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Abstract

Increasing amounts of multimedia content are being produced and stored on a daily
basis. In order to make this data useful, computer applications are required that
facilitate search, browsing, and navigation through these large data collections.

The first part of this thesis describes our approach to carry out multimedia
search and indexing by connecting the textual information and visual content. The
experiments were carried out considering the TRECVID Video Hyperlinking task.

Different combinations of monomodal queries are experimentally evaluated, and
the impact of both parameters and single features are discussed to identify their
contributions. The Automatic Feature Selection (AFS) algorithm gain the best-
performing approach at the TRECVID 2017 video hyperlinking challenge. The
proposed algorithm includes three different monomodal queries based on enriched
feature sets.

The second part of this thesis is related to textual information analysis for
discovering of research collaborations among multiple authors on single or multiple
topics. Identifying the most relevant scientific publications on a given topic is a well-
known research problem. The Author-Topic Model (ATM) is a generative model
that represents the relationships between research topics and publication authors. It
allows us to identify the most important authors on a particular topic. Specifically,
we exploited an exploratory data mining technique, i.e., Weighted Association Rule
(WAR) mining, to analyze publication data and to discover correlations between
ATM topics and combinations of authors.

The applicability of the proposed approach was validated on real data acquired
from the Online Mendelian Inheritance in Man catalog of genetic disorders and from
the PubMed digital library. The results confirm the effectiveness of the proposed
strategy.
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Chapter 1

Introduction

During my PhD, I used data mining and machine learning techniques to solve two
different problems. The first one is more related to Multimedia data. Although, the
content and the original raw data is multimedia documents but I focused my research
on the textual information associated with these multimedia documents.

With the explosive growth and the widespread accessibility of multimedia content,
video content is becoming one of the most valuable sources to assess information and
knowledge. While watching a video, it is common that users are interested in finding
further information on some aspects of the topic of interest contained within a video
segment. Therefore, it is crucial to develop effective video search and hyperlinking
techniques to help users explore, navigate and search video contents in audiovisual
archives.

Unfortunately, relevance of similar content in terms of textual and visual concepts
does not offer diversity in the set of results.This lack of diversity is considered as
destructive in many exploration scenarios. For this reason, it would be a desirable
idea by providing relevant links for covering a number of possible extensions with
respect to the anchor’s content. Specifically, a set of diverse results is required in
order to improve the chance of any user to find at least one interesting link to follow.
This objective of providing diverse results is an important goal in the hyperlinking
analysis.

Video hyperlinking consists in linking a video anchor or segment to other video
segments in a video collection, based on similarity or relatedness. Accordingly,
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video hyperlinking enables users to navigate between video segments in a source
content.

For this analysis, we applied some database techniques specifically indexing
techniques on the textual part of data in order to identify relevant video segments.
In this part, we described the framework used by the Eurecom-Polito team [1, 2] to
address the Hyperlinking task inside a video collection at TRECVID 2017 [3]. We
have proposed a system that exploits different combinations of monomodal queries.
Each query is based on textual features, enriched with concepts and entities aimed at
maximizing the relevance of the selected video segments. The exploited features are:
(i) automatic speech transcripts [4, 5], (ii) visual concepts, (iii) entities extracted by
Named-Entity Recognition techniques, and (iv) a concept mapping technique, which
is based on WordNet [6].

My second topic is more focused on textual documents related to research papers.
Specifically, I have exploited a set of pattern mining techniques that allowed me to
address specific problems such as author-topic identification.

Most scientific publications like conference proceedings, scientific journal, and
books are accessible through digital libraries and online databases. For example,
in genetics and genomics PubMed [7] and OMIM [8] are among the most popular
publication repositories. Researchers generally perform manual topic- or author-
driven queries on publication data to retrieve the content of interest. However, this
activity can be extremely time consuming and susceptible to errors, as a result of the
amount of publications to explore is also large.

In this thesis, an analysis has been performed on the problem of discovering
cross-topic collaborations among multiple authors by means of an exploratory data
mining technique, i.e., weighted association rule mining [9].

The effectiveness of the proposed approach has been experimentally evaluated
on data acquired from two independent libraries, i.e., OMIM [8] and PubMed [7],
which collect genomic and genetic studies.

The rest of this thesis is organized as follows.

Chapter 2 describes the hyperlinking problem and the proposed algorithms. In
this chapter, Section 2.1 provides characterization of video data. Section 2.2 presents
related works. Section 2.3 introduces the proposed system and its main phases.
Section 2.4 provides details into the query formulation phase. Section 2.5 describes
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the different combinations of features exploited to retrieve relevant video segments.
Section 2.6 presents and discusses the experimental results obtained by the proposed
combinations on the TRECVID 2017 dataset. Section 2.7 provides details regarding
the evaluation of concepts detected by the visual concept detector.

Chapter 3 describes the problem related to discovering collaborations among
authors. In this chapter, Section 3.1 compares the proposed approach with exist-
ing studies. Section 3.2 thoroughly describes the proposed methodology, while
Section 3.3 experimentally evaluates its effectiveness on real data.

Finally, Chapter 4 discusses conclusions of the thesis.





Chapter 2

Video hyperlinking

Value from the rapidly growing archives of produced digital multimedia content will
only be realized with the development of technologies that allow users to explore
them through search and retrieval of potentially interesting content.

The Video Hyperlinking aims at linking anchors related to a temporal segment
of a video. In this task, one of the main challenges is the uncertainty regarding what
criteria are to be followed to generate these links. There is ambiguity about what the
user expectations are regarding these links, as well as little information about what
is considered relevant to the user in the video segment.

Figure 2.1 is an example picture giving an impression of video hyperlinking in a
video segment on tourism in London: an item on a Fish & Chips restaurant could be
linked to a cooking program describing a recipe for Fish & Chips, an item on the
London Parliament could be linked to segments about England’s Queen.

Relevance of a link target can be based upon topical information, the events or
activities depicted, the people present in the videos, etc. However, finding similar
target video segments given an anchor video segments is not the aim in video
hyperlinking.

2.1 Video data characterization

Video content structuring
Based on Figure 2.2, a video can be structured in a hierarchical form.
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Fig. 2.1 An example to video Hyperlinking [10]

• a scene is defined as a collection of semantically related and temporally
adjacent shots

• a shot is an uninterrupted clip recorded by a single camera. It is a
physical entity which often forms the building block of video content

• a keyframe is the frame which best represents the content of a shot

Anchor
An anchor is a video segment that a user is currently watching, which is defined
by a start and an end time within a video.

Visual concepts
Visual concepts are the concepts which are being detected in a keyframe by
exploiting an image processing tool. In this research, We used only the text
(name) of these concept.

2.2 Related work

The automatic generation of hyperlinks within video collections has recently become
a major subject, specifically in some evaluation benchmarks such as MediaEval and
TRECVID [12, 13]. The key idea is to create hyperlinks between video segments
within a collection, enriching a set of anchors that represent interesting entry points
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Fig. 2.2 Video content structuring [11]

in the collection itself. Links can be seen as recommendations for potential viewers,
whose intent is not known at the time of linking. The goal of the links is thus to
help viewers gain insights on a potentially massive collection of videos so as to find
information of interest, following a search and browse paradigm. To this aim, several
techniques have been proposed.

Besides the unimodal approaches, such as [14], which relies on textual features
only, multi-modal techniques taking into account different feature sets have emerged.
In [15], Soleymani et al. have proposed a multi-modal system designed to analyze
users’ behavior and interaction with browsed visual content for different image
search intents, whereas the approach proposed in our paper exploits combinations of
many different features, both textual and visual.

Additional paradigms propose models predominantly based on one specific
modality (e.g., image search) and try to improve them using information from other
modalities (e.g., captions) [16, 17]. Similarly, [18, 19] propose a text-to-video map-
ping. On the other hand, [20] described a system for content-based video retrieval
from large surveillance video archives, using behavior, actions and appearance of ob-
jects. Recent high-performing approaches in video browsing revolve around retrieval
of simplified sketches (e.g., by using simple color signatures [21]) and displaying
the collection in a more informative way (e.g., using a graph-based keyframe ar-
rangement for browsing [22]). A more in-depth sketch analysis where deep semantic
classifiers are employed for sketch auto-completion has been demonstrated also in an
earlier work [23]. A vertical application of hyperlink techniques is presented in [24],
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where an effective signature-based approach has been proposed to link endoscopic
images with video segments.

A new indexing and retrieval system is presented in [25]. It detects multiple
object events or crowd events (e.g., group walking, group splitting, etc.). However,
the generic video hyperlinking use case requires not only the detection of group
items, but also single items or objects which are appearing inside the videos.

Some other approaches are also developed in Multimodal Video Retrieval. The
IMOTION system [26] represents a multimodal content-based video search and
browsing application offering a rich set of query modes based on a feature-fusion
approach. The VERGE interactive search engine [27] is capable of browsing and
searching into video content by providing integrated content-based analysis and
retrieval modules, such as video shot segmentation, concept detection, clustering, and
visual-similarity and object-based search. In terms of using features, the approach
proposed in the current paper exploits a different set of features, for instance by
including also video metadata, and by avoiding the need to perform video processing
tasks since it relies on textual provided features.

Leveraging different information sources is a task investigated by [28]. They
include video and text for efficient video browsing, however, the search and hy-
perlinking task [12] is to seek for meaningful videos with respect to a text query.
Advances have been reported in the area of cross-modal systems by IRISA team [29]
and VIREO teams [30]. Cross-modal systems are based on two (or more) modalities
that are known to share a common set of categories.

The IRISA group exploited an enriched version of their 2016 algorithm, a
crossmodal Bidirectional Deep Neural Networks (BiDNN) Joint Learning [31], which
ranked first in TRECVID 2016. In their 2016 algorithm [32], training is performed
cross-modally and in both directions: one modality is presented as an input and
the other as the expected output, and vice-versa at the same time (i.e., the second
one is presented as input and the first one as expected output). This is equivalent to
using two separate deep neural networks and tying them (sharing specific weight
variables) to make them symmetrical. Finally, for the phase of video hyperlinking,
segments are compared. For each video segment, the two modalities are considered:
embedded automatic transcripts with embedded CNN (a very deep Convolutional
Neural Network [33]) representation) and a multimodal embedding is created with
a bidirectional deep neural network. Then, the two multi-modal embeddings are
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compared with a cosine distance to obtain a similarity measure. However, for
TRECVID 2017, the IRISA group, contrary to their 2016 algorithm, decided to put
more emphasis on the choice of visual descriptors. Additionally, the use of metadata
was explored in one of the runs.

The VIREO group introduced a deep model called Semantic Representation
Network (SRN) which evaluates the relatedness between visual and text data. The
structure of SRN contains different layers. At first, it consists of two networks, which
share weights with each other, for inputs of anchors and targets. Then it encodes
both target and anchor into the same feature space. After that, the holographic layer
would evaluate the relatedness between anchor and target by exploiting circular
correlation [34], which measures vector correlation in the frequency domain using
FFT (Fast Fourier Transform). Finally, the softmax layers output the probabilities
of similarity and dissimilarity between anchors and targets. For the phase of video
hyperlinking and for their 4 submitted runs at TRECVID 2017, they considered 2
algorithms. For Run-1 (Visual baseline), they exploited SRN and cosine similarity.
Then for Run-3 (Multimodal baseline), they combined visual Run-1 and the text
features extracted from ASR (Automatic Speech Recognition). For the other 2
runs (Run-2 and Run-4), they formulated the problem as an optimization algorithm
(considering k-nearest neighbors) and adopted LID-first algorithm [35] for re-ranking
of baseline results. The goal of this algorithm is to promote the ranks of targets with
“lower data risk”, specifically, in lower local dimensions, being hubs of data, and
sufficiently diverse from neighboring regions.

Even if such proposals are all very promising, our approach gained higher
MAiSP (Mean Average interpolated Segment Precision) [36] in the TRECVID 2017
workshop, thanks to the proposed combinations of multi-modal features.

Finally, in [37] additional studies on cross-modal systems are presented, however
they work well only in terms of text-to-image retrieval, while our approach considers
both image-to-text and text-to-image aspects.
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2.3 Problem statement and system overview

The video hyperlinking (LNK) task at TRECVid aims to foster progress in tools for
effectively accessing video content. The task begins with an anchor video segment.
The goal is to produce a ranked list of relevant segments to the anchor.

For the Hyperlinking task, we developed a system based on both textual and
visual features. We exploited all the data and metadata provided by the task orga-
nizers, except visual concepts. Specifically, we decided to use the visual concepts
extracted by using the Caffe framework with the BVLC GoogLeNet model [38]. We
also considered some other extra features. Specifically, to identify the more relevant
terms and concepts in each query we used the Stanford Named Entity Recognizer
(NER) [39] software to find entities and a Concept mapping technique based on
WordNet [6].

The proposed system exploits (i) automatic speech recognition transcripts (LIMSI) [4,
5], (ii) visual concepts, based on the Caffe framework, (iii) meta-data of the videos
(specifically, title, description and tags have been considered), and (iv) query refor-
mulation (based on Named-entity recognition and Concept mapping).

Overall, the proposed system is based on the following features:

• Automatic speech recognition transcripts (LIMSI) [4, 5].

• Visual concepts, provided by the ImageNet GoogleNet model.

• Metadata of the videos (specifically, title, description, and tags).

• Results of named-entities recognition and concept mapping.

The system exploits a three-step approach, with each step associated to a compu-
tation stage, as presented in Figure 2.3:

1. Data segmentation (Section 2.3.2).

2. Indexing (Section 2.3.3).

3. Query formulation and retrieval (Section 2.3.4).
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Data seg-
mentation

Indexing

Query
formulation

and
retrieval

Fig. 2.3 System stages

2.3.1 Data features

For this research, we exploit the video dataset which used for the TRECVID 2017
competition and has been provided by blip.tv (Blip10000 dataset) [40]. It consists of
14,838 videos, for a total of 3,288 hours. The mean length of videos is around 13
minutes. Videos are characterized by metadata (we considered title, short program
descriptions, and tags (Figure 2.4)), Automatic Speech Recognition (ASR) transcripts
(LIUM and LIMSI), visual concepts, shots, and keyframes.

Figure 2.5 shows a sample of LIMSI 2016 transcript, while Figure 2.6 shows a
sample of LIUM 2012 transcript for the same video. In both transcript files, the words
detected during a speech is reported by start and end time as well as a corresponding
score.

Each Visual concept file is formatted in CSV (Figure 2.8) and contains a list of
concepts ids that is being detected, along with the corresponding score. These Ids
are referenced to the synset words for the concept. Figure 2.9 shows a sample of
synset words file of visual concepts.

Figure 2.10 represents a sample keyframe of the video related to the previous
data samples.

The videos present a variety of topics from computer science tutorials and
sightseeing guides to homemade song covers. They are provided in many languages
but a vast majority of them are in English, while the anchor video fragments were
exclusively in English.

The training set provided by TRECVID contains 90 query anchors and their
corresponding set of ground-truth related segments. The test set consists of 25
different query anchors. Figure 2.7 shows a sample of the training set.
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Fig. 2.4 A sample of Metadata

2.3.2 Data segmentation

The first step that is applied on the video collection consists in splitting the videos
in segments. We used a Fixed-segmentation, for which we considered 120 sec
fixed segments. Previous year experiments [41] showed that Shot-segmentation is
not a good choice to investigate as the videos are a collection of semi-professional
user-generated videos where they are not edited and for most of them, people filmed
themselves. For this reason, we investigate on Fixed-length segmentation. We chose
120 seconds fixed-segmentation because they seem to provide better coverage and
more choice than the lower length segmentation. Also the 120 seconds is the upper
bound for an anchor in the Hyperlinking task (the minimum length is 10 seconds).

All the textual data associated with the segments have been preprocessed to
remove irrelevant words. Specifically, we used a punctuation removal tool and
we also removed stop-words. Stopword elimination filters out the words having
least semantic content, because their presence would bias the quality of the next
phase. Furthermore, we narrowed down the word list of each segment to its core
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Fig. 2.5 A sample of LIMSI 2016 transcript

concepts. Specifically, the words occurring in the textual data are compared with
those contained in a dictionary of conjunctions, articles, prepositions, abbreviations
etc and matching words are removed. We used 665 different English stop-words for
Stopword elimination procedure [42].

2.3.3 Indexing

In order to find relevant video segments, we used Apache Solr1[43] version 6.6
to index the textual and visual features associated with each segment. Figure 2.11
shows the graphical web interface of administrator for the Apache Solr 6.6. Multiple
indexes have been created for the video segments, each based on one of the following
features: (i) the LIMSI transcripts of the segments, (ii) the visual concepts of the

1http://lucene.apache.org/solr
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Fig. 2.6 A sample of LIUM 2012 transcript

Fig. 2.7 A sample of training anchors of TRECVID 2017

segments (for this feature, we consider only the name of each concepts identified by
the visual concept annotation step), and (iii) the metadata of the full videos.
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Fig. 2.8 A sample of visual concept that is in CSV format

Fig. 2.9 A sample of synset words for visual concepts

The specific indexing structure implemented by Solr is known as inverted index.
An inverted index stores, for each term, the list of documents in which the term is
present. This makes term-based queries very efficient [44], and it is exploited by the
proposed approach.

The transcripts exploited by our proposed approach are provided by the LIMSI
tool, as in our experiments on the training anchors, on average the LIMSI [5]
transcripts allow to achieve better results than the LIUM [4] ones.
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Fig. 2.10 A sample of a video keyframe related to the previous data samples

Fig. 2.11 Apache Solr web interface

2.3.4 Query formulation and segment retrieval

In this stage, we first transform the anchor (query) segment into a textual query
by including in the text of the query all the textual information associated with
the anchor (i.e., the LIMSI transcripts and the relevant visual concepts) and also
the meta-data of the video containing the anchor (i.e., title and tags of the video
containing the anchor).

Named-entity recognition is applied on LIMSI to extract the important names
inside the query and give them a higher relevance. Named Entity Recognition (NER)
labels sequences of words in a text which are related to the names of things, such as
person and company names, or gene and protein names.

Concept mapping technique, which is based one WordNet, is used to find the
most relevant concepts inside the query. The mapping is done by using the words
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appearing in meta-data of the video and the concepts list of the segment. In order to
enrich the words list for both concepts list and Metadata, we applied WordNet using
the synonyms and hypernyms of the words. A hypernym is a word with a broad
meaning constituting a category into which words with more specific meanings fall;
a super-ordinate. For example, color is a hypernym of red.2

After the query preparation phase, a tool executes it by using Apache Solr and
returns the related segments ranked by relevance.

2.4 Mono-modal Query formulation

In the proposed system, we considered four different mono-modal queries. for each
feature, a set of monomodal queries executes and afterwards, they are combined
in order to execute multimodal queries and retrieve more relevant video segments.
These monomodal queries are used as building blocks of the tested solutions. The
specific mono-modal queries are described in the current Section, whereas their
combinations are presented in Section 2.5.

Name-entity recognition is used to assign a higher relevance to those words that
are entities. The basic idea is that the segments containing the entities appearing
in the anchor are potentially more interesting. Name-entity recognition never used
alone as a monomoidal query and it is always combined with another feature like
LIMSI transcripts.

The concept mapping technique tries to increase the relevance of the visual
concepts of the considered anchor that are related to the content of the whole video.
For this reason, each visual concept (its “name”) of the anchor is compared with the
words appearing in the metadata of the video containing the anchor. If the visual
concept, or its synonymous based on Wordnet, appears in the metadata of the video
then the weight of that visual concept is increased.

The metadata information can be used to: (i) select segments, (ii) select videos.
The metadata information is available only at the video level (the same metadata for
all the segments of a video). For this reason the metadata information can be used
to build a textual query, but it must be executed on the transcripts of the segments
if we are interested in selecting segments (this is the only approach we can use to

2https://oxforddictionaries.com
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select segments by using metadata). The main problem of this approach is that all the
anchors contained in the same video will be associated with the same textual query
and hence the query will select the same segments, independently of the anchor (this
is true only for the anchors contained in the same video). Differently, when metadata
are used to retrieve entire videos, we can execute the query on the metadata.

The characteristics of the four monomodal queries are the followings:

1. LIMSI-based query + Named-Entity Recognition.
For each anchor, a textual query is built by considering the words appearing in
the LIMSI transcript of the anchor. Then, Named-Entity Recognition (NER)
is applied on the anchor LIMSI transcripts to extract relevant names of entities
and give them higher relevance in the query. NER labels sequences of words
in a text which are related to the names of entities, for instance people and
company names, or gene and protein names. The basic idea is that the segments
containing the same entities as the anchor are potentially more relevant, hence
a higher weight is assigned to those words in the query, as well as groups of 2,
3, and 4 adjacent words, e.g., “United States of America”.

The resulting query is executed on the LIMSI transcript index.

For example, if the LIMSI text is: “Handmade portraits: Staceyrebecca”, the
query would be: “Handmade portraits” (W1.0) OR “Staceyrebecca” (W1.6)
since “Staceyrebecca” is a know entity and it is assigned a higher weight (1.6
instead of 1 in our case, the parameter value of query boost weight is discussed
in Section 2.6.2).

2. Visual-concept-based query + concept mapping technique.
For each video anchor, a textual query is built by considering the “names” of vi-
sual concepts appearing in the anchor. The visual concepts with a score greater
than 0.3, as provided by the GoogleNet model, are selected (the parameter
value of visual concept filter is discussed in Section 2.6.2).

Furthermore, a concept mapping technique based on WordNet is applied to
find the most relevant concepts inside the query. The mapping is performed
by using the words appearing in the full video metadata and the list of visual
concepts of the segment. To maximize the word-list enrichment for concepts
and metadata, we applied WordNet using both the synonyms and hypernyms
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of the words. Furthermore, also groups of 2, 3 and 4 adjacent words are
considered.

The concept mapping technique aims at increasing the relevance of the visual
concepts of the considered anchor that are related to the content of the whole
video. For this reason, each visual concept name of the anchor is compared
with the words appearing in the metadata of the video containing the anchor. If
the visual concept, or its synonym (or hypernym) based on WordNet, appears
in the metadata of the video, then the visual concept is assigned a higher
weight in the query. The resulting query is executed on the visual concept
index.

For example, if metadata text is: “Top 100 golf tips for kids”, and visual
concepts are: “digital clock, golf ball”, the resulting query would be: “digital
clock” (W1.0) OR “golf ball” (W1.6), since “golf” is matching.

3. Metadata-based query for segment selection.
Metadata can be used to select either segments or videos. Metadata are
associated to the full video, i.e., all segments of a video share the same
metadata. A textual query built from a segment (anchor) metadata will be the
same for all segments of the same video.

If the query is executed on a metadata index, only full videos can be selected,
with all their corresponding segments. Instead, to select specific segments,
metadata queries are executed on the LIMSI transcript index, since transcripts
are specific for each segment. Named-Entity Recognition (NER) is applied
to extract relevant entities and give them higher relevance in the query, by
following the same procedure described for queries #1 and #2.

For example, if metadata is: “United Kingdom weekly Talk Show”, the query
on LIMSI transcripts would be: “United Kingdom” (W1.6) OR “weekly” (W1)
OR “Talk Show” (W1.6).

4. Metadata-based query for video selection.
This query is the same as the previous one, but it is executed on the metadata
index, hence returning videos and not segments. For this reason, the results of
such query cannot be used directly to propose the resulting segments, since
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all the segments of the related videos would be selected. However, this query
helps in filtering a pre-selection of videos among which related segments are
highly likely to be found (see Section 2.5.2).

2.5 Query combinations for segment retrieval

For the Video Hyperlinking, we designed four different approaches. The considered
approaches use different features and/or combine them by using different strategies.
Before selecting the configurations of the four approaches, we performed a set of
experiments on the training anchors to evaluate the impacts of the two available
transcript tools (LIUM vs LIMSI [4, 5]) and two video segmentation techniques
(shot segmentation vs fixed length segmentation). On the average, on the training
anchors, the LIMSI transcripts allow achieving better results than the LIUM ones
and Fixed-segmentation allows retrieving more relevant segments than the shot
segmentation-based approach. Hence, the four approaches use the LIMSI transcripts
and fixed-segmentation (120 seconds).

In the previous year, we considered a system which used the multimodal queries [41].
But this kind of implementation increased the potential of noises and we got also a
very low precison. Based on this experience, For this year, our system is working in
multiModal but it uses monomodal queries. Then based on the idea of how we use
these monomodal queries, we designed 3 multimodal algorithms:

1. Automatic Feature Selection (AFS) (Section 2.5.1)

2. Metadata-based approach (Section 2.5.2)

3. Pipeline approach (Section 2.5.3)

4. LIMSI-NER approach (Section 2.5.4)

We also consider one monomodal approach that is LIMSI-NER approach (2.5.4),
because this approach is embedded in the other approaches and for this reason, we
decided to evaluated the effect of this approach separately.

For each of the four combinations, an experimental run has been submitted to
TRECVID, and its results are presented in Section 2.6.
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Fig. 2.12 Automatic Feature Selection (AFS)

2.5.1 Automaticle Feature Selection (AFS)

In the AFS approach, we used the following features: Meta-data (which are available
only at the level of videos), the LIMSI transcripts and Visual concepts. We also
applied a Named-entity recognition (NER) technique to identify entities in the textual
queries generated for each anchor and a Concept mapping technique to identify the
visual concepts, of each anchor, that are semantically related to the metadata of the
video of which the anchor is part of. During the execution of the query, a higher
importance is given to the words associated with the entities identified by NER and
the visual concepts that are selected by the concept mapping technique. This run
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exploits all the available features and all the building blocks/components of our
system. The main idea of AFS approach is to dynamically selects the best feature
for each query.

The AFS approach is based on two steps. In the first step, AFS considers one
feature at a time and selects the subset of relevant segments for each feature by
means of monomodal queries (one monomodal query for each feature). For each
returned segment, Solar returns also a relevance score. If a segment is returned twice,
the system keeps only a copy of the segment and selects the highest score value
among the ones returned by the monomodal queries. In the second step, the subsets
of segments retrieved in the first step are merged3 and ranked in terms of relevance
score. The output of this second step is the final result of this approach. Hence, a
segment is ranked high, in the final set of returned segments, if it has been associated
with a high relevant score with respect to at least one feature. (see Figure 2.12)

2.5.2 Metadata-based approach

Similarly to AFS approach, also this second run uses all the components of our
system. Specifically, it considers all the features and also the named-entity recogni-
tion (NER) and the concept mapping techniques. However, differently from AFS
approach, Metadata are used to perform an initial filter on the videos that could con-
tain interesting segments. In the initial filtering step, for each anchor, the Meta-data
based approach selects the videos that are similar to the video containing the anchor
under consideration. This video selection is based on the value of the meta-data,
which are available at the video level. The basic idea for this approach is that only
the segments inside relevant videos should be of interest.

In the second step, the Metadata based approach selects the most relevant seg-
ments from the selected videos by using the same approach used in AFS approach.
However, only LIMSI and visual concepts are considered in this second step (see
Figure 2.13).
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2.5.3 Pipeline approach

For this approach, we used only two features: LIMSI and Visual concepts. Also in
this run, we applied the Named-entity recognition (NER) and the Concept mapping
techniques. This approach aims at selecting the segments that are relevant with
respect to both features. In fact, a segment is selected if and only if it is selected by
both features singularly. The main goal for implementing this approach was to use
and analyze only machine generated data at the segment level.

In the Pipeline approach, for each anchor, we first select the top-k relevant
segments by using a query based on LIMSI and then we refine the result by querying
the subset of returned segments by means of a query based on the visual concept
feature. The same operation is then performed by switching the order of the two
queries. Finally, the two subsets of returned segments are merged and ranked in terms
of relevance score. (see Figure 2.14) The sequence LIMSI + Visual Concepts is not
equal to Visual Concepts + LIMSI because only the top-k segments are selected in
the first step.

In parallel to this approach, we proposed another approach which was similar
to the first step of Pipeline approach. It used LIMIS for the first step and then takes
into account the visual concepts. We could not submit this run at TRECVid 2017,
because we could only submit four runs. So as th results were not officially evaluated
by TRECVID, we discarded this approach. Although, the results on training sets in
compare to the results of Pipeline approach, were lower in terms of both Precision
and MAiSP.

2.5.4 LIMSI-NER approach

In this approach, we considered only the LIMSI transcript feature and we applied the
named-entity recognition (NER) technique on the queries. The aim of this approach
is to analyze the differences between Monomodal and Multimodal techniques. We
selected LIMSI for the monomodal approach because it achieved the best results
on the development anchors (it is better than the Monomodal approach based on

3Note that duplicate segments are removed and the highest score is selected among the copies of
each segment.
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Fig. 2.15 LIMSI-NER approach

visual concept and also better than the one based on the LIUM transcripts). (see
Figure 2.15)

2.6 Experimental evaluation

The four proposed approaches have been submitted to the TRECVID 2017 video
hyperlinking benchmark and their results are presented in Section 2.6.1, whereas the
impact of the set of parameter values are discussed in Section 2.6.2.
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Metric AFS Pipeline LIMSI-NER Metadata
P@5 0.840 0.808 0.725 0.704
P@10 0.808 0.748 0.667 0.556
MAP 0.164 0.114 0.093 0.082
MAiSP 0.253 0.185 0.155 0.132

Table 2.1 Results of the different approaches submitted to TRECVID according to each
evaluation metric.

2.6.1 Experimental results

Results have been evaluated according to the following metrics:

• Precision at rank 5 (P@5), i.e., the number of true positives in the top 5
selected segments.

• Precision at rank 10 (P@10).

• Mean Average Precision (MAP), which considers true positives all segments
overlapping with a segment that was considered relevant in the ground truth [45].

• An adapted MAP called Mean Average interpolated Segment Precision (MAiSP) [36]

Table 2.1 reports the results provided by TRECVID 2017 for each of our ap-
proaches.

AFS (Automatic Feature Selection) approach yields the best results in term of all
the considered metrics. We recall that it exploits all the available features (LIMSI
transcripts, visual concepts, and Metadata) by executing three monomodal queries
(one for each feature) and then merge the selected segments and rank them in terms
of relevance score. The chart 2.16 shows the total number of occurrence of each
modality for each anchor and for the top 10 segments. Visual concepts and Metadata
are the most features that are selected in the top 10 segments. Table 2.2 shows
the impact of each modality by describing the percentage of average performance
per modality over all the anchors. For example, when Metadata is selected, 89.1%
of selected segments are related. However, only 75.2% of selected segments by
Visual concepts are related, although the total number of selected segments by visual
concepts are the most segments appeared in top 10. Based on this analysis, in AFS
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Fig. 2.16 Composition of AFS results: for each test anchor, the number of relevant segments
provided by each query (LIMSI, visual concepts, and video metadata) within the top 10
resulting segments are reported, together with the total number of actually relevant segments
(P@10).

approach, when Metadata is selected, the selected segments are indeed better than
the segments selected by LIMSI or Visual Concepts.

Pipeline approach is characterized by high values for all metrics. However, it
performs worse than AFS approach. Hence, pipeline the queries seem to have a
negative impact on the final results. Another difference between Pipeline approach
and AFS approach is that in Pipeline approach we do not consider the Meta-data
feature. Hence, in some cases, it probably allows selecting relevant segments.

Meta-data based approach achieved the lowest result. This was slightly unex-
pected as performance of this run on the development anchors was higher in compare
to those of Pipeline approach and LIMSI-NER approach. This is most likely due to
the fact that using the Meta-data for pre-filtering videos would raise the problem of
selecting very few related videos for some anchors. Hence, for some anchors this
approach returns few segments.

Finally, the results confirm that the exploitation of more features is usually better
than using one single feature (the results of LIMSI-NER approach, which is based
only on LIMSI, are on the average lower than those of AFS approach and Pipeline
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AFS queries P@10 Number of segments
Metadata 0.891 92
LIMSI 0.762 21
Visual concepts 0.752 137

Table 2.2 Average P@10 of each query contributing to the AFS, over all the test anchors.

approach). Also by comparing the AFS approach and Pipeline approach, the role of
Metadata for improving the result could be more visible.

Figure 2.17 reports the comparison of approaches based on MAiSP measure
for the three teams that participated in TRECVid 2017. AFS approach (Automatic
Feature Selection) ranked first in this competition. Pipeline approach and LIMSI-
NER are the ranked in following. However, Metadata based approach ranked 5. In
terms of precision at rank 5 (see figure 2.22) and 10 (P@5 and P@10), AFS approach
and Pipeline approach ranked after the approaches of the VIREO team. There were
not very much difference between the precision of our approaches and the VIREO
team’s approaches. However, the most important measure for TRECVid is MAiSP
as it is based on the start and end of segments and evaluates the whole segment.

Fig. 2.17 Results of all the approaches submitted to TRECVID 2017 in terms of MAiSP
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Measures AFS Metadata Pipeline LIMSI-NER
P@10 0.289 0.227 0.221 0.212
MAP 0.096 0.077 0.071 0.065
MAiSP 0.084 0.062 0.059 0.054

Table 2.3 Pre-evaluation results based on ground-truth

2.6.2 Analysis on the impact of parameters

In order to improve the performance of algorithms, an analysis is being done on the
impact of parameters for the developed algorithms. The ground truth were provided
by the TRECVid organizers and contains the top 10 ranks for the training anchors.
However, there a lot of segments which are not annotated by the judgments and in our
analysis, we consider these segments as a not related segment. For this reason, the
measures P@5, MAiSP or MAP are not demonstrated well the effect of changes on
the parameters. So for this analysis, in order to select the best option, we considered
only precision at rank 10 (P@10).

The table 2.3 shows the pre-evaluation results on the approaches using ground-
truth for training anchors that are provided by TRECVid 2017 Organizers. However,
these results contains around 60% not evaluated segments because the ground-truth
segments are not covered for all the dataset and only contain a partial evaluated
segments which are evaluated on TRECVid 2016. Figure 2.18 describes for each
approach over all the 90 training anchors, the mean percentage of tags for the top 10
segments and for all the 90 training anchors, how many of the segments are accepted,
rejected or not yet evaluated based on the ground-truth segments.

Results on the training set (Table 2.3) and on the test set (Table 2.1) lead to the
same top-performing algorithm, i.e., AFS. However they rank the other approaches
differently: metadata, pipeline, and LIMSI in the training set, and pipeline, LIMSI
and metadata in the test set. The most noteworthy difference is the metadata approach,
which is the second-best on the training set and becomes the worst on the test set.
We consider that such data-dependent changes in results are due to the small number
of samples in both datasets, so few specific samples can influence the overall ranking
of the approaches.

The default parameter-value configuration considered for all approaches is as
follows.
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Fig. 2.18 % of pre-evaluation segment tags based on ground-truth for training anchors

• K-filter: 1000

• Stemming algorithm: SnowballPorter

• Filter threshold of visual concepts: 0.3

• Query boost weight: 1.6

• NER classifier: Multi Classifier

• WordNet similarity algorithm: Lin

• Lin algorithm threshold: 0.7

K-filter indicates the top-k number of segments to be kept in the final step of
each approach: it is fixed to 1000 because in TRECVID each participant/approach
was allowed to submit up to 1000 segments for each run.

The analysis of the other parameters is described in following.

1. Stemming algorithms in Solr
To be able to search the text efficiently and effectively, Solr splits the text into
tokens during both indexing and query execution. Those tokens can also be
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Algorithm AFS Metadata Pipeline LIMSI-NER
SnowballPorter 0.289 0.227 0.221 0.212
PorterStem 0.278 0.215 0.205 0.198
Hunspell 0.224 0.187 0.178 0.153
KStem 0.219 0.181 0.173 0.145

Table 2.4 P@10 results for stemming algorithms in Solr

Threshold AFS Metadata Pipeline
0.2 0.256 0.219 0.213
0.3 0.289 0.227 0.221
0.5 0.243 0.211 0.207
0.7 0.231 0.204 0.198

Table 2.5 P@10 results for filter threshold of visual concepts

pre- and post-filtered for additional flexibility. This allows for case-insensitive
search, misspelled product names, synonyms, etc. [46]. For our approaches,
we analyzed four stemming token filters:

1. PorterStem transforms the token stream by applying the Porter stemming
algorithm.

2. SnowballPorter stems words using a Snowball-generated stemmer.

3. Hunspell is a TokenFilterFactory that creates instances of HunspellStem-
Filter.

4. KStem is a high-performance kstem filter for English.

Based on the analysis done on our four approaches (see table 2.4), the Snow-
ballPorter is the best stemmer in terms of precision at rank 10.

2. Threshold of visual concept recognition
In order to remove noises and optimize using of visual concepts for the ap-
proaches, a set of threshold for filtering the concepts is analyzed (see table 2.5).
This parameter is not applied on the LIMSI-NER approach.

Based on this analysis, The threshold 0.5 and 0.7 are removing more noises and
they are selecting more accurate concepts. However, using a higher threshold
causes of lacking concepts for some anchors and reduced the final precision.
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Boost value AFS Metadata Pipeline LIMSI-NER
1.2 0.268 0.211 0.202 0.197
1.3 0.268 0.211 0.202 0.197
1.4 0.273 0.215 0.208 0.202
1.5 0.281 0.221 0.215 0.208
1.6 0.289 0.227 0.221 0.212
1.7 0.283 0.223 0.217 0.209
1.8 0.280 0.219 0.214 0.206

Table 2.6 P@10 results for query boost value

Classifier AFS Metadata Pipeline LIMSI-NER
No Classifier 0.197 0.164 0.152 0.136
Single Classifier 0.271 0.210 0.207 0.193
Multi Classifier 0.289 0.227 0.221 0.212

Table 2.7 P@10 results for NER classifiers

For this reason, threshold 0.3 is considered.

3. Query boost weight
Query boost value parameter is used for Concept mapping technique and
Named Entity Recognition (NER). The aim of using this parameter is to give a
higher weight to the selected query words when the query executes in Solr [47].

To achieve the best boosting value while doing search, a set of parameters
analyzed (see table 2.6). Regarding the results achieved in the analysis, the
boosting factor 1.6 is the best value in order to obtain the highest precision at
rank 10.

4. NER classifier
Stanford NER is also known as CRFClassifier. It provides a general imple-
mentation of (arbitrary order) linear chain Conditional Random Field (CRF)
sequence models. There are two kinds of CRFs provided by Stanford Named
Entity Recognizer: Single CRF NER Classifier and Multiple CRFs NER Clas-
sifier. We analyzed these two Classifiers on our approaches (see table 2.7).
Based on the analysis, Multiple CRFs NER Classifier ranked first among all
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Algorithm AFS Metadata Pipeline LIMSI-NER
LESK 0.279 0.217 0.209 0.198
Lin 0.289 0.227 0.221 0.212
Wu-Palmer 0.281 0.220 0.208 0.202

Table 2.8 P@10 results for WordNet similarity algorithms

Threshold AFS Metadata Pipeline LIMSI-NER
0.6 0.281 0.218 0.214 0.203
0.7 0.289 0.227 0.221 0.212
0.8 0.275 0.215 0.210 0.198

Table 2.9 P@10 results for Lin algorithm threshold

approaches in terms of P@10.

5. WordNet similarity for concept mapping
The aim in using WordNet similarity is to assign a quantitative value to the
related words. We considered four different algorithms for this analysis:

1. The Wu-Palmer (Wu & Palmer) [48] calculates relatedness by consider-
ing the depths of the two synsets in the WordNet taxonomies, along with
the depth of the LCS (Least Common Subsumer).

2. Resnik [49] similarity score denotes how similar two word senses are,
based on the Information Content (IC) of the Least Common Subsumer
(most specific ancestor node).

3. Lin [50] adapts Resnik’s method and defines the similarity of two con-
cepts as the ratio between the amount of information needed to state the
commonality between them and the information needed to fully describe
them.

4. LESK [51] metric measures the overlap between the glosses of the
two concepts and also concepts directly related via relations such as
hypernyms and meronyms.

Based on the analysis results (see table 2.8), Lin algorithm is performed better
in terms of precision at rank 10 in our approaches.



2.6 Experimental evaluation 35

In order to improve Lin similarity algorithm, a threshold used to filter the
selected mapped concepts. Although a previously analysis was done on this
threshold [52], but because the dataset of this work is different, we decided to
analyze again this threshold for a short range of values. Table 2.9 demonstrates
the results achieved for this analysis. The current results confirm the previous
study, also indicate that using threshold 0.7 will improve the final precision at
rank 10.

Fig. 2.19 TRECVid 2017 rankings in terms of precision at rank 5 (P@5)

2.6.3 Visualizing of Video hyperlinking

We created a Web interface in order to analyze the effect of each feature on the query
and comparing the results with the provided ground-truth.

In the Web interface, it is possible for the users to select different algorithms,
also different anchors and then it will display (i) the video (and its information, i.e.,
Id, duration, etc.), the selected feature data and the generated query for this anchor,
and (ii) the result segments associated to the selected anchor and for the selected
algorithm. Also it is possible to see the ground-truth videos of the selected anchor
and the feature data related to them. The later allows experts to compare the results
together and also with ground-truth. Moreover, identify how the ground-truth is
being selected and what was the problem of the returned video which were rejected
in the ground-truth.
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This system interface can be used with 2 different purposes. The first one, if you
are developing a new solution and you want to check how the system works, you
need something to shows you a certain video and the features of the selected video
in order to understand if the system is returning the right segments. Furthermore, it
allows you to see how the system works, and also to check if there are some errors
in the ground-truth. We decided to use a different color for each of the returned
video in order to show if the returned video is a part of the ground-truth, we use
green border for that video which shows this segment is relevant. If the segment
was considered as not-relevant in the ground-truth, we use a red border and if the
segment was not evaluated in the ground-truth, we use an orange border. The other
purpose of this system is that we want to use this system also to evaluate the new
algorithm by allowing an expert to select a right answer (a right segment) provided
by our algorithm.

Figure 2.20 shows a screenshot of a part of interface where the video, the feature
information of the video (in this image is LIMSI 2016 transcript) and the generated
textual query for the feature. Figure 2.21 demonstrates the part related to comparison
of the top selected segments based on the generated query with the segments of the
Ground-truth. Furthermore, it is possible to evaluate the information of the selected
feature (in this example is LIMSI 2016 transcript) for both Ground-truth and the top
selected segments.

Fig. 2.20 The query visualization interface.
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Fig. 2.21 The comparison visualization interface.

2.7 Analysis of Visual concepts

The goal of this section is to evaluate concepts detected by the visual concept detector
in order to improve the selection of mapped concepts for our system.

The total number of concepts used by the visual concept detector is 1000. For
each keyframe, visual concept detects 50 concepts. For each of these concepts, it
reports the concept ID (which we could easily get the name of concept by referring
to the synset file of concepts) along with a relevant score. Based on our data
segmentation (Section 2.3.2), we have 4 keyframes in average for each segments
which means 200 concepts would selected in each segment.

Concerning that using a lot of mapped concepts, would cause loosing the effect
of other concepts, we considered only the top 10 mapped concepts (after applying
the threshold on concepts). These mapped concepts are selected from the concepts
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Concept Frequency
croquet ball 16
ballplayer 14
baseball player 14
sweatshirt 13
bottlecap 11
lakeside 8
lakeshore 8
park bench 8
parallel bars 6
bars 6
worm fence 4
snake fence 4
snake-rail fence 4
Virginia fence 4

Table 2.10 Frequency of detected concepts

that have the highest score and they are the most frequent concepts among the other
concepts.

For the sake of simplicity, we consider one segment to show how this analysis
select the concepts. This segment is from the video 4712 and it started from second
minute of the video and lasts for 120 seconds. Figure 2.10 shows a sample keyframe
of this segment.

For this segment, 200 concepts are detected. However, by removing the duplicate
concepts and by applying the filter threshold (0.3) over them, only 14 concepts were
remain.

Table 2.10 shows the frequency of the concepts. Frequency is of a concept repre-
sents the number of times a concept appears in the segment. Table 2.11 represents
the maximum relevant score for each concept. In this plot, if a concept appears more
than one time, only the maximum relevant score would be considered.

By comparing both of the figures, it is clear that most of frequent concepts have
also the highest score among other concepts. Finally, 10 concepts have been selected
for this segment:

croquet ball , ballplayer, baseball player, lakeside, lakeshore , park bench ,
parallel bars, bars , bottlecap , sweatshirt
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Concept Score
croquet ball 0.703310
ballplayer 0.669513
baseball player 0.639513
lakeside 0.564288
lakeshore 0.554436
park bench 0.516501
bottlecap 0.496688
parallel bars 0.471018
bars 0.471018
sweatshirt 0.385856
worm fence 0.348585
snake fence 0.335425
snake-rail fence 0.326447
Virginia fence 0.319621

Table 2.11 Relevant score of detected concepts

Fig. 2.22 TRECVid 2017 rankings in terms of precision at rank 5 (P@5)

One of the good way for analysis of concepts is analysis based on the score of
each visual concept. We can focus on the concept which has the best high scores like
scores above 0.95 and analyze them based on the shots that they have high score.

We are looking for the concepts that have high scores in some shots and on the
other hand, they have low scores in the other shots. Distribution of total no. of
concepts for different thresholds: Figure 2.23 shows the analysis regarding the
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distribution of total number of concepts that are visible in different thresholds. We
can see how quickly the number of concepts decreased when the threshold increased.
The range of threshold is from 0.1 to 0.95. For the threshold 0.95, we have 14,594
concepts, while for the threshold 0.1, we have 1,539,493 concepts.

Fig. 2.23 Distribution of total no. of concepts for different thresholds

Maximum of total no. of concepts per shot for different thresholds:

In figure 2.24, the maximum of the total number of concepts per shot for the
threshold from 0.1 to 0.95 is analyzed. As it is shown by the plot, there is not a lot of
concepts that has been visible if we increase the threshold.
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Fig. 2.24 Maximum of total no. of concepts per shot for different thresholds





Chapter 3

Discovering cross-topic
collaborations among researchers

In recent years a huge amount of publications and scientific reports has become
available through digital libraries and online databases. Digital libraries commonly
provide advanced search interfaces, through which researchers can find and explore
the most related scientific studies. Even though the publications of a single author
can be easily retrieved and explored, understanding how authors have collaborated
with each other on specific research topics and to what extent their collaboration have
been fruitful is, in general, a challenging task. This thesis proposes a new pattern-
based approach to analyzing the correlations among the authors of most influential
research studies. To this purpose, it analyzes publication data retrieved from digital
libraries and online databases by means of an itemset-based data mining algorithm. It
automatically extracts patterns representing the most relevant collaborations among
authors on specific research topics. Patterns are evaluated and ranked according to
the number of citations received by the corresponding publications. The proposed
approach was validated in a real case study, i.e., the analysis of scientific literature
on genomics. Specifically, we first analyzed scientific studies on genomics acquired
from the OMIM database to discover correlations between authors and genes or
genetic disorders. Then, the reliability of the discovered patterns was assessed using
the PubMed search engine. The results show that, for the majority of the mined
patterns, the most influential (top ranked) studies retrieved by performing author-
driven PubMed queries range over the same gene/genetic disorder indicated by the
top ranked pattern.
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3.1 Related work

This work is partly related to the following research topics: (i) Author-Topic Model,
(ii) Graph-based co-authorship models, (iii) Citation content analysis, (iv) Reviewer
assignment, and (v) Weighted association rule mining. Hereafter, we will separately
overview each topic and discuss the position of our work with respect to existing
studies.

Author-Topic Model. The problem of modeling the interests of authors on different
topics based on textual document analysis has already been investigated in literature.
The Author-Topic Model (ATM) [53] is a generative model for textual documents,
where topics are represented as probability distributions over words while authors are
associated with probability distributions over topics. The ATM allows us to represent
the original documents as a mixture of topics and to determine which authors have
mainly contributed to a given topic. For example, given a set of publications the
corresponding research topics can be extracted first. Then, the subset of most active
researchers on each topic can be extracted. [54] have proposed a Bayesian approach
to estimate the ATM parameters. Since the ATM correlates single authors with
specific topics, it cannot be directly applied to infer cross-topic collaborations among
multiple authors.

Graph-based co-authorship models. Graph- and network-based models have al-
ready been adopted to model co-authorship relationships (e.g., [55–58]). Specifically,
in [55, 56] graph theory and visualization models have jointly been exploited to
model co-authorship and citation relations. [58] used a graph indexing technique
(i.e., PageRank [59]) to identify the most authoritative researchers. The relation-
ships among researchers can be also modeled as social networks. For example,
ArnetMiner [57] is a social network of academic researchers, where for each au-
thor a research profile is automatically extracted from the Web and integrated with
publication data accessible through existing digital libraries. Network- and graph-
models represent connections between authors without explicitly considering the
correlations with the covered topics. Therefore, the underlying information differs
from those provided by the patterns considered in this study.

Citation content analysis. To study the impact of scientists’ research, the number
of citations received by their scientific publications has been considered in several
studies (e.g., [60–62]). Citation content analysis is the research branch that focuses
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on studying citations among papers thus computing a reputation score for each
researcher. Specifically, it focuses on analyzing the semantics, syntax, and position
in the text of the paper of the citations to reveal the influence of both authors and
scientific papers. For example, [61] analyzed the sentences including citation expres-
sions to identify interesting characteristics of scholarly communication. [60] and
[62] classified citations based on their semantics to gain insights into the relation-
ships between authors and topics. In our work, citations are exploited to weigh the
relevance of a publication thus, indirectly, to measure the reputation of a group of
researchers related to a given topic. However, our analysis is not focused on citation
analysis. As discussed in Section 3.2, to measure the relevance of a publication
different measures can be easily integrated as well.

Reviewer assignment. A related branch of research concerns the assignments of
reviewers to scientific papers. The aim is to support editors in the peer review of
scientific papers by automatically recommending potential reviewers. For example,
[63–65] addressed the problem of choosing a pool of reviewers for a given paper
based on the expertise of a potentially large set of candidate reviewers and on the
main topics covered by the paper under review. The authors tackled the optimization
problem to assign each paper to at least three independent reviewers with comple-
mentary expertise so that the pool of reviewers assigned to each paper covers most
of the topics addressed by the paper and each reviewer has a reasonable number of
reviews to do. Unlike the works proposed by [63–65] the task addressed in this work
is not an optimization problem. The techniques adopted in our work are exploratory
and allow us to discover interpretable patterns useful for supporting a number of
advanced analyses.

Weighted association rule mining. A parallel research effort has been devoted to
efficiently extracting itemsets and association rules from weighted data [66–68, 9].
This problem extends the traditional association rule mining task, which was first
introduced by [69] in the context of market basket analysis, to the case in which
data items are no longer considered as equally relevant within the analyzed data.
For example, in the context of market basket analysis the goal is to find sets of
products frequently purchased together by taking into account not only the list of
products that customers have put into their market basket but also the purchased
amount and unitary price of each purchased product. [9] proposed to extract weighted
association rules, i.e., rule including weights denoting item significance are extracted.
[68] and [66] used weights to drive the frequent and infrequent itemset mining
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processes, respectively, while [67] automatically generated weights by means of
graph indexing techniques. This work focuses on extracting weighted association
rules from publication data to discover cross-topic collaborations among authors. A
preliminary version of this work has been presented by [70]. This work extends its
preliminary version to a large extent. The main differences can be summarized as
follows:

(i) Topics are characterized as probability distributions over words which are automat-
ically extracted from publication documents and not only selected from publication
metadata.

(ii) Weighted Association Rules (WARs), which represent implications between
combinations of authors and topics, are extracted as well on top of frequent itemsets.
The newly extracted patterns measure the strength of an implication between authors
and topics (e.g., to what extent the citations received by a group of researchers are
related to a specific topic) and not only the observed frequency of appearance of
a combination of authors in the publication dataset. To the best of our knowledge,
this work is the first attempt to exploit WARs to analyze cross-topic collaborations
among authors.

(iii) WARs are classified based on their goal into five main categories. WAR cate-
gories allow us to identify not only topic-specific collaborations but also cross-topic
collaborations among authors.

3.2 Cross-topic Scientific collaboration analyzer

Cross-topic Scientific Collaboration Analyzer (CSCA) is a data-driven methodology
to automatically discover significant cross-topic collaborations among authors of
scientific publications. The methodology is based on the application of an exploratory
data mining technique on the publication data which are retrieved from digital
libraries or online databases such as PubMed [7] and OMIM [8].

The goal is to identify groups of co-authors who have significantly contributed to
the research community related to a particular topic or to a given set of topics. The
relevance of the scientific productions of a group is the number of citations that is
received by the co-authored publications.
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Fig. 3.1 Cross-topic Scientific Collaboration Analyzer

For each identified group of authors CSCA extracts, classifies, and ranks patterns,
called Weighted Association Rules (WARs), that allow us to answer to the following
questions:

(1) Which is the topic that the collaboration among researchers focused on?

(2) How many topics are considered in the collaboration?

(3) By considering each topic separately, What is the relevance of their scientific
production?

(4) On which topics the group of authors collaborated with external authors?

(5) To what extent are the topics addressed in the collaborations correlated with each
other?

Figure 3.1 describe the methodology which consists of five main steps:

(i) Data collection and preprocessing. Publications data and related metadata are
retrieved from online sources, preprocessed in order to prepare them for the next
mining process, and then stored into a centralized repository (see Section 3.2.1).

(ii) Topic extraction. The topics of each publication are gained from either publication
metadata or from the textual content of the publication by using the Author-Topic
Model (see Section 3.2.2).

(iii) Data transformation. Author information, citation counts, and publication topics
are prepared to the association rule mining step (see Section 3.2.3).
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(iv) Rule discovery, evaluation, and ranking. Weighted Association Rules (WARs),
which represent implications between combinations of authors and topics, are ex-
tracted, classified, and ranked to support knowledge discovery from publication data
(see Section 3.2.4).

(v) Rule visualization. The mined WARs are visualized through a Web-based appli-
cation in order to allow the exploring the results more easily. (see Section 3.2.5).

In following, each step is described in more detail.

3.2.1 Data collection and preprocessing

Publication data are retrieved from digital libraries and online databases (e.g.,
PubMed [7], OMIM [8]) by using the Application Programming Interfaces (APIs)
that provided by the used sources and then interpreted and finally stored in a unique
repository.

For our purposes, for each publication we acquire the following data:

(i) the Digital Object Identifier (DOI) of the publication,

(ii) the list of authors,

(iii) the current number of citations received,

(iv) the content text of the publication, and

(v) any metadata that are associated with the publication.

The current number of citations is considered as one of the main indicators
of influence/popularity of a scientific publication in the research community [71].
Hereafter, we will consider it as reference indicator of the influence/popularity of a
publication.

Publication data can be enriched by considering metadata describing the ad-
dressed topics. For example, the OMIM database [8] collects publications about
genomics and genetics, and for each publication the list of related genes and genetic
disorders are given. As discussed in Section 3.2.2, we will consider such information
(if available) to identify the main topics covered by each publication.

Before proceeding to the next mining stpes, two established text preprocessing
steps are applied to the text of the publications and the related metadata specifically,
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similarly to what we did in the TRECVID task (Section 2.3), we applied the stopword
elimination and the stemming preprocessing technique. To perform stopword elimi-
nation, in our experiments we used the Natural Language Toolkit (NLTK) stopword
corpus [72].

Furthermore, the author names and the descriptors of genes and genetic disorders
are made uniform by removing noisy characters, abbreviated forms, etc.

3.2.2 Topic extraction

A list of covered topics is assigned to each publication. Depending on the data
source, topics can be retrieved from metadata (e.g., genes and genetic disorders
in the OMIM database [8]) or be unknown (e.g., PubMed [7]). We propose two
strategies for assigning topics to each publication. (i) if topic are given in metadata,
CSCA used metadata content as descriptors of the topic. (ii) otherwise, by using the
Author-Topic Model (ATM) [53], CSCA will extract a description of the main topic
of each publication from its content.

ATM is a generative model for textual documents, where documents in the input
collection are modeled as mixture of topics. Each topic is represented as probability
distribution over word stems as described in the Latent Dirichlet Allocation (LDA)
model [73]. More specifically, for each publication document a distribution over
topics is first sampled from a Dirichlet distribution. Next, for each word stem in
the document a single topic is assigned according to the distribution. Finally, each
word stem is sampled from a multinomial distribution over word stems specific to
the sampled topic [53]. In the computation, the generative algorithm keeps track of
a W ×T (word stem-by-topic) and a A×T (author-by-topic) count matrices. The
algorithm starts by assigning word stems to random topics and authors from the
set of authors and documents. Count matrices are stored from 10 samples (with
random initial assignments) at the 2000th iteration of the Gibbs sampler. From the
count matrices topics and authors are extracted. Each topic is characterized by (i)
word-based description Wde, i.e., the top-10 word stems that are most likely to be
generated conditioned on the topic, and (ii) author-based description Ade, i.e., the
top 10 most likely authors to have generated a word stem conditioned on the topic.

For each publication document, we extract the top-k main topics by following the
procedure described in Algorithm 3.1. For finding the word stems, we scan the input
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document that are included in the description Wde of any topic in T . For each topic,
we store the maximum per-word count in W ×T over all words in its description.
Since word counts indicate the relevance of word in the topic, we assign the top-k
topics associated with the word stems with maximal count.

Algorithm 3.1: Main topic detection
Require: the publication documents D, the word stem-by-topic count matrix W×T , and the word stem descriptions Wde of

all topics T
Ensure: set of main topics t∗ ∈ T for each document d in D
1: for all d in D do
2: top[t]=0 ∀ t ∈ T
3: for all word stem w occurring in D do
4: for all topic t in T do
5: if w ∈Wde then
6: update top[t] if the w’s count in W×T is higher than the current top[t] value
7: end if
8: end for
9: end for
10: select the top-k topics of d associated with the k maximal values in top
11: end for
12: return the top-K topics of each document d

3.2.3 Data transformation for WAR mining

In order to min WARs, publication data, citation scores, and topics are stored into
a weighted transactional dataset. A weighted transactional dataset is a set of pairs
⟨transaction, weight⟩, where each transaction corresponds to a different scientific
publication, while weight is the value of the citation counter of the represented
publication (see Section 3.2.1).

Transactions consist of sets of items, where items are publication authors (e.g.,
Smith, L.), or research topics (e.g., topic X). Topics can be described either by
the metadata content or by the ATM description (see Section 3.2.2). Items are
represented in the form (feature:value), where feature is Author or Topic, while value
is the corresponding feature value.

A more formal definition of weighted transactional dataset is given below.

Definition 1 Weighted transactional dataset. Let A be the set of authors and T
be the set of topics. Let P be the set of all scientific publications and let C(pi)

(pi ∈ P) be an influence score associated with publication pi. An item ik is a pair
feature:vq, where vq ∈ A if feature is equal to Author or vq ∈ T if feature is equal
to Topic. A transaction t j is a set of items related to publication p j. A weighted
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Pub. Citation Authors Topics
id count
1 10 (Author:Brown, J.), (Author:Smith, L.) (Topic:A), (Topic:X), (Topic:Z)
2 5 (Author:Brown, J.), (Author:Smith, L.) (Topic:D), (Topic:X)
3 10 (Author:Brown, J.), (Author:Smith, L.) (Topic:C), (Topic:Z)
4 1 (Author:Smith, L.) (Topic:X), (Topic : Z)
5 10 (Author:Brown, J.), (Author:Smith, L.) (Topic:C) (Topic:X)
6 12 (Author:Smith, L.) (Topic:Z)

Table 3.1 Example of weighted transactional dataset

transactional dataset D is a set of weighted transactions, where each weighted
transaction tw j ∈ D corresponds to a different publication p j ∈ P and it consists of
a pair ⟨t j, C(p j)⟩.

For example, Table 3.1 reports an example of dataset consisting of six weighted
transactions, each one corresponding to a different scientific publication. Each pub-
lication, identified by the respective id, is weighted by the corresponding number
of citations (see Column Citation count). For each publication the list of authors
(see Column Authors) and the covered topics (see Column Topics) are known. Pub-
lications can be co-authored, and can be related to many topics. For example,
publication with pub. id 1 received 10 citations (i.e., transaction weight equal to
10). Its corresponding transaction consists of the following items: Author:Brown, J.,
Author:Smith, L., Topic:A, Topic:X and Topic:Z. The transaction refers to a publi-
cation that was co-authored by Brown J. and Smith L. and that relates to topics A, X
and Z. This transaction is represented this in format:

<{(Author:Brown, J.), (Author:Smith, L.)} , 10> → (Topic:A), (Topic:X), (Topic:Z)

3.2.4 Pattern discovery, evaluation, and ranking

In this step, an exploratory data mining approach, i.e., the Weighted Association
Rule (WAR) mining technique, is applied to the prepared weighted transactional
dataset. The goal is to automatically generate patterns, i.e., the WARs, representing
interesting implications between combinations of authors and topics. After that,
WARs are classified based on their semantic meaning into three main categories and
ranked to simplify the manual exploration of the mining result.

This section is organized as follow. Sub-section 3.2.4.1 introduces the concept of
WAR and its quality indices, Sub-section 3.2.4.2 provides a high-level description
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of the algorithm used to extract the WARs of interest. Finally, Sub-section 3.2.4.2
introduces the WAR categories and discusses how they can be exploited to help
experts to answer to the research questions introduced at the beginning of this
Section 3.2.

3.2.4.1 Weighted association rules

Association rule mining [69] is an established data mining technique for discovering
recurrent correlations among data items that are hidden in large datasets. Association
rule mining is performed as a two-step process which contains (i) frequent itemset
mining from the transactional data and (ii) association rule discovery from the set of
frequent itemsets mined at the previous step.

Frequent itemset mining. A k-itemset is a set of k distinct items in a transactional
dataset. It points out the co-occurrence of the correlate items in the analyzed dataset.
In this analysis, an item represents either an author or a topic (see Definition 1).
Hence, itemsets may represent co-occurrences of multiple authors and topics in the
analyzed dataset. A more formal definition of itemset is given below.

Definition 2 Itemset. Let D be a weighted transactional dataset and let I be the
set of distinct items in the form feature:vq contained in any weighted transaction
tw j ∈ D . A k-itemset (i.e., an itemset of length k) is a set of k distinct items in I .

Note that each itemset may contain an arbitrary number of items belonging to
any feature.

Commonly, in itemset mining, a minimum support threshold is considered be-
cause generating all the possible itemsets is computationally unfeasible even on
medium-size datasets [69]. Given the minsup threshold, the frequent itemset mining
extracts all the itemsets that frequently occur in the source dataset D , i.e., all itemsets
whose frequency of occurrence (support) in the source dataset is above a given
threshold minsup. The support threshold prevents the extraction of less relevant or
misleading itemsets. However, it allows us to consider only the most recurrent and
thus potentially reliable patterns.

For example, itemset {(Author:Brown, J.),(Topic:X)} is occurred three times in
the dataset in Table 3.1 (publications with ids 1, 2, and 5). Therefore, by considering
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a minimum support threshold minsup=2 the itemset would be extracted because its
frequency of occurrence (3) is above the minimum (user-provided) threshold.

Unfortunately, the number of frequent itemsets can be very large. To prevent the
generation of redundant patterns and to simplify the manual inspection of the result,
a more compact subset of frequent itemsets, called the closed itemsets [74], can be
used. An itemset I is closed if there exists no superset that has the same support of I.

Itemset evaluation based on weighted support. The support quality index of an
itemset does not consider the relative importance of each transaction in the source
dataset [69]. Moreover, in our context of analysis, each publication may have a
different impact on the research community. In order to evaluate pattern significance,
pattern occurrence in each publication is weighted according to its impact on the
research community. For instance, an itemset occurring in a publication with 0
citations should be weighted more than one occurring in a publication with 1 citation.

As our goal is to generate only the combinations of authors and topics that
have gained a high impact, we extended the standard itemset mining problem by
integrating item weights [9]. Specifically, item occurrences within each transaction
(publication) are weighted by an influence score, such as the citation count (see
Section 3.2.1). Therefore, the co-authorship of publications with a large number
of citations is rewarded, whereas co-authorship of publications with few citations
are penalized. To formalize this step, we introduce the concept of weighted support
of an itemset as a weighted frequency of occurrence of the itemset in the weighted
transactional dataset.

Definition 3 Weighted support of an itemset. Let D be a weighted transactional
dataset and I be an itemset. Let tw j: ⟨t j, C(p j)⟩ be an arbitrary weighted transaction
in D . The weighted support of I in D , hereafter denoted by wsup(I), is defined as
follows:

wsup(I) = ∑
tw j∈D |I⊆t j

C(p j)

Recalling the previous example, {(Author:Brown, J.),(Author:Smith, L.), (Topic:X)}
has a weighted support equal to 25 because it covers the weighted transactions with
publication ids 1 (weight 10), 2 (weight 5), and 5 (weight 10), respectively.

Weighted association rule discovery. Weighted Association Rules (WARs) are
extracted on top of frequent itemsets. Given two itemsets A and B (of arbitrary
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length) a weighted association rule A → B is an implication between A and B. A
more formal definition follows.

Definition 4 Weighted association rule. Let A and B be two itemsets. A weighted
association rule is represented in the form R : A → B, where A and B are the body
and the head of the rule respectively.

A and B are also denoted as antecedent and consequent of rule A → B. Association
rule extraction is commonly driven by weighted support (wsup) and confidence
(wconf) quality indexes [69]. While the weighted support index represents the
weighted frequency of occurrence of the rule in the source dataset, the weighted
confidence index represents the rule strength.

Definition 5 Weighted support of a WAR. Let D be a weighted transactional
dataset. The weighted support (wsup) of a weighted association rule R : A → B is
defined as the weighted support of A∪B in D .

Definition 6 Weighted confidence of a WAR. Let D be a weighted transactional
dataset. The weighted confidence (wconf) of a weighted association rule R : A → B is
the conditional probability of (weighted) occurrence in D of itemset B given itemset
A, i..e,

wcon f (R) =
wsup(R)
wsup(A)

=
wsup(A∪B)

wsup(A)
.

For example, WAR {(Author:Brown, J.),(Author:Smith, L.)} → (Topic : X)}
shows an implication between a couple of authors and a specific topic. The WAR
has weighted support equal to 25 and weighted confidence equal to 25

35 (= 71,43%),
because the implication holds for publications with ids 1, 2, and 5 but not for
publication with id 3 (citation count = 10).

WAR categories. For our purposes, we consider five main categories of WARs.Each
category consists of the set of all WARs characterized by a predefined sequence of
items (authors and/or topics). Categories are tailored to different research questions.

Category 1: Authors-Topic Rules. These rules are extracted to answer to the
following questions: On what topics is the collaboration focused on? Is the collabo-
ration focused on a specific topic or spread over multiple topics?
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WARs of category Authors-Topic (hereafter denoted as A-T WARs) are repre-
sented in the form R : A → B, where the rule antecedent A is an arbitrary itemset
consisting of a set of authors, while the consequent B is an arbitrary itemset including
a single topic.

For example, {(Author:Brown, J.),(Author:Smith, L.)} → (Topic : X)} is an A-T
WAR. It indicates that authors J. Brown and L. Smith have co-authored publications
related to topic X . {(Author:Brown, J.),(Author:Smith, L.)} → (Topic : Z)} is
another A-T WAR with the same antecedent, which indicates that the same authors
have collaborated on topic Z. If both WARs are extracted, then the two authors have
fruitfully collaborated on multiple topics in separate publications. Notice that if the
same publications cover multiple topics, part of co-authored publications may cover
both topics. We will separately consider this particular case in the WAR category 4
(see AuthorsTopics-Topic Rules).

The weighted support of an A-T WAR indicates the sum of the citation counts of
all the publications co-authored by the authors approving in the antecedent of the
rule. Sorting rules by decreasing wsup allow experts to consider first the research
collaborations that have received a fairly high attention from the research community.
Notice that WARs with low wsup are early pruned during the mining process (due to
support threshold enforcement), because the corresponding collaborations were very
unlikely to produce significant results.

The weighted confidence indicates the fraction of citations received by the co-
authored publications on the considered topic with respect to the total number of
citations received by all the co-authored publications (independently of the topic).
Sorting rules by decreasing wconf allows experts to select, among all the topics
covered during the collaborations, the topics that have achieved the highest impact
for each group of co-authors. A-T WARs with high wconf indicate the topics on
which the collaboration is mainly focused on.

Given a combination of authors, the wsup index allows experts to filter out the
less relevant collaborations. On the other hand, the wconf value indicates the strength
of the correlation between the set of authors and a particular topic. For example, if
the wconf of an A-T WAR is close to 100% (all the citations are associated with a
particular topic) then it means that the collaborations of the referred co=authors were
productive only on the corresponding topic.
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Category 2: AuthorsTopic-Author Rules. These rules are extracted because they
allow us to answer to the following question: Working on a given set of topics, has
the group (occasionally) collaborated with external authors?

WARs of category AuthorsTopic-Author (hereafter denoted as AT-A WARs)
are represented in the form R : A → B, where the rule antecedent A is an arbitrary
itemset consisting of a set of authors and a set of topics, while the consequent B is
an arbitrary itemset including a single author.

For example, WAR {(Author:Brown, J.),(Author:Smith, L.), (Topic:X)} →
(Author:Black, J.) is an AT-A WAR. It indicates that in the collaboration between
authors J. Brown and L. Smith on topic X they have collaborated with author J.
Black. WAR {(Author:Brown, J.), (Topic:X) (Topic:Z)} → (Author:Smith, L.) is
another AT-A WAR which indicates a cross-topic collaboration between a couple of
authors.

The weighted support of an AT-A WAR indicates the significance of the collab-
oration between the group under analysis and the external author. The weighted
confidence indicates the impact of this collaboration on the productivity of the group
of authors associated with the given topic. For example, if the wconf is 50% it means
that half of the citations received by the combination of authors on the considered
topic was achieved by works co-authored by the author referred in the rule con-
sequent. Therefore, low wconf value indicate occasional (yet potentially fruitful)
collaborations, whereas high wconf values indicate more systematic collaborations
between group of co-authors and external authors.

Category 3: Authors-AuthorTopic Rules. These rules are extracted because they
allow us to answer to the following question: Has the group collaborated with
external authors? On which topics?

WARs of category Authors-AuthorTopic (hereafter denoted as A-AT WARs)
are represented in the form R : A → B, where the rule antecedent A is an arbitrary
itemset consisting of a set of authors, while the consequent B is an arbitrary itemset
including a single author and a single topic.

For example, {(Author:Brown, J.),(Author:Smith, L.)} → {(Author:Black, J.),
(Topic : X)} is an A-AT WAR. It indicates that in the research works made in the
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collaboration between authors J. Brown and L. Smith the authors have frequently
collaborated with author J. Black on topic X.

The weighted support of the AT-A WAR indicates the significance of the collabo-
ration between the group of authors and the consider pair author-topic. The weighted
confidence indicates the impact of this topic-specific collaboration on the overall
productivity of the group of authors in the antecedent of the rule (independently
of the topic). For example, if the wconf is 50% it means that half of the citations
received by the combination of authors (independently of the topic) was achieved by
works co-authored by the external author on the indicated topic. Low wconf values
may be due either to the low productivity of the collaboration between the group and
the external authors or to the low popularity of the topic.

Category 4: AuthorsTopics-Topic Rules. These rules are extracted because they
allow us to answer to the following question: Given a group of researchers who have
frequently collaborated on a set of topics, which other topic is likely to be covered
by their co-authored publications?

WARs of category AuthorsTopics-Topic (hereafter denoted as AT-T WARs)
describe cross-collaborations between authors. Since in a collaboration each member
could provide its expertise on a particular topic, it is interesting to investigate on
which topics an existing author-topic collaboration could be specialized.

For example, {(Author:Brown, J.), (Author:Smith, L.), (Topic : X)} → {(Topic :
Z)} is an AT-T WAR. It indicates that an authors’ collaboration on topic X is
frequently associated with an additional topic (Z).

If the wconf of the AT-T WAR is very high (close to 100%) most of the co-
authored publications related to topic X cover topic Z as well. Hence, these rules
allow us to measure the strength of the cross-topic authors’ collaborations.

Category 5: Topics-Topic Rules. These rules are extracted because they allow us
to answer to the following question: To which topic is a particular set of topics most
correlated with? Since authors’ collaborations are often cross-topic, analyzing the
underlying correlation between multiple topics is particularly interesting.

For example, an example of Topics-Topic WARs (hereafter denoted as T-T
WARs) is {(Topic : A), (Topic : X)} → {(Topic : Z)}.

Sorting T-T WARs by decreasing confidence allows us to identify the sets of
most correlated sets of topics.
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3.2.4.2 The extraction algorithm

Many frequent Weighted Association Rule (WAR) mining algorithms have already
been proposed in literature (e.g., [66–68, 9]). To accomplish the WAR mining task
from weighted transactional data, we applied to a two-step mining process that
requires (i) Closed itemset mining, and (ii) WAR generation from closed itemsets.
Step (i) is accomplished by an FP-Growth-based algorithm [75]. The algorithm
relies on an FP-tree data model, i.e., a compact, tree-based representation of the
original dataset residing in main memory. Itemset extraction is optimized to generate
only closed itemsets. Step (ii) focuses on generating WARs from closed itemsets by
generating any combinations of closed itemsets representing WARs of interest [76].

3.2.5 WAR visualization

We created a Web interface in order to allow domain experts to browse the rules
associate with the category of interest, to filter WARs not including any specific
combinations of authors or topics, and to sort the extracted WARs by decreasing
weighted confidence.

By using the web interface, after selecting a category, the user can filter among
WARs by selecting (i) optional single or multiple authors of the left or the right
of WARs, and (ii) optional single or multiple topics on the left or right of WARs.
Moreover, The user can select the filter operation type which could be AND/OR
and applies on the selected combinations of authors, topics or both. Finally the
list of filtered WARs will be displayed which allows easier identifying of which
author-topic combinations are potentially of interest for advanced analysis.

Figure 3.2 shows a screenshot of the developed interface. The interface can be
accessed at following link: http://dbdmg.polito.it/CSCA/.

3.3 Experimental results

The proposed methodology has been studied in a real case study, i.e., the analysis
of the research collaboration on genomics or genetics. Experiments have been
performed on the publication data and citations retrieved from the Online Mendelian
Inheritance in Man (OMIM) catalog of genetic disorders [8]. The goal in this analysis
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Fig. 3.2 The WAR visualization interface.

is to discover the collaborations among groups of researchers who have conducted
the most influential studies on genomics or genetics from OMIM publication data
and the related citations/topics.

Data sources. One of the most comprehensive and authoritative compendium
of human genes and genetic phenotypes is the Online Mendelian Inheritance in
Man (OMIM) database [8]. OMIM is part of the National Center for Biotechnology
Information (NCBI) system of databases [7] and it is freely available on the Web.
OMIM collects information on all known Mendelian disorders and over 12,000
genes. Specifically, it describes the relationships between phenotypes and genotypes
by providing full-text, referenced overviews on genetic disorders. The database is
updated daily and thus its content is continuously growing over time. The Applica-
tion Programming Interfaces (APIs) of OMIM are accessible by public for genetic
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data crawling and download. These APIs allow users to download the list of all
known disorders and a set of related annotations. Disorder annotations consist of (i)
a list of scientific publications ranging over the disorder (for each publication the
complete bibliographic information is known), (ii) a textual description of the disor-
der including references, and (iii) links to other genetics resources. To crawl data
from the online OMIM database, we considered the exposed APIs [8]. To retrieve
the number of citations received by each publication in OMIM we considered the
APIs of the PubMed digital library [7]. The integrated dataset contains 8825 articles,
34555 authors, and 302 disorders which were obtained by integrating publication
data crawled from OMIM and citation data crawled from PubMed,

Prepared datasets. For each publication in OMIM, the related topics can be
extracted in two ways: from metadata (i.e., the descriptions of the genetic disorders
associated with the publication) or from the Author-Topic Model (see Section 3.2.2).
However, part of the OMIM publications have no full-text access through the exposed
APIs. Therefore, we enriched all publications in OMIM with topics extracted from
metadata, while we applied the ATM to extract 10 topics only for the subset of
the publications in OMIM for which the full-text is available. For the sake of
simplicity, from now we will denote as Disorder the dataset collecting OMIM
publication, disorder topics, and citation counts, while we will denote as ATM the
dataset collecting the portion of OMIM publication with free full-text version, the
related citations, and the ATM main topics. For each paper of Disorder, one single
disorder topic per paper is available. Differently, for the ATM dataset, we selected the
top 5 most related topics for each paper, based on the output of the ATM algorithm.

Comparison betwee OMIM disorders and ATM topics. We analyzed the
similarity between the ten automatically extracted ATM topics and the manually
assigned 302 OMIM disorders in the analyzed publication data. Specifically, we first
analyzed the distribution of the OMIM disorders within each subset of publications
related to the same topic. Most topics appeared to be almost uncorrelated with
the OMIM disorders, as the most frequent disorders typically occurred in no more
than 5% of the publications of a given topic. Furthermore, OMIM disorders are
associated with 80%-90% of the ATM topics. Hence, the two categorizations seem
to be not correlated with each other, as they were generated in different ways and
with completely different purposes.
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This section is organized as follows. Section 3.3.1 reports some examples of
WARs belonging to different categories, which allowed us to answer to the research
questions posed in the previous sections. In the subsquent sections, a quantitative
analysis of the mining results is reported. Specifically, we discuss (i) the accuracy
of the mined rules in identifying the main topics covered by a set of researchers
(Section 3.3.2.1), (ii) the distribution of the extracted WARs in the selected categories
(Section 3.3.2.2), (iii) the impact of the parameter settings on the number of extracted
WARs (Sections 3.3.2.3-3.3.2.4)

3.3.1 Knowledge discovery from the mined WARs

In this section, some examples of WARs are reported separately for each category
and we illustrate how these patterns can be exploited to answer to the questions
posed in the previous sections (see Section 3.2).

Category (1) comprises Authors-Topic weighted rules (A-T WARs). They can be
used to answer to the following questions:

On what topics each collaboration focused on?

Which are the most fruitful authors’ collaborations?

Is the authors’ collaboration focused on a specific topic or spread over multiple
topics?

Table 3.2 reports the top 5 Authors-Topic rules (A-T WARs), in sorting order
of decreasing wsup, mined from Disorder. Each A-T rule indicates a specific set of
authors who have collaborated on a particular topic. Rule profitability was measured
in terms of number of citations received by the co-authored publications. In fact, a
high wsup value implies a high number of citations for the papers co-authored by the
set of authors reported in the antecedent of the A-T rule. For example, we discover,
based on the extracted WARs, that authors Siddique T. and Deng H. X. wrote a
set of papers on the Amyotrophic lateral sclerosis disorder and their co-authored
publications have been cited 1861 times. Since this WAR is the most frequent
one among all the mined A-T WARs ranging over the topic, we can conclude that
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Siddique T. and Deng H. X. are among the most influential/authoritative group of
researchers about Amyotrophic lateral sclerosis.

A-T rule wsup wconf
{(Author:Bignell, G.R.), (Author:Davies, H.), (Author:Garnett, M.J.),
(Author:Cox, C.), (Author:Stephens, P.), (Author:Edkins, S.), (Author:Clegg,
S.), (Author:Teague, J.), (Author:Woffendin, H.), (Author:Bottomley, W.),
(Author:Davis, N.), (Author:Dicks, E.)} → {(Topic:MELANOMA CUTA-
NEOUS MALIGNANT SUSCEPTIBILITY TO 1)}

1861 100%

(Author:Siddique, T.), (Author:Deng, H.-X.) → (Topic:AMYOTROPHIC LAT-
ERAL SCLEROSIS 1) 1828 100%

(Author:Hentati, A.), (Author:Siddique, T.), (Author:Deng, H.-X.) →
(Topic:AMYOTROPHIC LATERAL SCLEROSIS 1) 1800 100%

(Author:Rioux, J.D.), (Author:Silverberg, M.S.) → (Topic:INFLAMMATORY
BOWEL DISEASE - CROHN DISEASE - 1) 1470 100%

(Author:Silverberg, M.S.), (Author:Barmada, M.M.) →
(Topic:INFLAMMATORY BOWEL DISEASE - CROHN DISEASE - 1) 1388 100%

Table 3.2 Disorder dataset: Top 5 Authors-Topic rules (A-T WARs) in terms of wsup

In Table 3.2, the most frequent A-T WAR is associated with a relatively large
group of authors, which consists of 12 different authors. This is typical in the medical
domain for which papers are usually co-authored by a large number of authors.

In Table 3.2, all the WARs are characterized by maximal confidence value (100%).
This means that the set of authors appearing in the rule antecedent have collaborated
only on the topic reported in the consequent of the associated rule. For instance,
Siddique T. and Deng H. X. have fruitful collaborations on the Amyotrophic lateral
sclerosis disease but they have not produced significant literature on any other topics
(according to our data-driven analyses). However, the authors who have had fruitful
collaborations on a specific topic are likely to collaborate on other topics as well. To
investigate whether authors’ collaborations are focused on a specific topic or spread
over multiple topics we can compare the A-T WARs characterized by the same
antecedent by considering their confidence values as well. For example, Table 3.3
reports four WARs that can be exploited to characterize the collaborations between
Brown, E.M. and Kifor, O. and those between Seidman, J.G. and Seidman, C.. Specif-
ically, the first two A-T WARs reported in Table 3.3 show that Brown, E.M. and
Kifor, O. have had fruitful collaborations on two main topics: HYPOCALCIURIC
HYPERCALCEMIA FAMILIAL TYPE I and HYPOCALCEMIA AUTOSOMAL
DOMINANT 1. Their papers on the first topic have received 79.4% of their overall
citations (by considering only the co-authored publications), while the second topic
is associated with 20.6% of their citations. The sum of the two rule confidence
values is 100%. Hence, Brown, E.M. and Kifor, O. have collaborated only on the
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aforesaid topics. Table 3.3 reports the last two rules that can be used to characterize
the collaborations between other two researchers. Based on the mined rules Seidman,
J.G. and Seidman, C. have had profitable collaborations on two topics (ARDIOMY-
OPATHY FAMILIAL HYPERTROPHIC 1 and CARDIOMYOPATHY DILATED
1A). However, since the sum of the confidence values of those rules is less than
100%, we can deduce that Seidman, J.G. and Seidman, C. have co-authored papers
on other topics as well, but the latter works have not received a sufficiently high
number of citations to be deemed as “relevant” (i.e., no other A-T WARs with wsup
above 50 and wconf above 50% associated with Seidman, J.G. and Seidman, C. were
mined).

A-T rule wsup wconf
{(Author:Brown, E.M.), (Author:Kifor, O.)} → {(Topic:HYPOCALCIURIC
HYPERCALCEMIA FAMILIAL TYPE I)} 485 79.4%

{(Author:Brown, E.M.), (Author:Kifor, O.)} → {(Topic:HYPOCALCEMIA
AUTOSOMAL DOMINANT 1)} 126 20.6%

{(Author:Seidman, J.G.), (Author:Seidman, C.)} →
{(Topic:CARDIOMYOPATHY FAMILIAL HYPERTROPHIC 1)} 566 52.8%

{(Author:Seidman, J.G.), (Author:Seidman, C.)} →
{(Topic:CARDIOMYOPATHY DILATED 1A)} 196 18.3%

Table 3.3 Disorder dataset: Examples of A-T WARs describing authors who have collabo-
rated on multiple topics

AT-A rule wsup wconf
{(Author:Rioux, J.D.), (Author:Silverberg, M.S.), (Topic:INFLAMMATORY
BOWEL DISEASE - CROHN DISEASE - 1)} → {(Author:Barmada, M.M.)} 1385 94.2%

{(Author:Rioux, J.D.), (Author:Silverberg, M.S.), (Topic:INFLAMMATORY
BOWEL DISEASE - CROHN DISEASE - 1)} → {(Author:Bitton, A.)} 852 57.9%

Table 3.4 Disorder dataset: Examples of AT-A WARs

The analysis is extended in order to analyze the collaborations between the afore-
said groups and other researchers. Specifically, we want to answer to the following
question:

“Working on a given topic, has the group (occasionally) collaborated with external
authors?”.

The AuthorsTopic-Author rules (AT-A WARs) can support experts in tackling this
issue. Table 3.4 reports two example AT-A WARs that can be used to discover who
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have collaborated with Rioux, J.D. and Silverberg, M.S. on topic INFLAMMATORY
BOWEL DISEASE - CROHN DISEASE - 1 disease (the interest of the group on the
specific topic were previously discovered by analyzing the fourth A-T WAR reported
in Table3.2). According to the AT-A WAR, Rioux, J.D. and Silverberg, M.S. have
conducted joint works with Barmada, M.M. and Bitton, A. on the INFLAMMATORY
BOWEL DISEASE - CROHN DISEASE - 1 topic. Specifically, 94.2% of their
citations on that topic are due to papers co-authored by Barmada, M.M. as well,
while Bitton, A. has co-authored papers associated with 57.9% of their citations.

A-AT rule wsup wconf
{(Author:Almer, S.), (Author:Finkel, Y.)} → {(Author:Colombel, J.-F.),
(Topic:INFLAMMATORY BOWEL DISEASE - CROHN DISEASE - 1)} 67 6.2%

{(Author:Cho, J.H.), (Author:Brant, S.R.)} → {(Author:Bayless, T.M.),
(Topic:INFLAMMATORY BOWEL DISEASE - CROHN DISEASE - 1)} 140 15.4%

Table 3.5 Disorder dataset: Examples of A-AT WARs

Furthermore, another analysis is performed to analyze the collaborations between
a group of researchers and “external” researchers and discover the topics of these
collaborations. Specifically we are interested in answering to the question:

“Has the group (occasionally) collaborated with external authors? On which topics?”

Table 3.5 reports some examples of Authors-AuthorTopic rules (A-AT WARs).
They can be used in order to answer the questions reported above. Based on the
mined rules, the group of authors Almer, S. and Finkel, Y. has frequently collaborated
only with Colombel, J.-F. on the INFLAMMATORY BOWEL DISEASE - CROHN
DISEASE - 1 topic. Moreover, this collaboration has covered only the 6.2% of their
total citations (independently of the topics of the papers co-authored by Almer, S.
and Finkel, Y.). Hence, authors Almer, S. and Finkel, Y. seem to have had a limited
collaborations with researches external to their group. In Table 3.5, the second rule
shows the “external” collaboration of the set of authors Cho, J.H. and Brant, S.R..
Even this group of authors has had an ‘external” collaboration with another researcher
(Bayless, T.M.) and the target of the collaboration was the INFLAMMATORY
BOWEL DISEASE - CROHN DISEASE - 1 topic.

In order to analyze the AuthorsTopics-Topic rules (AT-T WARs), another analysis
is considered to characterize the cross-topic collaborations among authors when pa-
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Topic ID Top-10 most related terms
T0 rat, neuron, muscl, effect, dai, studi, calcium, group, activ, induc
T1 gene, mutat, express, sequenc, protein, develop, analysi, dna, cell, genet, genom
T2 respons, drug, increas, potenti, channel, membran, effect, studi, function, reduc
T3 cancer, associ, studi, breast, increas, case, model, genotyp, risk, smoke
T4 health, data, base, method, studi, model, system, develop, predict, approach
T5 brain, imag, memori, tissu, inject, studi, model, control, test, network
T6 infect, hiv, viru, associ, immun, vaccin, diseas, antigen, reactiv, hepat
T7 cell, express, activ, induc, tumor, human, regul, protein, mice, receptor
T8 protein, activ, cell, bind, fig, membran, acid, level, α , dna
T9 patient, studi, group, ag, risk, conclus, year, method, treatment, associ

Table 3.6 ATM dataset: ATM topis

AT-T rule wsup wconf
{(Author:Shelbourne, P.), (Author:Davies, J.), (Author:Johnson, K.),
(Topic:T8)} → {(Topic:T9)} 466 100%

{(Author:Johnson, K.), (Author:Buxton, J.), (Topic:T6)} → {(Topic:T8)} 456 100%

Table 3.7 ATM dataset: Examples of AT-T WARs

pers are characterized by multiple topics. Specifically, we are interested in answering
to the question:

“Given a set of co-authors collaborating on a set of topics, which other topic is likely
to be covered by their co-authored publications?”

As the Disorder dataset contains a single topic per paper, in the following we will
consider the AT-T WARs extracted from the ATM dataset as representative example
(see Table 3.7). For example, based on the first rule reported in Table 3.7, we can
state that 100% of the publications related to topic T8 co-authored by Shelbourne, P.,
Davies, J., Johnson, K., Shelbourne, P., Davies, J., and Johnson, K. cover also Topic
T9. Hence, the publications of the reported co-authors related to topic T8 are also
related to topic T9 (i.e., those publications are related to the cross-topic collaboration
on topics T8 and T9). Similar considerations hold for the second example AT-T
WAR. For the sake of completeness, Table 3.6 reports the top 10 most related terms
extracted by the ATM algorithm for each of the identified topics.

Independently of the authors, we could be interested in analyzing the correlations
among multiple topics to understand if the same topics are frequently covered by the
same publication. Specifically, we are interested in answering to the question:
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T-T rule wsup wconf
{(Topic:T3), (Topic:T5), (Topic:T6), (Topic:T8)} → {(Topic:T7)} 1326 95.5%
{(Topic:T2), (Topic:T5), (Topic:T8), (Topic:T9)} → {(Topic:T4)} 1449 93.4%
{(Topic:T2)} → {(Topic:T0)} 2118 27.8%
{(Topic:T5)} → {(Topic:T0)} 2205 23.8%

Table 3.8 ATM dataset: Examples of T-T WARs

“Given a set of publications related to a particular subset of topics, which other topic
is also frequently covered in those publications?”

Table 3.8 shows examples of Topics-Topic rules (T-T WARs), which can be used
to identify frequent correlations among topics. Specifically, Table 3.8 reports the top
two most confident T-T WARs mined from the ATM dataset and the two less confident
ones. The mined WARs show that single topics are usually not very correlated with
each other (i.e., the last two rules are both characterized a low confidence value),
while the publications covering a large set of topics can be highly correlated with a
further topic (see the first two rules reported in Table 3.8). This result is consistent
with the main goal of the ATM algorithm, which aims at identifying orthogonal
topics (i.e., couples of topics are likely to be weakly correlated). Based on the last
two T-T WARs reported in Table 3.8, it turns out that T2 is not very correlated with
T0, and T5 is almost uncorrelated with T0 as well. The aforesaid considerations are
consistent with the results of a qualitative comparison between the corresponding
word-based topic descriptions in Table 3.6.

3.3.2 Quantitative analysis of the characteristics of mined WARs
and performance of CSCA

The goal of this section is manifold. Specifically,

(i) We report a quantitative assessment of the reliability of the mined WARs on
publication data (see Section 3.3.2.1).

(ii) We analyze the per-length and per-category WAR distributions by setting a
standard configuration for the WAR mining algorithm (see Section 3.3.2.2).

(iii) We discuss the impact of the algorithm parameter settings on the quality of the
mining results (see Section 3.3.2.3 and 3.3.2.4).
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(iv) We discuss the complexity of the CSCA system and we evaluate system perfor-
mance in terms of execution time (see Section 3.3.2.5).

3.3.2.1 Quantitative assessment of the correctness of the mined WARs

A quantitative assessment of the reliability is performed on the mined WARs. This
validation phase focused on A-T WARs and separately, for each dataset,the top 50
WARs were selected by decreasing weighted confidence. The goal in this validation
process is to estimate to what extent each of the mined rules is relevant by measuring
the pertinence of the topic recommended by the rule head with those of the most
influential studies of the authors indicated in the rule body. Specifically, for each
A-T WAR r we compared the topic in the rule r’s consequent with those of the top 3
most cited publications of each author in the rule antecedent. Then, we defined as
score of rule r the percentage of authors who published at least one of his top cited
publications on the rule topic. This measure indicates the extent to which the authors
mentioned in the rule have the assigned topic in their expertise. A high rule score
indicates that the co-occurrence between multiple authors and the topic, which were
extracted from publication data based on citation counts, is unlikely to be generated
by chance as they reflect the expected single author-topic dependencies.

The average score was 99.8% for the Disorder dataset and 97.5% for the ATM
dataset, respectively. This result confirms that the extracted author-topic associations
can be deemed as reliable.

3.3.2.2 Characteristics of the mined WARs

In order to analyze the characteristics of the mined WARs, we first set, as standard
configuration, the minimum weighted support threshold (i.e., the least citation count
value) to 50 and the minimum weighted confidence threshold (i.e., the minimum
percentage of publications for which the implication holds) to 50%. The impact of
the aforesaid parameters will be discussed later.

Figures 3.3 and 3.4 plot the number of WARs per category (see Section 3.2.4.1)
mined from the Disorder and ATM datasets. As expected, the number of A-T WARs
is significantly lower than those of the other ones, because the number of possible
combinations is usually at least one order of magnitude lower. The distributions of
AT-A and A-TA WARs are approximately the same when only one topic per article
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Fig. 3.3 Disorder dataset: Distribution of WARs per category. wsup=50, wconf=50%.
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Fig. 3.4 ATM dataset: Distribution of WARs per category. wsup=50, wconf=50%.

is available (i.e., for the Disorder dataset) because they are generated from the same
closed itemset by permuting the corresponding items.

For each category, we analyzed also the per-length distribution of the corre-
sponding WARs (i.e., the number of contained items). As representative examples,
Figures 3.5-3.9 report the per-length distribution of WARs of different categories
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Fig. 3.5 ATM dataset: Distribution of A-T WARs per length. wsup=50, wconf=50%.
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Fig. 3.6 ATM dataset: Distribution of AT-A WARs per length. wsup=50, wconf=50%.

mined from ATM. We selected the rules mined from the ATM dataset because ATM
is characterized by multiple topics for each paper and hence WARS of all categories
are mined.

Shorter WARs (i.e., WARs with few authors and a topic) within all categories are
more numerous than longer ones, because they are most likely to satisfy the support
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Fig. 3.7 ATM dataset: Distribution of A-AT WARs per length. wsup=50, wconf=50%.
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Fig. 3.8 ATM dataset: Distribution of AT-T WARs per length. wsup=50, wconf=50%.

threshold. However, as discussed in Section 3.3.1, long WARs provide interesting
information about large research groups, which cannot be easily inferred from the
Author-Topic Model [53].
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Fig. 3.9 ATM dataset: Distribution of T-T WARs per length. wsup=50, wconf=50%.

3.3.2.3 Impact of the minimum weighted support threshold

Figures 3.10 and 3.11 show the cumulative distribution of the number of A-T WARs
(chosen as representative) mined from the Disorder and ATM datasets, respectively,
by varying the value of the weighted support threshold. The plots were generated by
counting the number of A-T WARs for each distinct value of wsup while keeping
the value of wconf fixed to its standard value (50%).

As expected, the number of mined WARs decreases while considering higher
wsup values.

3.3.2.4 Impact of the minimum weighted confidence threshold

Figures 3.12 and 3.13 report the cumulative distribution of the number of A-T WARs
(chosen as representative) mined from the Disorder and ATM datasets, respectively,
by varying the value of the weighted confidence threshold. The plots were generated
by counting the number of A-T WARs for each distinct value of wconf while keeping
the value of wsup fixed to its standard value (50).

The results show that the confidence threshold is not very selective, because most
of the mined WARs have fairly high confidence (less than 20% of the WARs have
wconf below 80%). This is due to the highly influential works on a single topic that
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Fig. 3.10 Disorder dataset: Cumulative A-T WAR distribution w.r.t. wsup. wconf=50%.
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Fig. 3.11 ATM dataset: Cumulative A-T WAR distribution w.r.t. wsup. wconf=50%.

most groups of researchers have produced, so the confidence of the corresponding
rule is very high. Conversely, the confidence of A-T WARs decreases in case a group
has produced scientific works on many different topics. Notice that since publications
are weighted by the corresponding number of citations, the collaborations that did
not produce any influential works are automatically penalized.
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Fig. 3.12 Disorder dataset: Cumulative A-T WAR distribution w.r.t. wconf. wsup=50.
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Fig. 3.13 ATM dataset: Cumulative A-T WAR distribution w.r.t. wconf. wsup=50.

3.3.2.5 Complexity and execution time

We experimentally analyzed the execution time spent by our approach on ATM and
Disorder datasets.
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The most computationally intensive tasks are (i) ATM topic detection and (ii)
WAR mining. Data preparation and WAR ranking have negligible impact of the
execution time. The time complexity of ATM topic detection is of order of the total
number of word tokens in the analyzed dataset multiplied by the number of topics.
On the ATM dataset each run of the generative process takes approximately 20s. This
step is not needed on Disorder as topics were directly extracted from publication
metadata.

The WAR mining process has linear complexity with respect to the number of
mined (closed) itemsets, which, in turn, is combinatorial with the number of items
(2#items in the worse case) [75]. Therefore, the time complexity is super-linear with
the number of word tokens in the publication documents. For example, on the
Disorder dataset the WAR mining process took approximately 35s with wsup=100
(approximately 3700 mined WARs), 238s with wsup=50 (21000 mined WARs), and
998s with wsup=25 (23200 mined WARs).

We compared also the performance of the WAR mining process based on closed
itemsets with that of a variant of the original process based on all the frequent
itemesets (including non-closed itemsets). By relaxing the constraint on closed
itemset mining, more than 100 millions of frequent itemsets were generated from
both the Disorder and ATM datasets by enforcing a relatively high wsup value (100).
The number of the mined frequent itemsets is at least three orders of magnitude larger
than those of closed itemsets. The rule generation process on top of frequent itemsets
did not terminate due to the huge number of candidate rule combinations (7GB of
itemsets for the Disorder dataset, more than 15 GB for the ATM dataset). Therefore,
the WAR mining and exploration process becomes practically unfeasible. The reason
is that since many articles have a large number of authors, extracting all the frequent
itemsets would generate a huge number of redundant patterns. Conversely, closed
itemsets represent a more compact representation of the data recurrences.



Chapter 4

Conclusions

The thesis, first addressed the video hyperlinking problem by proposing enriched
query formulations and their combinations. The features considered in the proposed
approaches are textual and include ASR transcripts, visual concepts and video meta-
data, enriched with Named-Entity Recognition and a concept-mapping technique.
Experiments addressed the parameter impacts of the different components involved
in the query enrichment process and results from the TRECVID submission of the
proposed approaches. In particular, the Automatic Feature Selection (AFS) approach
reached higher performance than all the other TRECVID competitors for the specific
video hyperlinking task.

Detailed analysis of such contributions highlighted that each monomodal query is
specifically useful for a subset of the test anchors. Hence, approaches (i) considering
ensembles of different monomodal queries and (ii) able to let the best specific query
emerge for each test anchor, yielded the best overall results consistently across
different metrics.

The second part of this thesis addresses the problem of discovering and ranking
fruitful cross-topic collaborations among researchers. The aim is to characterize
each research collaboration by discovering the main topics covered and their relative
importance in terms of attention given by the research community. To address this
issue, a data mining-oriented methodology is proposed, which relies on weighted
association rule-based techniques.
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The experiments, which were conducted on PubMed and OMIM databases,
highlight cross-topic collaborations among multiple authors which cannot be easily
inferred using traditional models (e.g., the ATM by Rosen-Zvi et al. [54]).
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