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Abstract. In this paper, we propose a methodology for efficiently map-
ping concurrent applications over a globally asynchronous locally syn-
chronous (GALS) multi-core architecture designed for simulating a Spik-
ing Neural Network (SNN) in real-time. The problem of neuron-to-core
mapping is relevant as a non-efficient allocation may impact real-time
and reliability of the SNN execution. We designed a task placement
pipeline capable of analysing the network of neurons and producing a
placement configuration that enables a reduction of communication be-
tween computational nodes. We compared four Placement techniques
by evaluating the overall post-placement synaptic elongation that repre-
sents the cumulative distance that spikes generated by neurons running
on a core have to travel to reach their destination core. Results point out
that mapping solutions taking into account the directionality of the SNN
application provide an improved placement with respect to the random
placement.

Keywords: Graph Mapping, Multicore Neuromorphic Architectures,
Spiking Neural Netwoks

1 Introduction

Finding the best way to map tasks to processor cores in multi and many-core sys-
tems is a relevant optimisation problem, with significant impact on application
reliability, performance, and energy consumption.

The solution of this particular problem in many cases can only be computed
employing heuristic methodologies capable of providing approximated or sub-
optimal solutions.

The task placement problem is common in many fields of applications that
go from the mapping of parallel applications on stream-oriented MPSoCs [23]
to the placement of virtual machines in cloud data centres with parallel nodes
[17]. Programming such architectures efficiently is a challenge because numerous
hardware characteristics have to be taken into account, especially the memory
hierarchy. One appealing idea to improve the performance of parallel applications



2 Barchi F., Urgese G., Macii E., Acquaviva A.

is to decrease their communication costs by matching the communication pattern
to the underlying hardware architecture. Such a method can be performed with
the design of a strategy capable of partitioning the main application in several
independent tasks with computation/communication load compatible with the
capability of the parallel cores available on the architecture.

A good example of a solution for this problem has been proposed in [23]
where they defined a placement system that split the full original application in
a directed acyclic task graph where each node is an independent atomic task that
communicates with the other nodes in discrete time. Moreover, they considered
the number and capability of available cores and the communication infrastruc-
ture of the targeted platform for reducing the placement problem on N tasks to
M processors.

In the Neuromorphic domain, we explored the task placement problem in the
case of a globally asynchronous locally synchronous (GALS) multicore architec-
ture called SpiNNaker. However, the same type of analysis can be customised
for Intel Loihi [4], IBM TrueNorth [2] and SpiNNaker2 [15], representing the
future of the neuromorphic multi-core platforms, for discovery what are the best
practices to be adopted for efficiently mapping running highly parallel tasks.

SpiNNaker has been designed mainly for running neuromorphic applications.
Here, tasks to be executed are physical neuron models running in parallel on
the platform and communicating through messages. These messages represent
signals, called spikes, which biological neurons exchange through their physical
(neural) connections inside the brain.

The overall purpose of this application is to execute a Spiking Neural Network
(snn) in real-time. In this case, real-time means that the timings of the spikes
generated by the neurons should be compliant with the one of the real human
brain. Thus opening the way for the use of neuromorphic platforms to interface
external physical systems and elaborates their signals (e.g. images, sounds) in
the same way as the brain does. Being the neurons executed as concurrent tasks
by the general purpose cores, how to efficiently mapping neurons-to-cores is an
issue that must be addressed for optimising the communication between cores.

Generalising, the problem we faced concerns the mapping of a large number
of light parallel tasks with intensive communication to a many-core architecture.
A non-efficient communication, in the specific case of snn execution, may impact
real-time capabilities as well as the reliability of the application. Indeed, spikes
can be lost due to congestion problems. In general, a possible approach to face
the mapping problem is to model the tasks and their communication as a graph
to be mapped over the underlying hardware architecture, represented by another
graph.

Sugiarto et al. [26] presented an approach for improving the overall perfor-
mance of general-purpose applications running as a task graph on the same
many-core neuromorphic supercomputer. Whereas in a recent paper, we have
used the cortical microcircuit application as a test case for demonstrating that
an enhanced partitioning and placement system studied for the snn topology
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can produce a more reliable and stable configuration for the simulation on the
SpiNNaker system [27,28].

In this document, we present a methodology for mapping a task graph repre-
senting the snn computation on a multi-chip many-core architecture with com-
munication awareness. To achieve this target, we designed a task mapping frame-
work capable of analysing the network of neurons to find a configuration with the
goal of reducing the communication between computational nodes. The neuron-
to-core mapping problem has been formalised as a problem of minimisation of
synaptic elongation. Intuitively, this metric represents the cumulative distance
that spikes generated by neurons running on a specific core have to travel to
reach their destination core.

The framework starts by extracting a graph of independent processes from a
neural network description. In the case of snn, the direction of a communication
path is also to be represented using a directed graph. On the platform side,
the interconnect structure is described as a graph where nodes represent on-
chip cores while edges represent physical communication links between them. In
this way, we formalised a neuron-to-core mapping as a graph-matching problem
solvable through the exploitation of various algorithms available in the literature.
The specific formulation we devised for snn mapping takes into account the
typical organisation of these type of neural networks into neuron populations,
sharing similar characteristics as well as the neuron model.

The results obtained by comparing four mapping algorithms points out and
quantify the relevance of the communication direction information to achieve a
better mapping if compared with non-directional algorithms.

2 Background

In this section, we will introduce the application and the MCSoC board selected
as a target for demonstrating the advantages of adopting our task-placement
communication aware framework.

2.1 Target Application: Neural Network Simulation

Spiking Neural Network (snn) is a particular neural model used by neuroscien-
tist for simulating biologically plausible brain activity. Two of the most adopted
neuron models are the leaky Integrate and Fire (IF) [1] and Izhikevich (IZK) [10],
because they can ensure a plausible picture of the biological behaviours with re-
duced computational costs. During snn simulations neurons and their synapses
are modelled as differential equations capable of emulating the behaviours ob-
served in biological networks [16]. An snn can be described as a graph where
each vertex is called Population containing a homogeneous group of neurons
sharing the same model and parameters. Whereas, each edge (Projection) rep-
resents the rule used to generate synaptic connections between the neurons of
two Populations. Using PyNN [5] scientist can describe many neurons/synapses
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models and configurations that can be exploited on different backends such as
software simulators and neuromorphic platforms.

Using this snn description system, Van Albada et al. [29] designed an snn
application implementing the cell-type specific cortical microcircuit (CM) model
created by Potjans et al. [20]. Then they simulated this snn on a neuromorphic
multi-chip many-core platform called SpiNNaker [7] using the standard appli-
cation partitioning and placement system for setting up the simulation on the
board.

2.2 Target Architecture: Neuromorphic MPSoCs Board

For validating our placement methodology framework we took as target a GALS
Neuromorphic many-core architecture and used its native application such as an
example case. We used the SpiNNaker architecture, which is a general-purpose
real-time many-core platform mainly used for simulating neural networks follow-
ing an event-driven computational approach [7]. This system mimics the features
of a biological neural network through the implementation of several features:

– Native parallelism: Each biological neuron is a fundamental computational
element within a massively parallel system. Likewise, SpiNNaker uses parallel
computation.

– Spiking communications: In biology, neurons communicate through spikes.
The SpiNNaker architecture uses source-based Address Event Representa-
tion (AER) packets to transmit the equivalent of neural signals (i.e. action
potentials) [21]. Each AER packet identifies the event source through an
addressing scheme.

– Event-driven behaviour: Neurons are very power efficient, and consume much
less power than other modern hardware, in fact to reduce power consump-
tion, the hardware is put into “idle” state until an interrupt event doesn’t
trigger an action [11].

– Distributed memory: In biology, neurons use only local information to pro-
cess incoming stimuli. The SpiNNaker architecture features a hierarchy of
memories: memory local to each of the cores and an SDRAM local to each
chip.

The SpiNNaker chip (Figure 1) has 18 ARM 968 cores running at 200MHz
with no floating point units1, a full customized router for intra/inter-chip com-
munications, and an SDRAM external to the chip and accessible through the
PL340 interface [8]. Each core of a chip can access three four memory levels: i)
a 64KB Tightly Coupled Memory (TCM) that is part of each ARM core. It is
divided into ITCM containing instructions and DTCM containing application
data. ii) a 32KB System RAM integrated into the chip and shared between all
the core. iii) a 128MB SDRAM shared between all cores of a chip. iv) a 32KB
System ROM shared between all processors that contains the bootstrap software.

1 the SpiNNaker simulator applies a mechanism of rescaling that allows working with
only integers, even if in the equations of the neural models are in the domains of the
Real numbers
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Fig. 1: SpiNNaker Architecture. On the left the Board with 48 chips con-
nected in exagonal mesh. On the right the chip architecture

The SpiNNaker system is built with boards of 48 chips (Figure 1) inter-
connected for forming a toroidal shaped triangular mesh where each chip is
connected to six neighbours chips. Each router is in charge to dispatch packets
along intra and inter-chip cores and it is designed for managing transmission of
four types of packets:

– Multi-Cast (MC) packets are used for reaching many cores across the board.
They are widely used during neural simulations for spreading neural poten-
tials to multiple destinations (emulating synapses potential transmission).
These packets are routed using a routing table of 1024 entries, stored in a
ternary CAM with three values per entry: routing entry, mask and direction.
The routing key of a multicast packet is compared with all the entries and
then redirected. The length of those packets could be up to 72 bits.

– Point-to-Point (PP) packets are used for reaching an exact core of the board
uniquely identified by the coordinates of the belonging chip and its relative
number (from 0 to 17). These packets are routed using a dedicate routing
table. If the destination is within the local chip, the packet is delivered to
the monitor processor. This type of packet can transport a payload of 32
bits over the available 72 bits.

– Nearest Neighbour (NN) packets are used for initialising the board and for
implementing a keep-alive mechanism useful for understanding if there are
broken links and calculate different paths in this case.

– Fixed Route (FR) packets are used for reaching a fixed destination (the
Ethernet controller). The advantage of this type of packet is that it provides
64 bits of payload with 8 bits of overhead only.

Configuration and management of this new neuromorphic architecture need a
set of software tools for translating the applications to be executed in executables
to be processed on the many available cores. The official software for configuring
and running a simulation on the system involves the board-side C/Assembly
code and the host-side code, mostly written in Python [22]. We will briefly
discuss the Host-Side module currently in charge of partitioning and placing
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snn populations, details on the full configuration software stack can be found
in [12]. The current implementation of snn Partition and Placement Manager
computes the partitioning of the graph of the snn population and calculate a
radial placement of the partitioned population on the cores of the board. These
two steps are necessary for configuring the board when the application to be
executed on the SpiNNaker is the simulation of an snn represented as a graph
of populations of neurons interconnected in a biological-inspired network.

The host side software that allows running simulations, loading modules and
managing connections and data transfer is made of five main modules:

– sPyNNaker: a module that provides a wrapper of the PyNN [5] neural net-
work software simulator implementing the neural models (implemented both
in python and machine executable .aplx code), population models, connec-
tors and projections. The tool parses all the parameters from the configura-
tion files and translates the PyNN data into populations to be loaded into
SpiNNaker.

– SpiNNMachine: implements a set of classes that represents a high level all
the features of a SpiNNaker board, there are many classes each one that
represents a component (e.g. Processor, SDRAM, Router). The main class,
Machine, is the software representation of the board with its chips and all
their components.

– PACMAN: The Partition and Control Manager performs the partitioning of
the snn graph splitting each Population in a set of vertex (partial-population)
and performs the placement of the partial-population on the SpiNNaker pro-
cessors.

– SpiNNMan: is a tool that implements at a lower level the communication
with the board allowing to send and receive messages to it (SDP packets,
SCP commands, EIEIO Packets) using UDP protocol. It is widely used by
the other modules for load files and data.

– DataSpecification: contains a tool that allows specifying data (synaptic ma-
trices, data structures for doing reports to the host or register spikes) for the
neurons in each core.

This full software stack can be combined with a new protocol [25] designed for
simplifying configuration and execution of applications by enabling: i) A more
efficient generation of data structures during the configuration phase, ii) An on-
the-fly reconfiguration of specific parameters, avoiding the re-load of simulation
data, and iii) The possibility of embedding alternative computational flows in
the applications, allowing users to switch between predefined tasks.

3 Problem Formulation

The snn placement into the neuromorphic architecture can be view as an opti-
misation problem that involves two graphs: GN and GCPU.

A graph G = (V,E,W) is a mathematical representation for describing a set
of elements V and a set of relations E ⊆ {(vi, vj) : vi, vj ∈ V } among them.
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The elements are called nodes of the graph and the relations are called edges
of the graph. An edge eij ∈ E binds two nodes vi, vj ∈ V to each other. A
graph can have a W : E → W function that associates an edge eij ∈ E to a
value wij ∈ W . The value wij = W(eij) is called edge weight. A graph can be
categorised according to two properties: i) If the nodes on edges form unordered
pairs eij : {vi, vj} the graph is said undirected otherwise it is said directed and
the nodes on edges form ordered pairs eij : (vi, vj). ii) If the weight set W is
empty the graph is said unweighted, otherwise it is said weighed.

A Spiking Neural Network (snn) can be represented using a directed and
weighted graph called neuron graph GN . In GN the nodes are the snn neurons
and the edges are the snn synapses. Taking into account a synapse eij : (vi, vj),
the neuron vi is called pre-synaptic neuron and the neuron vj is called post-
synaptic neuron. The edge weight wij represents the synapse contribution to
injected current into the post-synaptic neuron after a stimulus received by the
pre-synaptic neuron and is called synaptic weight.

The neuromorphic architecture can be represented using an undirected and
weighed graph, called target graph GT .
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Fig. 2: The distance matrix of the same placement area using a fine-grain and a
coarse-grain target graph.

The target graph can be more or less detailed. If the graph nodes are the
SpiNNaker Chip, we define the target graph as coarse-grain. If the graph nodes
are the ARM processors, we define the target graph as fine-grain.

If GT is coarse-grain, all edges have a weight of 2 and represent the inter-chip
communication links. If GT is fine-grain, all edges between two processors located
on the same chip have a weight of 1, while all edges between two processors
belonging to adjacent chips have a weight of 2.

This choice is determined by the structure of arbiter which feeds the SpiN-
Naker chip routers. The router has two branches for introducing packets accord-
ing to their origin: the 18 internal processors and the six neighbouring chips. It
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has been demonstrated in [27] that the arbiter does not correctly manage some
traffic configurations coming from the six external links. It was therefore decided
to disadvantage all inter-chip communications with twice the weight of intra-chip
communications. The Fig.2 shows the differences between the fine-grain model
and the coarse-grain model through the distance matrices obtained from the
graphs of the target nodes.

We can define the placement problem Π : GN → GT as a minimization
problem (1).

minimize
f(π)

f :
∑

eij∈EN

d(π(vi), π(vj)) (1a)

subject to π(i) = π(j)→M(i) =M(j), i, j ∈ VN (1b)

|π(i) = p| ≤ S(M(i)), i ∈ VN , p ∈ VT (1c)

The goal of a placement procedure is to minimise the overall synaptic stretch-
ing (1a) to reduce the communication along the network nodes. The synaptic
stretching is the distance between the nodes where two adjacent neurons are
placed. Where π : VN → VT is the placement rule, M : VN →M is the neuron-
model association rule and, S : M → N is the association rule between a neuron
model and the maximum number of neurons per node. The constraints of the
placement problem are two: i) All neurons mapped into a target node must be
of the same model (1b). ii) Each node can simulate only a certain number of
neurons, and the quantity depends on the complexity of the neuron model (1c).

3.1 Problem Relaxation

A snn is almost never described in GN form, due the high complexity in manage
all neurons and synapses, but is normally described in terms of Population and
Projection. A Population P is a set of neurons that share the same model and
the same properties. A Projection between two Population P(a) and P(b) defines
a rule for create a set of synapses where the pre-synaptic neurons are in P(a) and
the post-synaptic neurons are in P(b). We will refer to the Population-Projection
graph using the notation GP .

We can eliminate the two constrains (1b, 1c) redefining the problem Π work-
ing from the graph GP . The first step is splitting each population P(i) into a

set of partial populations
{
P(i)
1 ,P(i)

2 , . . . ,P(i)
z

}
. All partial populations must

contains at most a number of neurons equal to the maximum number of neu-

rons allowed to be simulated in a target node: |P(i)
j | ≤ n(i) ∀j = 1, . . . , z, with

n(i) = S(M(P(i))).
In this way we obtain the partial population graph Gpp. The edges of the

partial population graph are weighed and ordered. Given an edge eij ∈ Epp

between two partial population, its weight wij is equal to the number of synapses
shared between the neurons belonging the two partial populations.
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We can redefine (1) using the placement rule π : Vpp → VT that map a partial
population into a processor (2).

minimize
f(π)

∑
eij∈Epp

d(π(vi), π(vj)) ∗ wij (2a)

subject to |π(i) = p| ≤ 1, i ∈ Vpp, p ∈ VT (2b)

In (2a) we modify the cost function to take into account the number of
synapses shared between the target nodes. The rule in (2b) describes the single
constraint of the problem: a target node may contain only one partial population.

3.2 Graph Partitioning

The partition problem of GP can be solved in different ways. In [28] it was treated
as a problem of clustering. The provided solution was divided into three step:

– Graph expansion: GP → GN
– Spectral clustering: GN → R|VN |

– Legalization and clusters fusion: R|VN | → Gpp.

The first step is to create the neuron graph GN by applying the synaptic genera-
tion rules defined into the Population-Projections graph GP . In the second step,
a spectral clustering procedure is applied to the neuron graph.

The Spectral Clustering involves the eigendecomposition of a representative
matrix of the graph. In the case of GN , a directed graph, it was used a Laplacian
Matrix (3) obtained throught a transition matrix induced by a random walk [3].

L = I − (Φ
1
2PΦ−

1
2 + Φ−

1
2PTΦ

1
2 )

2
(3)

The results of the Spectral Clustering is the GN rapresentation into the
eigenspace of L, a space belonging to R|VN |. The neurons can be clustered into
the eigenspace using the KMeans algorithm. After the clustering, a legalisation
phase gathers in groups all neurons belonging to the same cluster and the same
population. Finally, a second legalisation phase, called Fusion, builds the par-
tial populations putting together the nearby groups of neurons until reach the
maximum number of neurons that a processor can simulate.

Other techniques of graph clustering are Multilevel Graph Partitioning and
Markov Cluster Algorithm [13, 30]. These techniques, like the Spectral Cluster,
was born for undirected graph and their usage should be analysed using different
symmetrisation techniques if applied to a directed graph.
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4 Placement

As seen in section 3 our goal is placing GN into a set of nodes GT . In subsection
3.1 we have relaxed the constraints of the problem separating it into two sub-
problems: i) Clustering GN (or partitioning if consider GP as a starting point)
into the partial population graph. ii) Placement of Gpp into GT . We have briefly
described the clustering (or partitioning problem) in the section 3.2. In this sec-
tion, we independently explore the placement problem (2) by comparing different
techniques: Näıve, Spectral Embedding, Scotch and Simulated Annealing.

4.1 Näıve Placement

The Näıve approach is the standard mapping procedure adopted in the SpiN-
Naker toolchain for assigning populations of neurons to be simulated on the cores
available in the SpiNNaker Platform. It is a simple and computationally light
method to perform the graph placement without taking into account neither
source and target graph connectivity.

The target graph was ordered following a polar coordinate system (ρ, ϕ)
starting from a chip of choice. The radius ρ = max(|x|, |y|, |x − y|) has been
calculated using the hexagonal distance. The angle ϕ ∈ [0, 2π) is expressed in
radians. The procedure starts to place a partial population into each processor
and change the chip when all processors inside a chip are used. As the ρ increases,
the sub-populations will be distributed along the chip on the circumference and
will be separated by a greater and greater distance.

4.2 Spectral Embedding

The Spectral Embedding placement was partially used in a previous work de-
scribed in [28]. The procedure involves the spectral analysis of the graph and a
dimension reduction procedure to obtain a planar representation of it. By doing
so, the target graph can be directly superimposed on the graph of the partial
populations. Contrary to previous work, in which a greedy heuristic was used, the
association of partial populations with processors was finally described through
an Integer Linear Programming (ILP) problem.

The procedure starts with the extraction of the first five eigenvalues, and
the relative eigenvectors, from the matrix L. The eigenvectors form a matrix
Λ that represents the partial populations in a R5 space. We apply a non-linear
dimension reduction procedure using Sammon Mapping obtaining a space in R2.

The Sammon Mapping algorithm minimise the error function in (4) where dij
is the distance in the high-dimensional space (eigenspace) and d∗ij is the distance
in the low-dimensional space (placement space) [24].

E =
1∑

i<j dij

∑
i<j

(dij − d∗ij)2

dij
(4)
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Each chip, in the chip mesh, is represented as a point (x, y) in an axial
coordinate system. We superimpose the graph GT on Gpp projecting the chip
mesh in the placement space (5).

(
x∗

y∗

)
=

√
2Ah

3
√

3

√3 −
√

3

2

0
3

2

(xy
)

(5)

Where (x, y) is the chip coordinate in the hex mesh, and (x∗, y∗) is the
chip coordinate in the placement space. The side length of the hex is used as
a normalising factor and calculated using the area Ah = A

m occupied by each
chip. The normalising factor allows scaling the chip mesh concerning the area A
occupied by the partial populations.

In the case where the target graph is fine-grain, we need to introduce the
processors in the placement space. To ensuring spatial coherence, it was decided
to place them equidistant along a circumference centred on the chip coordinate.
The radius is chosen in such a way that it is smaller than the distance between
two processors belonging to different chips.

After projecting the points into the placement space, they are translated to
centre them on the median of the points representing the partial populations.
Now we can describe the placement problem using the ILP formulation (6).

minimize
f(X)

f :

n∑
i=1

m∑
j=1

xi,jdi,j (6a)

subject to

n∑
i=1

xi,j ≤ k ∀j ∈ {1, . . . ,m} (6b)

m∑
j=1

xi,j = 1 ∀i ∈ {1, . . . , n} (6c)

Where the X = (xij), xij ∈ {0, 1} matrix is the placement matrix. An
entry xij = 1 means that partial population i is mapped on the target node
j. The problem constraints are two: i) Each target node can host at most k
partial populations (6b). ii) Each partial population can be associated to only
one target node (6c). The ILP problem was modelled using PuLP Python library
and solved with COIN-OR branch and cut (CBC) solver.

4.3 Scotch

The Scotch mapping procedure makes use of the programs available in the
homonym software suite (scotch). The Dual Recursive Bipartitioning (DRB)
is the primary procedure used by this tool [18]. The DRB can use a plethora
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of other bi-partitioning methods according to a strategy defined by the user or
deducted by graph properties. The main available methods are: Gibbs-Poole-
Stockmeyer [9], Fiduccia-Mattheyses [6], Greedy Graph Growing [13] and Diffu-
sion [19].

The mapping workflow with scotch plans to pre-partition the target graph
through the amk grf program. The amk grf program take in input a graph in
grf format and create a target file (tgt format) which contains a decomposition-
defined target architecture of same topology as the input graph.

Once a decomposition of the target graph has been obtained, the graph of
the partial populations is placed on the target graph using the gmap program.
The program gmap take in input the partial population graph in grf format
and the target graph in tgt format and perform the DRB procedure minimising
the communication cost function2. The gmap output file is a mapping file (map
format) that contains the association between the Source and the Target nodes.

We had developed a Python module able to exporting a NetworkX graph to
a file according to the grf format used by scotch and capable of automating
the procedures described above.

4.4 Simulated Annealing

The Simulated Annealing is a well know procedure used to find a good solution
to an optimisation problem [14]. Given the problem in (2a), it is convenient to
express the overall synaptic stretching in a matrix form and define a cost function
to minimise. Given the partial population graph Gpp we build its Adjacency
matrix A = (aij) as described in (7).

aij =

{
wij if ∃(vi, vj) ∈ Epp

0 otherwise
∀i, j ∈ {1, . . . , n} (7)

Given the target graph GT we build its distance matrix D = (dij) where
each entry dij is the lenght of the mimimum path between two target nodes
cpui and cpuj . The distance matrix can be build using the Floyd–Warshall al-
gorithms or repeating Dijkstra’s algorithms if |ET | � |VT |2.

Assuming to have as many subpopulations as target nodes and a placement
rule Π : {v1, . . . , vn} → {cpu1, . . . , cpun} we construct the permutation vector
π : (Π(v1), . . . ,Π(vn)) and the permutation matrix Pπ = (pij) in row form (8).

pij =

{
1 if i = πj

0 otherwise
∀i, j ∈ {1, . . . , n} (8)

The permutation matrix is applied to D to permutate its rows and columns.
We obtain the matrix Dπ = PπDPπ. The overall synaptic stretching can be

2 The scotch cost function is similar to our Synaptic Stretching
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expressed in a matrix form and used as the cost function for the simulated
annealing algorithm (9).

f : eT (A�Dπ)e =
∑
i,j

aij ∗ d(π)ij (9)

Where � is an element-wise multiplication and e is a column vector whose
all elements are equal to one. In the case of a fine-grain GT , before perform the
synaptic stretching evaluation, the matrix A�Dπ should be collapsed in order to
aggregate the processors belonging to the same chip. We used the Simulated An-
nealing implementation provided in the SciPy ecosystem using the temperature
to decide how many elements of the permutation vector π to swap.

5 Results

In this section, we present the exploration experiments using the methods de-
scribed in Section 4.

We use the Cortical Microcircuit (cm) as benchmark network, [20]. This net-
work represents the connectivity of neurons inside a slice of the cerebral cortex
with an area of 1mm2. The cm has been chosen because it is a rapresenta-
tive biological model with a relativly high global connectivity (5%) and natural
clusters defined by the four cerebral cortex layers {L23, L4, L5, L6}. The cm is
described in terms of Population and Projection with two populations for each
layer, for a total of 8 Population and 64 Projections.

The network is composed of Integrate and Fire (lif) and Spike Source (src)
neuron models. The lif neurons are models that mimic the biological neurons be-
haviour. The src neurons are simple programmable applications for outputting
signals when desired. In this network, the src neurons are used to simulate the
background activity of cortical neurons not presents in the model. Each src
neuron is connected to only one lif neuron, so they can be excluded by the GN
provided that processors are reserved for their execution.

The cm model has 7.72e+4 lif neurons and 2.99e+8 synapses. The network
can be down-scaled to a percentage cmp, for example:

– cm5% has 3.86e+3 neurons and 7.47e+5 synapses.
– cm10% has 7.72e+3 neurons and 2.99e+6 synapses.
– cm50% has 3.86e+4 neurons and 7.47e+7 synapses.

For each processor in charge of simulating a lif partial population, we must
reserve two further processors. A processor is reserved for the simulation of
paired src neurons. A further processor is reserved to host a special application
necessary to manage synapses with delays greater than 10 ms, as described in
[27]. Taking into account a set of 16 processors belonging to the same chip, we
can place 5 partial population per chip for a total of a thousand neurons per
chip.

For simplifying the problem we perform a sequential slicing of each population
in order to obtain partial populations with at most 1 000 neurons. In this way,
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(b) Spectral Placement (+18%)
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(c) Näıve Placement
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(d) Spectral Placement
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(e) Scotch Placement (+23%)
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(f) Simulated Annealing (+28%)
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(g) Scotch Placement
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(h) Simulated Annealing

Fig. 3: The figures in the first row represent the placement of the partial pop-
ulation graph build from a CM20% with 1000 neurons per chip on 19 chip (5
processors per chip). The figures in the second-row represent for each partial
population the number of synapses (white line) and the percentage of synapse
stretching.
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Fig. 4: The graph represents the improvement of a mapping technique with re-
spect to the median of the results obtained with a random placement using a
constraint of 1000 neurons per chip. The x-axis shows the CM scale factor. The
areas represent the first and third quartile of the results obtained on 100 samples.

we can use a coarse-grain target graph where the nodes are the spinnaker chips
(each chip with 5 processors and 200 lif neurons per processor).

The experiment environment is composed of four different mapping proce-
dures: Näıve, Spectral, Scotch and Simulated Annealing. We had generated 5
cm networks for 10 different scale factors, from 5% to 50%, for a total of 50
networks. For each network, we applied all mapping procedures 20 times. We
evaluate the performance of each mapping procedure for each scale factor, using
the fitness function (9). As a result, we obtain a distribution of 100 different
placement results concerning overall synaptic stretching.

The performance of mapping procedures is compared to the performance of
random placement. The median value of the results obtained with the Random
procedure is used to compute the percentage improvement of the results obtained
with other techniques.

In Fig.4 is depicted a chart that summarize all the experiments. On the x-
axis, there are the network scale factors, on the y-axis the percentage placement
improvements versus random. The data series are represented by polylines of
different colours representing the medians of the results set. Each polyline is
drawn within an area whose extremes delimit the first and third quartile of the
results set.

In Fig.3 are depicted the mapping results of a cm20% into a target graph of
19 chip using the four placement techniques. Each hex represents a SpiNNaker
chip connected with six neighbours. The colour of the hex area points out the
belonging of the neurons, mapped on the chip, to one of the eight populations
of the cm. The number of synapses shared between two partial populations
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(a) Exploration with 200 neurons per node and fine-grain target graph
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(b) Exploration with 150 neurons per node and fine-grain target graph
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(c) Exploration with 100 neurons per node and fine-grain target graph

Fig. 5: The three graphs represent the improvement of a mapping technique with
respect to the median of the results obtained with a random placement using
three different constraints for the number of neurons in a processor. The x-axis
shows the CM scale factor. The areas represent the first and third quartile of
the results obtained on 100 samples.



Mapping SNN on Multi-Core Neuromorphic Platforms 17

is highlighted with the colour intensity of the edge that connects them. The
different concentration of the connections with more synapses can be appreciated
qualitatively from the figures 3a to 3f and quantitatively from the figures 3c to
3h.

In Fig.3a can be seen how the Näive method does not consider the connec-
tivity but place each partial population sequentially following the polar ordering
of the chip. Indeed there are many connections with a large number of synapses
directed towards distant chips. This not happens in Fig.3f where the Simulated
Annealing can localise in a defined area all partial population with a high number
of shared synapses. In figures 3c and 3h the same information can be appreci-
ated quantitatively. The chart has a bar for each partial population. Each bar
represents the overall outgoing synapses of a partial population and shows the
percentage of synapses at different levels of elongation. The white line depicts
the number of synapses belonging to each partial population. The partial popu-
lations are sorted in descending order according to the total number of synapses.

We can see how better methods improve the percentage of synapses at a
distance of 1 chip (Green) and decrease the percentage of synapses at a distance
of 4 chips (Red).

While the results of the coarse-grain model were obtained by imposing a
maximum of 1000 neurons per chip belonging to the same population, the re-
sults obtained with the fine-grain model were evaluated using three different
values that limit the neurons per processor: 100, 150, 200. The results obtained
using 200 neurons per processor are shown in Fig.5a. In the Table1, the results
are shown in terms of processors involved. Where possible, a maximum of 5
processors per chip was used, because the network CM, in addition to the lif
neurons considered there, makes use of other applications including a manager
for synapses for high delays and a manager of external stimuli [ src]. For each
processor that simulates lif neurons, two other processors are required for a total
of 15 processors per chip. In any case, in this exploration some configurations
required more processors than theoretically available, so we ignored this con-
straint where necessary. Each chip, therefore, hosts from 500 to 1000 neurons
belonging to different populations.

As the Fig.5 shows, the results show a profile similar to the one obtained with
the coarse-grain model. However, it is noted, mainly for problems with many
processors are involved, that the use of the methodology based on SCOTCH
obtains results slightly inferior to Simulated Annealing. Considering the high
efficiency of the solution offered by the SCOTCH suite and the simple A + AT
symmetrisation necessary to use the tool, it is possible to renounce to the 2% of
improvement but obtain a fast and acceptable solution.

6 Conclusions

In this paper, we described a mapping problem that involves a complex directed
graph to be placed in a mesh of processors. We have modelled the mapping
problem of snn into SpiNNaker processor-mesh and split the problem into 3
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Neurons per Node

200 150 100

CM Processors Chips Ratio Processors Chips Ratio Processors Chips Ratio

5% 24 5 4.8 28 6 4.7 42 9 4.7

10% 42 9 4.7 54 11 4.9 80 16 5.0

15% 62 13 4.8 80 16 5.0 120 24 5.0

20% 80 16 5.0 107 22 4.9 157 32 4.9

25% 100 20 5.0 132 27 4.9 196 40 4.9

30% 120 24 5.0 157 32 4.9 236 48 4.9

35% 140 28 5.0 184 37 5.0 274 46 6.0*

40% 157 32 4.9 209 42 5.0 312 45 6.9*

45% 178 36 4.9 236 48 4.9 351 44 8.0*

50% 196 40 4.9 261 44 5.9* 390 44 8.9*

Table 1: Size of the fine-grain target graph used to position the CM. We have
always tried to keep 5 processors per chip with different constraints for the
number of neurons per chip. Some configurations marked with (*) could not
meet the first constraint.
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phases: the expansion, clustering, and mapping. Focusing on the mapping phase,
we have identified and test 4 methodologies to solve the problem. The Näıve
method maintains the proximity of clusters but does not take into account their
connectivity. The Spectral method uses the graph eigendecomposition to obtain
a planar representation of it and perform the node association with the chip
mesh through an ILP formulation. The Scotch method uses the Dual Recursive
Bipartitioning heuristic for fast mapping of a source graph into a target graph.
The Simulated Annealing method uses the well-known procedure to minimise a
cost function.

We are redefining the cost function of the placement problem bringing it into
matrix form as a function of a permutation vector. We have chosen the cortical
microcircuit at different scale factors as our benchmark network, preferring it
for its high connectivity and the presence of clusters. After performing several
tests on the chosen benchmark network, the results highlight the superiority of
the Simulated Annealing method that works natively on direct graphs. Using
a fine-grain model, the gap between the SA and SCOTCH based method has
narrowed, especially when dealing with particularly large graphs. In these cases,
the (more efficient) SCOTCH-based method has the advantage of providing an
acceptable solution in a shorter time.

This modelling system for snn placement problems can be adapted to other
architectures such as Intel Loihi and SpiNNaker 2 for investigating new map-
ping techniques to be adopted for improving the usability of these emerging
architectures. In the next works, we will implement these techniques within
the placement pipeline of the SpiNNaker neuromorphic architecture, to offer an
alternative to the currently implemented method (Näıve) and evaluating exper-
imentally the reduction of communications between the chips involved.
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