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fluorescent markers, therefore representing a versatile and powerful tool for automated quantitative 

analyses in fluorescence microscopy.  

 

Keywords: Cellular imaging; Clonal analysis; Automatic cell segmentation; Computer-aided image 
analysis 
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Introduction 
 
The technological advancements in multicolor labelling of cells and tissues, in association with modern 

semi-automated or automated microscopy, produce enormous sets of data.  Looking at the resulting images 

by eye is extremely time consuming and subjectivity may introduce biases and errors in the analysis. Thus, 

many biologists find they need software to analyze images easily, accurately and objectively. 

Clonal analyses, that allow to track the cell lineages derived from individual progenitors, currently represent 

a crucial tool in developmental biology to understand the ontogenesis of cell heterogeneity (Engstrom et 

al., 2002), (Espinet et al., 2000). To tackle this issue, in the neuroscience field, a specific method of lineage 

tracing employs genetic multicolored cell labeling. Indeed, with the development of distinct genetic tools 

allowing to permanently label the cells of interest, the idea of tracking entire lineages from their progenitors 

at high resolution first came true. The availability of a large variety of fluorescent reporters, together with 

the use of transgenic mice, triggered the idea of the use of conditional and combinatorial expression of 

different fluorescent proteins to define clonality of specific cell types. First, three distinct fluorescent 

reporters were combined to trace neurons (Feng et al., 2000), then, the Brainbow technology was designed 

to visualize synaptic circuits by genetically labeling individual neurons with as many as 90 distinguishable 

colors (Livet et al., 2007). Another clonal method employed stochastic recombination in isolated cells in 

distinct transgenic lines, as for mosaic analysis with double markers (MADM); (Zong et al., 2005), (Gao et 

al., 2014). Moreover, the three-lentiviral gene ontology (LeGO) vectors (Weber et al., 2011), (Weber et al., 

2008) coding for red, green or blue (RGB) fluorescent proteins were developed and exploited to analyze 

clonal cell fates both in vitro and in vivo. To avoid the use of genetically modified organisms, DNA 

constructs encoding distinct fluorescent reporters were then designed to trace the lineage of single 

progenitors, following electroporation in the cells of interest (García-Marqués and López-Mascaraque, 

2012), (García-Moreno et al., 2014), (Loulier et al., 2014), (Figueres-Oñate et al., 2016). Overall, multicolor 

reporter labelling is a powerful tool enabling the study of cell heterogeneity in a variety of settings, 

including developmental studies, analysis of stem cell functioning and tumorigenesis. Moreover, it finds 
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Figure 1. Representative images of the distinct cell types analyzed. The dataset contained images of diverse cerebellar 

cell types, clearly distinguishable according to their morphology and localization within the tissue. These cells 

comprised either neurons, such as Purkinje cells (a) and Granule cells (b), or interneurons (c), or glial cells (d-i). Glial 

cells included oligodendrocytes at distinct stages of maturation, i.e. precursors (d), mature not-myelinating (e) and 

mature myelinating oligodendrocytes (f), and the three main cerebellar astrocyte types, comprising white matter 

astrocytes (g), granular layer astrocytes (h) and Bergmann glia (i). Scale bars: 30µm. 

 

The images were extracted from 31 mouse cerebellar slices and resulted from individual scans collected 

and digitalized at 40x magnification at the Neuroscience Institute Cavalieri Ottolenghi (Orbassano, Torino, 

Italy). Each image corresponded to a z-stack resulting from multiple steps 1.5 µm thick, whose total number 

varied according to the portion of tissue occupied by the labeled cells in each section. Images had a 

dimension of 1024x1024 pixels (resolution: 0.3784 µm/pixel). Our database contained 380 cells. A 

graphical user interface of the proposed method is available at https://data.mendeley.com/datasets/ 

yg6nfwm6cj/draft?a=688e8753-cfdd-43a5-8da8-8c2457b47efe. 
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FAST algorithm architecture  

The FAST algorithm is designed to automatically detect cells in fluorescence microscopy images. The 

algorithm was developed using MATLAB (MathWorks, Natick, MA, USA) environment and runs on a 

workstation with a 3.5 GHz octa-core CPU and 64-GB of RAM. The procedure of the proposed method is 

schematically described in Figure 2.  

 
 

Figure 2. Schematic representation of the FAST algorithm. 

 

Three main steps compose the processing: i) maximum intensity projection image segmentation, ii) 

fluorescent channels segmentation, iii) cells selection. In this section, a detailed description of the algorithm 

is provided. 
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Finally, a Kruskal-Wallis test (Breslow, 1970) is used to compare the inter-operator variability (OP1vsOP2) 

with the automatic performance (OP1vsFAST, OP2vsFAST). The Kruskal-Wallis test works under the null-

hypothesis that the data comes from the same distribution (p-value was set to 0.05). The Kruskal-Wallis 

test confirmed that there was no statistical difference between inter-operator variability (OP1vsOP2) and 

automatic performance (OP1vs FAST, OP2vs FAST) for both SDC and CCA (p-value > 0.05). 

An explanatory example comparing the output of the segmentation obtained by applying FAST and by 

manual operators is presented in Figure 7. 

 

 
 

Figure 7. Comparison between manual and automatic segmentation for three samples (rows), showing images with a 

high variation of laser intensities and cells appearance. The original RGB image, manual annotations (OP1 and OP2) 

and automatic segmentation are shown in columns. 

 

Comparison with open-source software  
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Figure 8. Comparison between two open-source software and the proposed method for three samples (rows). The 

segmentation masks provided by CellProfiler, Fiji and FAST are shown in columns. 

As can be seen from Table 4, the Cell Profiler segmentation is characterized by a low recall for both 

operators (0.6157 and 0.5974) and this leads to a lowering of the average F1SCORE (0.7571 and 0.7418). The 

CellProfiler pipeline allowed to obtain the lowest number of FP cells (4 and 5) but many cells were missed 

(FN: 146 and 153). Moreover, the mean SDC was lower than the proposed one for more than 10% (Table 

5). 

Fiji segmentation performance is quite similar to FAST results. The average F1-score achieved with Fiji 

was comparable to that obtained with FAST (0.9236 and 0.9143 vs 0.9034 and 0.9154). Importantly, 

however, Fiji is a semi-automatic software and requires user intervention to function properly. For this 

reason, the average computational time is about 7 times higher than FAST algorithm.  

 
 

Discussion 

In the present study, we proposed a fully automatic method for the segmentation of neural cells in multi-

channel fluorescence microscopy images and for their classification into clones according to the 
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combinatorial expression of distinct fluorescent proteins.    

Due to the huge heterogeneity within both progenitor and mature cell pools, the understanding of how cell 

diversity is ontogenetically achieved is a pivotal issue in neuroscience and, in general, in developmental 

biology.  In this context, clonal analyses based on stochastic multicolor cell labeling are a very powerful 

tool now widely applied to decipher with high accuracy clonal relationships among and within type- or 

region-specific kinds of cells in defined systems, and to disclose the functional implications of cell 

heterogeneity in both physiology and pathology. This kind of analysis produces a large amount of data, 

mostly in the form of confocal images, in which the labeled cells have been so far manually identified and 

classified by the operator with only partial help by semi-automated tools, thereby introducing possible 

biases and leading to time consuming analyses.  

To the best of our knowledge, FAST is the first fully automated solution for the analysis of cellular clones 

based on combinatorial expression of fluorescent proteins. The proposed method is able to recognize brain 

cells inside fluorescence images with no requirement of any user interaction. The algorithm was tested on 

77 high-magnification images of mouse cerebellar tissues, in which the UbC-StarTrack (Figueres-Oñate et 

al., 2016) or GFAP-StarTrack (Cerrato et al., 2018) methods  were applied to perform clonal analysis and 

tracing of several distinct cell types derived from single progenitors. For all the images of our dataset, two 

expert biologists manually annotated the cells and assigned a unique color-code to each of them. The 

comparison between manual and automatic segmentation confirmed high performances for the proposed 

approach.  

The observed robustness of FAST algorithm with respect to the cell appearance variability was mainly due 

to the implementation of adaptive thresholding and of an optimized cell selection. In addition, the mean 

color-code agreement assessed between the two operators (96.25%) was also analogous with the one 

achieved between the proposed algorithm and each operator (96.42% and 96.35%). The FAST algorithm 

allowed also to obtain: (1) the highest average F1SCORE (best object detection) compared to other open-

source software designed for cell detection in fluorescence microscopy; (2) the lowest running time and, 
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applied for the quantification and the colocalization of fluorescently labeled markers within cell somata in 

conventional immunocytochemistry and immunohistochemistry. 

  
 

Conclusion 

In this paper, an adaptive method for neural cell segmentation in fluorescence microscopy images is 

presented. To the best of our knowledge, FAST is the first fully automated solution for the analysis of 

cellular clones based on combinatorial expression of fluorescent proteins. 

The algorithm was tested on 77 high-magnification images of mouse cerebral tissue, in which cell nuclei 

had different intensities, shapes and dimensions. High segmentation performances were obtained and, for 

each image of the dataset, the algorithm took around 5 seconds to perform cellular clone segmentation, thus 

indicating the efficiency of the proposed technique.  

Being totally automated, this algorithm first overcomes all those issues related to time consuming manual 

annotations and analyses in fluorescence microscopy images, thereby significantly enhancing  the 

efficiency of multicolor-based cell analyses. Moreover, it represents the starting point for future 

implementations aimed at realizing reliable systems integrating cell spatial contents for 3D reconstructions 

and multidimensional analyses.  

 

Appendix 

To optimize the performance of the proposed method, we conducted a sensitivity analysis on the main 

parameters that the FAST algorithm features: polynomialORDER (order of the polynomial function that fit 

the PWMCURVE), smallOBJECTS (minimum area of detected objects), minSOLIDITY (minimum solidity of a 

segmented region to be considered as nervous cell) and numCONDITIONS (minimum number of conditions to 

be satisfied during the cell selection). The sensitivity analysis of the FAST algorithm is outlined in Table 

6.  
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