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1. Introduction 

The study of large-amplitude vibrations of mechanical structures has a long tradition, especially when 

considering the mathematical modeling and the finite element representation. The reader can refer to the work 

of A.H. Nayfeh and P.F. Pai [1] for an extensive literature review about nonlinear beams, plates and shells. 

Despite this being a known phenomenon, the importance of dealing with geometrical nonlinearity has 

increased in the last years, becoming a key aspect to consider in the design and analysis of many structural 

applications, such as helicopter blades, large wind turbines, deployable solar panels, antennas for space 

applications and cylindrical shells [2,3].  

Generally, geometrical nonlinearity arises when a structure undergoes large-amplitude vibrations, resulting in 

a distributed nonlinear strain-displacement relation [4]. In the case of thin-walled structures, this creates a 

coupling between bending and in-plane stretching deformations. The resulting dynamical behavior is then 

nonlinear, including hardening/softening effects and modal interactions. In this framework, a nonlinear model 

is very often obtained by projecting the physical domain onto a reduced-order basis, forming a reduced-order 

model [5]. Clearly, choosing the right projection basis is a key step to obtain a reliable model for the considered 

application. A well-known choice from the linear theory consists in considering the linear normal modes 

(LNMs) as a projection space. For nonlinear systems, such an approach has some limitations, because LNMs 

do not decouple the equations of motion and are able to reproduce the motion for moderately large amplitudes 

of vibrations only [6]. Other possibilities are the use of nonlinear normal modes and modal derivatives [6], 

which enrich the projection space allowing a more complete nonlinear model. Whatever reduced-order basis 

is used, the model parameters should then be retrieved, and this is done in the present work starting from 

experimental data.  

While the existing literature on numerical studies about large-amplitude vibrations is quite rich, the same 

cannot be stated when experimental measurements are considered. Indeed, identifying a reliable model from 

experimental data is always a challenging task, and this is particularly true when the structure behaves 

nonlinearly. Several methods have been developed in the last decades to identify nonlinear dynamical 

structures with localized nonlinearities, and the reader can refer to [7,8] for an extensive literature review. The 

different methods are generally based on different assumptions, but they are generally not meant to work in 

the case of a distributed nonlinear behavior. A few recent works deal with this problem, but their application 
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about the dynamical behavior of the structure. This is the case of the nonlinear subspace identification (NSI) 

method [12,13], which requires the knowledge of the nonlinear basis functions .  

Whatever algorithm is used, there are some key steps which stay the same in the nonlinear identification 

strategy. In particular, the LNMs are needed in order to build the reduced-order domain. It is important to 

highlight that the LNMs have to be computed just in the points where the sensors are located. In other words, 

a full analytical description of the mode shapes is not needed. This implies that a low-excitation level test 

should be performed first to extract the modal parameters using a linear identification algorithm. The nonlinear 

identification strategy is summarized in Figure 1. 

 
Figure 1: Flowchart of the nonlinear system identification strategy. 

NSI is used in the following to identify the nonlinear model and a brief description of the method is here 

reported. 

 Nonlinear subspace identification (NSI) in the modal domain 

NSI is a gray-box identification tool able to perform the nonlinear system identification of vibrating mechanical 

structures. It was developed in both time and frequency domains with the names of TNSI [12] and FNSI [13], 

respectively. The two methods share the same background and differ in the domain in which they operate, each 

one having advantages and disadvantages depending on the specific situation [14]. In this paper, the authors 

will generally refer to NSI to address the family of methods, unless specified otherwise. The NSI method relies 

on the feedback interpretation of nonlinear mechanical systems [15], treating the nonlinear restoring force as 
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peak, which is allegedly due to the different beam models used by the two approaches. While the mode 

superposition method is based on the Euler-Bernoulli formulation, the local frames FE method is based on the 

Timoshenko formulation. The two formulations are indeed very similar for slender beams like the one 

considered here, but there is still a slight difference in the computation of the natural frequency, which is 

approximately 20.82 Hz for the local frame FEM against 20.75 Hz for the proposed approach, leading to a 

small phase shift (~ 0.3%). As for the nonlinear level in Figure 3b, a characteristic hardening effect coming 

from the stretching of the neutral axis is visible and the two methods well agree, though some difference is 

present around the jumping frequency for the same reasons as before. The maximum frequency shift between 

the two responses is in this case approximately 0.2%, while the percentage RMS difference in amplitude is 

around 3%. 

4. The experimental setup 

The experimental setup involves a clamped-clamped slender beam instrumented with accelerometers and 

excited with a shaker. A sketch of the test rig is reported in Figure 4.  

 
Figure 4: Sketch of the experimental test rig. 

The properties of the beam are reported in Table 2, while a picture of the experimental setup can be seen in 

Figure 5. 

Table 2: Properties of the experimental beam 

Length (mm) Width (mm) Thickness (mm) Material 
479 20 0.75 Carbon steel 
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compared and the model order that achieves the best MAC is selected. The modal parameters are then extracted 

and they are reported in Table 4. 

 
Figure 10: Stabilization diagram related to the linear subspace identification at low level. Stabilization 

thresholds for natural frequency, damping ratio and MAC are 0.5%, 10% and 99.5%, respectively. Gray 

dot: new (not stable) pole. Blue plus: pole stable in frequency. Red square: pole stable in frequency and 

MAC (Modal Assurance Criterion). Green cross: pole stable in frequency, MAC and damping. 

Table 4: Linear modal parameters identified with SI.  

Mode number Frequency (Hz) Damping ratio (%) 
1 20.7 1.2 
2 45.1 1.7 
3 83.6 1.1 

The deformed shapes of the first three bending modes are eventually depicted in Figure 11. 

 






























