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Low-Complexity Time-Domain DBP Based on
Random Step-Size and Partitioned Quantization

Celestino S. Martins, Student Member, OSA, Luca Bertignono, Student Member, OSA, Antonino Nespola,
Andrea Carena, Member, OSA, Member, IEEE, Fernando P. Guiomar, Member, OSA, Member, IEEE,

and Armando N. Pinto, Senior Member, IEEE

Abstract—We propose and experimentally validate a low
complexity time-domain (TD) digital backpropagation (DBP)
algorithm for fiber nonlinearity compensation, targeting an
optimized hardware implementation. To counteract the coherent
accumulation of numerical quantization errors between DBP
steps, we propose a random step-size distribution along the
optical link (with ±5% interval around the optimal step-size).
In addition, to further reduce the average quantization bit
precision requirements, we propose a partitioned quantization
technique, enabling to quantize the FIR filter tail coefficients
with significantly lower precision. The proposed low complexity
DBP algorithm is experimentally demonstrated over a 2592 km
long-haul WDM transmission system with 21×32 GBaud PM-
16QAM optical channels. Employing the proposed step-size
randomization together with dual-time-slot quantization we
demonstrate penalty-free operation at an average of ∼4 bits per
FIR coefficient, leading to a 60% complexity reduction when
compared to the standard TD-DBP implementation.

Index Terms—Optical fiber communications, nonlinear
compensation, digital signal processing, digital backpropagation,
FIR.

I. INTRODUCTION

THE compensation of fiber nonlinear effects in the
digital domain is a promising solution to increase the

spectral efficiency (SE) and transmission reach in current
optical transmission systems [1]. Among the large number
of proposed digital signal processing (DSP) algorithms for
nonlinearity compensation, digital backpropagation (DBP)-
based techniques have been predominant [2]–[15]. The main
challenge posed by these techniques arises from their high
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computational effort and power consumption requirements for
hardware implementation [1]. These two aspects are fostering
significant investigation efforts towards the development
of advanced techniques with reduced complexity, aiming
at an efficient hardware implementation and commercial
deployment of DBP [3].

Reduced complexity DBP-based techniques for fiber
nonlinearity compensation have been widely proposed in
recent years, being predominantly implemented through
computationally optimized versions of the well-known split-
step Fourier method (SSFM) [4]–[7], which is based on the
concatenation of a series of linear and nonlinear steps, thereby
attempting to reverse the propagation of the transmitted
signal over the optical link. Although several alternative DBP
implementations have also gained considerable attention in
recent years, such as those based on Volterra series nonlinear
equalizers (VSNE) [8]–[10] and perturbation theory [11],
[12], SSFM-based DBP remains as the most well-known and
widely followed technique. Since its introduction for optical
fiber communications [2], several important advances have
been made to render SSFM-based DBP more computationally
efficient. The vast majority of these efforts have been focused
on the optimization of the implementation of the nonlinear
step and on the development of advanced techniques to enable
the use of fewer DBP steps. For this purpose, two main
approaches have been recurrently addressed in the literature:
i) the introduction of memory within the originally static
SSFM nonlinear step, making use of several techniques such
as low-pass filters [4], [5], logarithmic perturbation theory [6]
or memory polynomials [7], and ii) the optimization of the
nonlinear step position within the optical link [4]. Although
these techniques have demonstrated significant improvement
of computational efficiency through the reduction of the
total number of DBP steps, it is important to note that
the overall complexity associated with SSFM-based DBP
is still largely dominated by the linear operator, which
is commonly implemented in frequency-domain using fast
Fourier transforms (FFT) and inverse FFTs (IFFT). Indeed,
the nonlinear step in SSFM-based DBP is originally based on
a simple memoryless power-dependent phase shift, which can
be efficiently implemented through a low-order Taylor series
expansion or even using look-up tables (LUTs) [16]. The main
source of complexity is then originated by the recursive use
of FFTs and IFFTs to implement the linear operator for each
DBP step. Attempting to relax this complexity and facilitate
hardware implementation, [13]–[15] have exploited full time-
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domain (TD) DBP (TD-DBP), where the linear operator is
implemented in TD through an efficient design of finite
impulse response (FIR) filters. In this regard, [14], [15] have
proposed advanced strategies based on coefficient quantization
approaches to reduce the bit precision requirements of TD-
DBP. These approaches have enabled penalty-free TD-DBP
implementation, operating at 9-bit fixed-point precision [14],
[15]. However, since the practical feasibility of DBP-TD-
SSFM requires a low bit-precision implementation, it is
imperative to further decrease these requirements, such that
the implementation in a commercial hardware unit becomes
feasible.

In this paper, we propose a novel TD-DBP approach based
on step-size randomization and partitioned quantization
techniques to reduce the requirements of hardware
implementation of standard TD-DBP. The employment
of a step-size randomization technique has enabled to
improve the robustness of TD-DBP against numerical
quantization errors on the FIR coefficients quantization,
thereby allowing to reduce the required quantization bit
precision for penalty-free operation. To further reduce
the quantization bit precision we also propose to use a
partitioned quantization scheme based on dual-time-slots,
where a lower bit precision is allocated to the FIR filter tail
coefficients. The proposed computationally efficient TD-DBP
implementation is experimentally demonstrated over WDM
long-haul transmission of a 21-channel PM-16QAM optical
signal, enabling penalty-free TD-DBP operation at an average
of ∼4 bits of precision for the FIR coefficients.

The rest of this paper is organized as follows. In section II,
the concepts behind the proposed step-size randomization and
partitioned quantization techniques are described. In Section
III the performance and complexity of the proposed TD-DBP
technique are experimentally assessed and discussed. Finally,
in section IV, the main conclusions are presented.

II. REDUCED COMPLEXITY TIME-DOMAIN DIGITAL
BACKPROPAGATION

In recent years the investigation of DBP-based techniques
has been pushed towards the reduction of total number
of operations (multiplications and additions) involved in
an hardware implementation. Since the complexity of
multiplications and additions is heavily related with the bit
precision (number of bits) for the representation of their
operands, the overall algorithm complexity is consequently
highly driven by the minimum bit precision requirements for
hardware implementation.

Before proceeding with the technical description of the
proposed techniques for computational effort reduction, it
is important to set a firm theoretical ground on the basic
implementation of TD-DBP. The TD-DBP technique is based
on the cascaded application of time-domain linear and
nonlinear steps over the received optical signal, in order to
estimate the corresponding transmitted signal. Considering a
generic digitized optical field envelope, A(tn, z), defined at
discrete time instants tn and spatial position z, the linear

TD-DBP operator applied over a step-size h, D̂h, can be
analytically written as,

D̂h

(
A(tn, z)

)
= A(tn, z) ∗WCD(tn, hk), (1)

where, ∗ represents the convolution operation and
WCD(tn, hk) is the complex-valued impulse response
of the chromatic dispersion (CD) filter estimated over the
step-size, h, which can be determined from the inverse Fourier
transform of the CD compensation transfer function [17].
For simplicity, higher-order dispersion terms are commonly
neglected when operating far away from the zero dispersion
wavelength. Also note that, although it can be easily added
to expression (1), the effect of signal attenuation can also
be removed when TD-DBP is implemented with step-sizes
equal or larger than the span length (and if the step-size is
a multiple of the span length), which is a key requirement
for a low-complexity DBP implementation. The time-domain
implementation of the linear DBP operator as described by
expression (1) can be achieved through the use of a FIR
filter. The major drawback of this option is the O(N2)
complexity associated with FIR filtering, as opposed to the
O(N log(N)) complexity of a frequency-domain FFT-based
implementation. However, on the contrary of a frequency-
domain implementation, whose major computational burden
lies on the FFT processing itself (which is already very much
optimized), in a time-domain implementation there is still
significant room for computational efficiency optimization by
taking advantage of the specificities of the case under study.
A possible way of doing this is through the manipulation
the WCD coefficients in order to reduce complexity without
sacrificing performance, a strategy that has been followed in
several recent works [14], [15], [18].

In turn, the nonlinear DBP operator, N̂ , can be written as,

N̂h

(
A(tn, z)

)
= exp

(
− iξheffγ|A(tn, z)|2

)
A(tn, z), (2)

where γ is the Kerr nonlinear coefficient, 0 < ξ ≤ 1 is a free
optimization parameter and heff is effective step-size for DBP,
given by heff = (exp(αh) − 1)/α, with α being the fiber
attenuation coefficient. Expression (2) highlights that, being
based on a power-dependent phase-shift, the nonlinear DBP
operator actually renders itself for a quite simple hardware
implementation, namely resorting to the use of LUTs.

Cascading the linear and nonlinear operators defined above,
each step of the TD-DBP algorithm can then be written as,

A(tn, z − h) = N̂h

(
D̂h

(
A(tn, z)

))
, (3)

where, A(tn, z − h) is the compensated signal after one TD-
DBP step, i.e. after backward propagation over a step-size
h. The implementation of this standard TD-DBP algorithm
with constant step-size is depicted in Fig. 1 a) for an
hypothetic optical link composed of Ns identical fiber spans
with ideal optical amplification (perfect recovery of optical
power after each span). For simplicity, we consider a one-
step per span TD-DBP implementation. Nevertheless, both the
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Fig. 1. An illustration of different one-step per span TD-DBP implementation schemes over an optical link composed of Ns identical fiber spans. a) standard
TD-DBP with fixed step-size, h; b) fixed step-size TD-DBP with optimized positioning of the nonlinear operator, hopt; c) TD-DBP employing random
step-size, hk , (R-TD-DBP) with a randomization interval, δR, around the optimum position of the nonlinear operator, hopt. L is the total link length.

implementation diagram and the analytical formulation of (1)-
(3) can be straightforwardly generalized for a multi-span per
step scenario.

For the formulation of (3) we have assumed that the
nonlinear DBP operator is applied after the linear operator,
which is generally the best choice from the performance versus
complexity point of view. Indeed, in Fig. 1 b) we show the
implementation diagram of TD-DBP with optimized nonlinear
step positioning for maximum performance. In general, for
one-step per span implementation, it has been shown the
optimum position of the N̂ operator is at about ∼80% of
the span length [4]. This implementation implies the use of
an optimized step-size, hopt, for the first DBP step, followed
by Ns − 1 steps with a step-size equal to the span length and
final linear-only DBP step with step-size h− hopt.

A. Step-Size Randomization

Given its cascaded structure, the performance of TD-DBP
is highly sensitive to the bit precision of FIR coefficients
employed in the computation of the linear step [14] due to
the fast propagation of the quantization error, which tends to
accumulate coherently if all FIR coefficients for each DBP
step are identical. In order to partially counteract this effect,
[14] has proposed dithering of the FIR coefficients, while
[15] has proposed joint optimization of FIR filter pairs. In
this work, we propose a simpler approach to increase the
robustness of TD-DBP against quantization noise, which is
based on the randomization of the DBP step-size (R-TD-DBP),
thereby enabling to partially decorrelate the quantization error
across different DBP steps without the need for introducing
dithering noise or performing complex joint FIR optimization.
The primary idea behind this concept is to randomize the
step-size, h, in TD-DBP over each step along all the fiber
spans, such that a different step-size, h, is applied for each
step. This in turn, implies that a slightly different amount of
dispersion is compensated at each DBP step, resulting in the
use of different sets of FIR filter coefficients. Given that the

FIR coefficients are different for each DBP step, the generated
quantization noises become partially decorrelated, enabling a
quasi incoherent accumulation of quantization noise across
DBP steps. Thereby, the minimum bit precision requirements
of TD-DBP can be substantially alleviated, an effect that
becomes more prominent as the number of steps increases.

The concept of step-size randomization is shown in Fig. 1
c), which can be directly compared to the standard fixed step-
size TD-DBP with optimized positioning of the nonlinear step.
As evidenced by Fig. 1 c), the proposed R-TD-DBP technique
makes use of different step-sizes, hk, in each DBP step for the
computation of the linear and nonlinear steps. The step-size
of the k-th R-TD-DBP step, hk, is randomly chosen inside
an interval δR, which corresponds to a segment of the fiber
span, δR = Rh, where R is the interval of randomization
in percentage. Note that the chosen value of R will play a
critical role on the complexity versus performance trade-off of
R-TD-DBP: while on one hand, large R ensures an effective
decorrelation of the FIR filters, on the other hand it will also
detune the optimum position of the N̂ operator. Further details
on this issue are provided in section III. The random step-size,
hk, across all R-TD-DBP steps can be defined as,

hk =





r1hopt, k = 1

h+ hopt(rk − rk−1), 1 < k ≤ Ns

h− rNs
hopt, k = Ns + 1

(4)

where, rk is a random variable that defines the percentage of
the deviation of hk with respect to the optimum position, hopt,
following an uniform distribution,

rk ∼ U
(

1− R

2
, 1 +

R

2

)
. (5)

B. Partitioned Quantization

In Fig. 2 we illustrate an example of the CD compensation
filter impulse response over a step-size h equal to the
span length, as required by a one-step per span TD-DBP
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Fig. 2. Dual-time-slot quantization process applied to the real part of the
FIR coefficients for CD compensation inside one TD-DBP step. The FIR
coefficients are partitioned into two time-slots, S1 and S2.

implementation. From a closer inspection of Fig. 2, we can
observe that the distribution of coefficients of the FIR filter
enables its division into multiple rather distinct partition, with
each partition comprising a given range of amplitude values.
Thus, an efficient quantization of the FIR filter coefficients
would benefit from a separate treatment of each partition.
In this paper we have designated each partition as a time-
slot. Based on this observation, we propose a dual-time-slots
(DS) quantization process, where the filter impulse response is
partitioned into two time-slots and the quantization process is
applied to each time-slot separately with a different number of
levels or with a different quantization intervals. Each time-slot
quantization can be performed according to,

cQj (k) = cmax
j

⌊
∆j

cj(k)
cmax
j

⌉

∆j
, k = 0, ...,Mj − 1, (6)

where j = 1, 2 represents the index of the time-slot Sj ,
∆j is the quantization factor per time-slot, cj(k) are the
complex-valued FIR coefficients within Sj and cQj are the
corresponding quantized FIR coefficients. The quantization
process is applied to all Mj FIR coefficients within each time-
slot Sj . The quantization process itself is applied by a nearest
integer operation, b·e, after normalizing the FIR coefficients
by the maximum value among the real and imaginary parts
of the FIR coefficients within each time-slot, cmax

j , such that
cmax
j = max(|crj(k)|, |cij(k)|, where crj(k) and cij(k) are the

real and imaginary parts of cj(k). Benefiting from the rather
different amplitude ranges of FIR coefficients within each
time-slot, we can adjust the quantization factor, ∆j , on a per
time-slot basis. In general, time-slots with wider amplitude
range require higher values of ∆ for an accurate quantization,
whereas time-slots with lower amplitude range may favor the
use of lower values of ∆. In Fig. 2 we consider a dual-
time-slot approach, where the FIR coefficients are divided
into two time-slots: i) the central part of the FIR (slot S1),
whose coefficients vary over a wide range of values, and ii)
the FIR tail (slot S2), where the coefficients vary within a
much more restricted range. The optimum values of ∆j and
number of coefficients per time-slot, Mj , can be optimized

cQ1 (0)cQ1 (0) cQ1 (M1 − 1)cQ1 (M1 − 1)cQ1 (M1 − 1)

cmax
1c
max
1

cQ2 (0)cQ2 (0) cQ2 (M2 − 1)cQ2 (M2 − 1)

cmax
2c
max
2 ∑∑ ∑∑

+

In

Out

×

××

×

××

×

××

×

××

Delay Chain

Time-Slot 1 Time-Slot 2

Fig. 3. FIR filter implementation for a dual-time-slot quantization process.
The multiplication by cmax

1 and cmax
2 accounts for the renormalization

process of FIR coefficients after quantization.

numerically. According to the distribution of FIR coefficients
shown in Fig. 2, we may expect that the use of this dual-
time-slot quantization approach will significantly reduce the
bit precision requirements in time-slot S2, thus contributing
to lower the total average bit precision weighted over the two
time-slots. It should be also noted that, to take advantage of
the FIR filter symmetry, we consider as well a folded delay
line FIR structure, enabling to half the number of effective
FIR coefficients [18].

Due to the different normalization factors per time-slot,
cmax
j , it results that the FIR impulse response becomes

affected by a differential gain between time-slots. For a correct
compensation of CD, it is then mandatory to compensate
for this differential gain within the filtering process. This
can be done by slightly modifying the FIR filter structure,
as shown in Fig. 3. Taking advantage of the fact that the
normalization factor, cmax

j , is common to all FIR coefficients
inside each time-slot, the renormalization can then be applied
after summing up all their contributions, thus requiring only a
single extra real multiplication by cmax

j per time slot. Using a
dual-time-slot approach together with an FIR filter composed
of several tens of coefficients, the extra complexity required
by this operation is very residual and thus can be neglected.

It is worth to highlight that the proposed dual-time-slot
quantization approach can be easily extended to a multi-time-
slot quantization, by partitioning the FIR coefficients into any
given number of time-slots. In general, the use of a larger
number of partitions will enable further gains in quantization
precision, at the expense of an increasing complexity on the
renormalization stage. For each case under study, there is an
optimized tradeoff between these two aspects that minimizes
the overall computational effort. However, in order to keep a
simple filter structure and to simplify the overall analysis, in
this paper we stick to the use of a dual-time-slot quantization
process, which we identify as being an adequate solution to
significantly reduce the TD-DBP complexity.

III. EXPERIMENTAL RESULTS

In this section, we provide the experimental validation of
the proposed techniques considering the laboratorial setup
depicted in the Fig. 4. At the transmitter-side 21 channels,
composed of channel under test (CUT), odd carriers and
even carriers, are generated each at 32 GBaud. An external
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Fig. 4. Experimental setup of 21×32 GBaud WDM PM-16QAM transmission system. Recirculating loop composed of 4×108 km span of pure silica core fiber
(PSCF). CUT - channel under test; ECL - external cavity lasers; DAC - digital to analog converter; DP-MZM - dual-polarization Mach-Zehnder modulator;
DFB - distributed feedback; SP-MZM - single-polarization MZM; PME - polarization multiplexing emulator; AOMs - acousto-optical modulators; EDFAs -
erbium-doped fiber amplifiers; GEQ - gain-equalizer; PolScr - polarization scrambler; TOF - tunable optical filter.

cavity laser (ECL) is utilized to modulate the CUT, whose
in-phase (I) and quadrature (Q) components are generated by
a 64 GSa/s digital to analog converter (DAC) and fed into
the dual-polarization Mach-Zehnder modulator (DP-MZM) for
optical modulation. The remaining 20 interferer channels are
modulated by distributed feedback (DFB) lasers arranged in
10 odd and even carriers. A 4-port DAC is utilized to generate
the I and Q components, which feed two single-polarization
MZM (SP-MZM), corresponding to odd and even carriers, for
optical modulation. Then, a polarization multiplexing emulator
(PME) is utilized to perform optical polarization multiplexing
for the interferer channels. The transmission link comprises
a recirculating-loop, which is controlled by acousto-optical
modulators (AOMs) and is composed of four spans of pure
silica core fiber (PSCF) with average length of 108 km,
characterized by α = 0.16 dB/km and dispersion, D =
20.17 ps/(nm · km). Erbium-doped fiber amplifiers (EDFAs)
with 5.4-dB noise figure are utilized to recover the loss and
a gain-equalizer (GEQ) followed by a polarization scrambler
(PolScr) are utilized every loop to flatten the optical gain and
to statistically average the polarization effects. At the receiver
side, the CUT is filtered by a tunable optical filter (TOF),
which is then coherently detected utilizing a second ECL
as local oscillator. Then, the electrical signal is sampled by
a 50 GSa/s oscilloscope with 33 GHz electrical bandwidth
and followed by offline post-processing. The DSP comprises
linear (CDE) or nonlinear (TD-DBP) compensation, adaptive
equalization, carrier recovery and finally SNR estimation
from the equalized signal constellation. As for nonlinear
compensation, we have applied both the standard TD-DBP
and our proposed techniques.

A. Preliminary Optimization of Standard TD-DBP

We start our analysis with the optimization of the main
nonlinear compensation parameters, such as launched power,
number of steps per span, Nsteps, and position of the nonlinear
operator. Furthermore, the number of FIR filter coefficients is
optimized such that penalty-free linear equalization is ensured
with minimum complexity [17]. As for nomenclature, we have
defined TD-DBPNsteps

as the standard TD-DBP applied with
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Fig. 5. SNR as a function of launched power considering different number
of steps per span, Nsteps, for a propagating distance of 2592 km. Optimizing
the position of nonlinear operator, curve TD-DBP1(hopt), allows to achieve
the maximum performance with only 1-step per span.

Nsteps per span and TD-DBPNsteps
(hopt) as the TD-DBPNsteps

algorithm with optimized positioning of the nonlinear operator.
In this optimization the floating-point bit precision for the
FIR filter coefficients is considered. In this regard, Fig. 5
shows the evaluation of performance for these different TD-
DBP algorithms in terms of estimated SNR of the equalized
constellation as a function of input power, and considering
different number of steps per span. The transmission distance
under test is 2592 km (24 fiber spans). We can observe that
the maximum performance is achieved by employing 8-steps
per span, TD-DBP8, yielding an optimum launched power of
2 dBm,∼1 dB higher than with CD equalization (CDE) only,
and an SNR gain over CDE of ∼0.5 dB. To try to reduce
the TD-DBP step-size requirements, we have optimized the
position of nonlinear operator [19], which was found at ∼80%
of the span length for Nsteps = 1, corresponding to hopt

of ∼86.4 km. The obtained results confirm that, by simply
optimizing the position of nonlinear operator, we can operate
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number of bits for FIR coefficient quantization, considering different step-
size configurations. The propagation distance is 2592 km and the launched
power is 2 dBm. R-TD-DBP1(hopt) is applied with a randomization interval
of R = 10% of the span length.

at 1-step per span with roughly the same accuracy as an 8-
steps per span TD-DBP. The optimization of the nonlinear
operator position for 2-steps per span has been also performed,
however, negligible improvement has been achieved. These
simple optimizations, well known from the literature, are the
first key step for a preliminary reduction of DBP complexity
in this work. Our proposed techniques will now operate over
the optimized TD-DBP1(hopt).

B. Step-Size Randomization

We now proceed with the investigation on the quantization
bit precision requirements for the FIR filters employed in
the linear operator of TD-DBP. To this end, we evaluate
the performance of TD-DBP algorithms considering different
quantization accuracy ranging from low precision (4 bits) to
high precision (16 bits), and using different TD-DBP step-
sizes. The corresponding results are shown in Fig. 6, where
we can note that as the step-size increases (decreasing Nsteps)
the required bit precision for the FIR filters to achieve the
maximum performance also decreases. Indeed, a reduction
of 4 bits is achieved by simply considering TD-DBP1(hopt)
(requiring 11 bits) instead of the standard TD-DBP8 (requiring
15 bits). This achievement can be justified by the fact that
the quantization errors are propagated over a lower number
of steps, thus reducing the error accumulation. However, the
11-bits quantization achieved by TD-DBP1(hopt) still remains
a quite demanding hardware requirement.

Aiming at a further decrease of bit precision requirements,
we proceed with the experimental assessment of R-TD-DBP.
For the employment of this technique, first we have optimized
the randomization interval, δR, illustrated in Fig. 1. To that
purpose, we have chosen a wide set of different randomization
intervals ranging from R = 0 (deterministic) to R = 0.5,
and we have performed 100 independent realizations of R-
TD-DBP employing uncorrelated random variables rk (see eq.

Interval of Randomization R (%)
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Fig. 7. SNR after applying R-TD-DBP1(hopt) as a function of the
randomization interval, R, in percentage of the span length. The optimization
is performed for 8 bits precision FIR coefficients. The propagation distance
is 2592 km and the launched power is 2 dBm. The solid line and markers
indicate the average SNR obtained from 100 independent realization of R-
TD-DBP. The corresponding standard deviation is indicated by the error bars.

(5)) to determine the step-size, hk, per R-TD-DBP step. In
addition, we consider an 8-bits precision for the quantization
of the FIR filter coefficients. To analyze this effect, we operate
at a propagation distance of 2592 km and an optimum power of
2 dBm, corresponding to the maximum performance registered
in Fig. 5. Besides the average SNR obtained from all 100
independent R-TD-DBP realizations, we also indicate the
corresponding standard deviation in Fig. 7, in the form of
error bars. The obtained results are shown in Fig. 7, which
clearly puts in evidence the benefit of using a randomization
interval in R-TD-DBP. Note that, with R = 0 the maximum
SNR of ∼14.2 dB obtained in Fig. 5 (where a floating
point precision was considered) drops down to approximately
13.4 dB, corresponding to a loss of performance of about
0.8 dB, which would make the 8-bits implementation of TD-
DBP perform even worse than CDE. On the other hand,
if the randomization interval is too wide, we have found
that SNR performance again tends to decrease, due to the
random displacement on the optimum position of the nonlinear
operator. For the current case study, we have found that a
randomization interval of 10% of the span length (δR =10.8
km) provides a near optimum performance. This means that, in
the following results, R-TD-DBP operates with a step-size that
is randomly selected within ±5.4 km of the optimum step-size
of TD-DBP1(hopt). The performance of R-TD-DBP1(hopt) as
a function of quantization bit precision is then shown in Fig. 6,
confirming the ability for penalty-free operation with 8-bits
quantization of the FIR coefficients, a 3-bit reduction with
respect to the benchmark TD-DBP1(hopt).

C. Dual-Time-Slot Quantization

To further relax the required quantization bit precision, we
now introduce the dual-time-slot (DS) quantization approach
over R-TD-DBP, aiming at a more efficient quantization of
the FIR tail coefficients, such that the overall average bit
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precision can be reduced below the 8-bits limit found above.
In this regard, we have fixed the bit precision of time-slot
S1 (central part of the FIR) to 8 bits, corresponding to the
minimum precision requirements obtained from Fig. 6. Since
time-slot S1 comprises the range of FIR coefficients that
require higher bit precision, it is also essential to minimize
the length of time-slot S1, M1, while maximizing the length
of time-slot S2, while achieving penalty-free operation of DS-
R-TD-DBP. We have conducted this study by varying the
number of bits for the quantization of FIR coefficients (< 8)
allocated to time-slot S2 and we identify the maximum number
coefficients that can be allocated to this time-slot (M2) while
achieving a penalty-free operation, corresponding to an SNR
gain (SNRgain) ≥0.5 dB over CDE. The obtained results are
presented in Fig. 8 for an FIR filter with symmetric length
of 151 taps, which corresponds to the optimized length for
penalty-free CD compensation. In general, we can observe
that as we lower the quantization bit precision in time-slot
S2 also the partitioning point between slots tends to shift
towards the tail of the FIR filter, i.e, M2 tends to decrease
while M1 increases proportionally. This is the expected result
since as we increase M2 the required bit-precision in time-slot
S2 also tends to increase in order track the larger amplitude
variation of FIR coefficients. In addition, Fig. 8 also indicates
the average number of bits calculated over the two time-slots
of FIR coefficients (S1 and S2), as a function of bit precision
in time-slot S2. This average can be estimated by weighting
the bit precision in time-slot S1 and S2 by their respective
lengths, M1 and M2. An optimum operating point is found
at 2 bit precision for time-slot S2. For this particular case,
around 65% of FIR coefficients are represented with 2 bits
(S2), whereas only the remaining 35% operates with 8 bits
precision (S1), therefore, providing an average bit precision
of ∼4.1 bits over the two time-slots of the FIR filter. This
represents a bit precision reduction of more than 60% and 70%
with respect to the 11 bits required by TD-DBP1(hopt) and
the 15 bits required by TD-DBP8, respectively. It is also worth
noting that when 0 bit precision (all coefficients are interpreted
as zeros) is applied to S2, no coefficients can be allocated to
that time-slot, confirming that the impulse response of the FIR
could not be further truncated below the considered 151 taps.

Taking into account the main parameters that impact the
complexity of DBP-based techniques, we can define the
overall complexity as being proportional to the number
of steps per span, Nsteps, number of FIR coefficients,
Ntaps, and bit precision for the FIR coefficients, Nbits,
(∝ NstepsNtapsNbits). Based on this proportionality it
becomes clear that a considerable reduction in the algorithm
complexity can be obtained by simply reducing the bit
precision associated to the FIR coefficients, thereby evidencing
the impact of the proposed techniques on the overall algorithm
complexity reduction. The proposed random step-size and
partitioned quantization techniques can be applied to any
DBP-based techniques implemented in time-domain, where
the quantization process is exploited, leading to a significant
complexity reduction.

To provide an extended analysis of the proposed technique
in comparison with standard TD-DBP, we have evaluated the
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Fig. 8. Optimization of dual-time-slot quantization to minimize the weighted
average bit precision requirements over time-slots S1 and S2. The bit
precision for S2 is optimized after fixing 8 bits for S1. Left-hand axis accounts
for the maximum % of coefficients in S2 that preserves SNRgain > 0.5 dB,
whereas the right-hand axis corresponds to the average overall bit precision
weighted over the number of coefficients in S1 and S2.
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Fig. 9. Maximum reach achieved for CDE, TD-DBP8 and DS-R-TD-
DBP1(hopt). Employing reduced complexity DS-R-TD-DBP(hopt) with one
step per span, we can achieve the same maximum reach as standard TD-DBP
using 8-steps per span

maximum reach for the system under test, by varying the
number of recirculating loops from 1 to 20 and launched power
from -3 dBm to 4 dBm. Fig. 9 describes the obtained results
for CDE, TD-DBP8 and DS-R-TD-DBP1(hopt), indicating that
the nonlinear compensation algorithms provide a maximum
reach increase of ∼15% with respect to the CDE. In addition,
we can note a good agreement between the maximum
performance algorithm, TD-DBP8, and the proposed low
complexity algorithm, DS-R-TD-DBP1(hopt), demonstrating
that DS-R-TD-DBP concept can be applied over a wide range
of propagation distances and launched powers.
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IV. CONCLUSIONS

We have proposed a low complexity fully time-domain
DBP approach based on step-size randomization and dual-
time-slot quantization. The use of a step-size randomly
distributed around 10% of the span length was shown
to significantly enhance the TD-DBP robustness against
quantization noise from the FIR filter coefficients, enabling
penalty-free operation with only 8 bits per coefficient,
which is compared to the 11 bits required by standard
TD-DBP. To further reduce the quantization bit precision
requirements, a partitioned quantization technique is proposed,
where the filter impulse response is divided into two time-
slots that are quantized separately. By doing so, we have
experimentally demonstrated penalty-free operation allocating
only 2 bits for the quantization of 65% of all FIR
coefficients. This corresponds to an average number of ∼ 4
bits per FIR coefficient, providing around 60% reduction
for quantization bit precision requirements with respect
to the standard TD-DBP. The proposed techniques has
been experimentally demonstrated in a 21×32 GBd WDM
PM-16QAM transmission system, enabling to increase the
maximum reach by ∼15% when compared with standalone
CDE.
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