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ABSTRACT
FPGA-based accelerators demonstrated high energy efficiency com-
pared to GPUs and CPUs. However, single FPGA designs may not
achieve sufficient task parallelism. In this work, we optimize the
mapping of high-performance multi-kernel applications, like Con-
volutional Neural Networks, to multi-FPGA platforms. First, we
formulate the system level optimization problem, choosing within a
huge design space the parallelism and number of compute units for
each kernel in the pipeline. Then we solve it using a combination
of Geometric Programming, producing the optimum performance
solution given resource and DRAM bandwidth constraints, and a
heuristic allocator of the compute units on the FPGA cluster.

1 INTRODUCTION
Field Programmable Gate Arrays (FPGAs) are an increasingly im-
portant target for parallel algorithm implementation due to their
energy efficiency, flexible reconfigurability, and fast time-to-market.
They promise to offer (almost) software-like programmability with
(almost) GPU-like performance and (almost) ASIC-like energy effi-
ciency. They can thus provide a sweet spot for large datacenters,
where energy is a main part of overall cost. These datacenters ex-
ecute a broad class of “embarassingly parallel” and widely used
applications like Machine Learning (e.g. Convolutional Neural Net-
works, Deep Neural Networks), finite element analysis, and so on.
For this reason, cloud providers like Amazon, Microsoft and Alibaba
have recently offered Virtual Machines that contain several FPGAs
and that can be used to accelerate datacenter-class applications
with GPU-like performance at a fraction of the energy cost. These
applications can now be synthesized into a bitstream by compilers
like Xilinx SDAccel and SDSoc, and Intel SDK for OpenCL.

A large amount of past work addresses application implementa-
tion on a single FPGA via both RTL design and High-Level Synthe-
sis (HLS). However, application resource requirements may often
exceed those available on a single FPGA, hence multi-FPGA imple-
mentations need to be adopted, e.g., by assigning different CNN
layers to different FPGAs.

In this paperwe exploit anOpenCL-like (but not OpenCL-limited)
execution model. In this model, an application is typically (but
not always) a linear task-level pipeline of kernels, each kernel be-
ing composed of a very large number of independent Compute
Units (CU). Each CU in turn contains loops which can be unrolled
and pipelined to offer further parallelization. Kernels communicate
among each other and with the CPU-bound “host code” via large
buffers allocated in external DRAM. The designer must ensure that
CUs do not interfere with each other when writing into these buffer,
i.e. CU-level parallelism can be arbitrarily increased via replication.
This computational model can also be supported by C++-based
synthesis tools (in fact, we model our applications in C++ in order
to have better control over loop handling during HLS), and fits
very well many datacenter applications, like CNNs or other Neural
Networks and Machine Learning algorithms.

However, globally optimizing the throughput of a task-level
pipeline of kernels over multiple FPGAs is far from trivial. One
must take into account simultaneously:

(1) throughput matching among multiple kernels, which can be
increased or decreased by changing either the number of CUs
or the parallelism of each CU (e.g., via unrolling);

(2) the amount of resources and external DRAM bandwidth used on
each FPGA, which increases as more CUs are allocated to them.

The number of choices to evaluate, and hence the designer expertise
and effort needed, quickly grows out of control. Note that while this
problem superficially resembles the classical pipeline scheduling
problem in HLS, the actual model is much more complex, because
CUs that implement kernels:

(1) have many more implementation choices (e.g., via unrolling or
other HLS transformations [6]) than typical Functional Units.

(2) have a multi-dimensional cost function including performance,
memory bandwidth, and FPGA resources (DSPs, LUTs, FFs, and
BRAMs).

In this paper, we propose a new optimization method for the
implementation of task-level pipelined applications on multiple
FPGAs.We assume that all communication is performed via off-chip
DRAM, which is essentially the above-mentioned OpenCL inter-
kernel communication model. In this scenario, our method can be
used to choose how many CUs should be allocated for each kernel.
This is a simple option that can be passed to FPGA compilation
environments like Xilinx SDAccel, Intel SDK for OpenCL, and so
on. While a mix of on-chip and off-chip communication resources
would allow the exploration of an even larger design space, they
are not yet supported by any of these design environments. Hence
their analysis is left to future work.
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Our work is fully general, and could be applied (1) to other task-
level pipelined applications beyond CNNs, (2) to other cloud-based
or super-computing FPGA platforms beyond Amazon Web Services
(AWS) F1 instances, and (3) to other design environments beyond
SDAccel. However, we use this generally available and well-known
trio to demonstrate and quantitatively evaluate our results.

In this paper we use twoConvolutional neural networks, AlexNet
[5] and VGG16 [7]. Note that our algorithms do not depend at all
on the considered networks, and these two examples are used only
for the sake of illustration. Each CNN is composed of several con-
volutional, pooling, normalization and fully connected layers, and
each convolutional layer is mapped to a kernel. As discussed in
[10], we use loop tiling to reuse both the input feature maps and
the weights. Memory access is optimized by reshaping the input
and output feature map arrays and the weight array, to allow burst
mode data transfers.

In these applications, throughput (i.e. processed images per sec-
ond) is the main measure of performance, while overall latency (i.e.
total pipeline depth) is much less important. Hence we focus on
minimizing the maximum latency among all kernels, because it de-
termines the Initiation Interval (II) of the pipeline, and therefore its
throughput. Note also that memory bandwidth of external DRAM
can be a major factor limiting the performance of memory-intensive
applications like CNNs. Hence our cost and performance model
takes this aspect explicitly into account.

Our flow starts from CNNmodels which have already been parti-
tioned into kernels and individually optimized for FPGA implemen-
tation. Then we collect cost, memory bandwidth, and performance
(throughput and latency) data from each kernel, by running several
versions of its CUs, with varying degrees of parallelism, on an AWS
F1. We then use these values to formulate an optimization problem
that is discussed in Section 3.1 and models the multi-kernel multi-
FPGA resource- and bandwidth-constrained allocation problem.
This problem can then be solved:
(1) either directly by a Mixed-Integer Non-Linear Programming

(MINLP) solver, to provide an exact solution in a potentially
very long execution time.

(2) or indirectly by combining the power of a Geometric Program-
ming (GP) solver, which is followed by an efficient integer relax-
ation of the problem variables, with a novel allocation algorithm
that:
• discretizes the result of the GP solver, and
• tries to cluster CUs for a kernel on the same FPGA, to simplify
the communication coordinated by the host code.

The second method achieves essentially the same level of optimality
as the MINLP solver (whenever the latter is able to complete), in a
fraction of the time.

We designed our GP model and allocator to optimize the as-
signment of Compute Units on multiple FPGAs while keeping into
account the limitations of modern FPGAs (e.g. the maximumDRAM
bandwidth), so that it can handle the large size of typical state-of-
the-art CNN applications. Our contributions are:
(1) The definition of the multi-FPGA CU allocation problem for

linear kernel pipelines and its constraints.
(2) The definition of a Non-Linear Programming model for that

problem, and its solution both (1) by an exact (very expensive)

MINLP solver and (2) by a GP solver, finding an optimal non-
integer solution, followed by an allocator aimed at minimizing
the spreading of CUs of one kernel to multiple FPGAs.

(3) The analysis of their result quality for two large CNN applica-
tions, implemented on large multi-FPGA AWS F1 instances.

As mentioned, we are leaving the generalization to (less common)
non-linear pipelines and to (not yet available from industrial design
environments) on-chip and off-chip communication mechanisms
to future work.

This is the paper organization. We review past work in Sec. 2
and define the optimization problem and our heuristic in Sec. 3.
Experimental results are reported in Sec. 4 and conclusions in Sec. 5.

2 RELATEDWORK
Efficient allocation of processes from streaming applications to
processors and accelerators is a well-studied problem in the com-
munity of compilers for parallel architectures. For example, [4]
defines three levels of parallelism (task, data and pipeline) that are
also exploited in our underlying execution model (tasks are called
“kernels”, data parallelism is exploited both at the CU level and
and the loop unrolling level within a CU, and innermost loops are
pipelined). Their compiler, based on the StreamIt language, is aimed
at processors (the RAW machine) rather than FPGAs. Moreover, it
makes only heuristic choices for allocation, while we first find an
optimal non-integer solution and we relax it.

Similarly, [8] uses multiple process instances, but focuses only on
process replication and FIFO allocation, while we include resources
as a primary aspect of our cost function and consider array-based
communication, rather than FIFO-based. Array-based is a more
natural programming model, because it is supported by languages
like C, C++ and OpenCl, and it requires fewer changes to legacy
code, without complex logic for forking and joining data to and
from data parallel CUs. More recently, [9] includes, like in our case,
an explicit memory model, but solves the problem heuristically
with a clustering algorithm (using ILP only as a reference), while
we start from a GP relaxation for our heuristic.

On the FPGA implementation side, [3] schedules a task-parallel
Static Dataflow Graph with multiple CU instances, leading to a very
efficient scheduling formulation as a Set of Difference Constraints.
However, it is also limited to FIFO-based communication and it does
not consider multi-FPGA allocation and the resulting trade-offs.

Finally, [6] models the application as a Timed Marked Graph
and uses Petri net theory to find the best overall throughput, then
imposing a throughput constraint on every process and trying to
satisfy it via High-Level Synthesis. However, there is no guarantee
that the requested throughput is feasible, hence iterating is needed
to explore the entire Pareto-optimal design space. Moreover, it does
not discuss memory bandwidth nor allocation to FPGAs.

3 MULTI-FPGA OPTIMIZATION
We consider an application as a set K of kernels organized in a
linear pipeline. As mentioned above, CNNs represent a relevant
example, in which the kernels are the convolutional, pooling and
normalization layers1. Each kernel workload is assigned to one or

1Some max-pooling layers are merged with the previous convolutional layer, whenever
this allows us to optimize memory access. We do not implement the fully connected



Exact and Heuristic Allocation of Multi-kernel Applications to Multi-FPGA Platforms DAC ’19, June 2–6, 2019, Las Vegas, NV, USA

Figure 1: Architecture of AWS F1 instance.

more compute units (CUs) that operate concurrently. The kernels
communicate through the host CPU. Since the control unit on the
CPU side is quite efficient, we do not consider the CPU time in
our model. Application throughput is the inverse of the pipeline
initiation interval (II), which depends on the execution time of the
slowest pipeline stage.

Let us define WCETk the worst case execution time of kernel k
obtained with only one CU. We consider kernels that are inherently
parallel and for which the execution time ETk scales proportionally
to the number Nk of CUs for that kernel:

ETk =
WCETk

Nk
, ∀k ∈ K (1)

II = max
k ∈K

ETk . (2)

To minimize II it is necessary to find the optimal value of Nk under
specific constraints. We consider FPGA resource and memory band-
width constraints, but we do not consider (yet) power constraints.

As an additional design exploration knob, we can deploy an
application onto one or more FPGAs of a multi-FPGA board like the
AWS F1 instance, which includes eight Xilinx UltraScale Plus FPGAs.
This is also the FPGA platform where we run our experiments. In
this platform, a host CPU orchestrates the execution of the kernels.
Fig. 1 shows the architecture of the F1 instance. Tab. 1 summarizes
variables and constants used in the problem.

The design goal is therefore not just determining the optimal
Nk , but also how these CUs are allocated on F FPGAs. If we define
nk,f as the CUs of kernel k on FPGA f , we have

Nk =
∑F
f =1 nk,f ,∀k ∈ K . (3)

Since we assume a uniformly accessed global memory, in our model
a kernel execution time depends on the number of CUs but not on
where they are allocated. However, keeping the CUs of a kernel in
the same FPGA simplifies the host code (each pair of kernels needs
only one buffer to communicate). To account for this, we introduce
a spreading function that is minimal when all CUs of a kernel are
allocated on one FPGA:

ϕk =
∑F
f =1

nk, f
1+nk, f ∀k ∈ K . (4)

To minimize the global II and the spreading of the CUs we for-
mulate the optimization problem shown in the following.

layers, since we are simply interested in showing a design methodology with a realistic
use case, rather than benchmarking a full application.

3.1 Problem Formulation
We can combine II and spreading objectives linearly with two
weights α and β into a single goal function д to minimize. The
problem is then formulated as a non-linear problem with both
integer and real variables:

minimize д = α · II + β · ϕ (5)
subject to

II ≥ ETk , ∀k ∈ K (6)
ϕ ≥ ϕk , ∀k ∈ K (7)

Nk ≥ 1, ∀k ∈ K (8)∑ |K |

k=1 nk,f Rk ≤ R, f = 1, 2, . . . , F (9)∑ |K |

k=1 nk,f Bk ≤ B, f = 1, 2, . . . , F (10)

The constraint (8) guarantees at least one CU per kernel. In (9)
and (10), Rk and Bk are resource and memory bandwidth utilization,
respectively, of each CU of kernel k : in each FPGA, their sum over
all kernels should not exceed R and B, the total resources and
bandwidth of a single FPGA.

Table 1: Notations used in the model

Notation Description
K set of kernels
k index of kernels, 1, 2, . . . , |K |

f index of FPGAs, 1, 2, . . . , F
WCETk constant; latency of kernel k with one CU
ETk variable; latency of kernel k with Nk CUs
Rk constant; FPGA resources used by one k’s CU
Bk constant; FPGA bandwidth used by one ks CU
R constant; resource limitation in one FPGA
B constant; bandwidth limitation in one FPGA
nk,f variable; CUs of kernel k allocated to FPGA f

Nk variable; sum of nk,f over all the FPGAs
ϕk variable; spreading function of kernel k
ϕ variable; global spreading function
II variable; initiation interval

3.2 Heuristic Solution
The optimization problem formulated in (5)-(10) can be solved by a
Mixed-Integer Non-Linear Programming (MINLP) solver. This can
lead, however, to a very long optimization time for designs with
many kernels and FPGAs. Consider, for instance, that the VGG-net
convolutional neural network with 20 layers spread on 8 FPGA has
160 integer variables. Especially for design space exploration, when
the optimization may be repeated several times, running a MINLP
solver within an exploration loop might turn out to be prohibitive.

For this reason, we propose a heuristic formulation that separates
the optimization in two steps. The first step determines the total
number of CUs for each kernel to minimize II. The second step
allocates the CUs to the available FPGAs.

3.2.1 First Step: Geometric Programming. If we disregard the spread-
ing minimization, i.e. β = 0 in (5), and relax the problem by letting
nk,f take real values, the problem becomes fully symmetric across
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the F identical FPGAs. This implies a symmetric solution with an
equal distribution of the CUs across the F FPGAs.

Let us define n̂k ∈ R the CUs that would be equally distributed.
The total number of CUs of kernel k will be

N̂k = F · n̂k . (11)

Since we want to guarantee that at least one CU is instantiated per
kernel, i.e. N̂k ≥ 1, it is possible that n̂k = N̂k/F be less than one2.

Kernel execution time and II become

ÊTk =
WCETk

N̂k
, ∀k ∈ K (12)

ÎI = max
k ∈K

ÊTk . (13)

We can thus reformulate the problem (5)-(10) with β = 0 as follows:

minimize д̂ = ÎI (14)
subject to

ÎI ≥ ÊTk , ∀k ∈ K (15)
N̂k ≥ 1, ∀k ∈ K (16)∑ |K |

k=1
N̂k
F Rk ≤ R, (17)∑ |K |

k=1
N̂k
F Bk ≤ B. (18)

Note that the number of unknowns N̂k is F times less than the
number of unknowns nk,f in the original formulation.

Theminimization of ÎI in (14)-(18) is compatible with a Geometric
Programming (GP) formulation. GP problems are solved quickly
even with hundreds of variables. Therefore, we use a GP solver as
the first step in our heuristic to determine N̂k for all kernels.

3.2.2 Second Step: FPGA Allocation. Before allocation, the vari-
ables N̂k ∈ R must be discretized so as to obtain Nk ∈ N. The
integrality is enforced by a branch-and-bound technique similar to
those used in ILP. Two subproblems are generated with Nk ≤ ⌊N̂k ⌋

and Nk ≥ ⌈N̂k ⌉. The search is pruned when the cost of a sub-
problem is greater than the best cost found. Even though this
branch-and-bound technique may lead to a worst-case exponential
branching tree, in practice this does not lead to excessive execution
times due to the pruning strategy and the fact that the number of
kernels is limited (e.g. around 20 for the VGG benchmark). The
MINLP approach, on the other hand, must discretize every variable,
and hence may potentially have a much larger branching tree.

For simplicity, from now we use the general term resource con-
straint to refer to both actual resource and bandwidth constraints.

The Nk CUs are allocated with a greedy heuristic. The rationale
is to allocate the critical kernels first. These are the kernels for which
a CU reduction has a significant impact on II, hence they should all
be allocated. After each allocation of a kernel, either full or partial,
the kernels are sorted in decreasing criticality order. Moreover,
by sorting the FPGAs after each allocation in increasing order
of resource slack, the heuristic tends to consolidate the kernels
by allocating all the CUs to already occupied FPGAs while not
exceeding the resource constraints. If it is not possible to allocate
all of them, the heuristic allocate as many CUs as possible starting
from the least occupied FPGA.

2We can liken nk to the average number of CU of kernel k across F FPGAs.

The pseudo-code of the heuristic is shown in Alg. 1. We search
for possible solutions in the vicinity of the initial resource constraint
R used in the GP step. We defineT as the maximum deviation from
the initial constraint. We define ∆ as the step by which the current
resource constraint Rc , initialized as R, is updated at each iteration,
i.e. Rc = Rc + ∆. The iterations continue while Rc < R +T .

The for loop at line 11 partially allocates the CUs of kernels that
cannot fit in one single FPGA, if any. The for loop at line 23 attempts
to allocate all of the remaining CUs starting from the most occupied
FPGA (while loop at line 26) and, if not possible, it allocates as many
CUs as possible in the least occupied FPGA (lines 33-36).

Algorithm 1: Pseudo-code of heuristic allocation
1 procedure AllocateCUs(Nk , T , R, ∆)
2 CU = (CU1, CU2, . . . , CU|K | ) // Vector of kernel CUs to allocate

3 CUk = Nk , ∀k // CUs to allocate initialized to GP values

4 Rc = R // FPGA resource constraint initialized to GP value

5 S = (S1, S2, . . . , SF ) // Vector of FPGA resource slack

6 Sf = R, ∀f // FPGA resource slack initialized to constraint value

7 nk, f = 0, ∀k, f // Allocated CUs initialized to zero

8 alloc = FALSE
9 while Rc < R +T and not alloc do

10 sortCU(CU,K ) // Sort kernels by descending criticality

11 for k = 1 to |K | do // Allocate large kernels first
12 f = 1
13 while CUk · Rk > R do
14 if Sf = R then
15 δCU = ⌊R/Rk ⌋
16 CUk = CUk − δCU
17 Sf = Sf − δCU · Rk
18 nk, f = nk, f + δCU
19 else
20 f = f + 1

21 sortCU(CU,K )
22 sortFPGA(S ) // Sort FPGAs by increasing slack

23 for k = 1 to |K | do // Allocate all kernels
24 partial_alloc = FALSE
25 f = 1
26 while f ≤ F and not partial_alloc do
27 if Sf ≥ CUk · Rk then
28 Sf = Sf −CUk · Rk
29 nk, f = nk, f + CUk
30 CUk = 0
31 partial_alloc = TRUE

32 f = f + 1
33 if CUk > 0 then

// Use the space of least used FPGA (F ), if possible

δCU = ⌊SF /Rk ⌋
34 CUk = CUk − δCU
35 SF = SF − δCU · Rk
36 nk,F = nk,F + δCU

37 sortFPGA(S )

38 if
∑
k CUk > 0 then

39 Rc = Rc + ∆
40 else
41 alloc = TRUE // All kernels allocated

4 EXPERIMENTAL RESULTS
We implemented our allocation heuristic in C++ and linked it to
an existing efficient GP solver [2]. To validate our optimization
method we used two widely used CNNs, AlexNet [5] and VGG [7].
For AlexNet, we considered both 32-bit floating point and 16-bit
fixed point versions, to which we refer in the following as Alex-16
and Alex-32, respectively. For VGG, we considered only the 16-bit



Exact and Heuristic Allocation of Multi-kernel Applications to Multi-FPGA Platforms DAC ’19, June 2–6, 2019, Las Vegas, NV, USA

fixed point version. We experimented with different numbers of
FPGAs, from 2 to 8, and with different resource constraints.

Tabs. 2-3 show the results of the initial characterization of the
various kernels of these applications when implemented on one
FPGA of the AWS F1 instance3. For space reasons we report only
DSP and BRAM resource use, especially because these resources
are much more critical than LUTs and FFs in our experiments.

Table 2: Characterization of kernels for Alex-32 (AlexNet 32-
bit floating point) and Alex-16 (AlexNet 16-bit fixed point).

Alex-32 Alex-16
BRAM DSP BW WCET BRAM DSP BW WCET

Kernels (%) (%) (%) (ms) (%) (%) (%) (ms)
CONV1 13.07 21.24 1.3 13 10.59 4.31 1.8 5.16
POOL1 2.84 0 7.03 1.78 0.05 0 3.5 1.78
NORM1 6.1 2.11 5.7 0.839 2.53 0.06 3.1 0.78
CONV2 8.73 37.59 2.4 7.19 4.39 7.63 2.1 4.11
NORM2 7.75 2.11 3.7 0.807 6.66 0.06 2.2 0.67
CONV3 5.22 28.13 5.0 7.78 2.63 5.66 2.9 6.7
CONV4 2.13 37.5 3.7 9.08 1.91 7.55 3.2 5.06
CONV5 8.73 37.5 4.2 4.84 4.39 7.55 3.1 3.29
SUM 54.57 166.18 33.1 45.32 33.15 32.82 21.9 27.55

Table 3: Characterization ofVGGkernels (16-bit fixedpoint).
Kernels BRAM (%) DSP (%) BW (%) WCET (ms)
CONV1 3.67 2.95 2.0 28.8
CONV2 9.97 15.14 2.1 67.8
POOL2 11.62 0.03 5.2 13.3
CONV3 9.97 15.14 2.3 22.7
CONV4 9.97 15.14 2.4 32.1
POOL4 2.94 0.03 5.1 6.9
CONV5 8.32 15.07 2.0 22.8
CONV6, 7 8.32 15.05 2.3 32.9
POOL7 1.5 0.03 5.0 3.5
CONV8 2.12 15.02 2.1 24.5

CONV9, 10 2.12 15.02 2.5 37.7
POOL10 0.05 0.01 4.0 2.1

CONV11,12,13 2.12 14.99 2.6 20.3
SUM 87.37 183.67 49.7 0.4 (s)

Before reporting the details of the comparison of our heuristic
with a state-of-the-artMINLP solver [1], we report on the evaluation
of the effect of changing the T parameter of the heuristic while
keeping the other parameter ∆ set to 1%. We report the result of this
analysis for Alex-16 in Fig. 2. Similar results are obtained for Alex-
32 and VGG. We observe little effect of T on the value of II across a
large range of resource constraints. Therefore, the following results
have all been obtained with T=0%.

We ran all our optimization algorithms on a multi-core CPU
(Intel Core i7-2600 @3.40GHz, 4 Cores, 8 Threads) with 16-GB
DDR3 DRAM @1333MHz from Micron and with Linux CentOS
(release 6.10), and our FPGA accelerations on AWS F1 instances
with 8 FPGAs.

Out of all our experiments we selected three representative cases
of the spectrum of possible multi-FPGA implementations: Alex-
16 on 2 FPGAs, Alex-32 on 4 FPGAs, and VGG on 8 FPGAs. For
these three cases, Tab. 4 shows the value of the two weights α and
β . These values are chosen in such a way to equalize the relative
importance of II and ϕ in the optimization function д in (5).
3While the kernel code for AlexNet has been fully optimized, and performance results
are in line with the literature, the VGG kernels have not yet been fully optimized.
Again, our goal is to show how CUs can be allocated, not to discuss how their internal
code can be massaged for HLS.
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Table 4: Parameters for the spreading function
Applications α β

Alex-16 on 2 FPGAs 1 0.7
Alex-32 on 4 FPGAs 1 6
VGG on 8 FPGAs 1 50
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Figure 3: AlexNet 16-bit fixed-point on 2 FPGAs.

 7

 7.2

 7.4

 7.6

 7.8

 8

 8.2

 8.4

 8.6

 8.8

 9

 9.2

 65  70  75

In
it

ia
ti

o
n

 I
n

te
rv

a
l 

(m
s

)

Resource Constraint (%)

(a)

Alex-32 on 4 FPGAs

GP+A
MINLP
MINLP+G

 7

 7.2

 7.4

 7.6

 7.8

 8

 8.2

 8.4

 8.6

 8.8

 9

 9.2

 45  50  55  60  65

In
it

ia
ti

o
n

 I
n

te
rv

a
l 

(m
s

)

Average Resource (%)

(b)

Alex-32 on 4 FPGAs

GP+A
MINLP
MINLP+G

Figure 4: AlexNet 32-bit floating-point on 4 FPGAs.

The left graphs in Figs. 3-5 report the results of II obtained by
changing the resource constraint, i.e. the maximum allowed FPGA
resource utilization. (Incidentally, the most critical resources in all
our experiments are DSPs.) The right graphs show the same points
of the left graphs in a different space of II versus average FPGA
resource utilization. The labels in the figure keys are as follows:

• GP+A refers to the heuristic consisting of GP (optimizing II)
and allocation (discretizing and optimizing spreading);
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Figure 5: VGG 16-bit fixed-point on 8 FPGAs.

• MINLP refers to the MINLP solver set up to optimize only
II and not the spreading (i.e. β = 0)4;

• MINLP+G refers to the MINLP solver set up to optimize
both II and spreading (i.e. α and β as in Tab. 4).

As expected, the left graphs show that MINLP obtains the best
II for a given resource constraint when the spreading is ignored.
With the exception of Alex-16 at low resource utilization, GP+A
tracks well MINLP and in particular it catches the extremes. The
results on the right graphs show that II nicely scales down as the
average resource increases, especially for MINLP and GP+A.

The Alex-16 case is relevant because it shows that in some cases
especially in the lower range of resource constraint, GP+A cannot
reach the same performance of MINLP, but indeed behaves more
similarly to MINLP+G. This is because both GP+A and MINLP+G
tend to consolidate the CUs in fewer FPGAs than what MINLP
does. This might result in a performance loss—25% in Fig. 4(a) at the
lowest resource constraint—but in a better average FPGA utilization:
Fig. 4(b) shows around 40% less average utilization of GP+A and
MINLP+G compared to MINLP at the lowest resource constraint5.

For space limitations we report only one example of resource
distribution in Fig. 6, which refers to the VGG case with a specific
resource constraint of 61%. The histograms show how the kernels
are distributed across 8 FPGAs and howmany resources each kernel
uses while respecting the 61% resource constraint (SLACK ≥39% in
figure). As expected from the previous discussion, both GP+A and
MINLP+G tend to concentrate the kernels in one FPGA, whereas
MINLP spreads them across multiple FPGAs.

Finally, the CPU time of GP+A ranges between 0.78 s (Alex-16
on 2 FPGAs) to 4.4 s (VGG on 8 FPGAs), whereas that of MINLP and
MINLP+G ranges from around one minute to several hours, with a
speedup that ranges from around 100x to around 1000x. The quality
of the results and the low CPU time clearly show that our heuristic
approach is suitable for design space exploration of multi-kernel
applications deployed on multi-FPGA boards.

4These results show the best achievable II for a given resource constraint, but they
would require an extremely complex routing of data from each CU in one layer to several
other CUs spread over multiple FPGAs, each with its own DRAM banks, and thus they
would make the host code essentially unmanageable.
5The three MINLP points in Fig. 4(a) represent actually the same solution, because the
solver is able to reach the minimum II without saturating the resource utilization in
any FPGA. This is more evident in Fig. 4(b), where the three points overlap.
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Figure 6: VGG resource usage for 61% resource constraint.

5 CONCLUSIONS
We have proposed and experimentally evaluated a new and fast
method for minimizing the initiation interval of pipelined appli-
cations consisting of multiple kernels and deployed on multiple
FPGAs. We optimize the number of parallel compute units (CUs)
for each kernel while respecting resource and memory bandwidth
constraints. The optimization problem is non-linear and with both
integer (i.e. the CUs) and real variables, for which accurate MINLP
solvers can be used but at the cost of unacceptable execution time.
We use a two-step heuristic that first relaxes the problem by letting
integer variables take real values, which allows us to use a fast
geometric programming solver. Second, we discretize the results
and apply a greedy allocation of the CUs over the target FPGAs,
aimed at minimizing the spreading of a kernel over FPGAs. We
obtain results that are comparable to what a MINLP solver can
obtain, but our algorithm is 2-3 orders of magnitude faster.
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