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I. GENERAL PROPERTIES OF DC SCHEME

For completeness, the Density Consistency (DC) relations are

µi
Σii

= tanh−1 〈xi〉g(a) (1)

µi = 〈xi〉g(a) (2)
Σij√
ΣiiΣjj

= ρcorrg(a) (xi, xj) (3)

where

g (x) =
1

zg

∏
a

φa (xa) =
1

z′
e−

1
2 (x−µ)

TΣ−1(x−µ).

g(a) (x) =
1

za
g (x)

∑
x̂a∈Xa

δ (xa − x̂a)
ψa (x̂a)

φa (x̂a)

are the full gaussian and the tilted distribution, respectively.

A. Relation with the Bethe Approximation (BP)

On acyclic graphs, both the DC scheme and BP are exact and thus they must coincide on their computation of
marginals. However, a deeper connection can be pointed out. BP fixed point equations are

mai (xi) ∝
∑
xa

ψa (xa)
∏
j∈a\i

mja (xj) (4)

mia (xi) ∝
∏
b∈i\a

mbi (xi) (5)

mi (xi) ∝
∏
b∈i

mbi (xi) (6)

Theorem 1. If (H1) the DC scheme applies zero covariances or (H2) the factor graph is acyclic, mia (xi) ∝ g−a (xi)
satisfies (4)-(5). Moreover, the updates follow dynamically BP updates. In particular, if equations converge, approxi-
mate marginals g (xi) are proportional to belief magnetizations (6).

Proof. In the either hypothesis (H1 or H2) , g−a (xa) ∝
∏
j∈∂amja (xj). Define mai (xi) ∝ g(xi)

mia(xi)
. We obtain

mai (xi) ∝
1

mia (xi)

∫
dxa\ig (xa)

∝
∫
dxa\i

∏
j∈∂a\i

mja (xj)φa (xa) (7)

Thanks to (1), g (xi) ∝ g(a) (xi) when xi ∈ {−1, 1} (and this is precisely the purpose of (1)). In particular, for
xi ∈ {−1, 1} we get also

mai (xi) ∝
1

mia (xi)
g(a) (xi)

=
1

mia (xi)

∑
xa\i

g−a (xa)ψa (xa)

=
∑
xa\i

∏
j∈∂a\i

mja (xj)ψa (xa) (8)

which is Eq. (4). Eq. (5) is also verified in either hypothesis:
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1. Factorized case: if φa (xa) =
∏
i∈∂a φa (xi), then clearly mai (xi) ∝ φa (xi) and mia (xi) ∝

∏
b∈∂i\ambi (xi)

2. Acyclic case: if Tb denotes the set of factors in the connected component of b once i is removed, we get

mia (xi) ∝ g−a (xi)

∝
∫
dx−i

∏
b∈∂i\a

φb (xb)
∏

c∈Tb\b

φc (xc)

∝
∏

b∈∂i\a

∫
dxb\iφb (xb)

∏
j∈∂b\i

g−b (xj)

∝
∏

b∈∂i\a

∫
dxb\iφb (xb)

∏
j∈∂b\i

mbj (xj)

∝
∏

b∈∂i\a

mbi (xi) (9)

where the last line follows from (7).

B. Relation with EP

The DC scheme can be thought of a modified Gaussian EP scheme for factors [1]

ψ̂ij (xi, xj) = ψij (xi, xj) (δ (xi + 1) + δ (xi − 1)) (δ (xi + 1) + δ (xi − 1))

Classic EP equations in this context can be obtained by replacing atanh 〈xi〉g(a) in the RHS of (1) by the qualita-

tively similar function
〈xi〉g(a)

1−〈xi〉2
g(a)

, but this of course invalidates Theorems 1-2 and turns out to give a much worse

approximation in general.

C. Weight gauge

One interesting property common to both DC and EP scheme concerns the possibility to move freely gaussian
densities in and out the exact factors ψa (xa) . Let ρa (xa) be Gaussian densities;

p (x) ∝ g (x)
∏
a

ψa (xa)

q (x) ∝ g (x)
∏
a

φa (xa)

and q a Gaussian EP or DC approximation. We have

p(a) (xa) ∝ ψa (xa)

∫
dx−a

g (x)
∏
b φb (xb)

φa (xa)
(10)

∝ ψa (xa)

ρa (xa)

∫
dx−a

[g (x)
∏
b ρb (xb)]

∏
b φb (xb) /ρb (xb)

φa (xa) /ρa (xa)
(11)

q (xa) =

∫
dx−ag (x)

∏
b

φb (xb) (12)

=

∫
dx−a

[
g (x)

∏
b

ρb (xb)

]∏
b

φb (xb) /ρb (xb) (13)

As DC and EP algorithms impose constraints between p(a) (xa) and q (xa), any approximating family {φa} for
(g, {ψa}) leads to an equivalent family {φa/ρa} for (g′ = g

∏
b ρb, {ψ′a = ψa/ρa}) for arbitrary factors ρa.



4

D. Other closure equations

Eq. 1 is the only condition needed to make the approximation scheme exact on tree-graphs. In principle one could
complement it with any other condition in order to obtain a well-determined system of equations and unknowns in
the factor parameters. In this work we tried other complementary closure equations (including matching of covariance
matrix, constrained Kullback-Leiber Divergence minimization, matching of off-diagonal covariances, in addition to 1).
However, we found out that 2-3 were experimentally performing uniformly better on all the cases we analyzed.

II. HOMOGENEOUS ISING MODEL

Consider a homogeneous ferromagnetic Ising Model with hamiltonian H = −J
∑
〈i,j〉 xixj −hext

∑
i xi defined on a

d-dimensional hypercubic lattice with periodic (toroidal) boundary condition: because of the translational invariance,
all Gaussian factors φa are identical and the covariance matrix admits an analytic diagonalization.

At a given inverse temperature β, DC equations (1-3) are identical for all factors:

σ0 =
m

atanhm

σ1 = ρ
c−m2

1−m2
σ0 (14)

y = m (γ0 + γ1)

The DC solution is found by solving the above system of 3 fixed-point equations in the Gaussian parameters y, γ0, γ1
where σ0, σ1, γ0, γ1 equal respectively Σii, Σij , (2d)

−1(
Σ−1

)
ii
,
(
Σ−1

)
ij

for i, j two first lattice neighbors. Here
m = 〈xi〉g(a) and c = 〈xixj〉g(a) are the moments computed under the distribution g(a):

m = tanh [z + atanh (tanh Γ tanh z)]

c = tanh
[
Γ + atanh

(
tanh2 z

)]
where

z =
βhext

2d
+

(
1

σ0 + σ1

1

γ0 + γ1
− 1

)
y

Γ = βJ +
σ1

σ2
0 − σ2

1

+ γ1

The matrix Σ is the gaussian covariance matrix whose inverse is parametrized as follows:

Σ−1 = S(d) = 2dγ0ILd + γ1A(d)

where A(d) is the lattice adjacency matrix in dimension d, whose diagonalization is discussed in the next section.

A. Diagonalization of A(d)

The hypercubic lattice in d dimensions can be regarded as the cartesian product of linear-chain graphs, one for each
dimension. The adiacency matrix of the whole lattice can be thus expressed as function of the adiacency matrices of
the single linear chains, by means of the Kronecker product (indicated by ⊗):

A(d) = A(1) ⊗ IL ⊗ ...⊗IL + IL ⊗A(1) ⊗ IL ⊗ ...IL + ...+ IL ⊗ ...⊗ IL ⊗A(1)

where A(1) is the adiacency matrix of a (closed) linear chain of size L:

A(1) =



0 1 0 · · · 0 0 1
1 0 1 · · · 0 0 0
0 1 0 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 0 1 0
0 0 0 · · · 1 0 1
1 0 0 · · · 0 1 0
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The above expression allows to compute the spectral decomposition of A(d) just by knowing the spectrum of the
adiacency matrix of the linear chain. The matrix A(1) is a special kind of circulant matrix and therefore it can be
diagonalized exactly [2]. Its eigenvalues and eigenvectors are shown below:

λ(1)x = 2cos
(

2π

L
x

)
ν(1)x =

1√
L

(
1, wx, w

2
x, . . . , w

L−1
x

)
where x ∈ {0, ..., L− 1} and wx = ei

2π
L x.

The spectral decomposition of A(d) reads:

λ
(d)
(x1,...,xd)

=

d∑
j=1

λ(1)xj = 2

d∑
j=1

cos
(

2π

L
xj

)
(15)

ν(x1,...xd) = �d
j=1ν

(1)
xj (16)

We recall now the expression of the eigenvalues of S(d):

λ(x1,...,xd) = 2dγ0 + 2γ1

d∑
j=1

cos
(

2π

L
xj

)
The inverse matrix elements Σii,Σij can be computed in a straightfoward way. In particular, in the thermodynamic
limit (L→∞) their expressions read:

σ0 =
1

γ0
R (r) (17)

σ1 =
1

γ0r

[
1

2d
−R (r)

]
(18)

where r = γ1
γ0

and Rd (r) = 1
2

∫∞
0
dte−dt [I0 (rt)]

d, where I0 is the modified Bessel function of the first kind of order
0.

B. Simplified DC equations

It is possible to simplify the original system (14) in order to get a fixed point equation for the magnetization m.
By eliminating the variable y and setting J = 1 we get

z =m

(
1

σ0 + σ1
− (γ0 + γ1)

)
+
βhext

2d

=mγ0

(
1

Rd (r) + 1
r

[
1
2d −Rd (r)

] − r − 1

)
+
βhext

2d
(19)

Γ =β +
σ1

σ2
0 − σ2

1

+ rγ0

=β + γ0

(
1
r

(
1
2d −Rd (r)

)
R2
d (r)− 1

r2

[
1
2d −Rd (r)

]2 + r

)
(20)

Now, putting together Eq.(14) with Eq.(19)-(20) and the definitions (17)-(18) we get the following system:

β =atanh
[

1

ρ
kr
(
1−m2

)
+m2

]
− gr

atanhm
m

− atanh
[
tanh2

(
fratanhm+

β

2d
hext

)]
(21)

m = tanh

[
fratanhm+

β

2d
hext+ (22)

+ atanh
(

tanh

(
β + gr

atanhm
m

)
tanh

(
fratanhm+

β

2d
hext

))]
where kr = 1−2dRd(r)

2drRd(r)
, gr = kr

1−k2r
+ rRr, fr = 1

1+kr
− (r + 1)Rd (r). Such equations can be solved at fixed r in the

variables β,m. For h = 0 the system reduces to a single fixed point equation for m = M (m (r) , r) while β is fixed by
(21).
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Computation of βp

For the paramagnetic solution m = 0 (with h = 0) we get the following equation for β (r):

β =atanh
(

1

ρr

[
1

2dRd (r)
− 1

])
− gr

For d ≥ 3, the maximum value at which a paramagnetic solution exists corresponds to the point r = −1. Therefore,
the value of the critical point βp is computed by taking the r → −1 limit of Eq.(21):

βp =atanh
(

1− 1

z

)
− z

(
z − 1

2z − 1

)
+

z

2d
(23)

with z = 2dRd (−1) .

Computation of βm

Eqs. (21)-(22) implicitly define a function m (r) such that M (m (r) , r) = m, and thus also β (r) = β (m (r) , r). We
seek to find the point m∗ = m (r∗) and βm = β (m∗, r∗) such that dβ

dr (m (r∗) , r∗) = 0. Taking the total derivative of
β (m (r) , r) we get the equation to be solved

0 =
dβ

dr
=
∂β

∂r
+
∂β

∂m

dm

dr

To compute dm
dr we use its implicit definition,

0 =
d

dr
{M (m (r) , r)−m (r)}

=

(
∂M

∂m
(m (r) , r)− 1

)
dm

dr
+
∂M

∂r
(m (r) , r)

dm

dr
= −

∂M
∂r (m (r) , r)

∂M
∂m (m (r) , r)− 1

to get finally the 2× 2 system in variables m, r:

M (m, r)−m = 0 (24)
∂β

∂r
(m, r)

(
∂M

∂m
(m, r)− 1

)
− ∂M

∂r
(m, r)

∂β

∂m
(m, r) = 0 (25)

Stability

The stability of a fixed point m∗ = m (r∗) can be analyzed by computing dM
dm

∣∣∣∣
m∗

. In particular, starting from the

system (21)-(22) where r is implicitly defined as r = R (β,m) ,the instability occurs when dM
dm

∣∣∣∣
m∗

= 1. Writing the

original system using the definition of r we get m = M (m,R (β,m)) and β = B (m,R (β,m)). The equation we want
to solve is

1 =
dM

dm
=
∂M

∂m
+
∂M

∂r

∂R

∂m

To compute ∂R
∂m we use again its implicit definition:

0 =
∂B

∂m
+
∂B

∂r

∂R

∂m

∂R

∂m
= −

∂B
∂m
∂B
∂r
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Figure 1. Left: distribution of non-overlapping plaquettes (in grey) on a 2-dimensional square lattice. Right: correlations on
2-dimensional Ising Model on square lattice of size L = 10 at β = 0.36, with 0 external field and couplings drawn from a
uniform distribution in (0.5, 1.5). Comparison of DC, pDC, BP and CVM

The final system to solve is

M (m, r)−m = 0 (26)

∂M

∂m
− ∂M

∂r

∂B
∂m
∂B
∂r

= 1 (27)

For d ≥ 3, the solution becomes unstable exactly at the point (rm, βm) computed through 24-25.

C. D=2

On a 2-dimensional square lattice, the DC solution is qualitatively different w.r.t. d ≥ 3 because the function
R (r) is logarithmically divergent for r → −1. In such case the maximum value at which the paramagnetic solution
exists (βp = 0.37693) corresponds to the point rp = −0.994843. The ferromagnetic solution turns out to be stable for
rm < r < 0 with rm = −0.99405, corresponding to βm = 0.388448 (the point (rm, βm) is found as a solution of Eq.
26-27). Therefore there exists a temperature interval βp < β < βm in which no stable DC solution can be found.

For finite size lattices the DC solution can still be found numerically, showing similar performances with respect
to CVM on both ferromagnetic and spin glass models (Fig. 1). However, especially on ferromagnetic systems DC
solution is numerically unstable close to the transition βp. One way to reduce numerical instability in such region
is to decrease the interpolation parameter ρ, typically fixed to 1 for DC. Neverthless, the meaning of the DC(ρ)
approximation in this case is not clear.

One possible way to improve the DC approximation is to take into account small loops explicitly. In particular,
we consider a gaussian family of approximating distribution factorized over plaquettes of 2dspins (d is the number of
dimensions). Plaquettes are chosen in such a way that there is no overlap between links in the gaussian distribution.
In this way, DC equation are exact on a plaquette tree with only site-overlaps. Results are shown in 1: plaquette-DC
(pDC) is in general slighty better than standard DC and comparable to CVM.

D. Finite size corrections

In homogeneous models the gaussian covariance matrix can be diagonalized analytically even for a finite size lattice
(of size L). Therefore we can compute finite size corrections to the DC solution at a fixed β, as shown in the following
plot:

DC solution turns out to be in good agreement with MC results; on the other hand, BP does not take into account
at all finite size corrections because of the local character of the approximation.



8

6 8 10 12 14
L

0.225

0.250

0.275

0.300

0.325

0.350

0.375

⟨x
ᵢxⱼ
⟩ᵢ⟨

xᵢ⟩
⟨x
ⱼ⟩

Dⱼ3⟨ᵢ⟨βⱼ0.215
MC
⟩P
DC

Figure 2. Finite size correction of equilibrium correlations at β = 0.215 on a 3-dimensional cubic lattice of size L ∈ {5, ..., 15}
with h = 0, J = 1. Comparison of BP and DC solutions with Monte-Carlo simulations.

E. Scaling of βc in the high dimensional limit

Starting from the expression of the critical inverse temperature βp it is possible to compute the 1/d expansion in
the high-dimensional limit. We recall the expression of the critical temperature (23):

βp =atanh
(

1− 1

z

)
− z

(
z − 1

2z − 1

)
+

z

2d

where z = 2dRd (−1).
Defining x = 1/d and expanding around x = 0 we get:

1

2dβp
= 1− 1

2
d−1 − 1

3
d−2 − 13

24
d−3 − 979

720
d−4 − 2039

480
d−5 +O

(
d−6

)
.

This expansion is exact up to the d−4 order (the correct coefficient of d−5 is − 2009
480 ) Fisher and Gaunt [3]. For

comparison, Mean Field is exact up to the d0 order, Bethe is exact up to the d−1 order, and Loop-Corrected Bethe
and Plaquette-CVM are exact up to the d−2 order.

For the sake of completeness, we report the series expansion of Rd (−1) around x = 0:

Rd (−1) =
1

2
d−1 +

1

4
d−2 +

3

8
d−3 +

3

4
d−4 +

15

8
d−5 +

355

64
d−6 +

595

32
d−7 +O

(
d−8

)
III. MULTISTATES VARIABLES

The method we presented is based on the possibility to fit the probability values of a discrete binary distribution
with the density values of a univariate gaussian on the same support. When the model variables take q > 2 values
there is no general way to fit single-node marginals with a univariate Gaussian distribution. One possible solution is
to replace each q-state variable xi with a vector of q (correlated) binary variables si, where siα ∈ {−1, 1} ∀α = 1, .., q,
with the following constraint:

q∑
α=1

siα = 2− q
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In this way, for each node i, only configurations of the type si = {1,−1, ...,−1} (and its permutations) are allowed, in
order to select just one of the q states for xi. For each factor node a, such constraints can be implemented by adding
a set of delta functions in the original probability distribution, which is now a function of the new binary variables
si. The correlations induced by these constraints on the spin components of each si introduce short loops even when
the original graph is a tree. Neverthless, it is still possible to write a set of matching equation similar to the 2-states
case which is exact on trees.

[1] With the apparent ambiguity of the appearance of δk terms in p (x), which is actually really not as problematic as it may
seem as the distribution is defined up to a normalization factor; more precisely consider

p (x) = lim
σ→0

1

Zσ

∏
i∼j

ψ̂σ,ij (xi, xj)

for factors ψ̂σ,ij (xi, xj) = ψij (xi, xj) (N (xi; 1, σ) +N (xi;−1, σ)) (N (xj ; 1, σ) +N (xj ;−1, σ)).
[2] P. J. Davis, Circulant Matrices (1979).
[3] M. E. Fisher and D. S. Gaunt, Phys. Rev. 133, A224 (1964).


