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Multi-level Diversity Promotion Strategies
for Grammar-guided Genetic Programming

Alberto Bartolia, Andrea De Lorenzoa, Eric Medveta, Giovanni Squillerob

aDIA, University of Trieste, Trieste, Italy
bPolitecnico di Torino, Torino, Italy

Abstract

Grammar-guided Genetic Programming (G3P) is a family of Evolutionary Algorithms that can evolve programs in
any language described by a context-free grammar. The most widespread members of this family are based on an
indirect representation: a sequence of bits or integers (the genotype) is transformed into a string of the language (the
phenotype) by means of a mapping function, and eventually into a fitness value. Unfortunately, the flexibility brought
by this mapping is also likely to introduce non-locality phenomena, reduce diversity, and hamper the effectiveness of the
algorithm. In this paper, we experimentally characterize how population diversity, measured at different levels, varies for
four popular G3P approaches. We then propose two strategies for promoting diversity which are general, independent
both from the specific problem being tackled and from the other components of the Evolutionary Algorithm, such as
genotype-phenotype mapping, selection criteria, and genetic operators. We experimentally demonstrate their efficacy in
a wide range of conditions and from different points of view. The results also confirm the preponderant importance of
the phenotype-level analyses in diversity promotion.

Keywords: Representation, Grammatical Evolution, CFGGP, SGE, WHGE

1. Introduction

Grammar-guided Genetic Programming (G3P) may be
considered as a natural extension of the original paradigm
introduced by Koza in late 1980s [1]. Differently from
Genetic Programming (GP), G3P exploits a grammar in
order to ensure that all the individuals in the population
are syntactically valid.

While the embryonic idea of using a grammar may be
attributed to Koza himself [2], the first line of research that
can be sensibly labeled “grammar-guided” dates back to
mid-1990s, with Whigham’s Context-free Grammar Ge-
netic Programming (CFGGP) [3] and Geyer-Schulz’s rule-
based expert system [4]. Here, phenotypes are still trees,
but are derived according to an arbitrary context-free
grammar and genetic operators are designed to preserve
this representation.

Grammatical Evolution (GE), probably the best known
G3P approach, has been proposed by Ryan, Collins, and
O’Neill in 1998 [5]. It encodes individuals into genomes
as unstructured, variable-length sequences of bits grouped
in codons, eventually interpreted in the context of a user-
supplied grammar. More specifically, the integer values of
the codons are used to select among the list of possible
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derivations in a grammar in the Backus-Naur form. This
procedure is a mapping from the individual represented as
a bit string to the resulting string of the language defined
by the grammar—GE is thus said to adopt an indirect
representation of the individuals.

The main advantage of G3P is apparent: changing the
base grammar allows to exploit the very same Evolution-
ary Algorithm (EA) for virtually any possible problem
without modification. On the other hand, the mapping
procedure which characterizes GE has been shown to im-
pair the evolution process [6]. The locality of a representa-
tion describes how much small genotypic changes caused
by the application of the genetic operators correspond to
small changes in the fitness of individuals. It has been
widely acknowledged by scholars that “high-locality rep-
resentations preserve the difficulty of a problem and phe-
notypically easy problems also remain genotypically easy.
Using low-locality representations is equivalent to random-
izing the search process.” [7]. GE may exhibit a remark-
able low-locality, as the change of a single bit in the genome
is likely to affect many different derivations and, eventu-
ally, to result in a largely different fitness.

In the past 25 years literature reported several successful
application of GE [8], together with scholarly articles that
scrutinize its peculiar evolutionary processes [9, 10, 11, 6].
Among these, a few proposals arose for a different map-
ping which could address the limitations of the original GE
mapping, e.g., πGE [12], SGE [13], WHGE [14]. A crucial
problem that emerged from such studies is that mapping
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may impact on the population diversity : in particular, the
tendency to map different genotypes to the same pheno-
type may result in many individuals being the same and,
eventually, may lead to premature convergence [15, 6, 16].
While the lack of diversity is not necessarily a problem
per se, it is frequently associated with poor performances.
Diversity is not the end goal of an EA, but promoting it
can be an important mean goal.

In this paper, we address this topic in depth. We first
analyze experimentally four G3P approaches (CFGGP,
GE, SGE, and WHGE—see Section 3) in order to under-
stand if and how they are affected by lack of diversity.
Then, we propose two general strategies for promoting di-
versity in G3P, one being an adaptation of an existing di-
versity promotion strategy—namely deterministic crowd-
ing [17]—to G3P. Both strategies are independent from
the problem tackled and the details of the fitness func-
tion. Not being dependent on the structure of the solution
nor on the actual grammar, the strategies are indepen-
dent from the genotype-phenotype mapping. Moreover,
the two diversity promotion strategies are not influenced
by the characteristics of the EA, such as the selection cri-
teria or the genetic operators. They may be set to operate
at a very specific level, namely, genotype, phenotype, or
fitness. Beyond the goal of improving G3P effectiveness,
and hence further extend its applicability, our study aims
at better understanding how diversity promotion may im-
pact on EAs based on indirect representations.

We performed a thorough experimental analysis based
on 8 benchmark problems and 4 G3P variants, differing
in the representation of the individuals. We show that
the considered G3P variants indeed have an issue of lack
of diversity and we also show that diversity promotion al-
ways results in an improvement of the search effectiveness:
regardless the G3P variant being used and the problem
being tackled, some of the diversity promotion strategies
here considered always lead to a better final best fitness
(on average). The experimental results suggest that simi-
lar mechanisms could be beneficial for different EAs.

A brief and preliminary study along the same line of
this paper has been presented in [18]. Here, we extend
the cited paper in several ways: (a) we provide a much
deeper discussion of the diversity promotion strategy pro-
posed in [18] and consider another strategy based on the
adaptation of deterministic crowding to G3P; (b) we ap-
ply the two strategies to 4 variants of G3P (CFGGP, GE,
SGE, WHGE), instead of only on GE; (c) we perform a
much deeper experimental evaluation considering a larger
set of benchmark problems and analyzing the results in
greater detail.

The remainder of the article is organized as follows. In
Section 2, we survey the relevant literature with respect
to diversity promotion. In Section 3, we give a common
formulation of G3P techniques and then describe in de-
tails the 4 different considered G3P variants. In Section 4,
we introduce the two strategies for diversity promotion in
G3P. In Section 5, we describe the experimental evaluation

and discuss the results. Finally, in Section 6, we draw the
conclusions.

2. Related works

The lack of diversity frequently limits the effectiveness
of evolutionary algorithms: Holland himself analyzed the
issue, talking about the lack of speciation in his seminal
works [19]. It is, however, an endemic phenomenon, pos-
sibly rooted in the very use of a fitness function instead
of a real environment [15]. A set of diverse individuals is
not the final goal, yet, most scholars agree that enforcing
a higher level of diversity within the population may be
beneficial for the overall evolutionary process.

The lack of diversity is not common in nature. On
the contrary, Darwin called the “divergence of charac-
ter”, exactly the opposite phenomenon, a cornerstone of
his theory—variations increasing diversity are likely to be
favored as the more the co-inhabitants of an area differ
in their ecological requirements, the less they will com-
pete [20]. Inspired by this reasoning, scholars tried to ar-
tificially limit the competition between individuals, artifi-
cially partitioning the environment to increase the global
diversity. The resulting niching methods have been demon-
strated among the most effective mechanisms to promote
diversity in evolutionary computation [17, 21].

Several type of niching have been proposed in literature,
some under different names. The common element is that
the opportunities to generate offspring for an individual
are influenced by the number of other individuals occupy-
ing the same “niche”: the more a spot in the search space
is crowded, the less chances its occupants get. But, apart
from the core idea, details differ greatly. Niching meth-
ods are usually divided into two broad classes: explicit
neighborhood methods, that require an explicit definition
of the size of a niche through a parameter called niche
radius; and implicit neighborhood methods, where the al-
gorithm requires no information about the search space.
The former are applicable whenever the difference between
individuals can be sensibly measured: all solutions differ-
ing less than a given threshold from the current one are
considered part of the same niche. The latter may be ex-
ploited whether the similarity can be directly inferred, for
instance the offspring will occupy the same niche of the
parents.

A crucial component of any explicit neighborhood
method is the distance metric used, which is necessary for
quantifying the difference between individuals and deter-
mining whether two individuals belong to the same niche.
In this respect, most methods work at the level of geno-
types as at this level it is typically easy to define a distance
metric, e.g., Hamming distance for bit strings. On the
other hand, such methods are effective only when the dis-
tance between genotypes is related to the distance between
phenotype (i.e., when the locality principle is satisfied) but
such a relation is often very feeble.
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Many application domains have benefited from distance
definitions able to capture an application-specific similar-
ity criterion more effectively than a generic distance defi-
nition [22, 23, 24] while other domains have instead ben-
efited of very general distance definitions rooted on Kol-
mogorov complexity [25, 26]. Approaches of this kind are
unlikely to be useful in the GE framework because of the
very same nature of the genotype-phenotype GE map-
ping procedure, that often exhibits a tendency of map-
ping multiple different genotypes on the same phenotype.
This important phenomenon is called degeneracy, and it
has been scrutinized since the very start of this research
line [27, 28, 29, 30, 31, 32, 33, 34, 35]. Degeneracy makes
even more apparent the difference between diversity at the
two levels [36]. Mutations may be silent, or neutral, as they
may change the genotype without affecting the phenotype;
and parents that exhibit the same phenotype could pro-
duce different offspring, as they might not share the same
genotype.

Diversity may be increased also by reducing the se-
lective pressure, i.e., by acting on the exploration-
exploitation trade-off which is common to all population-
based EAs [37]. A well known way of reducing or increas-
ing the selective pressure is to tune or modify the selec-
tion criteria [38]. We here focus more on the interaction
between diversity and the representation: diversity pro-
motion strategies based on different EA components, such
as the selection criteria, might indeed be complementary
to the one we propose.

Finally, the increase of diversity may be a side-effect of
modifications on EA components which pursue different
goals. In [39] GOMEA, a model-based EA which employs
a particular genetic operator without a selection phase,
is applied to GE, SGE, and WHGE: the authors obtain
good results and report that the improvement might be ex-
plained also by the increase in diversity. In [40], it is shown
that different population initialization procedures in GE
may result in different degrees of diversity, measured, as
in our work, as the fraction of unique phenotypes. Simi-
larly, in [41] an experimental analysis is presented of the
impact of different grammar-related design choices (i.e.,
not related to the EA itself) on several aspects of GE,
including diversity.

3. G3P

In this section, we describe the G3P variants ana-
lyzed in the experimental assessment. We considered
four variants: Context-free grammar Genetic Program-
ming (CFGGP) [42], standard Grammatical Evolution
(GE) [5], Structured Grammatical Evolution (SGE) [13,
43], and Weighted Hierarchical Grammatical Evolution
(WHGE) [44, 14]. We describe these proposals in terms
of a common framework, presented in Section 3.1, where
a fixed-size population is evolved iteratively.

All the variants are based on an indirect representation,
i.e., individuals are represented by a genotype and a pheno-

type, the latter being obtained from the former by means
of a strategy-specific mapping function1. Performances in
real-world applications are greatly influenced by the type
of representation adopted, but the choice of a specific en-
coding often arises from intuition and guesswork as proper
guidelines are not available. Our choice of the 4 variants
is arbitrary: however, we attempted to include approaches
with different base representations (bit and integer strings,
trees) and different mapping properties [44]. In particular,
we chose the original GE which uses bit strings, instead of
its later adaptations which use integer strings, because bit
strings—used since the seminal works of EC—are still the
encoding favored by scholars interested in the algorithms
themselves, in evolution dynamics, and in the phenotype-
genotype mappings [45].

The 4 variants are described in detail in sections 3.2–3.5.

3.1. Steady-State G3P

The Steady-State G3P (SSG3P) [46, 47] evolves a fixed
size population of npop individuals initially built accord-
ing to an initialization procedure InitPopulation(). The
population is evolved by iteratively applying one genetic
operator to one (mutation) or two (crossover) parent in-
dividuals: the resulting offspring is added to the popu-
lation and, in order to keep the population size fixed, a
corresponding number of individuals are then removed. In
details, the evolution occurs according to the following it-
erative procedure (also described in Algorithm 1):

1. A genetic operator is selected randomly between
crossover and mutation (GetOperator() function)
with probability pop,cross and 1−pop,cross, respectively.

2. The proper number of parents with respect to the
selected genetic operator are selected from the popu-
lation (parent selection function SelPar()).

3. The genetic operator is applied to the parent geno-
types, resulting in one or more new children geno-
types (Apply()) function): the children genotypes are
then mapped to phenotypes according to a genotype-
phenotype mapping (Map() function) and their fitness
is computed (Fitness() function).

4. The offspring are added to the population.

5. Until the population size is greater than npop, the
following steps are repeated: (i) one individual is se-
lected from the population according to a removal se-
lection function SelRemoval() and (ii) the selected
individual is then removed from the population.

The procedure is repeated for a fixed number of times,
i.e., a fixed number of individuals are born by applying

1Although CFGGP does not explicitly use an indirect represen-
tation, it does fit our general treatment by considering the mapping
function as the identity function

3



the genetic operators. Conventionally, the termination cri-
terion is expressed in terms of a predefined number ngen
of generations, a generation consisting of npop births—the
procedure is hence iterated ngen times, until ngennpop in-
dividuals have been generated.

Algorithm 1 SSG3P evolution algorithm.

procedure Evolve()
I ← InitPopulation(npop)
n← 0
while n < ngennpop do

o← GetOperator(pop,cross)
Gp ← ∅
while |Gp| < Arity(o) do

(gp, pp, fp)← SelPar(I)
Gp ← Gp ∪ {gp}

end while
Gc ← Apply(o,Gp)
for all gc ∈ Gc do

pc ←Map(gc)
fc ← Fitness(pc)
I ← I ∪ {(gc, pc, fc)}

end for
while |I| > npop do

I ← I \ {SelRemoval(I)}
end while
n← n+ |Gc|

end while
end procedure

The procedure described above is agnostic to the
specific functions invoked for population initialization
(InitPopulation()), application of a genetic operator
(Apply()), and so on. A common choice for selecting the
parents (SelPar())) is tournament selection while a com-
mon choice for selecting the individual to remove from the
population (SelRemoval()) is worst fitness (i.e., trunca-
tion selection). Concerning the genotype-phenotype map-
ping function Map(), in this study we considered 4 among
the most significant and recent variants that we describe
in the following sections.

In all the variants, the phenotype is a string of the
language L(G) defined by a context-free grammar (CFG)
G = (N,T, s0, R), where N is the set of non-terminal sym-
bols, T is the set of terminal symbols (with T ∩ N = ∅),
s0 ∈ N is the starting symbol, andR is the set of derivation
rules. Each derivation rule describes how a non-terminal
symbol of N may be replaced by a sequence of symbols of
N ∪ T : the application of a rule, i.e., the actual replace-
ment operation, is called derivation. The subset of rules
for a symbol s is denoted by Rs.

Figure 1 shows an example CFG using the Backus-Naur
Form (BNF): this notation specifies, using a common con-
vention, all the relevant information about the grammar.
Each line specifies all the derivation rules for a given non-
terminal, shown before ::= . Then, the possible deriva-

〈expr〉 ::= ( 〈expr〉 〈op〉 〈expr〉 ) | 〈num〉 | 〈var〉
〈op〉 ::= + | - | * | /
〈var〉 ::= x | y
〈num〉 ::= 0.1 | 1 | 10

Figure 1: A CFG in the Backus-Naur Form (BNF) for mathematical
expressions.

tions are separated by | . The starting symbol s0 = 〈expr〉
is the non-terminal symbol on the left-side of the first line.
The set R〈expr〉 ⊂ R of derivation rules for the non-terminal
〈expr〉 are: 〈expr〉 → ( 〈expr〉 〈op〉 〈expr〉 ), 〈expr〉 → 〈num〉, and
〈expr〉 → 〈var〉. Similarly, the BNF of Figure 1 specifies the
subsets R〈op〉, R〈var〉, and R〈num〉.

3.2. Context-free grammar Genetic Programming

CFGGP [42] is one of the first approaches for G3P, and
it is still quite popular. In CFGGP the genotype g is a
derivation tree consistent with the grammar G in which
leaf nodes are terminals s ∈ T , non-leaf nodes are non-
terminals s ∈ N , the root is the starting symbol s0, and
a node is child of another node if the former has been
inserted in the phenotype upon the derivation of the latter.

The Map() function simply consists in concatenating
the leaf-nodes of g from the left to the right, obtaining
hence a string p ∈ L(G).

Concerning the initialization procedure
(InitPopulation()), we considered the Ramped Half-
and-Half method [48] in which half of the genotypes
are built with the “grow” method and half with the
“full” method. Both methods generate derivation trees
randomly—by taking into account the CFG—and use a
parameter d: with the “grow” method, the tree g is such
that at least one leaf-node is at depth d, whereas other
leaf-nodes are at depth lower than or equal to d; with the
“full” method, all leaf-nodes are at depth d.

Concerning the application of genetic operators
(Apply()), the genetic operators of CFGGP must ensure
that their application results in valid derivation trees. The
mutation operator consists in (i) randomly choosing a non-
leaf node corresponding to a non-terminal s ∈ N and
(ii) replacing the subtree starting in the chosen node with a
tree built with the “grow” method and a maximum subtree
depth of d−ds, where ds is the depth of the replaced node.
The crossover operator consists in (i) randomly choosing
two non-leaf nodes in the two parent trees such that they
correspond to the same non-terminal s ∈ N and (ii) ex-
changing the corresponding subtrees. The second step is
performed only if both the resulting trees have (after the
exchange) a depth lower than or equal to d, otherwise, the
first step is repeated.

3.3. Standard Grammatical Evolution

In standard GE [5], the genotype is a bit string which
is viewed as a string of integers obtained by decoding sub-
strings of n (usually set to n = 8) consecutive bits: each
integer is called codon.
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The Map() function for GE consists in repeating the
following steps, starting with the phenotype p = s0, a
counter i = 0, and a counter w = 0.

1. Derive the leftmost non-terminal s in p using the j-
th derivation rule (zero-based indexing) in Rs ⊂ R,
where j = gi mod |rs|, i.e., the remainder of the divi-
sion between the value gi of the i-th codon (zero-based
indexing) and the number |rs| of options in rs.

2. Increment i and compare it against the number of

codons |g|n : if i > |g|
n , set i = 0 and increment w. If w

is greater than a predefined threshold nw, then abort
the procedure and return a null phenotype.

3. If p contains at least one non-terminal, return to
step 1, otherwise end.

The above steps are repeated until p does not contain any
non-terminal symbol.

The re-use of the genotype, triggered by the first condi-
tion at step 2 and required to cope with recursive CFGs,
that is, with infinite languages, is called wrapping ; a max-
imum of nw wrappings are allowed. If nw wrappings are
executed and the phenotype p still contains non-terminal
symbols, Map(g) returns a null (also known as invalid)
genotype which is then conventionally associated with the
worst possible fitness value.

GE may work together with any genetic operator suit-
able for bit strings: common choices are the bit flip muta-
tion and the two-points crossover.

3.4. Structured Grammatical Evolution

In the recently proposed SGE [13, 43] the genotype con-
sists of fixed-size lists (genes) of integers: each list corre-
sponds to a non-terminal symbol and each integer in the
list determines a single derivation of that non-terminal.
SGE lacks a mechanism for reusing the genotype: instead,
the ability of coping with infinite languages is obtained by
working with a non-recursive grammar G′ derived auto-
matically from the input grammar G. For the latter trans-
formation, the user must provide a value for the parameter
dmax which represents the maximum level of recursion of
derivation rules.

In detail, the genotype g is composed of |N | genes and
each gene gs, with s ∈ N a non-terminal of G, contains a
number of codons determined by the grammar and dmax:
each codon assumes values in {0, . . . , |Rs| − 1}, |Rs| being
the number of derivation rules for s.

The Map() function for SGE consists in repeating the
following steps, starting with the phenotype p = s0 and a
counter is = 0 for each non-terminal s ∈ N .

1. Expand the leftmost non-terminal s in p by using the
gs,is -th derivation rule (zero-based indexing) in Rs,
with gs,is denoting the value of the is-th codon (zero-
based indexing) in gs.

2. Increment is.

The above steps are repeated until p does not contain
any non-terminal symbol; Map() always returns a non-
null phenotype.

Differently than GE, SGE relies on genetic operators
which are tailored to the specific SGE representation. The
mutation operator consists in, for each codon, changing its
value to a new random value in the appropriate domain,
which differs from gene to gene, with a probability pmut.
The crossover operator exchanges the genes g1s , g

2
s of the

parent genotypes, for each non-terminal s in a randomly
chosen subset N ′ ⊆ N : i.e., exchange of genetic mate-
rial between the parents occurs for either all or none of
the codons in a gene. SGE mutation and crossover resem-
ble classic mutation and crossover operators: we remark,
however, that they do take into account the peculiar SGE
representation.

The population initialization procedure consists in set-
ting random values, chosen with uniform probability in the
appropriate domain, for each codon.

3.5. Weighted Hierarchical Grammatical Evolution

WHGE [44, 14] is the most recent variant of G3P. In
WHGE, as in GE, the genotype is an unstructured bit
string: as a consequence, WHGE does not impose any
constraint on the population initialization procedure, nor
on the genetic operators (i.e., any genetic operator which
works with bit strings may be used with WHGE).

The Map() function of WHGE operates in two phases:
in a first phase, the genotype g is transformed in a deriva-
tion tree by means of a recursive mapping function which
we here denote with ReMap(); in a second phase, the
derivation tree is transformed in the phenotype p ∈ L(G)
by concatenating the leaf-nodes of the derivation tree from
the left to the right.

The recursive mapping function ReMap(s, g′) takes as
arguments a symbol s ∈ N ∪ T and a bit string g′ and
returns a derivation tree. The function is first called with
arguments being the starting symbol s0 and the genotype
g: if s ∈ T , Map(s, g′) returns a tree composed of the only
symbol s. Otherwise, the function consists in the following
steps.

1. If |g′| ≥ |rs|, then: (i) split g′ in |rs| substrings of
equal length or, if not possible, in a way such that
the variance of the lengths is the lowest; (ii) find the
index i for which the relative cardinality (i.e., ratio
between the count of bits set to 1 and the number of
all bits) of the i-th substring of g′ is the largest or, in
case of tie, the lowest index among ties. Otherwise,
i.e., if |g′| < |rs|, choose the i-th derivation rule in Rs

which leads to a sequence of terminals in the lowest
number of derivations starting from s.

2. Split g′ in n non-overlapping portions whose length
are proportional to es1 , . . . , esn , where s1, . . . , sn are
the symbols resulting from the derivation of s accord-
ing to the i-th derivation rule in Rs and esj is the
expressive power of the symbol sj (see below).
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3. Build a tree t with s as root and, as children, the trees
returned by calling ReMap(sj , g

′
j) for each symbol sj

and corresponding substring g′j obtained at the pre-
vious step.

4. Return the tree t.

The expressive power es is computed just once for each
non-terminal s ∈ N at the beginning of the evolution.
It corresponds to the number of different derivation trees
which can be built with s as root: however, since es could
be infinite with recursive grammars, a maximum depth nd
is imposed while computing es, nd being a parameter of
WHGE.

Similarly to CFGGP and SGE, in WHGE Map() always
returns a non-null phenotype.

4. Strategies for promoting diversity

We here describe the two strategies for diversity promo-
tion: Partitioned Population G3P (PPG3P) and Deter-
ministic Crowding G3P (DCG3P). Both are multi-level,
in the sense that they can be configured to work at the
level of the genotype, phenotype, or fitness. The former
has been presented in [18], the latter is based on the orig-
inal idea deterministic crowding [17], but adapted to the
case of G3P.

4.1. Partitioned Population G3P

PPG3P, the first proposed enhancement, requires an
equivalence relation between pairs of individuals (Eq()
function in the description below). We explored 3 different
options consisting in considering two individuals equiva-
lent when they have: the same genotype, the same pheno-
type, the same fitness value. PPG3P partitions the popu-
lation in sets of individuals according to the chosen equiva-
lence relation. We call such sets niches. Whenever an indi-
vidual has to be selected for reproduction, first a represen-
tative individual is selected from each niche (function Par-
Rep() below) and then another selection criterion is ap-
plied on the resulting set of representatives (SelPar(), like
in the SSG3P strategy presented in Section 3.1). Similarly,
whenever an individual has to be removed from the pop-
ulation, first a representative individual is selected from
each niche (function RemovalRep() below) and then an-
other selection criterion is applied on the resulting set of
representatives (SelRemoval(), like in SSG3P).

In detail, the evolution in PPG3P occurs according to
the following iterative procedure (also described in Algo-
rithm 2). Initially, a set of npop individuals is built and
partitioned in a set I of sets of individuals, according to
the chosen equivalence relation Eq()—i.e., all individuals
in the same set are equivalent among themselves and they
are not equivalent to any other individual in other sets.
Then, the following steps are iterated.

1. The genetic operator is selected randomly between
crossover and mutation (GetOperator() function)
with probability pop,cross and 1−pop,cross, respectively.

2. The proper number of parents with respect to the
selected genetic operator are selected, each one as fol-
lows:

(a) the set I ′ of representatives is built by select-
ing one individual from each partition in I, ac-
cording to a parent representative criterion Par-
Rep();

(b) the parent is selected in I ′ according to the par-
ent selection criterion SelPar().

3. The genetic operator is applied to the parent geno-
types, resulting in one or more new children geno-
types: the children genotypes are then mapped to
phenotypes according to the Map() function and their
fitness is computed using the Fitness() function.

4. Each one of the new individuals is added to the proper
partition Ic in I by using the equivalence relation
Eq()—possibly, Ic is a new partition, containing only
the new individual, and is added to I. If the size |Ic| of
the modified partition is larger than a predefined value
npart, the exceeding individuals are removed accord-
ing to a representative removal criterion Removal-
Rep().

5. If the number |I| of partitions is larger than npop, one
partition is removed as follows:

(a) the set I ′ of representatives is built by selecting
one individual from each partition in I, accord-
ing to the representative removal criterion Re-
movalRep();

(b) an individual i is selected in I ′ according to the
removal selection criterion SelRemoval();

(c) the partition I containing i is removed from I.

As for SSG3P, the iterative procedure of PPG3P is re-
peated until ngennpop individuals have been generated.

It can be seen that the overall number
∑

I∈I |I| of indi-
viduals is at most npartnpop—i.e., PPG3P may maintain
a population larger than SSG3P. However, in both cases
exactly ngennpop births occur during the evolution: hence
PPG3P has no advantage over SSGP in these terms.

PPG3P requires a parameter npart representing the
maximum size allowed for each niche. With npart = 1,
PPG3P corresponds to a simple enforcement of diversity
in the population: i.e., no individuals can exist in the pop-
ulation such that they are equivalent according to Eq().
In that case, the ParRep() and RemovalRep(c)riteria
play no role in the evolution.

The other (functional) parameters of PPG3P are Eq(),
ParRep() and RemovalRep(). As observed above, we
explored 3 options for Eq() consisting in considering two
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Algorithm 2 PPG3P evolution algorithm.

procedure Evolve()
I ← InitPopulation(npop)
I ← PartitionPopulation(I,Eq)
n← 0
while n < ngennpop do

o← GetOperator(pop,cross)
Gp ← ∅
while |Gp| < Arity(o) do

I ′ ← ∅
for I ∈ I do

I ′ ← I ′ ∪ParRep(I)
end for
(gp, pp, fp)← SelPar(I ′)
Gp ← Gp ∪ {gp}

end while
Gc ← Apply(o,Gp)
for all gc ∈ Gc do

pc ←Map(gc)
fc ← Fitness(pc)
if ∃Ic ∈ I,∃i ∈ Ic : Eq((gc, pc, fc), i) then

Ic ← Ic ∪ {(gc, pc, fc)}
while |Ic| > npart do

Ic ← Ic \RemovalRep(Ic)
end while

else
I ← I ∪ {{(gc, pc, fc)}}

end if
end for
while |I| > npop do

I ′ ← ∅
for I ∈ I do

I ′ ← I ′ ∪RemovalRep(I)
end for
i← SelRemoval(I ′)
I ← I \ {I ∈ I : i ∈ I}

end while
n← n+ |Gc|

end while
end procedure

individuals equivalent if they have the same genotype, or
phenotype, or fitness. We remark that in the three cases
all the individuals in the same niche have the same fitness,
as long as the fitness computation and mapping functions
are deterministic.

Concerning the parent representative criterion Par-
Rep(), we explored 5 options:

Uniform (U) one random individual is selected with uni-
form probability;

Youngest (A−) the youngest individual is selected;

Oldest (A+) the oldest individual is selected;

Shortest (L−) the individual with shortest phenotype is
selected;

Longest (L+) the individual with longest phenotype is
selected.

A− and A+ consider the age as the difference between the
current generation index n

npop
and the generation index

in which the individual was born. L− and L+ options
consider the length of the phenotype, i.e., of the string of
the language L(G). All the options with the exception of U
may result in a tie, when applied: in that case, we choose
a random individual (with uniform probability) among the
ties.

The 3 different options for Eq() can be combined arbi-
trarily with the 5 different options for ParRep(), however
some combinations result in the same outcome. In particu-
lar, with Eq() operating on the genotype, all the 5 options
are equivalent, since the genetic operators will be applied
on the same genotype, regardless of the chosen option:
we hence considered only the U option, resulting in the
combination denoted PPG3P-G-U in the experimental as-
sessment. With Eq() operating on the phenotype, L− nor
L+ always result in a tie, because all the individuals have
the same length: we hence considered only U, A−, and
A+, resulting in the combinations denoted PPG3P-P-U,
PPG3P-P-A−, and PPG3P-P-A+. With Eq() operating
on the fitness, we considered all the 5 options resulting
in the combinations denoted PPG3P-F-U, PPG3P-F-A−,
PPG3P-F-A+, PPG3P-P-L−, and PPG3P-P-L+.

Finally, concerning the representative removal criterion
RemovalRep(), we found from preliminary experimenta-
tion that the impact of this component on the evolution is
negligible with respect to the other two components. We
decided to define RemovalRep() so as to select the oldest
individual in the niche.

4.2. Deterministic Crowding G3P

Deterministic crowding is a variant of the original
steady-state evolutionary algorithm that aims at promot-
ing diversity by making the offspring compete with the
parents for survival [17, 15]: a child replaces a parent
only if fitter. The general working scheme of determin-
istic crowding does not specify how to decide which of
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the offspring replaces which parent, but assumes that a
similarity measure is used [17]. In this section we de-
scribe our adaptation of this strategy to the case of indirect
representation, that we call Deterministic Crowding G3P
(DCG3P). We make each child compete with the closest
parent, the distance being measured at the level of geno-
type, or phenotype, or fitness. DCG3P thus requires a
predefined distance definition between pairs of individuals
(Dist() function in the description below).

The evolution algorithm is as follows (Algorithm 3). Af-
ter the initialization of the population composed of npop
individuals, the following steps are iterated.

1. The genetic operator is selected randomly between
crossover and mutation (GetOperator() function)
with probability pop,cross and 1−pop,cross, respectively.

2. The proper number of parents with respect to the se-
lected genetic operator are selected from the popula-
tion, according to the parent selection function Sel-
Par().

3. The genetic operator is applied to the parent geno-
types, resulting in one or more new children geno-
types: the children genotypes are then mapped
to phenotypes according to the genotype-phenotype
mapping function Map() and their fitness is com-
puted using the Fitness() function.

4. Each child is compared to the closest parent, the dis-
tance being measured by means of a function Dist().
If the child is fitter than the closest parent, than the
child is added to the population, the parent is removed
from the population and will not be considered when
choosing the closest parent for next children. Other-
wise, if the child is not fitter than the closest parent,
then the child is not added to the population.

The iterative procedure is repeated until ngennpop individ-
uals have been generated, much like SSG3P and PPG3P.

Concerning the distance function Dist() for determining
the closest parent, we explored 3 options:

Genotype (G) Hamming distance among the genotypes
of the two individuals (denoted DCG3P-G in the ex-
perimental assessment);

Phenotype (P) edit distance among the phenotypes (i.e,
strings of the language L(G), denoted DCG3P-P);

Fitness (F) euclidean distance among the fitness values
(i.e., |fc − fp|, denoted DCG3P-F).

5. Experimental evaluation

We performed experiments in two phases: first, in order
to experimentally verify to which degree the lack of diver-
sity is an issue in existing G3P approaches, we performed
a set of experiments with SSG3P and measured the diver-
sity at the level of genotype, phenotype, and fitness; then,

Algorithm 3 DCG3P evolution algorithm.

procedure Evolve()
I ← InitPopulation(npop)
n← 0
while n < ngennpop do

o← GetOperator(pop,cross)
Gp ← ∅
while |Gp| < Arity(o) do

(gp, pp, fp)← SelPar(I)
Gp ← Gp ∪ {gp}

end while
Gc ← Apply(o,Gp)
for all gc ∈ Gc do

pc ←Map(gc)
fc ← Fitness(pc)
(gp, pp, fp)← Closest((gc, pc, fc), Gp,Dist)
if fc > fp then

I ← I \ {(gp, pp, fp)}
Gp ← Gp \ {(gp, pp, fp)}
I ← I ∪ {(gc, pc, fc)}

end if
end for
n← n+ |Gc|

end while
end procedure

we compared the effectiveness of the two considered diver-
sity promotion strategies (PPG3P and DCG3P) against
the one of SSG3P, considered as a baseline.

5.1. Benchmark problems

We experimented on a set of 8 benchmark problems in-
cluding Boolean, synthetic, and symbolic regression prob-
lems. We assembled this set by considering the guidelines
for the evaluation of Genetic Programming approaches
proposed in [49, 50] and the peculiarity of G3P.

• MOPM-3: Multiple outputs parallel 3-bit multiplier.
The fitness is given by the number of errors among all
the input cases.

• Parity-5 and Parity-8: 5- and 8-bit parity. The fitness
is given by the number of errors among all the input
cases.

• KLandscapes-7: a tunable (here k = 7), GP-specific
benchmark [51]. We here adapted the fitness function
to be consistent with the other problems (the lower,
the better) by using f(t) = 1−f0(t), where f0(t) is the
original fitness function described in the cited paper.

• Text [6]: generation of the target string Hello world!,
where the fitness is the edit distance to the target
string.

• Keijzer6 [52]: symbolic regression of the function
f(x) =

∑x
i=1

1
i on 50 points evenly spaced in [1, 50]

(50 points evenly spaced in [1, 120] for validation)—
note that validation points do not include learning
points other than x = 1, even if they, in part, belong
to the same interval [1, 50].
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• Nguyen7 [53]: symbolic regression of the function
f(x) = log (x+ 1) + log (x2 + 1) on 20 points uni-
formly sampled in [0, 2].

• Pagie1 [54]: symbolic regression of the function
f(x, y) = 1

1+x−4 + 1
1+y−4 on 125 points resulting from

25 values evenly spaced in [−5, 5] for both x and y
(10 000 points resulting from 100 values evenly spaced
in the same interval for validation).

For the three symbolic regression problems, the fitness is
given by the sum of the absolute errors between target
and obtained values. The CFGs for all the benchmark
problems are shown in Figure 2.

5.2. Diversity in SSG3P

We first performed a set of experiments by using SSG3P
to provide the proper context and measure the diversity
at the three levels, namely genotype, phenotype, and fit-
ness. We quantify diversity of the population as the ratio
between the number of different instances of the corre-
sponding level and the population size—e.g., the pheno-
type diversity is the ratio between the number of differ-
ent phenotypes in the population and the population size.
Other means of measuring the population diversity could
have been used (e.g., [55]): we chose this metric for its
simplicity and wide adoption.

We performed 40 evolutionary runs for each problem
and each representation variant (CFGGP, GE, SGE, and
WHGE), with the evolutionary parameters shown in Ta-
ble 1. Concerning the representation related parameters,
we set d = 12 for CFGGP, n = 8, nw = 5, |g| = 1024 for
GE, dmax = 6 for SGE, and nd = 3, |g| = 1024 for WHGE:
we chose these values by considering common practices
and/or suggestions contained in the corresponding origi-
nal publications. All the diversity measurements reported
below are averaged across the 40 runs.

Table 2 provides the genotype, phenotype, and fitness
diversity in the initial and final population, i.e., after the
last generation. Diversity at the genotype level is not avail-
able for CFGGP, because in this case the representation is
direct.

The table shows that the initial genotype diversity is
very high (equal to 1 in all cases). The fact that the pheno-
type diversity is different than the genotype diversity and,
most importantly, significantly smaller is a clear indica-
tion of the degeneracy of the representation, i.e., multiple
different genotypes are mapped to the same phenotype.
Since the measure is obtained at the beginning of the evo-
lution, it cannot be attributed to the effect of selective
pressure, and the difference in diversity at the levels of
genotype and phenotype may only be explained in terms
of the genotype-phenotype mapping function. Table 2 also
shows that the phenotype diversity greatly varies among
problems and representations. The values for SGE and
WHGE are similar and related to the complexity of the
grammar of the problem: as suggested by common sense,

Table 1: Evolutionary parameters of SSG3P.

Population npop = 500

Pop. init.
Random (GE, WHGE, SGE)
Ramped half-and-half (CFGGGP)

Generations 50

Crossover op.
two-points same (GE, WHGE)
SGE crossover (SGE)
CFGGP crossover (CFGGP)

Gen. op. prob. pop,cross = 0.8, 1− pop,cross = 0.2

Mutation op.
bit flip w. pmut = 0.01 (GE, WHGE)
SGE mutation w. pmut = 0.01 (SGE)
CFGGP mutation (CFGGP)

Parent sel. tournament with size 5

Unsurv. sel. worst fitness

the more complex the grammar, the greater the diversity.
A similar trend is observed also for CFGGP, despite the
fact that this representation is direct. Interestingly, the
phenotype diversity for GE is much lower than the one
observed for the other representations in the Boolean prob-
lems. This fact may be explained by the fact that, because
of the structure of the corresponding CFGs, the event of
mapping to an invalid phenotype is much more frequent:
as a consequence, the number of different phenotypes is
particularly low. This finding is consistent with the obser-
vations of [6].

Concerning the fitness diversity, it can be seen that it
is, in all cases, much lower than the phenotype diversity.
Interestingly, WHGE difference between phenotype and
fitness diversity is lower than the one of SGE in many
cases—e.g., in the Text problem, WHGE scores 0.91 in
phenotype diversity and 0.14 in fitness diversity, whereas
SGE scores 0.93 and 0.01, respectively. This could suggest
that the differences among the phenotypes obtained with
WHGE allow for a wider range of fitness values than SGE,
that is, the two representations exhibit a different kind of
phenotype diversity which cannot be captured by simply
considering the rate of unique phenotypes. We argue that
more sophisticated techniques for analysis, possibly based
on visualization as the recently proposed DU map [16] or
on different measures of diversity as in [55], might make
more apparent those fine differences.

Table 2 also shows the final diversity, i.e., the diversity
measured at the end of the evolution. With SGE the phe-
notype diversity remarkably decreases for all problems, a
result that is coherent with its original aim of increasing
locality—with high locality, there is a high correlation of
the decrease of genotypic diversity and phenotypic diver-
sity. As a consequence, also the fitness diversity is very
low: in most problems, there is (on average across the 40
runs) only one unique phenotype at the end of the evolu-
tion. For the other representations, there is still a clear
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MOPM-3

〈o〉 ::= 〈e〉 〈e〉 〈e〉 〈e〉 〈e〉 〈e〉
〈e〉 ::= .or 〈e〉 〈e〉 | .xor 〈e〉 〈e〉 | .and 〈e〉 〈e〉 |

.and1not 〈e〉 〈e〉 | 〈v〉
〈v〉 ::= v1.1 | v1.2 | v1.3 | v2.1 | v2.2 | v2.3

Parity-5 and Parity-8

gft〈e〉 ::= .or 〈e〉 〈e〉 | .and 〈e〉 〈e〉 | .not 〈e〉 | 〈v〉
〈v〉 ::= v1 | v2 | v3 | v4 | v5 (and | v6 | v7 | v8)

Keijzer6

〈expr〉 ::= 〈op〉 〈expr〉 〈expr〉 | pre-op 〈expr〉 | 〈var〉
〈op〉 ::= + | *
〈pre-op〉 ::= uminus | 1/ | sqrt
〈var〉 ::= x

Nguyen7

〈expr〉 ::= 〈op〉 〈expr〉 〈expr〉 | pre-op 〈expr〉 | 〈var〉
〈op〉 ::= + | - | p/ | *
〈pre-op〉 ::= sin | cos | exp | plog
〈var〉 ::= x | 1.0

Pagie1

〈expr〉 ::= 〈op〉 〈expr〉 〈expr〉 | pre-op 〈expr〉 | 〈var〉
〈op〉 ::= + | - | p/ | *
〈pre-op〉 ::= sin | cos | exp | plog
〈var〉 ::= x | y | 1.0

KLandscapes-7

〈N〉 ::= 〈n〉 〈N〉 〈N〉 | 〈t〉
〈n〉 ::= n0 | n1
〈t〉 ::= t0 | t1 | t2 | t3

Text

〈text〉 ::= 〈sentence〉 〈text〉 | 〈sentence〉
〈sentence〉 ::= 〈Word〉 〈sentence〉 | 〈word〉 〈sentence〉 |

〈word〉 〈punct〉
〈word〉 ::= 〈letter〉 〈word〉 | 〈letter〉
〈Word〉 ::= 〈Letter〉 〈word〉
〈letter〉 ::= 〈vowel〉 | 〈consonant〉
〈vowel〉 ::= a | e | i | o | u
〈consonant〉 ::= b | c | d | ... | z
〈Letter〉 ::= 〈Vowel〉 | 〈Consonant〉
〈Vowel〉 ::= A | E | I | O | U
〈Consonant〉 ::= B | C | D | ... | Z
〈punct〉 ::= ! | ? | .

Figure 2: The grammars of the benchmark problems: in the symbolic regression problems, p/ and plog are the protected versions of the division
and the logarithm, respectively.

Table 2: Initial Diversity (ID) and Final Diversity (FD) with SSG3P, mean value across the runs.
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Repr. ID →FD ID →FD ID →FD ID →FD ID →FD ID →FD ID →FD ID →FD

G
en

o. CFGGP 1.00→0.45 0.49→0.66 0.52→0.59 0.43→0.00 0.49→0.02 0.52→0.06 0.4 →0.08 0.96→0.01
GE 1.00→0.99 1.00→0.98 1.00→0.99 1.00→0.91 1.00→0.91 1.00→0.94 1.00→0.95 1.00→0.98
SGE 1.00→0.05 1.00→0.02 1.00→0.02 1.00→0.07 1.00→0.12 1.00→0.13 1.00→0.02 1.00→0.14
WHGE 1.00→0.88 1.00→0.83 1.00→0.79 1.00→0.89 1.00→0.81 1.00→0.78 1.00→0.92 1.00→0.92

P
h

en
o.

CFGGP 1.00→0.45 0.49→0.66 0.52→0.59 0.43→0.00 0.49→0.02 0.52→0.06 0.4 →0.08 0.96→0.01
GE 0.00→0.00 0.06→0.05 0.07→0.07 0.36→0.07 0.43→0.04 0.46→0.05 0.35→0.1 0.95→0.01
SGE 1.00→0.02 0.81→0.00 0.83→0.00 0.5 →0.00 0.54→0.00 0.56→0.00 0.43→0.00 0.92→0.01
WHGE 1.00→0.63 0.79→0.37 0.81→0.25 0.62→0.1 0.66→0.04 0.64→0.23 0.44→0.64 0.91→0.02

F
it

n
es

s CFGGP 0.02→0.00 0.02→0.00 0.03→0.00 0.24→0.00 0.39→0.00 0.41→0.00 0.21→0.00 0.07→0.00
GE 0.00→0.00 0.00→0.00 0.00→0.00 0.20→0.05 0.34→0.03 0.36→0.01 0.18→0.1 0.11→0.00
SGE 0.03→0.00 0.02→0.00 0.01→0.00 0.32→0.00 0.42→0.00 0.44→0.00 0.18→0.00 0.01→0.00
WHGE 0.03→0.00 0.02→0.00 0.03→0.01 0.18→0.09 0.56→0.02 0.52→0.11 0.24→0.16 0.14→0.00
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decrease in diversity at all levels: WHGE exhibits the
largest phenotype and fitness diversities in the majority
of the problems.

Figure 3 illustrates the relation between phenotype di-
versity and best fitness during the evolution. There is
one plot for each problem; each plot contains four sets of
points (in four different colors), one set for each representa-
tion and one point for each generation—earlier generations
corresponding to smaller fitness values. The actual values
for the final best fitness are reported in the next section
(Table 4).

This figure makes the differences among representations
apparent. CFGGP and WHGE tend to exhibit a gradual
decrease of phenotype diversity and, at the same time, an
improvement of the fitness. GE and SGE have instead a
more varied behavior with several problems in which they
tend to exhibit a fast reduction in the diversity in the first
phase of the evolution. The figure also shows that GE
struggles to improve the best fitness in many of the prob-
lems, whereas SGE still manages to obtain good final best
fitness (with respect to the best value for each problem)
even in spite of the fast initial decrease in phenotype di-
versity.

Finally, Figure 4 shows how the genotype, phenotype,
and fitness diversity varies during the evolution, each curve
corresponding to the value of diversity averaged across all
problems (as well as across all runs). The figure essentially
confirms the findings of Table 2 and further highlights the
fact that the decrease in diversity in SGE is, at all lev-
els, faster than in the other representations. On the other
hand, Figure 4 shows that WHGE appears to be intrin-
sically more prone to the preservation of diversity. We
explain this finding by the fact that this mapping variant
exhibits low degeneracy [56] and redundancy [16] (i.e., it
tends to exploit the full genotype during the mapping):
this makes the chance rarer to obtain an identical individ-
ual upon the application of genetic operators.

In summary, it is fair to conclude that the results of
these first experimental phase suggest that there is an issue
concerning the lack of diversity in SSG3P. Although the
lack of diversity is not, alone, an evidence of a premature
convergence to a local optimum, we think that these results
suggest that there is an opportunity for improving the EA
effectiveness by employing a diversity promotion strategy,
i.e., they lay the ground for PPG3P and DCG3P.

5.3. Assessment of diversity promotion strategies

In this section we discuss the experimental assessment
of the diversity promotion strategies PPG3P and DCG3P.
We used the same procedure as in the previous section,
i.e., we measured diversity at the genotype, phenotype and
fitness level in 40 independent runs and provide the aver-
age values. We configured PPG3P with npart = 20, while
DCG3P has no parameters.

We considered all the 9 PPG3P variants and all the
3 DCG3P variants described in Section 4.1 and in Sec-
tion 4.2, respectively. PPG3P variants differ in whether
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the average values of the two respective indexes across the runs at
the corresponding generation.
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Figure 4: Average diversity in SSG3P during the evolution: values
are averaged across runs and problems.

the equivalence relation for partitioning the population in
niches is defined at the fitness, phenotype or genotype level
(F, P, G, respectively), and in the criterion for selecting
the parent within a niche (U, A−, A+, L−, L+). DCG3P
variants differ in the distance definition used for determin-
ing the closest parent, which may be either Euclidean dis-
tance between fitness values (F), or Edit distance between
phenotypes (P), or Hamming distance between genotypes
(G).

Table 3 provides the final diversity for each of the pro-
posed diversity promotion approaches, measured at the
genotype level (upper portion), phenotype level (middle
portion), and fitness level (lower portion). Diversity val-
ues are averaged across all problems, for ease of presen-
tation. The corresponding value in the absence of any
diversity promotion approach is provided in the topmost
row of each portion (SSG3P). Values in bold indicate the
highest diversity value for each column and each diversity
definition: for example, 0.996 in the SGE column, first
group of rows, is the highest diversity value measured at
the genotype level for SGE.

It can be seen that all the proposed diversity promotion
approaches are indeed highly beneficial, as they all tend
to improve diversity significantly in all cases, that is, irre-
spective of how diversity is quantified and irrespective of
the evolutionary strategy. There are very few exceptions
to this summary: PPG3P does not improve diversity with
CFGGP when measuring diversity at the phenotype level;
PPG3P-G-U does not improve diversity with WHGE when
measuring diversity at the genotype level. It can also be
seen that the improvement in diversity tends to be most
significant at the phenotype level. Concerning the diver-
sity improvement across the four mapping variants, the
improvement is particularly significant with SGE at all
the three levels—as shown in Section 5.2, SGE tends to
exhibit the lowest diversity values.

Table 4 provides the final best fitness separately for each
problem. This table consists of 4 portions, one for each of
the mapping variants considered; the topmost row of each
portion (SSG3P) corresponds to not using any of the pro-
posed diversity promotion approaches (i.e., SSG3P rows
corresponds to the experiments of the previous Section).

It can be seen that all the proposed diversity promotion
approaches tend to be beneficial also in terms of final fit-
ness values. The results in this case are more nuanced,
however. The final best fitness worsens with the KLand.-7
problem, with the MOPM-3 problem (only with CFGGP),
and with the Pagie1 problem (only with WHGE). For all
the other problems and mapping variants, one of the diver-
sity promotion strategies delivers a final best fitness value
better than the one obtained without diversity promotion.

A summary of the results concerning the final best fit-
ness is provided by Table 5, which shows the average
percentile rank of each combination of a strategy and a
mapping variant. More in detail, (i) we considered sep-
arately the 8 problems and, for each one, we obtained
the percentile rank of each evolutionary run among all
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Table 3: Final diversity at the three levels (genotype, phenotype,
fitness) for each diversity promotion strategy: values are averaged
across runs and problems.

Strategy CFGGP GE SGE WHGE

G
en

o
ty

p
e

SSG3P 0.257 0.959 0.068 0.85
PPG3P-G-U 0.201 0.756 0.075 0.79
PPG3P-P-U 0.222 0.966 0.324 0.884
PPG3P-P-A− 0.194 0.965 0.336 0.875
PPG3P-P-A+ 0.208 0.968 0.234 0.869
PPG3P-F-U 0.583 0.976 0.535 0.957
PPG3P-F-A− 0.541 0.969 0.404 0.952
PPG3P-F-A+ 0.517 0.973 0.427 0.94
PPG3P-F-L− 0.35 0.972 0.369 0.933
PPG3P-F-L+ 0.48 0.944 0.336 0.914
DCG3P-G 0.572 1 0.996 1
DCG3P-P 0.57 1 0.925 1
DCG3P-F 0.573 1 0.859 1

P
h

en
ot

y
p

e

SSG3P 0.257 0.048 0.006 0.293
PPG3P-G-U 0.201 0.057 0.008 0.295
PPG3P-P-U 0.222 0.186 0.098 0.42
PPG3P-P-A− 0.194 0.175 0.1 0.422
PPG3P-P-A+ 0.208 0.176 0.095 0.412
PPG3P-F-U 0.583 0.285 0.326 0.712
PPG3P-F-A− 0.541 0.259 0.227 0.703
PPG3P-F-A+ 0.517 0.307 0.318 0.649
PPG3P-F-L− 0.35 0.243 0.187 0.428
PPG3P-F-L+ 0.48 0.426 0.239 0.677
DCG3P-G 0.572 0.289 0.622 0.664
DCG3P-P 0.57 0.303 0.597 0.664
DCG3P-F 0.573 0.306 0.519 0.646

F
it

n
es

s

SSG3P 0.003 0.023 0.002 0.047
PPG3P-G-U 0.048 0.035 0.001 0.039
PPG3P-P-U 0.049 0.113 0.019 0.083
PPG3P-P-A− 0.051 0.107 0.02 0.092
PPG3P-P-A+ 0.05 0.116 0.022 0.093
PPG3P-F-U 0.102 0.142 0.074 0.158
PPG3P-F-A− 0.101 0.154 0.074 0.158
PPG3P-F-A+ 0.1 0.142 0.073 0.152
PPG3P-F-L− 0.102 0.139 0.072 0.145
PPG3P-F-L+ 0.1 0.152 0.073 0.156
DCG3P-G 0.144 0.097 0.091 0.109
DCG3P-P 0.139 0.11 0.091 0.1
DCG3P-F 0.145 0.117 0.071 0.087

the 40 × 4 × 13 runs with that problem, (ii) we averaged
the ranks for each strategy-mapping combination across
different runs and problems. For example, 32 for SSG3P-
CFGGP means that that combination delivers, on average
across runs and problems, a final best fitness value which
places 32-nd on 100.

Table 5 essentially confirms the findings suggested by
the previous tables. First, some form of diversity promo-
tion is beneficial to the effectiveness of the evolutionary
search (i.e., results in a better final best fitness) in ev-
ery case, regardless of the mapping variant. Second, the
improvement is in general negligible with WHGE; only
one strategy (PPG3P-P-A−) actually leads to an improve-
ment with this mapping variant: we speculate that this
is related to the fact that WHGE has intrinsically larger
diversity (see Figure 4) and hence less room for improve-
ments. Third, promoting the diversity at the phenotype
level seems to be more effective than at the level of geno-
type and fitness, in particular with PPG3P: by looking
at the raw results, we observed that enforcing diverse fit-
ness values often turned out to be a too aggressive strat-
egy, resulting in poorly performing individuals being (rela-
tively) over-represented in the population at the expense of
good individuals. Considering the different options for the
parent representative criterion (ParRep()) in PPG3P-P,
no sharp conclusions can be drawn: U works better with
CFGGP and SGE (tie), A− with SGE and WHGE, A+

with GE; overall, however, differences are negligible. Fi-
nally, the DCG3P strategy appears to work poorly when
coupled to GE and WHGE: we think that this finding
might be explained by the fact that these two mappings ex-
hibit a lower locality than the others [56] and that DCG3P
is based on a distance, differently than PPG3P.

Table 5 concisely suggests that the more promising
strategies are PPG3P-P-U, PPG3P-P-A−, PPG3P-P-A+

and DCG3P-F, though they perform better with different
mapping variants. For these strategies and for the base-
line SSG3P, we analyzed the statistical significance of the
results. We performed a non-parametric Friedman test in
order to assess the existence of statistically significant dif-
ferences between those selected strategies: the p-value for
each mapping variant is definitely lower than a confidence
α = 0.05 (0.0014, 3× 10−8, 2× 10−16, 2× 10−9, respec-
tively for CFGGP, GE, SGE, and WHGE). Therefore, we
conducted a suite of post-hoc tests for multiple compari-
son for discerning which pairs of strategies are significant
different. Table 6 reports the adjusted p-values computed
through Holm’s procedure: the values highlighted in bold
indicate whether the comparison is statistically significant
with a confidence α = 0.05. These results corroborate
most of the considerations derived from Table 5. In par-
ticular, the comparison with DCG3P-F or with the base-
line SSG3P shows significant differences. Concerning the
mapping variants, we can draw firm conclusions regarding
GE and SGE, whereas for WHGE we have a statistically
strong evidence only with respect to the DCG3P-F strat-
egy.
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Table 4: Final best fitness: mean and standard deviations across runs.

Boolean Symbolic regression Synthetic

Strategy MOPM-3 Parity-5 Parity-8 Keijzer6 Nguyen7 Pagie1 KLand.-7 Text

C
F

G
G

P

SSG3P 36.1±4.4 1.5±1.2 51.8±18.5 5.41±1.17 0.38±0.14 1.28±0.82 0.25±0.17 2.5±1.1
PPG3P-P-U 37.6±3.9 1.2±1.6 50 ±16.6 3.99±0.76 0.14±0.1 0.76±0.5 0.43±0.07 1.3±0.9
PPG3P-P-A− 38.7±2.8 1.3±1.3 42.6±17.8 4.23±0.72 0.12±0.08 0.75±0.87 0.46±0.06 1.6±1.1
PPG3P-P-A+ 38.6±3.6 0.9±0.9 43.8±24.7 4.45±0.86 0.12±0.07 0.78±0.46 0.43±0.07 1.7±0.9
PPG3P-F-U 40.6±4.6 1.2±1.4 52.9±22.4 4.21±1.09 0.15±0.08 1.62±1.37 0.5 ±0.04 3.3±1.3
PPG3P-F-A− 39.8±3.1 1.4±1.6 58.6±17.3 4.21±1.99 0.13±0.09 1.15±0.61 0.5 ±0.06 3.4±1.1
PPG3P-F-A+ 43.5±2.5 1.6±2.2 69.1±17.3 4.37±0.83 0.2 ±0.08 1.08±0.44 0.46±0.05 4.4±1
PPG3P-F-L− 41.9±6.3 1.8±2.9 27.6±30 4.74±1.26 0.15±0.09 0.79±0.38 0.49±0.08 6.1±1.1
PPG3P-F-L+ 38.8±2.9 0.2±0.7 49.5±28.4 4.69±1.07 0.18±0.1 0.82±0.67 0.44±0.06 3 ±1.1
DCG3P-P 36.8±3.6 0.4±0.8 42.4±16.3 5.06±0.77 0.28±0.07 1.25±0.27 0.52±0.02 0.5±0.6
DCG3P-F 37.4±2.2 0.3±0.8 44.1±26.5 3.57±1.18 0.19±0.08 0.67±0.26 0.48±0.05 1.5±0.8

G
E

SSG3P 58.1±7.9 12.7±5.6 125.7±12.1 5.15±2.23 0.4 ±0.24 4.66±2.61 0.82±0.05 5.6±0.7
PPG3P-G-U 54 ±7.5 12.3±6.4 128 ± 0 5.85±1.58 0.39±0.31 3.1 ±1.96 0.83±0.05 5 ±1.4
PPG3P-P-U 51.5±5.4 1.7±2.5 116 ±22.3 5.87±2.02 0.43±0.18 3.45±1.87 0.88±0.02 2.9±0.9
PPG3P-P-A− 55.8±6.4 0.3±1.5 121.2±18.3 5.66±1.2 0.28±0.15 3.8 ±1.14 0.88±0.02 3.3±1.1
PPG3P-P-A+ 60.5±7.6 0.6±2 114.8±32.9 5.43±1.85 0.34±0.2 3.27±1.93 0.87±0.03 2.8±1
PPG3P-F-U 54.1±4.5 12.7±6 128 ± 0 5.83±1.55 0.55±0.34 2.59±1.54 0.88±0.03 5.8±0.8
PPG3P-F-A− 63.6±4.8 15.2±3.1 125.6± 5.8 6.12±2.19 0.37±0.19 3.08±1.08 0.88±0.03 6.4±0.8
PPG3P-F-A+ 63.9±3.5 16 ±0 128 ± 0 6.06±1.66 0.85±0.68 3.74±1.27 0.88±0.02 6.3±0.7
PPG3P-F-L− 63.6±4.2 12.3±6.8 128 ± 0 6.82±2.51 0.3 ±0.19 2.74±1.48 0.9 ±0.03 6.7±0.5
PPG3P-F-L+ 59 ±8 1.7±2.4 98.5±19.5 4.66±0.8 0.31±0.14 3.31±1.63 0.9 ±0.03 4.9±0.8
DCG3P-G 60.8±7.1 11.1±7.2 128 ± 0 6.47±0.84 0.5 ±0.16 4.25±1.05 0.87±0.02 4.9±0.6
DCG3P-P 52.6±7.1 10.4±6.7 128 ± 0 6.18±0.88 0.52±0.18 3.46±2.06 0.88±0.02 4.9±0.8
DCG3P-F 54.5±5.3 14.6±3.8 128 ± 0 5.43±0.79 0.5 ±0.32 2.77±0.91 0.86±0.03 5.1±0.6

S
G

E

SSG3P 40.9±5.1 2.1±2.4 63.6±31.4 9.81±3.04 0.78±0.11 5.05±2.05 0.98±0 6.7±0.6
PPG3P-G-U 42.8±3.8 0 ±0 53.2±38.7 9.07±3.21 0.69±0.11 5.62±2.41 0.98±0 6.6±0.5
PPG3P-P-U 36.5±5.5 0 ±0 20.8±28.5 6.76±0 0.54±0.08 2.4 ±0.66 0.98±0 6.1±0.3
PPG3P-P-A− 38.7±4.3 0 ±0 18 ±30.7 6.8 ±0.24 0.52±0.16 2.81±0.5 0.98±0 6 ±0.2
PPG3P-P-A+ 39.1±3 0.1±0.5 23 ±34.1 6.73±0.21 0.57±0.06 2.24±0.65 0.98±0 6.2±0.4
PPG3P-F-U 42.6±2.7 1.2±2.8 50.6±33.4 6.91±0.71 0.44±0.12 2.48±0.46 0.98±0 7.3±0.6
PPG3P-F-A− 46.4±1.7 2.7±3.6 56.4±31.5 6.99±0.77 0.56±0.08 2.89±0.93 0.98±0 7.3±0.5
PPG3P-F-A+ 44.5±2.7 0.6±1.7 60.4±31.8 6.76±0 0.53±0.09 2.85±0.69 0.98±0 7.2±0.7
PPG3P-F-L− 46.6±1.3 1.3±2.5 73.6±35 6.75±0.74 0.52±0.12 2.36±0.48 0.98±0 7.7±0.5
PPG3P-F-L+ 43.5±2.1 2.4±2.2 46.7±21.5 6.82±0.7 0.54±0.09 2.39±0.72 0.98±0 7.1±0.6
DCG3P-G 38.8±3.3 0 ±0 26 ±30.7 6.79±0.21 0.65±0.04 2.65±0.5 0.99±0 6 ±0
DCG3P-P 41.6±2.2 0 ±0 51.1±35.7 6.76±0 0.57±0.13 2.94±0.55 0.98±0 6 ±0
DCG3P-F 43.2±2.4 0.3±1 33.4±31.4 6.87±0.67 0.66±0.04 3.39±0.89 0.98±0 6 ±0

W
H

G
E

SSG3P 33.1±4.6 0.6±0.6 47.6±29 4.85±0.55 0.29±0.11 1.22±0.39 0.59±0.02 4.5±0.6
PPG3P-G-U 33 ±2.6 0.7±0.6 49.8±26.4 3.88±1.49 0.35±0.12 1.38±0.58 0.6 ±0.03 4.5±0.9
PPG3P-P-U 33.8±3 0.7±0.8 48.8±21.6 5.03±0.83 0.29±0.08 1.76±0.65 0.62±0.03 2.8±1
PPG3P-P-A− 30.6±4.9 0.3±0.6 44.7±13.4 5.56±0.95 0.33±0.09 1.37±0.42 0.63±0.02 3.2±1
PPG3P-P-A+ 35 ±2 1.1±1.4 42.4±17.8 5 ±1.07 0.29±0.09 1.41±0.64 0.63±0.03 3.1±1.1
PPG3P-F-U 36.2±2.3 1.2±0.9 57 ±18.8 5.54±0.63 0.28±0.1 1.52±0.42 0.68±0.02 5.5±1.1
PPG3P-F-A− 35.6±2.7 1.1±1.4 57 ±22.8 5.52±0.35 0.34±0.08 1.82±0.7 0.72±0.03 5.3±1.1
PPG3P-F-A+ 38 ±3.8 1.9±1.6 64.3±12.8 5.62±0.75 0.32±0.09 1.5 ±0.57 0.71±0.03 6.5±0.7
PPG3P-F-L− 38.6±4.3 1.5±1.7 66.1±17 5.24±0.66 0.3 ±0.09 1.56±0.67 0.71±0.04 6.7±0.7
PPG3P-F-L+ 36.8±2.1 0.5±0.9 63.1±17.6 5.03±0.77 0.37±0.16 1.31±0.48 0.68±0.02 5.2±0.5
DCG3P-G 36.5±2.5 0.4±0.8 53.3±17.6 5.56±0.83 0.54±0.12 2.24±0.69 0.71±0.02 4.5±0.7
DCG3P-P 34.7±2.5 0.7±1.1 40.9±25.5 4.78±1.22 0.5 ±0.09 2.45±0.48 0.69±0.03 4.4±1
DCG3P-F 35.3±1.6 0.7±1 45.6±19.6 5.04±0.93 0.35±0.12 1.9 ±0.72 0.68±0.03 4.2±0.7
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Table 5: Average percentile rank of final best fitness (see text).

Strategy CFGGP GE SGE WHGE

SSG3P 32 65 69 30
PPG3P-G-U 62 61 31
PPG3P-P-U 20 55 47 30
PPG3P-P-A− 23 52 47 28
PPG3P-P-A+ 22 50 49 30
PPG3P-F-U 29 66 56 40
PPG3P-F-A− 28 70 65 40
PPG3P-F-A+ 34 74 60 46
PPG3P-F-L− 29 66 64 43
PPG3P-F-L+ 23 54 62 36
DCG3P-G 27 70 51 41
DCG3P-P 24 66 54 38
DCG3P-F 18 66 56 34

Finally, we investigated the impact of the diversity pro-
motion strategies on the generalization ability of the evo-
lutionary search. To this end, we considered the error on
the validation data for the two benchmark problems for
which this was present (Keijzer6 and Pagie1). The results
are shown in Table 7, which provides the mean and stan-
dard deviations across runs of this figure for each strategy-
mapping combination.

The numbers of Table 7 show that promoting diversity
is beneficial also in terms of generalization ability. As for
final best fitness, the improvement is larger for SGE and
CFGGP, though it is less evident which precise strategy
actually delivers the larger improvement—the most con-
venient choice being dependent on both the problem and
mapping variant.

6. Conclusions

Grammar-guided Genetic Programming (G3P) is a fam-
ily of Evolutionary Algorithms for which the possibility of
tackling different problems by simply changing the user-
provided grammar resulted in large adoption and enduring
popularity. The most widespread members of this family
are based on an indirect representation: individuals are
described at three levels in terms of their genotype, phe-
notype, and fitness. This representation stimulated crit-
icism and attracted many studies: many of them found
clues that lack of diversity in the population may be an
intermediate effect of the representation properties.

In this paper, we experimentally analyzed in detail how
population diversity, measured at the three levels men-
tioned above, changes during the evolution for 4 relevant
G3P variants (CFGGP, GE, SGE, and WHGE) on differ-
ent benchmark problems. We also considered two diversity
promotion strategies which can operate at the three lev-
els. We showed experimentally that some form of diversity
promotion is always beneficial to the search effectiveness:
best individuals at the last generation have a better fitness

which also correspond to better generalization ability. We
discussed which nuances of the 4 G3P variants may impact
the different outcomes of the promotion of diversity.

We think that our results may make G3P approaches
even more attractive to practitioners, because we show
that promoting diversity can lead to substantial improve-
ments in the fitness. The considered diversity promotion
strategies could even be used as part of a standard tool-
box for exploring different configurations in practical ap-
plications. From a broader perspective, we hope that our
findings concerning the interaction between indirect rep-
resentations and diversity may stimulate EA designers to
take into account the promotion of diversity while building
new EAs or adapting existing ones.
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S. Luke, Better GP benchmarks: community survey results and
proposals, Genetic Programming and Evolvable Machines 14 (1)
(2013) 3–29.

[51] L. Vanneschi, M. Castelli, L. Manzoni, The K landscapes: a
tunably difficult benchmark for genetic programming, in: Pro-
ceedings of the 13th annual conference on Genetic and evolu-
tionary computation, ACM, 2011, pp. 1467–1474.

[52] M. Keijzer, Improving symbolic regression with interval arith-
metic and linear scaling, Genetic programming (2003) 275–299.

[53] N. Q. Uy, N. X. Hoai, M. O’Neill, R. I. McKay, E. Galván-
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