distortion level and the noise level, especially around the 

resonance peaks. This mismatch is supposed to be caused by some source of nonlinearity, and the most likely 

scenario is that this is due friction between the beam and the clamps and is not related to geometrical effects. 

In any case, the total distortions are always at least one order of magnitude lower than the FRF. Therefore, the 

structure can be considered as linear at this level of excitation, and SI can be applied to extract the parameters 

of interest. The stabilization diagram obtained applying SI for different model orders is reported in Figure 10. 

Since the object of the linear identification are just the LNMs, the model order for each mode is chosen 

adopting a LNMs similarity criterion: all the MACs between the LNMs related to each identified mode are 
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compared and the model order that achieves the best MAC is selected. The modal parameters are then extracted 

and they are reported in Table 4. 

 

Figure 10: Stabilization diagram related to the linear subspace identification at low level. Stabilization 

thresholds for natural frequency, damping ratio and MAC are 0.5%, 10% and 99.5%, respectively. Gray 

dot: new (not stable) pole. Blue plus: pole stable in frequency. Red square: pole stable in frequency and 

MAC (Modal Assurance Criterion). Green cross: pole stable in frequency, MAC and damping. 

Table 4: Linear modal parameters identified with SI.  

Mode number Frequency (Hz) Damping ratio (%) 

1 20.7 1.2 

2 45.1 1.7 

3 83.6 1.1 

The deformed shapes of the first three bending modes are eventually depicted in Figure 11. 
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Figure 11: Experimental LNMs. Black line: first LNM; dashed blue line: second LNM; dashed-dotted 

red line: third LNM. 

The experimental LNMs are slightly different from the theoretical ones of a clamped-clamped beam, that are 

symmetrical in the spatial coordinate. The reason for this difference is the attachment with the shaker in the 

proximity of one boundary condition, which alters the symmetry of the structure due to the added mass of the 

impedance head. Nevertheless, this is not an issue for the methodology, since only the experimental mode 

shapes are used in the nonlinear system identification. 

 Nonlinear identification with NSI 

NSI is applied to the experimental setup excited with a high-amplitude input following the formulation given 

in section 3. The RMS value of the input force is f0 = 2 N and the experimental FRF (receptance) related to 

the 2nd sensor is reported in Figure 12 together with the noise level and the total distortion level. Since all the 

sensors exhibit similar distortion levels, just one sensor is shown. 
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Figure 12: Experimental FRF (receptance) related to sensor 2 in dB scales (ref. 1 m/N), f0 = 2 N (RMS). 

Black line: FRF; green line: disturbance noise level; light blue dots: total distortions level. 

Here, the amount of the total distortions has almost the same level of the signal itself, especially around the 

resonance peaks. This ensures that the nonlinearity is properly triggered, and nonlinear system identification 

can be performed. In terms of shifting of the natural frequencies, all the three modes in Figure 12 show a 

frequency shift of approximately 5% when compared to the ones in Figure 9 (linear case). 

The nonlinear basis functions bj,r defined in eq. (4) must be chosen in order to apply the NSI method. In 

particular, a first choice could be the one gathered from the modal model, eq. (19). Thus: 

bj,r = −ηj
2ηr,  j = 1, … , J = N,  r = 1, … , N (20) 

The number of nonlinear feedbacks per mode is 3 when J=N=3. However, this nonlinear function predicts only 

an odd nonlinear behavior. It has been shown in section 4 that the system exhibits also a reasonable amount of 

even nonlinear distortions caused by some even nonlinearity. Since the nonlinear basis functions in eq. (20) 

are not capable of representing this kind of behavior, there will still be a part of the system response that is not 

captured by the identified model. Also, the off-diagonal terms of the summation of eq. (15) might give a 

contribution in the real case, as clamped-clamped boundary conditions are considered.  

An option to overcome these issues could be to expand the basis functions so as to include all the possible 

couplings between any two modes (ηj, ηr) with both odd and even degrees. In this case, the nonlinear feedback 

of eq. (3) can be written as a sum of bivariate polynomials of maximum degree equal to 3: 
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mrη̈r + crη̇r + krηr = qr − qnl,  r = 1, 2, … , N (21) 

where: 

qnl = ∑ {∑ [ ∑ −Γm,p,j,r
id ηj

mηr
p

2

m,p=1

]

J=N

j=1

}

N

r=1

 (22) 

The nonlinear basis functions can be recast into a vector: 

𝐛nl = −vec{ηj
mηr

p
} = −[η1

2,   η1
3,    η1

3,   η2η1,   η2
2η1,   η2η1

2 ,   …,   η3
3]T,  

j = 1, … , J = N,  r = 1, … , N,  m = 1,2,  p = 1,2 

(23) 

Since this vector already includes all the modes, it is possible to compute it just once and then it can be used 

as a feedback for each mode r = 1, … , N. The final number of nonlinear feedbacks per mode is 15 when J=N=3 

and the repeated monomials are discarded.  

Both options described by eq. (20) and eq. (23) are exploited in the following. The inverse modal 

transformation is first applied to the measured signals to compute the modal coordinates as in Figure 1. 

Afterwards, the nonlinear identification is performed for each mode independently. 

5.2.1. Original basis functions 

Three nonlinear feedbacks for each mode are considered as basis functions, as expressed in eq. (20). The 

stabilization diagram of the underlying linear system is computed for each mode in order to select the best 

model order and they are reported in Figure 13. Stability is checked for frequencies, damping ratios, MACs 

and modal masses [27]. It is clear from Figure 13 that multiple poles can be identified for each mode, as a 

consequence of the incomplete decoupling of the equations of motion due to the nonlinearity. The main pole 

for each mode generally shows full stability starting from a model order equal to 2, while the other poles tend 

to be unstable or stable just for high model orders. Their inclusion in the modal state-space model can lead to 

overfitting and an increased model sensitivity to noise, therefore 2 is selected as model order for each mode. 
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Figure 13: Stabilization diagram for NSI. Stabilization thresholds for natural frequency, damping ratio, 

MAC and modal mass are 0.5%, 10%, 99.5%, 10%, respectively. Gray dot: new (not stable) pole; blue 

plus: pole stable in frequency; red square: pole stable in frequency and MAC (Modal Assurance 

Criterion); orange circle: pole stable in frequency, MAC and damping; green cross: pole stable in 

frequency, MAC, damping and modal mass. a) Mode number 1; b) Mode number 2; c) Mode number 3.  

An a posteriori optimization over the residuals of  the modal outputs is carried out, as described in section 2. 

Once the modal state-space models have been identified, it is possible to go back to the physical domain by 

applying the direct modal transformation. In particular, the simulated (physical) outputs are compared with the 

measured ones of the validation set. The comparison is reported in the time domain in Figure 14 for the 6th 

sensor, the other sensors showing a similar result. In particular, the measured signal is plotted against its 

residual with the simulated one both before and after the final optimization. The residual appears to be 

relatively small, and the relative RMS error between the two signals is approximately 14% before the 

optimization and 10% after the optimization.  
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Figure 14: Validation of the nonlinear identification in the time domain. Black line: measured output, 

sensor 6, validation set; red line: residual with the simulated output before the optimization; blue line: 

residual with the simulated output after the optimization. 

The same comparison can also be made in the frequency domain considering the spectra of the respective 

signals in the frequency range of interest. The result is depicted in Figure 15. 

 

Figure 15: Validation of the nonlinear identification in the frequency domain in dB scales (ref. 1 m2/Hz). 

Black line: spectrum of the measured output, sensor 6, validation set; red line: residual with the spectrum 

of the simulated output before the optimization; blue line: residual with the spectrum of the simulated 

output after the optimization. 

The frequency-domain representation is particularly useful because it clearly shows the regions where the 

identification struggles. Before the final optimization, the region around the first natural frequency is the most 



25 

 

critical, with a residual 14 dB lower than the signal. The final optimization improves this result with a much 

smaller error. Thus, the optimized identified model is taken as the final one hereafter.  

Eventually, the first three identified coefficients are reported in Figure 16 as frequency-dependent quantities 

in their real and imaginary parts.  

 

Figure 16: First three identified coefficients as frequency dependent quantities. Black continuous line: 

real part; black dashed-dotted line: imaginary part; red dashed line: ±5% of the mean value. a) 

Coefficient Γ1,1
id ; b) Coefficient Γ2,1

id ; c) Coefficient Γ3,1
id . 

It is worth highlighting that the imaginary part is always several orders of magnitude lower than the real part, 

which assesses the goodness of the identification. Also, the real part shows an almost flat spectrum. Thus, the 

spectral mean of the real part is taken as the final value for the identified coefficients. The matrix 𝚪id of the 

identified coefficients is reported in Figure 17 together with their percentage deviation. In particular, its 

structure resembles the one obtained with the numerical example (section 3): the magnitudes of its entries 

increase together with the considered mode. 
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Figure 17: Identified coefficients Γj,r
id of the experimental setup with their percentage deviation. The 

background color of each entry is proportional to its magnitude.  

The underlying linear system is identified as well from eq. (8) and can be compared with the one obtained 

applying SI to the low-level test. The comparison is reported in Figure 18 in terms of receptance. 

 
 

Figure 18: Estimated linear FRF (receptance) related to sensor 6 in dB scales (ref. 1 m/N). Black line: 

SI estimate from the low-level test; dashed-dotted red line: residual with the NSI estimate from the high-

level test. 

There is generally a good correspondence between the NSI estimation of the linear FRF and the SI estimation 

from the low-level. The highest residual corresponds to the first mode, whose identified natural frequency is 

slightly different for the two FRFs. The identified modal parameters are reported in the final comparison table 

in section 5.2.3. 
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5.2.2. Extended basis functions 

When the extended basis functions in eq. (22) are considered, a total of 15 nonlinear feedbacks are present for 

each mode. As for section 5.2.1, the stabilization diagram of the underlying linear system is computed for each 

mode and the results are reported in Figure 19. The poles originating from the incomplete decoupling tend to 

be unstable or stable just for high model orders, while the main pole for each mode shows full stability starting 

from a model order equal to 2. For this reason, a model order equal to 2 for each mode is considered hereafter.  

 

Figure 19: Stabilization diagram for NSI. Stabilization thresholds for natural frequency, damping ratio, 

MAC and modal mass are 0.5%, 10%, 99.5%, 10%, respectively. Gray dot: new (not stable) pole; blue 

plus: pole stable in frequency; red square: pole stable in frequency and MAC (Modal Assurance 

Criterion); orange circle: pole stable in frequency, MAC and damping; green cross: pole stable in 

frequency, MAC, damping and modal mass. a) Mode number 1; b) Mode number 2; c) Mode number 3.  

Following the same steps of section 5.2.1, the simulated (physical) outputs are compared with the measured 

ones of the validation set. The comparison is reported in the frequency domain in Figure 20 for the 6th sensor. 

In particular, the spectrum of the measured signal is plotted against its residual with the simulated one, both 

before and after the final optimization. The residual now is smaller than the previous case (section 5.2.1), and 

the relative RMS error between the two signals in time is approximately 11% before the optimization and 6% 

after the optimization. The optimized identified model is taken as the final one hereafter.  
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Figure 20: Validation of the nonlinear identification in the frequency domain in dB scales (ref. 1 m2/Hz). 

Black line: spectrum of the measured output, sensor 6, validation set; red line: residual with the spectrum 

of the simulated output before the optimization; blue line: residual with the spectrum of the simulated 

output after the optimization. 

The nonlinear coefficients are computed as well and their total number is 45. While expanding the nonlinear 

basis functions allows for more flexibility to catch the nonlinear part of the response, it makes the nonlinear 

coefficients to lose their original physical interpretation. Therefore, the representation of all the identified 

coefficients is not useful in this case, because no meaning can be directly associated to them. Instead, it may 

be informative to know which feedbacks are predominant for each identified mode. Figure 21 shows the RMS 

magnitude of each nonlinear feedback for the three identified modes using a gray-scale colormap. It is clear 

that the highest RMS on each mode corresponds to the purely cubic basis function η1
3, η2

3, η3
3, respectively. 

Thus, the cubic nonlinearity is dominant for each mode, in accordance with the theory. 
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Figure 21: RMS magnitudes of the nonlinear feedbacks for the three identified modes with NSI. The 

background color of each entry is proportional to its magnitude.   

The underlying linear system is also identified, and it is compared with the one estimated by SI. The 

comparison is reported in Figure 22 in terms of receptance. 
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Figure 22: Estimated linear FRF (receptance) related to sensor 6 in dB scales (ref. 1 m/N). Black line: 

SI estimate from the low-level test; dashed-dotted red line: residual with the NSI estimate from the high-

level test and the original basis functions; dotted blue line: residual with the NSI estimate from the high-

level test and the extended basis functions. 

Figure 22 also shows the residual between the linear FRF estimated by SI and the underlying linear FRF 

estimated by NSI in section 5.2.1 using the original basis functions. The residuals of the underlying linear FRF 

computed with NSI in the two cases (original basis functions and extended ones) seem to be comparable with 

each other. Therefore, it can be supposed that expanding the nonlinear basis functions in this case mostly 

affects the nonlinear part of the system, so that the residuals of the outputs drop from 10% to 6%. Indeed, this 

is generally not true, as linear parameters are affected as well by the choice of the nonlinear basis functions. In 

this particular case, this result confirms that the main nonlinear contributions come from the original nonlinear 

basis functions, and in particular from the cubic terms (Figure 21). The inclusion of the other coupling terms 

results just in a slight improvement of the predicted nonlinear response. 

The identified modal parameters are reported in the final comparison table in section 5.2.3. 

5.2.3. Summary of the identified modal parameters 

The identified modal parameters of the underlying linear system are reported in Table 5 for the two applications 

of NSI and they are compared with the ones identified using SI on the linear low-level test. 
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Table 5: Summary of the identified modal parameters: SI, NSI with the original basis functions (Original NSI), 

NSI with the extended basis functions (Extended NSI). 

Mode 

number 

Frequency (Hz) Damping ratio (%) 

SI Original NSI Extended NSI SI Original NSI Extended NSI 

1 20.7 20.4 20.5 1.2 1.1 1.2 

2 45.1 45.1 45.1 1.7 2.3 2.2 

3 83.6 83.8 83.7 1.1 2.0 2.0 

 

There is a very good correspondence in the identification of the natural frequencies, while the results related 

to the damping ratios are less in agreement with their corresponding low-level estimates. In particular, NSI 

generally identifies a higher damping than the low-level test. The reason for that may be a source of nonlinear 

damping that has not been considered in the model. Thus, a further improvement of the methodology should 

take into account also the possibility of characterizing the nonlinear damping.  

As for the computational burden, NSI with the original basis functions runs in approximately 15 seconds 

(without the final optimization), while extending the basis functions requires 35 extra  seconds on the same 

computer. The optimization itself requires 40 seconds for the original basis functions and 160 seconds for the 

extended ones. 

6. Conclusions 

In this paper, a methodology for performing nonlinear system identification on structures exhibiting distributed 

geometrical nonlinearities was presented. The system identification is performed in a reduced-order domain, 

obtained by first identifying the linear normal modes of the structure. An ad-hoc version of the NSI method 

working in the modal domain was adopted, although the methodology itself is not restricted to a particular 

identification method.  The whole approach is applied to experimental data related to a very thin beam 

exhibiting a distributed nonlinear behavior. Results show a very good level of accuracy validating the 

effectiveness of the methodology. Further improvements should take into account also nonlinear damping and 

the possibility to test the method on more complex real-life structures exhibiting large deformations.  
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