
Doctoral Dissertation
Doctoral Program in Electronics and Telecommunications Engineering (31stcycle)

Deep Learning
for Image Analysis in

Satellite and Traffic Applications

By

Sina Ghassemi
******

Supervisor(s):
Prof. Enrico Magli, Supervisor

Doctoral Examination Committee:
Prof. Gabriele Moser, Referee, Università degli studi di Genova
Prof. Farid Melgani, Referee, Università degli studi di Trento
Prof. Marco Grangetto, Università degli studi di Torino
Prof. Sophie Fosson, Politecnico di Torino
Prof. Tiziano Bianchi, Politecnico di Torino

Politecnico di Torino

2019



Declaration

I hereby declare that, the contents and organization of this dissertation constitute my
own original work and does not compromise in any way the rights of third parties,
including those relating to the security of personal data.

Sina Ghassemi
2019

* This dissertation is presented in partial fulfillment of the requirements for Ph.D.
degree in the Graduate School of Politecnico di Torino (ScuDo).



I would like to dedicate this thesis to my loving parents



Acknowledgements

And I would like to acknowledge that the research presented in this thesis has been
supported by a fellowship from TIM and has been done at the Joint Open Lab
Cognitive Computing.

Besides, I would like to thank my supervisor Prof. Enrico Magli for his support
and encouragement during the projects. I would also like to thank my colleagues at
the TIM joint open lab Attilio Fiandrotti, Gianluca Francini, Pedro Porto Buarque
and Skjalg Lepsøy for all the help they provided me.



Abstract

In this thesis, two fundamental problems in computer vision have been addressed
by proposing novel approaches which are based on deep learning. First, we address
fine-grained object recognition over vehicular images regarding vehicle makes and
models. Secondly, we address semantic segmentation over remotely sensed images
on a global geographical scale.

To address vehicle make and model recognition (VMMR), a classification archi-
tecture based on Convolutioanl Neural Network (CNN) and multi-scale attention
windows is developed. The proposed architecture consists of a localizer and a clas-
sifier module. First, the localizer module predicts a number of attention windows
over each image to capture most representative parts of a vehicle. Then, the classifier
module extracts and aggregates visual representations over the predicted attention
windows to perform classification over vehicle make and model. We show that
VMMR can benefit substantially by capturing most distinctive parts of a vehicle
over attention windows with non-identical sizes which provide discriminative visual
patterns over multiple scales. Moreover, the proposed architecture leverages spatial
transform module to spatially manipulate the input image and to backpropagate
the error from the localizer to the classifier. Thus, unlike many other competitive
part-based approaches, the proposed localizer is trained to minimize the classification
error without requiring expensive part annotations over training samples.

Additionally, a multi-scale patch training methodology is proposed which enables
predicting attention windows with desired scales. Moreover, the classifier module is
proposed with multiple outputs to allow joint prediction on vehicle make and model.
Hence, we formulate a loss function accounting for classification errors over both
vehicle make and model. In the end, we evaluate the proposed methodology over two
publicly available datasets: Stanford car dataset [51]; Compcar dataset [105]. Our
proposed architecture surpasses all prior state-of-the-art methods in both datasets.



vi

In the second part of the thesis, semantic segmentation on satellite images is
addressed proposing a CNN encoder-decoder architecture. In contrary to most of the
recent work where the segmentation is studied over samples with similar distributions
(i.e. samples are extracted from one geographical area), we develop a scheme which
is deployable over a broad range of aerial images with different statistics with
different geographical locations. Satellite images captured in different locations by
different sensors or even in different time intervals experience variations in their
distribution, such variations over a segmentation model input known as covariate shift
in machine learning. Accordingly, in this work, we study the proposed architecture
capability to reduce the performance degradation associated with covariate shift. We
show that a class of CNN namely residual network that enables very deep networks
(up to 200 layers), if employed as encoder module in the proposed architecture,
allows learning visual representations of high semantic level which are more robust
to covariate shift. Training such deep encoder over a large amount of satellite images
captured at different locations enables learning features of high semantic level which
are not specific to a particular image.

Additionally, we propose two domain adaptation techniques to further enhance
the segmentation over each specific image. In the first method, performance is
improved over each image by fine-tuning the network over a small subset of annotated
samples. In the second approach, batch normalization statistics are fine-tuned
over each image improving the segmentation without requiring annotations. We
evaluate the proposed architectures and domain adaptation methodologies over a
homegrown dataset and also two publicly available datasets of satellite images
namely ISPRS Vaihingen 2D semantic segmentation contest [15] and INRIA aerial
images benchmark [63]. We show that while our network benefits from less complex
structure it advances state-of-the-art results on binary segmentation and competes
closely with far more complex methods on multi-class segmentation task.

Finally, we propose a similar encoder-decoder CNN to address cloud screening
over satellite images such that it can be implemented on the satellite platform. Thus,
we investigate experimentally several solutions to make CNN more efficient in
terms of resource consumption while preserving its cloud screening accuracy. We
show that the proposed architecture can be implemented on the satellite platform
while performing with reasonably high accuracy compared with the state-of-the-art
approaches.



Contents

List of Figures xi

List of Tables xv

1 Introduction 1

1.1 Vehicle Make and Model Recognition . . . . . . . . . . . . . . . . 2

1.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Semantic Segmentation of Satellite Images . . . . . . . . . . . . . 5

1.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Cloud Screening . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Convolutional Neural Network 11

2.1 Convolutional Layers . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Fully Connected Layers . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Pooling Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Deconvolutional Layers . . . . . . . . . . . . . . . . . . . . . . . . 15



viii Contents

2.5 Activation Functions . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 Softmax Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.7 Batch Normalization . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.8 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.8.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.8.2 Data Augmentation . . . . . . . . . . . . . . . . . . . . . . 19

2.8.3 Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.8.4 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.8.5 Regularization . . . . . . . . . . . . . . . . . . . . . . . . 22

2.9 Residual Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.10 Fully Convolutional Networks . . . . . . . . . . . . . . . . . . . . 25

3 Vehicle Make and Model Recognition 27

3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Proposed Architecture . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.1 Localizer Module . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.2 Spatial Transform Module . . . . . . . . . . . . . . . . . . 35

3.2.3 Classifier Module . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Generating Samples . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.1 Extracting Patches with Different Scales . . . . . . . . . . . 41

3.3.2 Data Augmentation . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.1 Cost Function Formulation . . . . . . . . . . . . . . . . . . 43

3.4.2 Training the Classifier Convolutional Trunks . . . . . . . . 44

3.4.3 Initializing the Network . . . . . . . . . . . . . . . . . . . 45

3.4.4 Training and Optimization . . . . . . . . . . . . . . . . . . 47

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48



Contents ix

3.5.1 Stanford Car Dataset . . . . . . . . . . . . . . . . . . . . . 49

3.5.2 CompCar Dataset . . . . . . . . . . . . . . . . . . . . . . . 50

3.5.3 Optimizing the Localizer Module Architecture . . . . . . . 51

3.5.4 Optimizing the Classifier Module Architecture . . . . . . . 53

3.5.5 Training a Baseline Classifier . . . . . . . . . . . . . . . . 54

3.5.6 Training the Proposed Architecture . . . . . . . . . . . . . 55

3.5.7 Comparison with State-of-the-art . . . . . . . . . . . . . . 59

3.5.8 Single Attention Window as Localizer . . . . . . . . . . . . 61

4 Satellite Image Segmentation on Heterogeneous Datasets 63

4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Proposed Architecture . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.1 Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.2 Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 Constructing Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4 Training Methodology . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4.1 Cost Function . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4.2 Training and Optimization . . . . . . . . . . . . . . . . . . 76

4.5 Domain Adaptation Strategies . . . . . . . . . . . . . . . . . . . . 77

4.5.1 Batch Normalization Statistics Refinement . . . . . . . . . 77

4.5.2 Active Learning . . . . . . . . . . . . . . . . . . . . . . . . 79

4.6 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . 82

4.6.1 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . 82

4.6.2 Buildings Dataset . . . . . . . . . . . . . . . . . . . . . . . 84

4.6.3 INRIA Aerial Image Labeling Dataset . . . . . . . . . . . . 90

4.6.4 Vaihingen ISPRS 2D Semantic Labeling Dataset . . . . . . 95



x Contents

5 Onboard Cloud Screening for Satellite Images 100

5.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.1.1 Network Architecture . . . . . . . . . . . . . . . . . . . . . 104

5.1.2 Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.1.3 Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2 Generating Training and Test Samples . . . . . . . . . . . . . . . . 108

5.3 Cost Function and Optimization . . . . . . . . . . . . . . . . . . . 109

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.4.1 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . 111

5.4.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 112

6 Conclusions 118

6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

References 121

Appendix A VMMR with Conditioned Spatial Pooling 130

A.1 Conditioned Spatial Pooling . . . . . . . . . . . . . . . . . . . . . 130

A.1.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 132

A.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133



List of Figures

1.1 Surveillance cameras in intelligent city. . . . . . . . . . . . . . . . 2

1.2 Semantic segmentation of satellite images. . . . . . . . . . . . . . . 6

2.1 LeNet [58]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Convolution layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Fully connected layer. . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Pooling layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Convolutional (left) and deconvolutional (right) layers. . . . . . . . 15

2.6 Activation functions: Sigmoid (left), TanH (middle), ReLU (right). . 16

2.7 Training, validation and test sets. . . . . . . . . . . . . . . . . . . . 18

2.8 Data augmentation. . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.9 Loss function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.10 SGD with and without momentum. . . . . . . . . . . . . . . . . . . 22

2.11 Dropout [92]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.12 Brain cells having similar structure to residual networks. . . . . . . 23

2.13 Residual block for ResNet with depth ≤ 34 in left and for ResNet
with depth ≥ 34 in right. . . . . . . . . . . . . . . . . . . . . . . . 24

2.14 Residual network of depth 18. . . . . . . . . . . . . . . . . . . . . 25

2.15 Fully convolutional network [73]. . . . . . . . . . . . . . . . . . . 25



xii List of Figures

3.1 Proposed scheme in [112] addressing related fine-grained birds clas-
sification using R-CNN. . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Procedure proposed to tackle fine-grained birds classification in [53]. 30

3.3 An example of the proposed VMMR architecture with two attention
windows (W = 2). A vehicle sample with predicted two attention
windows (W = 2) is depicted in the figure. . . . . . . . . . . . . . . 33

3.4 The ResNet18 architecture subdivided in 5 convolutional blocks
with different depth and number of feature maps and feature map size. 34

3.5 The localizer module architecture. . . . . . . . . . . . . . . . . . . 34

3.6 First step of image sampling by spatial transform module: defining
grids over source and target image. . . . . . . . . . . . . . . . . . . 37

3.7 Second step of image sampling by spatial transform module: sam-
pling source image through bilinear sampler. . . . . . . . . . . . . . 37

3.8 The classifier module architecture. . . . . . . . . . . . . . . . . . . 39

3.9 The patch extraction procedure divided in three steps. . . . . . . . . 41

3.10 Stanford car dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.11 CompCar dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.12 The localizer architecture for different depth, particularly in this
figure localizer uses trunked ResNet18 at block C. . . . . . . . . . . 52

3.13 Predicted attention windows over a sample from Stanford dataset
(left) and a sample from Compcar datasets (right) and at five scales
of 0.95, 0.85, 0.75, 0.65, 0.55. . . . . . . . . . . . . . . . . . . . . 56

3.14 Predicted attention windows for W = 1 (top row), W = 2 (middle
row), W = 3 (bottom row) on Stanford dataset. . . . . . . . . . . . 56

3.15 Predicted attention windows for W = 1 (top row), W = 2 (middle
row), W = 3 (bottom row) on Compcar dataset. . . . . . . . . . . . 58

3.16 Single attention window as a localizer over samples of Stanford dataset. 61

3.17 Adding random background to penalize more inaccurate prediction
of attention window. . . . . . . . . . . . . . . . . . . . . . . . . . 62



List of Figures xiii

4.1 Proposed encoder-decoder convolutional architecture for satellite
image segmentation. . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Encoder architecture with depth of 18 and input size of 256 by 256
is visualized. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 Decoder architecture corresponds to encoder with depth of 18 and
input size of 256 by 256. . . . . . . . . . . . . . . . . . . . . . . . 70

4.4 Extracting training tiles (left), rotation (upper right) and cropping
(bottom right) are illustrated. . . . . . . . . . . . . . . . . . . . . . 74

4.5 Proposed active learning method depicted over three steps. NN
stands for the proposed neural network, xs, ts, xt and tt denote images
and target maps over source and target domains respectively. . . . . 80

4.6 Intersection (green area) over union (the whole colored area). . . . . 83

4.7 Six samples from building dataset. . . . . . . . . . . . . . . . . . . 85

4.8 Score maps over area B7 (top left) using proposed network with
encoder depth of 18 (top right), 50 (bottom left), 152 (bottom). . . . 87

4.9 Score maps over area B8 (left) using proposed network with encoder
depth of 152 without domain adaptation (middle) and with domain
adaptation using batch normalization update (Norm) on B8 area (right). 89

4.10 Score maps over area B7 (left) using proposed network with encoder
depth of 152 without domain adaptation (middle) and with domain
adaptation using network refinement over 30% (FT-30) on annotated
B7 area(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.11 Three tiles from Inria dataset (top) and their corresponding ground
truth segmentation maps (bottom). . . . . . . . . . . . . . . . . . . 91

4.12 Results over test area 6 in Bloomington city of INRIA dataset. The
RGB input image is on the top left while score maps (Decoder Soft-
Max outputs) for the proposed network with 50, 101 and 152 layers
provided in the top right, bottom left and bottom right respectively.
As the encoder depth increases, the quality of the score maps improves. 93



xiv List of Figures

4.13 In the left column, RGB images from INRIA test set are provided.
Each of these images shows an area in the cities of Bloomington
(top), Innsbruck (middle) and San Francisco (bottom). The central
column shows the segmentation maps predicted by the proposed
network (152 layers encoder). The right column shows the segmen-
tation maps predicted by the adapted network using normalization
statistics refinement over each test image. . . . . . . . . . . . . . . 94

4.14 Vaihingen city subdivided into 33 tiles. . . . . . . . . . . . . . . . . 96

4.15 Results over a validation area in Vaihingen city . The RGB input
image is on the left while score maps (Decoder SoftMax outputs)
for the proposed network with 50, 101 and 152 follows. . . . . . . . 97

4.16 Results over a validation area in Vaihingen city . The RGB input
image is on the left while segmentation results for the proposed
network with 50, 101 and 152 follows. Red colors indicates false
predictions while the rest are true predictions. . . . . . . . . . . . . 99

5.1 Network architecture: the encoder (bottom) and the decoder (top)
are illustrated in dashed boxes. Number of input and output channels
(i.e. feature maps) as well as the size of filter, stride and padding are
provided for each layer. . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2 Patch extraction and data augmentation during training similar to
procedure detailed in Sec. 4.3. . . . . . . . . . . . . . . . . . . . . 108

5.3 Two images from SPARCS dataset with the corresponding masks. . 110

5.4 The results of the proposed network (1-st row in Table 5.1) over 6
test images of SPARCS dataset. Green and white pixels represent
true positive and true negative while blue and red pixels represent
false negative and false positive outputs respectively. . . . . . . . . 112

5.5 ResNet with 18 layers depicted in five blocks. . . . . . . . . . . . . 116

A.1 Proposed architecture. . . . . . . . . . . . . . . . . . . . . . . . . . 131

A.2 Samples of Stanford datasets with corresponding predicted 7 × 7
masks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134



List of Tables

3.1 Localization performance over Stanford car dataset. . . . . . . . . . 52

3.2 Top-1 [%] classification error for different classifier module archi-
tectures , depths and batch size trained over patches with scale of
0.95 w.r.t. training samples. . . . . . . . . . . . . . . . . . . . . . 54

3.3 Top-1 [%] baseline classifier error for different patch scales. . . . . 55

3.4 Classification error over vehicle model and on Stanford car dataset
using proposed systems of one attention window (W = 1), two at-
tention windows (W = 2) and three attention windows (W = 3). In
each system the scale of i-th attention window varies in the set of
σi ∈ {0.95,0.85,0.75,0.65,0.55}. . . . . . . . . . . . . . . . . . . 56

3.5 Top-1 [%] classification error of our proposed system for differ-
ent combinations of attention window scales ([0.95], [0.95,0.75],
[0.95,0.75,0.65]). . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.6 Classification accuracy on vehicle model over Stanford dataset. . . . 59

3.7 Classification accuracy on vehicle model over CompCar dataset. . . 60

3.8 Top-1 classification error over the Stanford dataset without bounding
boxes annotations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1 Number of convolutional layers, output feature maps and their spatial
size for each encoder block and for different depths. . . . . . . . . . 69

4.2 Number of deconvolutional layers, output feature maps and their
spatial size for each decoder block and for different depths. . . . . . 70

4.3 Image description on buildings dataset. . . . . . . . . . . . . . . . . 84



xvi List of Tables

4.4 F1-score and accuracy over the buildings dataset test areas. Top:
The proposed network and U-net with different encoder depths and
Deeplab V3+ with two different backbone, Bottom: Adapted net-
works using BN statistics refinement (Norm), active learning over
10% (AL-10%) and 30% (AL-30%) of each test area. . . . . . . . . 86

4.5 Image description on Inria dataset. . . . . . . . . . . . . . . . . . . 92

4.6 F1-Score and Accuracy of the proposed architecture over INRIA
validation areas as a function of the encoder depth. . . . . . . . . . 92

4.7 Segmentation performance as IoU and Accuracy over INRIA test
images (numbers provided by the benchmark organizer). . . . . . . 95

4.8 F1-Score and accuracy of the proposed architecture over Vaihingen
validation images as a function of the encoder depth. . . . . . . . . 97

4.9 Confusion matrix (top half) and segmentation performance (bottom
half) for our proposed architecture with 152-layers encoder over the
Vaihingen test images (numbers provided by the benchmark organizer). 98

4.10 Segmentation accuracy over the 17 Vaihingen dataset test images
(numbers provided by the benchmark organizer). . . . . . . . . . . 98

5.1 The proposed network performance is provided (top) with different
encoder networks, encoder depths, computation precision, input
spatial and spectral sizes. Moreover, the performance of state-of-the-
art CNN, namely DeepLab V3+, is provided as well (bottom) with
two different encoder. . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2 The time interval which is required to: a) load the extracted patches
(over 1000×1000 pixels test image) from hard drive into memory
b) compute the network outputs over the input patches (i.e. patches
extracted from a test image) c) stitch the network outputs (to produce
1000×1000 segmentation maps) d) compute the evaluation metrics,
are provided. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114



Chapter 1

Introduction

Image classification plays a critical role in many image analysis applications and
refers to the problem of labeling an image according to a number of predefined
classes. The similar problem of semantic segmentation may also be considered as an
image classification task where instead of assigning a class to the whole image, each
image pixel is given a label. Both image classification and semantic segmentation are
essential for applications in many fields such as medical image analysis, autonomous
driving, remote sensing, security systems, intelligent transportation systems and
so on. In the recent decade, thanks to the rapid advancement in the area of deep
learning, availability of computational resources, and large scale datasets, deep
learning has achieved state-of-the-art performance in many fields including image
analysis. Particularly, Convolutional Neural Networks (CNNs) have shown to be
effective tools for extracting high-level visual representations from raw data. CNNs
have markedly outperformed their competitive methods in many image analysis tasks
including image classification and segmentation.

In the first part of the thesis, we address fine-grained image classification over
vehicle makes and models by developing a novel approach based on CNN and multi-
scale attention windows. In the second part, a CNN architecture along with domain
adaptation techniques are proposed to address semantic segmentation problem over
satellite images such that it can be applied and adapted over samples which are not
present in the training set. Finally, in the third part of the thesis, we address the
problem of optimizing memory consumption of a CNN such that it can be applied as



2 Introduction

an onboard cloud screening unit on satellite platform with the purpose of detecting
the images which are contaminated by clouds.

1.1 Vehicle Make and Model Recognition

Vehicle Make and Model Recognition (VMMR) refers to the problem of recognizing
a vehicle according to its manufacturer company, model and sometimes manufac-
turing year. Compared to other object classification tasks, VMMR presents several
unique challenges. First of all, vehicle is regarded as a rich object class consid-
ering the large number of vehicle makes and models. While some classes may
easily be separable, many others are difficult to tell apart due to subtle differences
in appearance. For example, distinguishing two vehicles such as an SUV from a
hatchback may be straightforward, while recognizing two models from a same make
but different models like Peugeot 207 and Peugeot 208 requires more attention.
Furthermore, vehicles captured from different view points illustrate almost different
parts which introduces intra-class visual variations. Such variations along with inter-
class similarity demand a robust classification scheme to perform VMMR. Therefore,
many classification methodologies which are proposed for coarse-grained object
recognition problems may not be able to address VMMR if the aforementioned
challenges related to vehicles are not addressed properly.

Fig. 1.1 Surveillance cameras in intelligent city.

1.1.1 Motivation

In recent decades, road transport in many developed countries has experienced an
increasing growth associated with growing mobility requirements. However, rising
energy consumption and destruction of environment are some side effects presented
by such volume of transportation traffic. In order to manage these challenges, many



1.1 Vehicle Make and Model Recognition 3

countries has been developing Intelligent Transport Systems (ITS). According to
the European parliament directive [1], “ITS are advanced applications which with-
out embodying intelligence as such aim to provide innovative services relating to
different modes of transport and traffic management and enable various users to
be better informed and make safer, more coordinated and ‘smarter’ use of trans-
port networks”. Therefore, ITS includes a broad range of technologies from basic
management systems such as traffic signal control systems, car navigation or speed
cameras to monitor applications such as security CCTV systems or even more ad-
vanced applications that combine live data and feedback from several other sources
such as parking guidance systems. Nevertheless, in many ITS related applications,
an important component is to identify a vehicle according to its make and model.

The traditional systems address VMMR by relying mostly on human observation
which makes their deployment impractical for real-time applications and over large
scale transportation networks. Moreover, the increasing deployment of traffic surveil-
lance cameras and advancement in computer vision techniques have made a growing
demand for automated visual vehicle recognition systems. A reliable automated
VMMR technology can significantly enhance the performance of many applications
in the field of ITS.

For instance, electronic toll collections over highways are implemented to reduce the
delay and traffic by obviating the need of cash payment and consequently preventing
car stop in the highways. However, most toll collections booths charge different rates
for different vehicle types, hence require distinguishing different type of passing
vehicles. Yet many existing methods rely on complex system that employs several
sensors such as inductive sensors in the road surface and shape detective light-curtain
lasers in order to classify the vehicle. Therefore, a reliable VMMR which is based
on visual analysis can significantly facilitate the vehicle classification with little cost.

VMMR systems can also be used in conjunction with technologies such as Automated
Number Plate Recognition (ANPR) in order to improve the system reliability. For
instance, many vehicle monitoring and security systems rely on ANPR such as road-
rule enforcement cameras. However, ANPR systems alone are not sufficient to ensure
security and reliability of vehicle identification. Thus, an effective way to improve
the reliability of ANPR systems is to integrate them with VMMR technologies [84].
Moreover, since most of proposed ANPR systems based on visual analysis, a parallel



4 Introduction

VMMR system can be applied with no extra cost to boost the overall identification
reliability.

1.1.2 Objectives

A number of successful approaches to VMMR are based on part-based image models
[39, 35, 7, 10, 59, 85]. In these models, first input image is subdivided into a
set of different vehicle parts (e.g. headlights, wheels) and then the classification
is performed over each part and corresponding results are aggregated to identify
the vehicle class. However, these methods rely on the knowledge of vehicle part
locations, hence either such information is given in prior or a separate part detector
is developed parallel to classification scheme. Those approaches that rely on prior
knowledge of part positions, however require all vehicle images to be captured from
a certain view point (e.g. front view) to prevent potential variations in part positions.
Other part-based approaches that require a part detection scheme, although can
perform on wider range of view points, however demand costly part annotations over
vehicular images.

To overcome the mentioned shortcomings and challenges of commonly used VMMR
approaches, we proposed a novel classification architecture to address the VMMR
based on multi-scale attention windows. To provide an intuitive explanation of the
proposed classification scheme, let us consider the case where we are supposed to
recognize a vehicle according to its make and model and based on its appearance.
At first glance, we look at the overall shape of the vehicle, then we will concentrate
on parts of the vehicle which are more deterministic. Depending on vehicle model,
these parts may include a large portion of the vehicle or small details such as the
shape of headlights. Therefore, the visual features of different scales help us to
make a decision on vehicle make and model. Based on this intuition and also
our experimental results, we show that indeed if visual representations over the
most deterministic part of a vehicle and over different scales are combined, such
representations provide the classifier more distinctive features and hence improves
the classification accuracy.

In order to obtain the mentioned objective, we propose an architecture including
CNN-based localizer and classifier modules connected with spatial transform module.
In the proposed scheme, localizer module predicts multi-scale attention windows



1.2 Semantic Segmentation of Satellite Images 5

and classifier performs VMMR over these attention windows. Spatial transform
module allows spatial manipulation of data between localizer and classifier module
in forward pass, and error back-propagation from classifier to localizer in backward
pass. As a result, localizer module trained by minimizing classification error without
providing part annotations. Thus, attention windows are predicted to capture vehicle
parts on different scales which minimizes the overall classification error.

Furthermore, we proposed a training methodology which allows localizer to predict
attention windows of desired scales. In the proposed training methodology, first,
scale-specific convolutional layers are pretrained over patches extracted with desired
scales from training image. Next, the localizer is trained to predict the attention
windows with corresponding scales minimizing the classification error.

Moreover, we minimized a joint loss function compromises classification error both
on vehicle make and model. This allows joint classification on vehicle make and
model instead of utilizing a classifier for each task. We have experimentally evaluated
our proposed classification scheme over two publicly available challenging vehicle
datasets [105] ,[52], advancing previous state-of-the-art by considerable margin.

1.2 Semantic Segmentation of Satellite Images

Semantic segmentation (also semantic labeling or pixel-based classification) is the
task of assigning each pixel of a given image a class from a number of predefined
classes. These classes in the case of satellite images are usually defined as land-use
classes such as vegetation, road, building, water bodies and so on. Segmentation
of satellite images is regarded as a fundamental component in many technologies
employed for automated aerial image interpretations.

Despite the intense research in this field, many proposed architectures focus only on
a particular case where a single area such as a city is subject of the study, however,
in practice this is not necessarily the case. For instance, to perform an emergency
mapping, the segmentation technique is required to perform in any area with almost
constant and reliable accuracy. Nevertheless, this is not straightforward due to the
statistical variations present between satellite images when they are captured by
different sensors or in different time intervals and most importantly over different
locations worldwide.



6 Introduction

To provide a better insight, let consider a segmentation class such as building. For
instance, buildings which are constructed in a city with arid climate can include
visual features that vary a lot from the same class but located in tropical regions. Most
of these variations stem from the difference in the material used for constructing
building in different locations and some others may also be resulted from different
type of sensors used to capture images. Hence, if the segmentation scheme is
optimized over a particular region, it is most probably not applicable over another
area. Therefore, this necessitates a study on segmentation architecture which is more
robust to variations in satellite images.

Fig. 1.2 Semantic segmentation of satellite images.

1.2.1 Motivation

In recent years, huge and still growing volume of high resolution aerial images has
underlined the significance of aerial image interpretation. Aerial image interpretation
has found a broad range of applications such as urban planning, agriculture, land-
use analysis, climate modeling, post-disaster damage assessment, and many others.
However, analyzing such enormous amount of aerial images by hand is very extensive
and hence prohibitive which requiring an automated aerial image interpretation tools.

Recent advances in deep learning as well as the availability of GPU-accelerated
frameworks have led to a breakthrough in many fields including computer vision
tasks. Various deep learning architectures has been emerging and outperforming
their competitive traditional methods by considerable margins in many fields [57]
,[70], [13], [6], [54]. These deep learning tools operate on a large amount of data
allowing training and estimating the probability distribution over the desired domain.



1.2 Semantic Segmentation of Satellite Images 7

Deep learning architectures have also found applications to satellite image segmen-
tation following the availability of large amount of annotated training images [50,
99, 3, 64, 106, 75]. Despite the successes of deep learning architectures in satellite
image segmentation, almost in all studies the training and evaluation are limited to a
small geographical area such as a city. Therefore, a part of a city is used to train a
proposed scheme then the other part of the same city is considered in the evaluation
process of the trained architecture. Thus, despite their achievements, most of the
proposed approaches pay less attention to the performance consistency over a wider
range of aerial images.

Nevertheless, as already mentioned, in many applications the trained scheme must be
deployable over an image which is not necessarily used in the training stage. In other
words, in practical scenarios, there are always statistical variations between images
used in training and the images to be segmented. In the literature, this variation
between training (source domain) and test (target domain) images is defined as
covariate shift [97]. Domain adaptation techniques provide solutions and aim to
adapt an architecture which is trained on source domain to be deployed over a target
domain. Therefore, domain adaptation techniques which improve the segmentation
performance over each target domain, are in great demand.

1.2.2 Objectives

In this thesis, our main objective is to improve the performance of the proposed deep
learning method over a much larger geographical area. Moreover, we investigate
domain adaptation techniques to enable high precision segmentation over each target
area by considering the time constraint and reducing the manual inference in the
segmentation process.

We have proposed a CNN based architecture comprised of encoder and decoder
modules processing the input image in top-down and bottom-up manner respectively.
The proposed encoder module extracts visual representations from the input patch
while the decoder takes as input these visual features and predicts segmentation
maps. Our objective is to learn visual features from a considerable large amount of
various aerial images such that the learned representations be robust to variations
between different images. We argue that a certain type of CNN namely residual
network if employed as the encoder in the proposed architecture, enables learning



8 Introduction

visual representations of increasing semantic level thanks to a deeper encoder. We
show that these representations are less sensitive to image statistics variations and
hence provide a more generalized solution for satellite image segmentation.

In addition, in order to avoid performance degradation in the segmentation of the
proposed scheme associated with the covariate shift, we have proposed two domain
adaptation techniques. First, we observe that updating the batch normalization layers
statistics over the target image improves the network performance without human
intervention. Second, we show that refining a trained network over a few samples of
the image boosts the network performance with minimal human intervention.

We evaluate the proposed architecture over three datasets of satellite images: a
building dataset constructed over nine areas of interest captured by high resolution
Earth observation satellites, Inria aerial image labeling dataset [63] and ISPRS
Vaihingen semantic labeling dataset [15]. The proposed method shows state-of-the-
art performance in binary segmentation of previously unseen images and competitive
performance with respect to more complex techniques in a multiclass segmentation
task.

1.3 Cloud Screening

In recent years, the rapid advance of remote sensing technology has allowed acquiring
high-resolution images over large geographical scale which can be employed in a
broad range of applications such as environmental monitoring, agriculture, land-use
analysis and so on. Nevertheless, clouds are estimated to cover about 66% of the
Earth surface [86], potentially contaminating a large portion of the captured images.
Such contamination masks objects on the Earth surface making the affected images
useless for analysis.

1.3.1 Motivation

Onboard cloud screening can in principle be applied on the satellite platform as a
pre-processing step before image compression and transmission, selecting images
with a low cloud cover percentage and discarding the others, thereby avoiding to



1.3 Cloud Screening 9

process and transmit the images which are covered by clouds. Therefore, a cloud
screening unit on the satellite platform enables efficient use of satellite resources.

1.3.2 Objectives

In this study, our objective is to address cloud screening by a CNN architecture
which can be implemented on low-power accelerators with memory constraints, as
are expected to be available in the near future for onboard processing of satellite
images. Nevertheless, CNNs usually includes millions of parameters to provide high
accuracy segmentation. Hence, to optimize CNN memory usage while preserving
its accuracy, we empirically investigate various solutions such as performing on
half precision floating point, reducing the number of input spectral bands or spatial
size, utilizing a smaller number of network filters and also making use of shallower
networks. Finally, we show that the proposed CNN can perform close to state-of-the-
art approaches over a publicly available dataset of SPARCS [44] while occupying
much less memory during inference.

The rest of the thesis is organized as follows: in chapter 2, we briefly describe the
most important elements of CNNs, well-known architectures and also the training
process of neural networks; in chapter 3 the related work, proposed methodology and
experimental results regarding VMMR are detailed; chapter 4 describes the related
work, proposed methodology and experimental results addressing the segmentation of
satellite images; chapter 5 provides the background, proposed network architecture
as well as experimental results regarding onboard cloud screening task; in the
end, we draw our conclusions in chapter 6. In addition, appendix A proposes a
methodology to address VMMR by conditional pooling layer which is ought to be
further developed in the near future.



10 Introduction

1.4 Publications

The methodologies and experimental results presented in this study have been
published in the following articles:

• Ghassemi, S.; Fiandrotti, A.; Francini, G.; Magli, E. "Learning and adapting
robust features for satellite image segmentation on heterogeneous datasets".
IEEE Transactions on Geoscience and Remote Sensing, 2019, accepted.

• Ghassemi, S., Fiandrotti, A., Caimotti, E., Francini, G., Magli, E. "Vehicle
joint make and model recognition with multiscale attention windows". Signal
Processing: Image Communication, 2019, 72, 69-79.

• Ghassemi, S., Sandu, C., Fiandrotti, A., Tonolo, F. G., Boccardo, P., Francini,
G., Magli, E. "Satellite image segmentation with deep residual architectures
for time-critical applications". In 2018 26th European Signal Processing
Conference (EUSIPCO) (pp. 2235-2239). IEEE.

• Ghassemi, S., Fiandrotti, A., Magli, E., Francini, G. "Fine-grained vehicle
classification using deep residual networks with multiscale attention windows".
In 2017 IEEE 19th International Workshop on Multimedia Signal Processing
(MMSP) (pp. 1-6). IEEE.

• Ghassemi, S.; Magli, E. "Convolutional neural networks for on-board cloud
screening". Remote Sensing:Special Issue "Real-Time Processing of Remotely-
Sensed Imaging Data", 2019, under revision.



Chapter 2

Convolutional Neural Network

Convolutional Neural Network (CNN) is a class of neural network that has gained
outstanding performance in many fields particularly in computer vision tasks such as
semantic segmentation, image classification, and object localization. CNN typically
comprises two main parts: feature extractor and classifier. Figure 2.1 illustrates a
particular CNN, namely LeNet [58], proposed for classifying hand-written digits. As
can be seen, high-level visual representations from the input image are first extracted
using multiple convolutional filters which are stacked together in a sequential manner.
Then, these features are vectorized and utilized by a classifier implemented as
multiple fully connected layers to perform digit recognition. The convolutional
filters sometimes referred to as kernels have learnable weights and biases which are
optimized during the training. By defining an objective function that we wish to
minimize and also by adopting an optimization approach, the network parameters
can be learned. In the following we describe each part of a CNN in detail and also
we discuss the corresponding procedure related to training of neural networks.

Fig. 2.1 LeNet [58].



12 Convolutional Neural Network

2.1 Convolutional Layers

As it is mentioned earlier, CNNs are made of several convolutional layers stacked
together in a sequential way. Each convolutional layer includes several filters which
apply convolution operations over input data using filter weights and biases and
produces a number of outputs equals to the number of the filters as it is shown in
Figure 2.2. The resulting outputs called feature maps are then input to subsequent
convolutional layers to generate even higher level feature maps.

A 3-D convolution operation can be expressed as followings:

yi, j,k = bk +
fd

∑
l=1

fw

∑
s=1

fh

∑
t=1

wk,s,t,l.xm,n,l (2.1)

where yi, j,k is the output corresponds to the k-th filter in the spatial location de-
termined by i and j, bk and wk,s,t,l are the k-th filter bias and weight respectively
determined by indexes of s, t and l. fw and fh indicates filter width and height
respectively while fd is the filter depth. m and n are the input x indexes and are
computed as follows:

m = dw · (i−1)+ s (2.2)

Fig. 2.2 Convolution layer.



2.2 Fully Connected Layers 13

n = dh · ( j−1)+ t (2.3)

dw and dh are the convolution stride for height and width.

Therefore, the spatial size of output feature maps can be computed as follows:

widthout put = ⌊(widthinput +2 · padw− fw)/dw +1⌋ (2.4)

heightout put = ⌊(heightinput +2 · padh− fh)/dh +1⌋ (2.5)

To preserve the spatial resolution during convolution operation usually the input is
padded with zeros as it is shown in Equation 2.4 and 2.5 as padw and padh. For
instance, for convolution layer with the size of 3 by 3 ( fw = fh = 3) and with stride
of 1 (dw = dh = 1), to preserve the spatial size during convolution operation, the
height and width of input array are padded with one pixel of zeros on each side
(padh = padw = 1).

2.2 Fully Connected Layers

Fully connected layer, as its name implies, connects every neuron of input data to
every neuron of output. As it is shown in Figure 2.7, each link connects an input
neuron to an output neuron with an assigned weight. Accordingly, input values are
multiplied by the fully connected layer weights and summed up to compute an output
value in the output layer. Finally, a bias value is added to each output neuron.

Therefore, the j-th output of a fully connected layer can be computed as follows:

y j = b j +
N

∑
i=1

wi j.xi (2.6)

Where wi j is the weight connecting input xi to output y j, b j is bias corresponds to
j-th output neuron. Typically one or more fully connected layers are employed at
CNN last layers to perform classification or regression operation.



14 Convolutional Neural Network

Fig. 2.3 Fully connected layer.

2.3 Pooling Layers

The pooling layers are interleaved in CNNs to reduce spatial dimensions of feature
maps, hence their presence is crucial to reduce the computation complexity and
memory consumption especially in very deep networks. The pooling layer performs
a sub-sampling operation over a fixed size window and generates output by striding
such window over input feature maps. Figure 2.4 shows a max pooling layer with
the kernel size of 2 by 2 and the stride of 2 operating over an input with the size of 4
× 4 generating an output with size of 2 × 2 . In addition to spatial down-sampling,
pooling layers contribute to translation invariant of CNNs and also prevent over-
fitting by reducing the number of network parameters. However in some task such as

Fig. 2.4 Pooling layer.



2.4 Deconvolutional Layers 15

image segmentation or localization, pooling layers may lead to loss of useful spatial
information.

2.4 Deconvolutional Layers

Deconvolution also called “transposed convolution” or “reverse convolution” is
proposed by [108] and has found many applications in CNN based schemes [73],
[82] addressing the loss of mid-level cues related to downsampling layers such as
pooling layers.

Deconvolution layers reverse downsampling process and scale up the input using a
two stages process. First, the input pixels are interleaved with zeros to generate a
scaled sparse output (i.e. unpooling). Next, through a convolution-wise operation, the
sparse data becomes dense using a set of learnable filters. Therefore, deconvolutional
layers, same as convolutional layers, include filters which are learned during the
training stage, hence one could consider deconvolutional layers as learnable up-
sampling filters. Many recent designs, in particular fully convolutional networks, use
deconvolutional layers to recover spatial resolution of feature maps. Recovering the
spatial resolution of feature maps plays a crucial rule in image segmentation scheme
where the predicted segmentation maps are required to match the input resolution.

Fig. 2.5 Convolutional (left) and deconvolutional (right) layers.



16 Convolutional Neural Network

2.5 Activation Functions

The activation function is the core element of neural networks and each convolu-
tional and also fully connected layer are followed by an activation function. These
activation functions mostly are non-linear functions which give neural networks
the non-linearity property enabling solving complex problems. Without non-linear
activation functions, neural networks are not able to solve sophisticated problems
which are mostly non-linear. Figure 2.6 shows a set of most popular activation
functions. Among these functions, ReLU (Rectified Linear Unit) is a vastly used
activation function in recently proposed CNNs as well as our proposed architecture
in this text. It achieves better performance by overcoming the issue of vanishing
gradient which is caused by the saturating region of other activation functions such
as Sigmoid. Moreover, by outputting zero for negative inputs, it encourages sparsity
within the neural network which contributes to better generalization in the network.

Fig. 2.6 Activation functions: Sigmoid (left), TanH (middle), ReLU (right).

2.6 Softmax Layers

Softmax layer is mostly implemented as the last layer of CNNs with applications in
classification problems. Softmax layer assigns a probability to each input so that all
probabilities sum up to one. Softmax function of a input can be expressed as follows:

So f tmax(yi) =
eyi

∑
N
i=1 eyi

(2.7)



2.7 Batch Normalization 17

2.7 Batch Normalization

Batch normalization is essential in most recently designed CNNs and it is interleaved
before each activation function throughout the network. Batch normalization is
proposed in [46] to address internal covariate shift phenomenon which refers to
changes in distribution of activations (i.e. activation function inputs) within a
deep neural network. In the case of saturating activation, batch normalization
prevents inputs to be trapped in the saturating region and hence speeds up the
training. Moreover, batch normalization makes error gradients less correlated to
network parameters scale or initial value, therefore eliminates the need of careful
initializations and allows higher learning rates.

Turning now to normalization process, since training of neural network is carried
out over batches of samples (mini-batches), batch normalization layer computes
mean and variance of activations over each mini-batch and accordingly performs
normalization. Considering x = (x(1), ...,x(d)) as input vector of activation functions,
normalization is performed as follows:

x̂(k) =
x(k)−E[x(k)]√

Var[x(k)]
(2.8)

where E[x(k)] and Var[x(k)] are expected value and variance of x(k) respectively, and
they are estimated over each mini-batch during training. Next, activations are scaled
and shifted by γ and β which are learned independently for each activation:

y(k) = γ
(k)x̂(k)+β

(k) (2.9)

Such transformation preserves activations representation power from potential dam-
age associated with normalization. Moreover, in each operation, normalization
statistics (mean and variance) are tracked in the memory of batch normalization layer.
So that during evaluation, these tracked statistics are used to perform normalization
over validation mini-batches assuming training and validation samples follow similar
distributions.

Another benefit of batch normalization is its regularization effects related to variations
in computed mean and variance across different mini-batches which make each layer
to be more robust to such variations.



18 Convolutional Neural Network

2.8 Training

In this section, we briefly describe the most important steps of training a neural
network.

2.8.1 Dataset

Besides the development of neural network architectures, another crucial factor in
deep learning is the availability of large-scale datasets. Without large datasets, it is
not feasible to train deep neural networks which include millions of parameters. Such
datasets contain thousands of samples which are provided with proper annotations to
allow supervised training of neural networks.

To begin with training, the common approach is to first subdivide available samples
into training, validation and test sets (Figure 2.7). The training set is used to train and
optimize the network according to a loss function and in order to perform a specific
task (e.g. image classification). Another portion of samples is used to track the
network performance during training course defined as the validation set. A number
of evaluation metrics are computed over mini-batches of validation samples after
each training epoch. Such validation allows keeping track of network performance
over a distinct set from the training set in order to detect the over/under fitting
problem and also in order to fine-tune hyperparameters such as learning rate in the
course of training. At the end, when training has been completed, the test set is

Fig. 2.7 Training, validation and test sets.



2.8 Training 19

utilized to evaluate the trained network. It is necessary to evaluate the trained network
over a portion of the dataset which is used neither in training nor in validation.

2.8.2 Data Augmentation

Data augmentation is applied over training samples to enlarge the dataset and to ease
the network generalization. It is well-known that some label preserving transforma-
tions when applied over training samples reduce the risk of over-fitting in deep neural
networks [89], [90], [54]. Considering the case of images which is the subject of this
study, data augmentation can include a number of image transformations applied
with random parameters. Cropping patches at random positions, random flipping,
adding deformation by changing the image height or width are some examples of
image transformations applied as data augmentation. Moreover, other techniques
include adding random noise or alerting brightness and contrast which help the
network learn visual presentations which are robust to these variations. Therefore,
data augmentation facilitates generalization of the network by increasing the size
of the dataset and enabling learning visual representations that are invariant to the
transformations. A number of data augmentation techniques are shown in figure 2.8.

Fig. 2.8 Data augmentation.



20 Convolutional Neural Network

2.8.3 Loss Function

The loss function is computed over network outputs using the input labels and
enables to measure the network error at predicting the accurate output such as image
class in the case of image classification. Depending on the problem we wish to solve,
the loss is computed based on different functions.

Fig. 2.9 Loss function.

For instance, let us consider the case of image classification where outputs of the
network are scores over a number of classes. One of the most common function
employed as loss in classification problems is cross entropy loss which is computed
as follows:

L(θ ,y, t) =−
N

∑
i=1

ti log (yi). (2.10)

where y is the output of Softmax layer, t is the one-hot vector representing the ground
truth and N in the number of classes while θ represents network parameters. A
simple illustration of a loss function with respect to two parameters is provided in



2.8 Training 21

figure 2.9. As it is shown the loss is a non-convex function of network parameters
which can include multiple local minima.

2.8.4 Optimization

After defining the loss function, an optimization methodology has to be adopted to
optimize network parameters by minimizing the loss. As it is discussed, optimizing
a network with millions of parameters is a sophisticated task which requires to
be addressed carefully. To this end, backpropagation is introduced as an effective
solution to this problem. Such that, first gradients of the loss function with respect to
network parameters are derived. Then, according to the optimization policy, network
parameters are updated. Since training is carried out over mini-batches of samples,
optimization is also performed over a number of mini-batches.

One of the most commonly used optimization algorithms is Stochastic Gradient
Descent (SGD). Considering SGD as optimization method, network parameters at
n+1-th mini-batch (θn+1) are updated according to their value at n-th mini-batch
and loss value of J(θ ;y(i:i+l; t(i:i+l)), as followings:

θn+1 = θn−η ·∇θ J(θ ;y(i:i+l); t(i:i+l)) (2.11)

where y(i:i+l) and t(i:i+l) are network outputs and their corresponding labels over
mini-batch samples with length l.

Nevertheless, due to oscillations around local minima where the surface of loss
function is steeper in one dimension than in another, the optimization performance
degrades [94]. To address this issue, SGD with momentum [79] is employed as
follows:

vn+1 = γvn +η∇θ J(θ ;y(i:i+l; t(i:i+l)) (2.12)

θn+1 = θn− vn+1 (2.13)

Using momentum with SGD enables faster optimization by adding a fraction γ of
update vector in previous iteration vn to the current update vector vn+1. Figure 2.10



22 Convolutional Neural Network

provides a simple illustration of SGD optimization with and without momentum
(right and left graphs respectively) around a local minima.

Fig. 2.10 SGD with and without momentum.

2.8.5 Regularization

Regularization techniques are proposed to tackle the problem of overfitting, par-
ticularly in very deep neural networks. Overfitting refers to a condition where a
network performs much better over training set than over validation or test set. In
other words, the network is not capable of generalization, instead, it memorizes
irrelevant information (i.e. noise) from training samples. Regularization techniques
provide a better generalization of neural networks by limiting the number of network
parameters as well as their values. The most common types of regularization are L1
and L2 regularization where an additional term is added to overall loss function (cost
function):

Cost = Loss+
λ

2m

m

∑
i=1
∥θi∥1 (2.14)

Cost = Loss+
λ

2m

m

∑
i=1
∥θi∥2

2 (2.15)

where Eq. 2.14 and 2.15 represent L1 and L2 regularization respectively, λ is the
regularization parameter and m is the number of learn-able parameters.

In addition to L1 and L2, dropout [92] is another effective regularization method
which avoids overfitting by randomly disabling a portion of neurons of a layer. Figure



2.9 Residual Networks 23

2.11 provides a visual representation of implementing dropout over a fully connected
layer.

Fig. 2.11 Dropout [92].

2.9 Residual Networks

Residual networks (ResNets) have been proposed by He et al. [36] to address the
degradation problem in very deep CNNs. While using deeper and larger CNN is
assumed to increase the network performance, it is shown in practice that these
networks suffer from a degradation in performance. This degradation indicates
that deep CNNs are not straightforward to optimize and problems such as vanish-
ing/exploding gradients prevent them to perform in their full capacity. ResNets
addressed the aforementioned issue by introducing a residual learning framework.

Fig. 2.12 Brain cells having similar structure to residual networks.



24 Convolutional Neural Network

Instead of learning unreferenced functions, functions with reference to input are
learned within ResNets. This phenomenon is achieved by providing skip connections
and as a result identity mapping between layers within the network. The authors
demonstrate that residual functions are easier to be learned and ResNets can gain
improvement due to increased depth.

In addition to artificial residual networks, it has been shown that biological neural
networks follow a similar structure and can be seen as residual architectures as shown
in Fig 2.12.

Convolution 

Batch Norm 

ReLU 

+ 

Convolution 

Batch Norm 

ReLU 

Convolution 

Batch Norm 

ReLU 

+ 

Convolution 

Batch Norm 

ReLU 

Batch Norm 

ReLU 

Convolution 

Fig. 2.13 Residual block for ResNet with depth ≤ 34 in left and for ResNet with depth ≥ 34
in right.

ResNets proposed in [36] consist of residual building units as it is shown in Fig.
2.14 for the ResNet of 18 layers. In ResNets with the depth of 34 layers and less,
building unit (Fig. 2.13) includes two convolutional layers with a kernel size of 3 by
3 followed by ReLU as activation functions. While for ResNets with the depth of 50
layers and more, to manage the memory consumption, building unit includes two 1
by 1 convolution layers reducing and increasing the number of feature maps and in
the middle a 3 by 3 convolution layer. The output of the residual unit is then added
to input through short cuts. However, when dimensions do not match, a convolution
layer is utilized to increase the input dimension to match the output.

In contrast to typical CNNs where pooling layers are interleaved within the network,
in ResNets (except for the second block where a 2 by 2 max pooling is employed),



2.10 Fully Convolutional Networks 25

convolutional layer with a stride of two is interleaved instead. Therefore, the size of
feature maps and memory consumption is managed by using a stride 2 convolution at
the first layer in each block which scales down the input by a factor of two, whereas
the number of feature maps increases from one block to subsequent block. In the
end, a 7 by 7 average pooling is used and then features are vectorized and input to a
fully connected layer to finally perform the classification.

7
x

7
 C

o
n

v,
 6

4
  

/2
  

 

3
x

3
 C

o
n

v,
 6

4
 

3
x

3
 C

o
n

v,
 6

4
  

 

3
x

3
 C

o
n

v,
 6

4
  

 

3
x

3
 C

o
n

v,
 6

4
  

 

3
x

3
 C

o
n

v,
 1

2
8

 /
2

 

3
x

3
 C

o
n

v,
 1

2
8

 

3
x

3
 C

o
n

v,
 1

2
8

 

3
x

3
 C

o
n

v,
 1

2
8

 

3
x

3
 C

o
n

v,
 2

5
6

 /
2

 

3
x

3
 C

o
n

v,
 2

5
6

 

3
x

3
 C

o
n

v,
 2

5
6

 

3
x

3
 C

o
n

v,
 2

5
6

 

3
x

3
 C

o
n

v,
 5

1
2

 /
2

 

3
x

3
 C

o
n

v,
 5

1
2

 

3
x

3
 C

o
n

v,
 5

1
2

 

3
x

3
 C

o
n

v,
 5

1
2

 

F
C

 P
o

o
l 

P
o

o
l 

Block 1 Block 2 
 

Block 3 Block 4 Block 5 

Input 

Fig. 2.14 Residual network of depth 18.

2.10 Fully Convolutional Networks

Fully convolutional network (FCN) [62] is introduced to address the pixel-level
prediction on images such as semantic segmentation. FCNs can process input of
arbitrary size and generate the output with the desired resolution. In FCN, fully
connected layers are replaced with convolutional layers with the kernel size of 1
by 1. Therefore, the decisions are made according to local visual representations
rather than global features which is performed in typical CNNs in classification tasks.
For instance, considering the task of assigning a class to image pixels, each pixel
is classified according to its neighboring pixels within a certain range. While for
image classification, the image is labeled based on the visual representations of the

Fig. 2.15 Fully convolutional network [73].



26 Convolutional Neural Network

whole image. Hence, many recent CNNs designed for semantic segmentation are
fully convolutional.

As is shown in Fig. 2.15, FCN encompasses two parts. One part (Convolutional
network in Fig. 2.15) extracts high-level feature maps however with coarser reso-
lution compared to input. The resolution degradation is mainly caused by pooling
layers or strided convolutional layers in the network. The other part of the network
(Deconvolution network in Fig. 2.15) recovers feature maps resolution through
upsampling layers. The upsampling layers scale up feature maps using operations
such as bilinear upsampling or deconvolutional layers. Deconvolutional layers can
reverse the convolutional layer process, upsampling input through a set of learnable
filters



Chapter 3

Vehicle Make and Model Recognition

This chapter describes the developed classification scheme for VMMR as follows.
Sec. 3.1 briefly overviews the recent literature in the field. Sec. 3.2 describes our
developed architecture to tackle VMMR, while Sec. 3.3 details the related procedure
to generate samples for training. In Sec. 3.4 the devised training methodology is
provided. Finally, in Sec. 3.5 we experimentally assess the performance of our
proposed architecture over two distinct vehicular datasets.



28 Vehicle Make and Model Recognition

3.1 Related Work

Considering recent approaches proposed to address VMMR and related fine-grained
object recognition problems, we can divide them in three groups.

The first group includes schemes which mostly rely on part-based models. Ap-
proaches relying on part-based models leverage a priori knowledge of the geometry
of the object (and, in some cases, of the scene) for improved performance.

Hsieh et al. [39] address VMMR relying on Speeded-Up Robust Features (SURF)
and Histogram Of Gradient (HOG). In the proposed methodology, first, the vehicle is
located by detecting symmetric matching pairs in the input image using symmetrical
SURF descriptors. Then, the vehicle front region is subdivided into several grids each
indicating a different part of the vehicle. HOG and SURF descriptors are extracted
from these parts which then employed by several weak SVM classifiers. Finally, with
a Bayesian averaging technique, these classifiers are integrated to perform VMMR.
However, one major shortcoming is that the proposed symmetric part detector works
on vehicles that captured from the front view with viewing angle not exceeding more
than 20 degrees.

Region based CNN is proposed by Girshick et al. [30] in order to address general
object detection. R-CNN extracts object proposals from the input image exploiting
an external region proposal algorithm (selective search), then the warped proposals
are fed to a CNN for feature extraction and eventually an SVM performs object clas-
sification. Authors in [29] improve the proposed technique extracting object proposal
straight from the features maps resulting in more efficient R-CNN implementation.
Later, in [81], Ren presents an evolution of R-CNN that introduces a Region Proposal
Network (RPN) to replace the external proposer hence enabling cost-free region
proposals. Many recent approaches make use of R-CNN in fine-grained recognition
tasks.

Zhang et al. [112] address the different yet related problem of fine-grained birds
classification relying on R-CNN for learning both the whole object and parts detectors
as shown in Fig. 3.1. Object semantic parts are realized and scored by part detectors
and a geometric constraint are applied over these regions. Part-specific features
are then learned from these object parts which allows training parts-specific SVM
classifiers. While model-based objects achieve good performance especially in fine-



3.1 Related Work 29

Fig. 3.1 Proposed scheme in [112] addressing related fine-grained birds classification using
R-CNN.

grained object classification tasks, this comes at the price of increased architectural
complexity and additional effort in annotating training images.

In many other approaches, VMMR is addressed based on models which require
the vehicle to be seen from a certain viewpoint so that the model does not deal with
the intra-class variations related to changes in viewpoint.

Llorca et al. [61] tackle the problem of sub-model vehicle recognition (motorization,
trim-level, etc.) by focusing on variations in car emblems size and location. Namely,
they extract HOG features from images captured from rear-view, then a committee
of class-specific SVM classifiers is used to classify the vehicle. Although the devised
classification scheme marked high accuracy over more than 1000 vehicular images,
there is a major downside, the proposed scheme is only deployable over images that
are captured from rear-view limiting its application.

In [35], He et al. propose a method to jointly detect car make and model from
surveillance camera images. First, a parts-based model tailored to the front view of
a car detects components such as lamps and license plate. Then, centers of these
detected parts provide anchor points to normalize feature region with respect to
viewpoint and illumination. Next, specialized CNNs classify each part of the vehicle,
yielding a global car classification. While this method achieves good performance
over a homegrown test dataset, its design tailored specifically to front views narrows
somewhat its scope.



30 Vehicle Make and Model Recognition

Fig. 3.2 Procedure proposed to tackle fine-grained birds classification in [53].

Hu et al. [40] propose a spatially weighted pooling layer replacing the standard
pooling layers in conventional deep CNNs. Such pooling layer includes a number of
weighted masks whose parameters are learned in the course of training. Hence the last
fully connected layer is provided with robust feature representations by magnifying
features corresponding to discriminative parts of the image. Despite advancing
state-of-the-art over publicly available car datasets, the proposed scheme introduces
two drawbacks. First, since all learned masks are fixed and not conditioned on the
input image, it challenges the ability of the network to handle images where vehicle
position and scale do not remain constant. Moreover, replacing CNN last average
pooling layer with a number of parameterized pooling layers (equal or more than
the number of features) comes with the price of an increasing number of network
parameters.

Biglari et al. [7] employ Support Vector Machines (SVMs) to discover the most
relevant parts of each vehicle class. Then, for each vehicle category, a part-based
model is trained. Next, a cascading scheme is applied over class-specific classifiers
performed on inputs sequentially. Despite the good performance over two vehicle
datasets, the drawback of their designed system is that all images are required to
have a similar view limiting their application scope.

In addition to part-base and view-based models described above, some other
work has been proposed to tackle related fine-grained object recognition problem
however leveraging more complex architecture to obviate the need of costly part
annotations.

Krause et al. [53] address the related problem of fine-grained classification of
bird species. The proposed scheme consists of several preprocessing steps en-
abling part detection without the need of annotations as shown in Fig. 3.2. First,



3.1 Related Work 31

a co-segmentation is performed which allows the separation of foreground and
background. In addition, a foreground refinement step is applied to further improve
the segmentation. Then, in the next step, a graph is constructed in which based on
co-segmented images, images with similar poses are connected together. This pose
graph facilitates aligning images that share similar poses. Next, a part generator
component is employed to produce parts for images with similar poses. A set of
discriminative parts are then realized through a max-margin template selection policy.
In the end, the classification is performed over these parts. While their approach
shows good performance on a birds dataset, since it requires a number of interme-
diate steps such as pose alignment and co-segmentation, it further complicates the
overall system pipeline design.

A bilinear CNN model to tackle the fine-grained classification is proposed in [60].
Two CNNs are employed to process input image then the generated outputs are mul-
tiplied using an outer product. Next, the result of the outer product is downsampled
using pooling layer and fed into fully connected layers for classification. Therefore,
the proposed architecture enables capturing the interaction between an object visual
features and the part which is particularly useful for fine-grained classification. The
bilinear model achieves excellent performance over fine-grained recognition task,
however, one drawback of the proposed architecture is the large number of network
parameters related to employing two distinct CNNs. Moreover, since the function of
each CNN branch in bilinear model are not fully understood, considering a differ-
ent classification task, the architecture yielding the best results should be obtained
through extensive experimental results exploring different combinations of CNN in
each branch.

The scheme proposed in this work can be categorized into the latter group, where
discriminative parts of the image are detected without prior knowledge of object
parts.



32 Vehicle Make and Model Recognition

3.2 Proposed Architecture

This section describes the architecture of our proposed VMMR system, as it is
illustrated in Fig. 3.3 . The architecture is composed of one localizer module and
one classifier module connected via a transform module. In the following, we detail
the architecture of each module, whereas the description of the relative training
procedure is deferred to the following sections.

3.2.1 Localizer Module

The localizer module, as illustrated in the dashed box in Fig. 3.5, processes the input
image and predicts parameters of W (constrained) affine 2D transforms indicating
the scale and position of each attention window. In our design, the localizer module
is composed by one convolutional trunk designated for feature extraction which is
followed by two branches responsible for predicting W affine transforms parameters.
In the localizer design, we consider several aspects to improve network performance
which is described in details as follows.

Concerning the convolutional trunk, unlike Jaderberg et al. [47] where a GoogLeNet
architecture is originally considered, we employ the ResNet18 architecture illus-
trated in Fig. 3.4 in reason of the better localization accuracy enabled by ResNet
architecture [24].

As it is illustrated in Fig. 3.4, ResNet18 consists of five convolutional blocks (i.e.
blocks A, B, C, D, E in the figure) followed by a pooling layer and fully connected
layer. Considering an input image sized 224×224, block E outputs 512 feature maps
each sized 7×7. Then, the penultimate pooling layer vectorizes the corresponding
feature maps which are then input to the fully connected layer. However, as it will
be explored further in Sec. 3.5, since ResNet18 is originally proposed for image
classification task, we have made modifications to network architecture optimizing it
for localization task.

First, we have observed that there is a trade-off between the number of output feature
maps and their spatial resolution over localization accuracy. Such that, due to the
presence of strided convolutional layer in each block, the resolution of output feature
maps decrease by a factor of 2 over each block which in fact can reduce localization
accuracy due to spatial information loss. However, by proceeding to deeper blocks,



3.2 Proposed Architecture 33

the number of feature maps increases allowing to capture interactions between a
larger number of features which eventually can improve localization accuracy. As
a result, to find the optimal number of convolutional blocks, we run an experiment
which is provided in Sec 3.5 where we realized that the best choice for our localizer
is to truncate ResNet at block D including four out of five convolutional blocks.
Therefore, the localizer convolutional trunk takes as input image of 224×224 and
outputs 256 feature maps sized 14×14 (block D output).

Localizer Module 

Spatial Transform Module 

Classifier Module 

Input Image 

Class Probability 

(Make) 
Class Probability 

(Model) 

Fig. 3.3 An example of the proposed VMMR architecture with two attention windows
(W = 2). A vehicle sample with predicted two attention windows (W = 2) is depicted in the
figure.



34 Vehicle Make and Model Recognition

Fig. 3.4 The ResNet18 architecture subdivided in 5 convolutional blocks with different depth
and number of feature maps and feature map size.

Conv 1x1 FC 

Scale of attention window(s) 
 

Localizer Module 

BN ReLU 

Conv 1x1 FC BN ReLU 

Position of attention window(s) 
 

Fig. 3.5 The localizer module architecture.

Secondly, we have removed the pooling layer which is employed in standard ResNet
design. Pooling is utilized in classification task which allows extracting global visual
context, however in localization, since we are more interested in local features and
also to prevent spatial information loss, the pooling layer is omitted in our design.

Next, we have employed two separate branches, each one specializes in their own
task, namely one predicts scales of attention window and the other one predicts the
positions. Our preliminary analysis showed that the position and scale distributions
substantially differ, justifying learning separate prediction functions via distinct
output branches. In addition, having distinct output branches for position and scale
allows imposing different learning rates for each branch, facilitating training the
module from scratch, as discussed in the following sections. However, these branches
share most convolutional layers (i.e. blocks A, B, C, D), resulting in more efficient
architecture, and separate in the last convolutional and fully connected layers.

Now describing the out branch architecture, each one consists of one convolutional
layer with 1×1 filters with ReLU activation functions followed by one fully con-



3.2 Proposed Architecture 35

nected layer with hyperbolic tangent activations. The 256 14× 14 feature maps
output by convolutional trunk are input to each of these branches where 1×1 con-
volutional is employed to reduce the dimensionality generating 8 14× 14 feature
maps. We should note that the dimensionality reduction is crucial to prevent over-
fitting and it has to be applied before feature maps are input to last fully connected
layers. Moreover, we have included the convolutional layer, which is responsible for
dimensionality reduction, within output branches in place of prior dimensionality
reduction in convolutional trunk preventing potential information loss. In the next
step, the feature maps are vectorized forming a 8×14×14 feature vector input to
fully connected layer. Each fully connected layer has output neurons equal to 2×W
presenting scale or position across image width and height.

For clarity of exposition, let us consider the case of two attention windows (W = 2),
the localizer module output can be represented by the vector[

σ
1
x σ

1
y τ

1
x τ

1
y σ

2
x σ

2
y τ

2
x τ

2
y
]
. (3.1)

For the i-th attention window, the localizer output can be interpreted as the position
and scale coordinates of a bounding box cast over the input image. Each i-th box
is defined by the relative horizontal and vertical position of the box (τ i

x τ i
y) and

horizontal and vertical scale of the box with respect to the input image (σ i
x σ i

y).

3.2.2 Spatial Transform Module

The spatial transform module (STM) is employed between localizer and classifier
modules and serves two purposes concerning the architecture shown in Fig. 3.3.

In the forward pass, STM takes as input the predicted affine transform parameters
(i.e. attention windows scale and position) and also the input image, then through a
sampling process, it samples input at corresponding attention windows. Thus STM
enables spatial manipulation of the input image within the proposed architecture and
between localizer and classifier.

In the backward pass, STM enables backpropagating the classification error from
classifier to localizer module using the chain rule. To be clear, let us consider the
case of two attention windows (W=2) where there are two convolutional trunks in



36 Vehicle Make and Model Recognition

the classifier, each processing the sampled input over each attention window. In
this case, localizer outputs 8 parameters representing scales and positions of two
attention windows. Hence, to backpropagate the error gradients from the classifier
to the localizer, the chain rule is used as follows: first, the error gradients are
backpropagated from the classifier output layer to each classifier convolutional trunk.
From there, the gradients with respect to each of convolutional trunks parameters
and also their inputs are computed. Next, since the convolutional trunks inputs are in
fact the sampled input image at attention windows, and because the image sampling
is differentiable, the computed error can be backpropagated through sampler from
trunk inputs to its corresponding output neurons in the localizer output layers where
the scale and position of each attention window have been predicted. As the error
with respect to each localizer output neurons is computed, the gradients with respect
to localizer parameters can be computed as well using chain rule up to the first
localizer layer. Finally, as the error gradient with respect to all network parameters
is calculated, based on optimization policy parameters can be updated. In this way,
the computed error gradients in the first layer of the classifier is reused to compute
the error gradients with respect to affine transform parameters. Therefore, as the
error gradients are calculated with respect to predicted affine parameters by the
localizer, from there the error gradients with respect to all localizer parameters can
be computed easily.

Notice that [47] deals with classifying objects parts with bounded scale variance and
a prior known scale, so the attention windows size is assumed constant and square
σw

x = σw
y ∀w ∈ [1 . . .W ] . Therefore, [47] deals only with the problem of locating the

attention window positions, not their scales. Conversely, in our vehicle classification
problem, distinctive car parts may have a widely different size not known a priori,
thus attention window scales must be predicted for each image together with its
position.

As it is mentioned, the spatial transform module performs an affine transforma-
tion over the source (input) image producing a target (transformed) image. Such
transformation takes place on the source image using a bilinear filter and through
a grid characterized according to the parameters predicted by the localizer module.
Considering a grid on the target image to be a regular grid (i.e. the grid in which
points are equally distributed over target image height and width), the image sampler
samples the source image over the grid defined by affine transform parameters. Thus,
this transformation can be divided into two stages: first, a grid is defined over source



3.2 Proposed Architecture 37

Fig. 3.6 First step of image sampling by spatial transform module: defining grids over source
and target image.

Fig. 3.7 Second step of image sampling by spatial transform module: sampling source image
through bilinear sampler.

image as shown in Fig. 3.6, then based on the generated grid the image is sampled to
generate target image as shown in Fig. 3.7.

For clarity of exposition, let [xs ys] be the horizontal and vertical coordinates of
one point of the grid in the source image, and let [xt yt 1]T be the corresponding
coordinates of a point of the regular grid in the target image. The transform module
performs the point-wise transformation

[xs ys]T = T
[
xt yt 1

]T
, (3.2)



38 Vehicle Make and Model Recognition

where T is a 2×3 transform matrix that allows any 2D affine transformation such
as translation, rotation, scaling and shearing. T defines the shape of the grid in the
source image based on which the sampler samples the input image. For the purpose
of this work, we constrain the set of affine transformations to translation and scaling.
Therefore, in our architecture the transform matrix T is defined as

T =

[
σx 0 τx

0 σy τy

]
, (3.3)

where the non-zero elements of T are the transform parameters predicted by the
localizer module as described above.

Thus far, we have described the process of attention windows prediction by localizer
as well as image sampling process by STM, next, we detail the classifier task in
processing input image over attention windows to predict vehicle classes.

3.2.3 Classifier Module

The classifier module, as illustrated in the dashed box in Fig. 3.8 for W = 2,
processes the attention window(s) generated by spatial transform module and outputs
two distinct score maps over vehicle make and model classes respectively.

The classifier module architecture we present in this work includes a number of
major improvements over [47]. In our design, the classifier module is composed
of W convolutional trunks each one operating on a specific scale, and also two
output branches which are specialized in make and model prediction respectively. In
following we detail each novel aspect of classifier architecture.

Concerning W convolutional trunks, each trunk processes sampled input image
over an attention window hence over a particular scale. To this end, first during
training as described in Sec. 3.4, each convolutional trunk is trained over patches
extracted at a specific scale, hence each trunk learns to recognize visual features
over that scale. As a result, each convolutional trunk can be seen as a sequence of
scale-specific convolutional layers. Later, when the localizer module is trained by
backpropagating classification error from such scale-specific convolutional trunks,
the attention windows are generated with scales equal to patch scales used during
training classifier convolutional trunks.



3.2 Proposed Architecture 39

FC 

C 

SoftMax 

Dropout 

Class 

Probability 

(Make) 

Block A 

SoftMax 

Class 

Probability 

(Model) 

Classifier Module  

Block B Block C Block D Block E 

Block A Block B Block C Block D Block E 

FC 

Fig. 3.8 The classifier module architecture.

Regarding the convolutional trunks architecture, we show experimentally that resid-
ual networks enable better classification accuracy than the original GoogLeNet
architecture used in [47]. ResNets enable much deeper networks while their op-
timization remains quite feasible compared to plain CNNs. As it is discussed in
Sec. 2.9, ResNets overcome challenges in training very deep CNNs by introducing
shortcuts between convolutional layers. These shortcuts enable the network to learn
a residual function with reference to the input image in place of non-referenced
functions. Thus, it allows tackling the problem of vanishing or exploding gradients
which is commonly occurred in very deep plain CNN.

Therefore, we employed ResNets, particularly a variant called "wide ResNets" [107]
in the convolutional trunk. Wide ResNets differ from ResNets in the number of
convolutional filters employed in each convolutional blocks. The increased number
of filters enables achieving wider networks hence gaining higher accuracy with a
shallower depth. We experimentally show in Sec 3.5 that wide ResNet with the depth
of 50 achieves the best performance among other depths, thus it is used as the basis
for convolutional trunk architecture.

Each convolutional trunk includes five blocks of wide ResNet-50. The last fully
connected layer is omitted in order to obtain the feature vector as the output. The
sampled input image at each attention window is processed by each trunk generating
a feature vector with 2048 elements. For each attention window and hence for each
scale, a feature vector is extracted which can be seen as an image descriptor over a
particular scale. These feature vectors then are concatenated to form a vector sized
W ×2048 and fed to the two fully connected layers.



40 Vehicle Make and Model Recognition

Moreover, because of a large number of input features to fully connected layer,
we found dropout [38] to be useful in preventing the fully connected layers from
overfitting, especially when W > 1. In particular, we want the expected number of
active outputs of the classifier convolutional trunks to remain constant for any W .
Thus, the dropout layer shown in the figure drops outputs with probability p = W−1

W
(p = 0 for W = 1).

Concerning the two output branches, this work aims at jointly predicting a vehicle
make and model, thus the classifier module includes two distinct branches, one per
attribute. Both branches take as input the vector of concatenated visual features
extracted from attention windows at different scales. Sharing the same distinct-scales
visual features for both make and model prediction is essential to train the overall
architectures to learn features useful for both tasks. Also, this results in a leaner
architecture in terms of number of learnable parameters with respect to the case
where two distinct classifiers trained separately for each task. Each of the output
branches contains a number of units that depends on the considered number of
vehicle makes and models, respectively.

Finally, multinomial logistic regression (also known as a SoftMax layer) is used to
yield the sought score maps over both vehicle make and model classes as follows.

So f tmax(yi) =
eyi

∑
N
i=1 eyi

(3.4)

where yi is the i-th output of the fully connected layer.



3.3 Generating Samples 41

3.3 Generating Samples

In this section, we will provide the steps required previously to train the proposed
architecture detailed in Sec. 3.2. To begin with, we describe the procedure used to
extract patches from training samples over different scales. Next, we detail the data
augmentation techniques employed on generated samples.

3.3.1 Extracting Patches with Different Scales

One prominent component of the proposed architecture is the scale-specific convo-
lutional trunks in the classifier module. Although classifier convolutional trunks in
terms of architecture are identical, the training procedure makes such parts scale-
specific. Therefore (as it is detailed in Sec. 3.4) each trunk is first trained over
patches which are generated from training samples at different scales. Hence the
convolutional layers at each trunk are trained to extract visual features corresponds
to a particular scale.

The procedure used to extract patches at the desired scale over vehicular images
can be described as follows which is summarized in Fig. 3.9. First, each image is
scaled (up or down depending on the original image size) using a bilinear sampling
algorithm, so that the smallest side of the image be equal to particular value. This
transformation is performed over image isotropically meaning that aspect ratio
between image height and width is preserved avoiding deformation. Next, a fixed
size patch of 224×224 equal to network input size is extracted randomly out of the
scaled image. Therefore, since the size of the extracted patch is fixed to network

Fig. 3.9 The patch extraction procedure divided in three steps.



42 Vehicle Make and Model Recognition

input size, the value used to scale training sample defines the patch scale with respect
to the training sample. Scaling the training sample by large values allow the patch to
capture small visual context while scaling training sample by smaller values enables
the extracted patch to cover a larger portion of the sample.

To be clear, let h and w be the height and width of such training sample respectively.
Let us assume that the smallest side of the sample is the height and it is scaled to be
equal to a desired H. Also let us consider α as the aspect ratio of the training sample
α = h/w. To generate the training patch, the sample is scaled such that its height
will be equal to H and its width to W where W is computed such that W = α−1Hβ

and β is drawn at random in the interval [0.96,1.04] during training in order to add
slight deformation to extracted patch. Next, the patch with the size of 224 by 224 is
extracted at random position from the scaled sample. As a result, depending on a
desired H, the extracted patch will include only a random detail of the vehicle in the
training image.

3.3.2 Data Augmentation

As it is explained earlier in Sec. 2.8.2, Data augmentation is applied over samples
mostly during the course of training in order to increase the dataset size as much as
possible. It is well-known that data augmentation helps generalization and prevents
the network to overfit on training data [89], [90], [54]. Data augmentation involves
label preserving transformations that are implemented over training samples. There-
fore, the augmentation entails a number of image transformation performed with
random parameters.

Considering patch extraction detailed in the previous section, we have already imple-
mented some of data augmentation techniques in the procedure used for generating
training patches. We showed that the training image first is scaled in a way that a
deformation factor in the interval [0.96,1.04] is applied over the scaled image, hence
allowing the network to be more robust to the deformation that might be occurred
when the vehicle is capture from a different angle. Moreover, we extract the patch
from a random position over the scaled image hence adding variations to the position
of the patch in the image. These variations in patch position additionally increase
the probability of learning discriminative portion of the vehicle at a specific scale.



3.4 Training 43

In addition to augmentation in the patch extracting stage, during the training, a
number of label-preserving transforms are applied as well. The patch is horizontally
flipped with the probability of 0.5 during training. Note that the augmentation
transforms should simulate the variations which actually happen over different
samples of vehicle images. Therefore we prevent vertical flip since it is not the case
in vehicle images in a real scenario.

Furthermore, color jittering which adds variations to RGB channels of the image is
also utilized during training. Our intuition is that the network also should be invariant
to changes in color as it should learn visual patterns rather than colors. Varying
brightness and contrast are included during training as well.

3.4 Training

This section describes the training methodology adopted to train architecture de-
scribed in Sec 3.2. First, we define the loss function which accounts for both make
and model classification in Sec. 3.4.1. Then we describe the procedure necessary to
train convolutional trunks over patches with different scales in Sec. 3.4.2. The initial-
ization method used for the proposed architecture is detailed in Sec. 3.4.3. Finally
training the overall network and related optimization configuration is addressed in
Sec. 3.4.4.

3.4.1 Cost Function Formulation

To start with, we define a cost function suitable to minimize a joint make and model
classification error of the classifier module. Let us indicate the i-th training sample
(e.g., the i-th training image) as xi. The response of the network to xi is the output
of the classifier module branches yc and y f , representing the coarse grained (make)
and fine grained (model) vehicle classification respectively. Let us indicate the
corresponding expected (target) outputs as tc and t f , respectively. We further define
the network response (output) to xi as yi = {yc

i ,y
f
i }, and the target output ti = {tc

i , t
f
i }.

Next, the cost function for the ith sample is (we omit the i subscript for the sake of
readability)



44 Vehicle Make and Model Recognition

J(θ ,y, t) =−
Cc

∑
k=1

tc
k log (yc

k)−
C f

∑
j=1

t f
j log (y f

j )+λR(θ), (3.5)

where θ represents the learnable parameters (weights and biases) of the network, λ

is regularization term, Cc and C f are the number of coarse and fine-grained classes.
Finally, the term R(θ) represents an optional regularization term that helps preventing
overfitting to the training samples and is defined as the squared L2-norm of all the
weights in the network [55] as follows:

R(θ) =
1

2m

m

∑
i=1
∥θi∥2

2 (3.6)

Where m is the number of learnable parameters. The defined loss function can be
interpreted as the sum of the network classification errors over two recognition tasks.
Note that we consider here recognitions over make and model of the vehicle, however
it can account for other recognition tasks as well. In Sec. 3.5, we experiment with a
case in which recognition over vehicle model and type is explored instead of make.
Moreover, the defined loss function has the potential to be modified to include many
more recognition tasks over other vehicle attributes such as color, speed, number of
doors, etc.

3.4.2 Training the Classifier Convolutional Trunks

As the first step, we separately train W classifier modules over patches that are
extracted from the training images. The patches used to train each classifier are
extracted at a specific scale with respect to the training image using the procedure
described in Sec. 3.3. We recall that each training image is scaled such that its
smallest side is equal to the desired value denoted by H ≥ 224. Then a fixed
sized 224×224 patch (equal to network input size) is extracted randomly from the
scaled training image. Thus, depending on the value of H, the extracted patch can
encompass a small portion of the vehicle capturing detailed visual information (for
a large value of H), or it can cover a much larger portion of the vehicle capturing
global visual context (for a small value of H).

After the training samples are generated, we can proceed to train a set of classifier
modules each over different scales. Each classifier module is trained over a set of



3.4 Training 45

patches extracted from training samples with a particular scale. The architecture of
the classifier module is identical to the architecture defined in Sec. 3.2.3 and for the
particular case of having one attention window (W = 1). Therefore, the classifier
contains one convolutional trunk in its architecture operating over a particular scale.
The training is carried out using stochastic gradient descent optimization with a base
learning rate of 10−3 and weight decay of 5×10−3. The learning rate is divided by
a factor of 10 after 50 epochs and the training stops when the loss function stops
decreasing over validation sets.

That is, we train scale-specific classifier modules so that the convolutional layers
in each classifier learn to extract visual representations over a particular scale. For
the sake of clarity, let us assume the classifier module that is trained over patches
with a scale of 0.5 with respect to training image. The convolutional layers in this
classifier hence are trained to capture visual features on this scale such as texture
over vehicle wheels or the shape of the headlight. In the contrary, let us consider a
classifier module which is trained over a relatively larger scale of 0.9 with respect to
training image. Accordingly, the convolutional layers in this classifier are capable
of extracting visual features over larger portion hence more global features of the
vehicle such as a combination of wheels and headlights altogether.

As we describe in Sec. 3.4.3, convolutional trunks of these classifier modules are
then used as pre-trained convolutional trunks in the final step of training. Therefore,
the trained convolutional trunks are frozen (i.e. parameters in these parts are fixed
and are not updated during training) while the other parts of the proposed network
are trained (i.e.the localizer and last fully connected layers).

3.4.3 Initializing the Network

As the second step and after the classifier convolutional trunks each trained over the
desired scale, we can proceed to initialize the parameters (weights, biases) of the
network.

Concerning the localizer module, the weights of the convolutional trunk are initial-
ized according to the Xavier scheme [31]. For each layer, the value of each weight
is independently drawn from a normal distribution with zero mean and standard
deviation equal to:



46 Vehicle Make and Model Recognition

σ = (2/Ni +No)
0.5 (3.7)

where Ni and No are the number of inputs and outputs of the layer, multiplied by the
width and height of the layer filters respectively.

The weights of the two output branches of the localizer are instead initialized with a
different scheme, as follows. Since the initial values of these layers determine the
initial scale and position of the attention windows, let us first discuss the optimal
setting of these attention windows. Since in most of the images used in this study,
the vehicle is located roughly at the center, the best value of the initial position of
attention windows would be the center of the image. Considering the initial scale of
attention windows, their optimal values would be equal to the patch scales used to
pretrain W convolutional trunks in the classifier module as described in Sec. 3.4.2.
Now let us define the i-th output of the output layer as follows:

yi =
N

∑
j=1

wi, j.xi, j +bi, (3.8)

where bi is the bias of the i-th neuron, wi, j is the weight connecting the j-th input
to the i-th neuron in the output layer, and N is the number of input features. The
weights are set to zero and the biases are set to the optimal initial values of position
and scale as discussed above.

Concerning the classifier module, each of the W convolutional trunks are initialized
with the parameters learned while pretraining the W classifier modules as detailed
in Sec. 3.4.2. To recall, the convolutional trunks are trained over a set of desired
scales so that the predict attention windows be able to capture the most representative
vehicle parts on the same desired scales. It should be noted that the output branches
parameters of pretrained classifiers are not used in the classifier module initialization
since they refer to single-trunk architecture. However, since in the proposed architec-
ture the output features by the convolutional trunks in the classifier are concatenated,
hence the number of input features to each fully connected layers depends on the
number of attention windows(W ). Therefore, the output branches of the classifier
module are initialized randomly and based on Xavier scheme same as localizer fully
connected layers.



3.4 Training 47

3.4.4 Training and Optimization

As the final step, when all parts of the proposed network are initialized according to
a desired setting, we proceed to train the network end-to-end using the following pro-
cedure. Stochastic gradient descent [8] with the momentum of 0.9 and regularization
factor λ = 5×10−3 is used. The cost function defined in Eq. (3.6) is minimized and
training is carried out for a total of 200 epochs. All learnable layers in the network,
except the convolutional trunks in classifier module, have learning rates of η = 10−2

divided by 10 every 50 epochs. However, in the classifier module, W convolutional
trunks are frozen by setting their learning rate to η = 0. Therefore, these layers are
not updated during training, since they have already been trained using the procedure
defined in Sec. 3.4.2. Nevertheless, error gradients are allowed to backpropagate
from the classifier to the localizer via STN.

The error backpropagation through the STN module as the rest of the network is
carried out using the chain rule. As detailed in Sec. 3.2.2, the STN module takes as
input the affine transform parameters predicted by the localizer module and samples
the input image at the attention windows using a bilinear filter. The image sampling is
a point-wise and differentiable process [47] which allows to backpropagate the error
gradients from the classifier to the localizer. First, the error gradients are computed
with respect to all classifier parameters and also with respect to each classifier
convolutional trunk input (i.e. the sampled image at each attention window). Thus,
since STN module has performed differentiable sampling, then the gradients with
respect to predicted affine transform parameters T and for each attention window
can be computed. Finally, the computed gradients are backpropagated to the localizer
fully connected layers and then gradients with respect to all localizer parameters can
be calculated accordingly.

The proposed strategy trains the localizer module to predict non-identical attention
windows whose scales are aligned with the patch scales used in sec. 3.4.2 to pre-train
convolutional trunks in the classifier module. Finally, the classifier output layers
predict score maps over two classes of vehicle’s make and model. Moreover, we have
utilized a number of augmentation techniques including random crop, horizontal flip
and color jittering during the training in order to ease the network generalization as
detailed in Sec. 3.3.2.



48 Vehicle Make and Model Recognition

The training procedure described in this section significantly differs from the ap-
proach of [47]. In [47], authors first initialized the parameters of both the localizer
and classifier modules with ImageNet pre-trained networks. Then, the entire network
is trained end-to-end with a moderate (10−4) learning rate in order to guarantee
convergence. Such procedure suffices in the context of [47] because its goal is
predicting attention windows of identical size (e.g., bounding boxes over characters).
However, we experimentally verified that such procedure is not suitable to train the
localizer to predict attention windows at multiple scales, which is instead the goal
of the present work. The training methodology we presented here guarantees both
convergence of the training process and distinct scales of attention windows.

To conclude, the training steps are detailed in Algorithm 1. Nscales , Nimages ,Nepochs

and Nminibatches are total numbers of scales , images, epochs and mini-batches respec-
tively; hn,wn are training sample original hight and width; Hs is the desired value
used to scaling training samples for scale of s; Ps is set of patches extracted with
scale of s; θ conv

classi f iers
,θ

f c
classi f iers

,θ conv
localizer,θ

f c
localizer are the parameters of classifier

convolutional trunk and fully connected layers, localizer convolutional trunk and
fully connected layers respectively; S0, Pos0 indicate attention windows initial scale
and position; η is the learning rate and m in the length of mini-batch; x is the training
image (not cropped at bounding box); and finally, θ presents the union of all network
parameters.

3.5 Results

In this section, we report the results of our VMMR experiments over two public-
ity available datasets of vehicular images. Preliminarily, we experiment with the
hyperparameters of each module of our architecture in isolation to maximize the
performance of each module. Then, we train our proposed architecture and com-
pare its performance with respect to a number of competing architectures. For our
experiments, we consider two challenging datasets of vehicular images collected in
different lighting and pose conditions.



3.5 Results 49

Algorithm 1 Training procedure with multi-scale attention windows
Generating patches with desired scales Sec. 3.3

1: for s = 1...Nscales do
2: for n = 1...Nimages do
3: α ← hn

wn
4: min(hn,wn)← Hs
5: max(hn,wn)← α−1Hβ

6: end for
7: end for

Training classifiers over patches of desired scales Sec. 3.4.2
8: for s = 1...Nscales do
9: {Ys}← classi f iers({Ps})

10: Optimize {θ conv
classi f iers

∪θ
f c

classi f iers
} based on J(θ ,Ys,T ) 3.4.1

11: end for
Initializing the proposed network Sec. 3.4.3

12: θ conv
localizer←N (µ, σ2(Ni,NO)) ▷ Xavier initialization

13: θ
f c

localizer← f ({S0},{Pos0})
14: for s = 1...Nscales do ▷ Initializing classifier convolutional trunks
15: θ conv

classi f iers
← θ

conv,optimized
classi f iers

16: end for
17: θ

f c
classi f ier←N (µ, σ2(Ni,NO)) ▷ Xavier initialization

Training the proposed network Sec. 3.4.4
18: for s = 1...Nscales do ▷ Freezing classifier convolutional trunks
19: ηθ conv

classi f iers
←0

20: end for
21: for epoch = 1...Nepochs do
22: for b = 1...Nminibatches do ▷ Performing Refinement
23: {yb...m+b}← Network({xb...m+b})
24: J(θ ,yβb

, tβb
)←{yb...m+b},{tb...m+b}

25: θb = θb−1−η ·∇θ J(θ ,yβb
, tβb

) ▷ Fine-tuning parameters
26: end for
27: end for

3.5.1 Stanford Car Dataset

The Stanford dataset [52] contains 16,185 vehicular images subdivided into 8,144
training and 8,041 test images. The images are classified according to 196 different
vehicle models, where two models may refer to the same vehicle model but differ
in the model years. The images are also coarsely classified into 9 different types
of vehicles including sedans, SUVs, vans, cabs, coupes, convertibles, pickups,



50 Vehicle Make and Model Recognition

hatchbacks, and station wagons. In addition to class labels, the images are annotated
with the vehicle position in the form of a tight bounding box drawn around the
vehicle. In Fig. 3.10 a few samples of car images on this dataset are provided.

3.5.2 CompCar Dataset

The Comprehensive Cars (CompCars) dataset [105] contains a large number of
vehicular images sourced from the web and surveillance cameras. In our experi-
ments, we rely on the same subset of images used in [105] and [40], containing
16016 training images and 14939 test images. Such images are classified into 431
car models and 75 car makes. For each vehicle model, different model-years are
considered as a single class of model. In addition to class labels, the images are
annotated with the vehicle position in the form of a tight bounding box drawn around
the vehicle. In Fig. 3.11 a few samples of car images on this dataset are provided.

Fig. 3.10 Stanford car dataset.



3.5 Results 51

3.5.3 Optimizing the Localizer Module Architecture

As the first preliminary experiment, we experimentally find the ResNet18 architecture
depth that maximizes the performance of the localizer module defined in Sec. 3.2.1.
As we explain in Sec. 3.2.1, there is a trade-off between the number of feature maps
and their spatial resolution inside the localizer architecture, on localization accuracy.
As detailed in Table 3.1, for each additional residual block, the number of feature
maps produced as output doubles whereas the area of each feature map drops by a
factor of 4.

For this preliminary experiment, we train the localizer to predict one single attention
window (W=1) encompassing the entire vehicle. Only for this experiment, we train
the localizer to minimize the Mean Square Error (MSE) between the predicted and
ground truth attention window size and location rather than minimizing the loss
function in Eq. (3.6).

Fig. 3.11 CompCar dataset.



52 Vehicle Make and Model Recognition

Table 3.1 shows the localizer accuracy as the Intersection over Union between
predicted and ground truth vehicle bounding boxes as a function of the localizer
depth. The four depth values B, C, D, E in the table indicate the ResNet18 architecture
as it is shown in Fig. 3.12 obtained truncating the localizer convolutional trunk after
the blocks B, C, D, and E. The localizer accuracy increases from depth B to D
but it decreases again for depth E. Our understanding is that an increasing number
of feature maps improves the localization accuracy up to a certain point. Beyond
such point, the loss in feature map resolution sets off the gain yield by an increased
number of feature maps. Best localization accuracy is obtained when the localizer
convolutional trunk yields 256 feature maps of size 14x14 (depth D). Therefore,
in the remainder of this section, we will consider a localizer module based on the
ResNet18 architecture configured with depth D.

Table 3.1 Localization performance over Stanford car dataset.

Localizer Size of Number of Localizer Accuracy
Depth Feature maps Feature maps (IoU)

Block B 56×56 64 0.82
Block C 28×28 128 0.84
Block D 14×14 256 0.89
Block E 7×7 512 0.86

Fig. 3.12 The localizer architecture for different depth, particularly in this figure localizer
uses trunked ResNet18 at block C.



3.5 Results 53

3.5.4 Optimizing the Classifier Module Architecture

As a second preliminary experiment, we investigate the optimal architecture for
the baseline classifier module described in Sec. 3.2.3. In this section, in addition
to investigating the classifier depth effects, we compare standard ResNet [36] and
wide ResNet [107] as well as Inception [95] architecture originally used in [47]. For
this experiment, we train the classifier to minimize the loss function in Eq. 3.6).
However, rather than training the classifier over the attention windows generated
by the localizer, in this case we train the classifier over the ground truth boxes en-
compassing the entire vehicle, since, for now, we are only interested in classification
accuracy of different architecture.

Table 3.2 shows the Top1 classification error for vehicle make and model over the
Stanford and CompCar datasets. Considering the Inception architecture, due to
presence of parallel convolutional layers, depth of the network can not be considered
as reliable parameters to analysis Inception architecture. It can be seen from results,
the ResNet variants outperform Inception by a considerable margin.

Moreover, considering the standard ResNet architecture, classification error de-
creases as the network depth increases, except for a slight increase when the depth
increase from 101 to 152 layers. Considering wide ResNet architecture, the error
decreases to its minimum when the depth increases from 34 to 50 layers. For both
datasets, the 50-layers wide ResNet architecture achieves the lowest error on both
recognition tasks over both datasets. Such results are in line with the findings of
[107] for an image classification task over the ImageNet dataset, indicating that
the wide ResNet of 50 layers outperforms the standard ResNet for much deeper
topologies.

Notice that in [107] no classification results are provided for wide ResNet with
more than 50 layers due to computational reasons (we assume, memory limitations).
Nevertheless, here we train wide ResNet of 101 and 152 layers with the same
widening factor of two as reported in the table. However, due to memory constraints,
we had to use smaller mini-batches of 4 images at training time due to memory
constraint.

Table 3.2 shows that the classification error increases when the wide ResNet depth
increases above 50 layers. We provide two non-exclusive explanations to such
evidence. First, our experiments showed that reasonably large minibatches are needed



54 Vehicle Make and Model Recognition

to effectively train a ResNet, and in order to train 101 and 152 layers wide ResNets
we had to decrease the mini-batch size. We conjecture that if memory constraints
could be addressed, larger minibatches may have further improved the deeper wide
ResNet architectures. Second, the increased number of network parameters is not
matched by an increase in the training samples, thus over-fitting may have occurred
and more effective regularization techniques are required. Since the wide ResNet-50
architecture achieves the minimum classification error, we choose such network
architecture for the classifier module of the proposed architecture.

Table 3.2 Top-1 [%] classification error for different classifier module architectures , depths
and batch size trained over patches with scale of 0.95 w.r.t. training samples.

Batch Stanford CompCar
Network Depth Size Model Type Model Make

Inception N/A 32 11.34 6.03 10.59 6.17

ResNet 34 32 10.44 5.12 9.18 5.44
50 32 8.58 3.49 6.35 2.76

101 32 8.25 3.08 6.08 2.57
152 32 8.28 3.71 6.52 2.85

Wide 34 32 10.16 3.89 8.64 3.94
ResNet 50 32 7.45 3.07 5.19 1.58

101 4 8.55 3.19 8.06 3.61
152 4 9.29 3.67 8.22 3.36

3.5.5 Training a Baseline Classifier

As a third preliminary experiment, we investigate the optimal attention window scale
for training a baseline classifier module to be used as a reference later on. The wide
ResNet-50 architecture which achieved minimal classification error in the previous
experiments is trained over various patch scales extracted from the Stanford and
CompCar dataset.

Table 3.3 shows the Top-1 classification error for vehicle make and model over
patches with different scales with respect to the original input image. The scale
value indicates the ratio of patch width and height to those of the image. Considering
the scale values, we choose 0.95 as upper bound to retain the ability to perform
data augmentation at training time by cropping image patches at random position.



3.5 Results 55

Table 3.3 Top-1 [%] baseline classifier error for different patch scales.

Scale (σ ) Stanford CompCar
w.r.t. image Model Type Model Make

1 7.85 3.52 6.24 1.61
0.95 7.45 3.07 5.19 1.58
0.85 7.52 3.44 5.38 1.54
0.75 8.12 3.66 6.35 1.45
0.65 9.25 4.54 7.89 1.62
0.55 10.45 5.26 10.03 1.52

Moreover, since patches with a scale lower than 0.50 do not provide meaningful
visual context, the minimum value is set to 0.50. In the end, the values are chosen in
this interval and with the step of 0.1.

As the results reveal, the classification error on Stanford dataset and over model and
type and also on Compcar dataset over model is minimized for the scale of 0.95 and
increases as the scale decreases. However this trend is not observed on Compcar
dataset and over make where the scale of 0.75 yields the best result. Hence, as
the results imply, the scale on which captured visual context is more representative
depends on the classification task.

Furthermore, our observation from results showed that classifiers trained over dif-
ferent scales correctly classify different subsets of each dataset (or, equivalently,
perform different mistakes). For instance, the classifier trained over a scale of 0.65
may correctly classify a set of images that are incorrectly labeled by the same classi-
fier trained on a scale of 0.95. This indicates that each classifier predicts the image
according to the extent of visual details which it is trained on. However, combining
visual features from different scales trough multiple attention windows reduces the
classification error as we will show later on.

3.5.6 Training the Proposed Architecture

In this section, we experiment with our proposed architecture over a different number
of attention windows W and different combination of scales. Namely, we experimen-
tally find the scale values that minimize the classification error and for W ∈ {1,2,3}
attention windows for the same scale values considered in the previous experiment.



56 Vehicle Make and Model Recognition

Table 3.4 Classification error over vehicle model and on Stanford car dataset using proposed
systems of one attention window (W = 1), two attention windows (W = 2) and three attention
windows (W = 3). In each system the scale of i-th attention window varies in the set of
σi ∈ {0.95,0.85,0.75,0.65,0.55}.

Scale (σi) W = 1 W = 2 W = 3
w.r.t. image scale [σ1] scale [0.95,σ2] scale [0.95,0.75,σ3]

0.95 7.06 % 7.03 % 5.42 %
0.85 7.08 % 6.27 % 5.40 %
0.75 7.29 % 5.24 % 5.39 %
0.65 8.18 % 5.80 % 5.36 %
0.55 8.99 % 5.97 % 5.41 %

Fig. 3.13 Predicted attention windows over a sample from Stanford dataset (left) and a
sample from Compcar datasets (right) and at five scales of 0.95, 0.85, 0.75, 0.65, 0.55.

Fig. 3.14 Predicted attention windows for W = 1 (top row), W = 2 (middle row), W = 3
(bottom row) on Stanford dataset.

In this experiment, we follow the complete training procedure as described in
Sec3.4.4, minimizing however only the error on model classification. Due to the



3.5 Results 57

computational complexity associated with exploring multiple combinations of mul-
tiple scales, we rely on an iterative approach restricted to the Stanford dataset as
follows. Therefore, if S is the number of scale values intended to be explored, the
proposed experiment has a complexity that grows with S×W , which is far lower
than the complexity of exploring the complete combination of scale values, which
amounts to SW .

First, we experiment with W = 1, searching for the σ1 that minimizes the classi-
fication error. The second column of Table 3.4 shows that σ1 = 0.95 yields the
lowest error. A comparison with Table 3.3 related to the baseline classifier trained on
entire images rather than attention windows, we see that the attention windows-based
architecture outperforms its corresponding baseline architecture for the same W by a
considerable margin. Such improvement is achieved by providing the classifier the
most discriminative part of the image at a specific scale as found by the attention
window.

Fig 3.13 shows the predicted attention windows of different scale on a sample from
Stanford as well as a sample from CompCar dataset. While the first row of Fig 3.14
and Fig 3.15 visualizes the predicted attention window by proposed system with
W = 1 and over a same scale of σ1 = 0.95 on different samples for Stanford and
Compcar datasets respectively.

Next, we experiment with W = 2 and σ1 = 0.95, searching for the σ2 that minimizes
the classification error. The third column of Table 3.4 shows that σ2 = 0.75 yields
the lowest error. Most importantly, the results indicate that aggregating visual
representations of two distinct scales via two attention windows significantly reduces
the classification error (-1.82 %). Such evidence can be seen in the second row of Fig.
3.14 and Fig 3.15, where sample attention windows for σ1 = 0.95 and σ2 = 0.75 are
shown respectively on Stanford and Compcar datasets.

Finally, we experiment with W = 3 and σ1 = 0.95 and σ2 = 0.75, searching for the
σ3 that minimizes the classification error. The fourth column of Table 3.4 shows
that σ3 minimizes the classification error for W = 3. However, when comparing
the case W = 3 with the case W = 2, we see that adding a third attention window
doesn’t improve the results. That is, when the visual features over different scales
represent the same context, accuracy does not increase any further. The predicted
attention windows for W = 3 are presented in the third row of Fig. 3.14 and Fig



58 Vehicle Make and Model Recognition

Fig. 3.15 Predicted attention windows for W = 1 (top row), W = 2 (middle row), W = 3
(bottom row) on Compcar dataset.

3.15 for σ1 = 0.95, σ2 = 0.75 and σ3 = 0.55 over Stanford and Compcar datasets
respectively.

Table 3.5 Top-1 [%] classification error of our proposed system for different combinations of
attention window scales ([0.95], [0.95,0.75], [0.95,0.75,0.65]).

Stanford CompCar
Model Type Model Make

Proposed (W = 1) 7.06 % 2.82 % 4.00 % 1.31 %
Proposed (W = 2) 5.24 % 1.67 % 2.25 % 0.55 %
Proposed (W = 3) 5.36 % 1.81 % 2.31% 0.39 %

We now consider an architecture with W = 1, 2 and 3 with fixed scales of 0.95,
{0.95,0.75} and {0.95,0.75,0.65} respectively and measure the performance on
joint classification. Table 3.5 reports the related results over Stanford and Compcar
datasets individually. As seen in the previous table, the best performance for both
classification tasks over Stanford car dataset is obtained for W = 2. Only for the
Compcar dataset, the architecture with W = 3 outperforms the architecture with
W = 2 and on vehicle makes only.

As the number of attention windows W increases, the number of input features to
the classifier fully connected layers increases as well. This large number of input



3.5 Results 59

features can significantly increase the possibility of overfitting in the network. If the
visual representations captured by the additional attention windows do not provide
representative features to the classifier for a specific classification task, this degrades
the accuracy as it is observed for model and type on Stanford and model on Compcar
dataset. Whereas for the make classification on Compcar dataset, the third attention
window contributes to lower classification error.

3.5.7 Comparison with State-of-the-art

In this section, we finally compare our proposed VMMR architecture tuned as de-
scribed in the previous sections with several competing techniques over the Stanford
and CompCar datasets.

Table 3.6 Classification accuracy on vehicle model over Stanford dataset.

Architecture Accuracy on Model Accuracy on Type

Chai et al. [11] 78.0 % -
FV-CNN [33] 82.7 % -

Bilinear-CNN [60] 91.3 % -
Faster R-CNN 92.4 % 96.6 %

Krause et al. [52] 92.8 % -
SWP-CNN [40] 93.1 % -

Proposed - Baseline 92.5 % 96.9 %
Proposed (W = 1) 92.9 % 97.2 %
Proposed (W = 2) 94.8 % 98.3 %
Proposed (W = 3) 94.6 % 97.7 %

Table 3.6 shows the make and model classification accuracy over the Stanford dataset
for our proposed architecture for a different number of attention windows W . A
number of different reference architectures are considered for comparison purposes.
The baseline classifier refers to the classifier module trained as in Sec. 3.5.4. The
figures for the references [11, 33, 60, 40] are extracted from the respective articles:
notice that for such references only model accuracy was provided. In addition, we
implemented the faster R-CNN [81] architecture and retrained it for the VMMR task.
The classifier network used within the faster R-CNN is the same baseline classifier
we previously trained. The faster R-CNN Region Proposal Network (RPN) is the
standard VGG-16 pretrained on ImageNet, pruned at layer conv5_3 that we refined



60 Vehicle Make and Model Recognition

for 60 epochs using SGD. The RPN was trained using 2 anchors corresponding to
two different object scales with a landscape aspect ratio. Similar results are obtained
using ResNet101.

Our proposed system accuracy tops 94.8% for W=2 attention windows, in line with
the results in Table 3.5. The proposed system exhibits a 2.3% improvement in
classification accuracy over our baseline classifier. Such result is due to the distinct
attention windows at different scales, whereas the baseline classifier operates on the
entire image.

Our proposed system outperforms by 1.7% the closest competitor, i.e. the convolu-
tional architecture with spatially weighted polling SWP-CNN [40]. In our approach,
the attention windows are in fact predicted as a function of the particular input image.
Conversely, SWP-CNN relies on a large number of learned pooling masks that are
the same for every image.

Finally, our proposed approach outperforms faster R-CNN by 2.4% on model and
1.7% on make: such gain we hypothesize is due to multi-scale classification schemes
of our proposed network.

Table 3.7 Classification accuracy on vehicle model over CompCar dataset.

Architecture Accuracy on Model Accuracy on Make

Yang et al. [105] 76.7 % 82.9 %
BoxCars [91] 84.8 % -

SWP-CNN [40] 97.6 % 99.3 %

Proposed - Baseline 94.8 % 98.4 %
Proposed (W = 1) 96.0 % 98.7 %
Proposed (W = 2) 97.8 % 99.4 %
Proposed (W = 3) 97.7 % 99.6 %

Next, Table 3.7 shows the corresponding results for the CompCar dataset. Our
proposed system achieves top performance for W=2 concerning model classification
and for W=3 for make classification, in line with the results in Table 3.5. Considering
the baseline classifier, our proposed system improves the accuracy by 3% and
1% on vehicle model and make respectively due to the use of attention windows.
Considering the closest competitor, the spatially weighted pooling architecture [40],
the proposed system yields a 0.2% gain on model classification and a 0.3% increase
for make classification.



3.5 Results 61

3.5.8 Single Attention Window as Localizer

Fig. 3.16 Single attention window as a localizer over samples of Stanford dataset.

Thus far, we assumed that training images are annotated with the vehicle position,
i.e. that a vehicle bounding box is provided for each image. In this section, we
experiment with a more challenging scenario where no bounding boxes are available,
i.e. each image is annotated with the class label only. Our experiments with the
baseline classifier confirmed that when the classifier module is trained over whole
images, classification accuracy worsens due to the irrelevant background shown to
the classifier. Therefore, we now experiment retraining our proposed architecture in
Fig. 3.3 over whole training images rather than on bounding boxes. Since lacking
bounding boxes the vehicle scale is not known, we are unable to train multiple
attention windows at different scales and so we consider a single attention window
only (W=1). Accordingly, the attention window functions as a vehicle localizer in
the image.

Since there is no need to train classifier modules at different scales, we train our ar-
chitecture end-to-end in one single step rather than following the procedure described
in Sec. 3.4 without providing pre-trained classifiers.

However, our preliminary experiments show that if the system is trained in this
way it will not be able to accurately localize the car inside the image and most
likely training will overfit on the training set. This results from learning irrelevant
information such as background during training and since localizer is trained by
minimizing the classification error, it would not be able to distinguish the car from
the background.



62 Vehicle Make and Model Recognition

Fig. 3.17 Adding random background to penalize more inaccurate prediction of attention
window.

To address such issue, we deploy an augmentation technique in which car images are
put into random backgrounds during training in order to add much larger variation
to car position and scale with respect to the image as shown in Fig 3.17. Thus,
the classification accuracy will be penalized more if the localizer does not perform
accurately.

Moreover, to make training converge, we choose a learning rate of 10−3 for the
convolutional trunks of localizer and classifier modules, 10−4 for localizer scale
branch, 10−5 for localizer position branch and 10−2 for classifier output branches.
The network is trained for 200 epochs and every 50 epochs the learning rate is
divided by a factor of 10.

Table 3.8 Top-1 classification error over the Stanford dataset without bounding boxes annota-
tions.

Architecture Model Make

Proposed - Baseline 17.32% 9.63 %
Proposed - 1 A.W. 7.70 % 4.12 %

Table 3.8 shows the make and model Top-1 classification error over Stanford datasets
for our baseline classifier and for our proposed system trained as detailed above.
Our proposed system shows a 9.6% improvement on model classification and 5.5%
improvement on make classification accuracy over the baseline classifier. Fig. 3.16
shows the predicted attention window for a few Stanford dataset images. Despite
the network was trained without the aid of bounding boxes, the localizer module
succeeds in localizing the vehicle from the background, explaining the gains over
the baseline classifier.



Chapter 4

Satellite Image Segmentation on
Heterogeneous Datasets

In this chapter, we address the semantic segmentation problem of satellite images
on heterogeneous datasets. We should note that semantic image segmentation also
referred to as supervised image classification or pixel-based image classification
in remote sensing literature, however, for brevity, we referred to this problem as
image segmentation in the following. In this chapter, first, in Section 4.1, we discuss
the recent literature in the field and the major shortcomings of existing approaches.
Section 4.2 describes our proposed architecture, while Section 4.3 detailes the
procedure used to prepare training samples. Next, Section 4.4 describes the related
training procedure. Section 4.5 presents two domain adaptation methods to improve
the performance of a trained network over specific images. Finally, in Sec. 4.6
we experimentally assess the performance of our proposed architecture over three
distinct datasets of satellite images.



64 Satellite Image Segmentation on Heterogeneous Datasets

4.1 Related Work

Automatic segmentation of hyperspectral satellite images has been the subject of
extensive studies over the past decade. Mainstream approaches rely on manually
designing class-specific features extractors where the extracted features are further
classified for image segmentation. Morphological index and Pixel Shape Index (PSI)
[4, 43, 111] are among the best known families of hand-crafted features proposed
in the literature. Concerning feature classification, discriminative learning [48,
110, 109] aims at discovering the informative subspace within the feature domain
to improve the classifier performance. Concerning feature classification, mainly
the support vector machine [67] is deployed to process the generated features and
perform final decision over pixels of the image.

As already discussed in previous chapters, CNNs have pushed the frontier in
many computer vision tasks advancing state-of-the-art by a considerable margin. In
the wake of this success and fostered by the availability of large sets of annotated
images and leveraging the computational capabilities of modern GPUs, a number
of approaches based on CNNs have been proposed recently for image segmentation
in general as well as satellite image segmentation in particular. To begin with, first,
we describe prominent state-of-the-art approaches employed in the general image
segmentation task.

Farabet et al. [20] proposed a multi-scale CNN to address scene labeling. Their
proposed architecture consists of three convolutional branches each operating on a
specific scale of input image generated by a Laplacian pyramid. The output feature
maps of these branches are scaled up to recover the original size of the input and then
concatenated over the three scales. Finally, the segmentation results of convolutional
branches are used by a super-pixel algorithm or conditional random field in order to
predict the final segmentation and to enforce spatial consistency.
Long et al. [62] introduced a fully CNN for image segmentation which can process
an input of arbitrary size. In the proposed scheme, coarse feature maps from deeper
layers are combined with those in early layers and with finer resolution which
contributes to more precise segmentation.
In particular the specific yet related domain of medical imaging, Ronneberger et
al. [82] devised an architecture called U-Net composed of a contracting branch
consisting of convolutional layers and a symmetric expanding branch including
deconvolution layers. The contracting path processes the input image through



4.1 Related Work 65

convolution and pooling layers producing coarse feature maps. In the expanding part,
these feature maps are scaled up using deconvolution operations to match the input
size and produce the score maps over segmentation classes. Skip connections are
used to help the flow of information between these two parts contributing to precise
fine segmentation.
Ghiasi et al. [28] deployed a similar multi-resolution reconstruction architecture
built upon Laplacian pyramid. The coarse feature maps are refined through the
reconstruction branch by fusing feature maps with the information of early layers in
the network.
Chen et al. [12] introduced Deeplab, a CNN in which atrous convolution is employed
to address image segmentation. Atrous convolution helps to enlarge the field of view
of feature maps while keeping their resolution the same. Moreover, atrous spatial
pyramid pooling is employed to add multi-scale content to feature maps. In the end,
the authors implemented fully connected conditional random fields to refine CNN
outputs and perform the segmentation.

Pushed by the success scored with general images segmentation, a number of
methods have been studied particularly to address satellite image segmentation
which; in following we describe some of the most common approaches.

Authors in [50] addressed semantic labeling over Vaihingen city using patch-
based CNN and also fully convolutional architecture. To overcome the imbalanced
classes, authors introduce a cross-entropy loss function weighted by median fre-
quency balancing which results in better performance in less frequent classes like
cars.
In [99] a downsample-then-upsample architecture similar to [82] is devised utilizing
deconvolutional layers in order to tackle semantic labeling of Vaihingen and Potsdam
cities. Good performance is achieved over the validation set.
A multimodal architecture operating on the infrared, red, green and digital surface
model with multi-scale encoders is proposed in [3] which advances the state-of-the-
art over Vaihingen dataset by fusing segmentation results obtained on three scales.
[64] presents an edge-detection network to combine the prediction of class bound-
aries with the segmentation score maps to increase the segmentation precision. They
evaluated their approach over Vaihingen and Potsdam datasets and improved the
baseline performance.
In [75] hand-crafted features are fused with features predicted by a CNN architecture,



66 Satellite Image Segmentation on Heterogeneous Datasets

and a conditional random field inference is employed to make final predictions.

Although most of the studies yield sufficiently accurate segmentation maps, few
of them address the problem of deploying the trained network over images with
different statistics from those used for training. The difference between training
samples and test images is very common in satellite image segmentation scenario and
are mainly associated with changes in acquisition condition and most prominently it
is present when training and test images come from different geographical locations.
Nonetheless, most proposed CNN models are required to be trained on the annotated
samples that come from the image under study. However, this is not applicable due
to two reasons: first, the annotation of every image under study is costly particularly
considering images which cover large areas, secondly, in most applications, the
segmentation has to be performed in short time interval preventing time-consuming
annotation and training a CNN from scratch.
Therefore, recently a number of domain adaptation techniques have been proposed
to address the aforementioned issue of dataset shift between training and test images.
Some approaches rely on selecting a subset of features which are invariant to the
shift in domain [9, 78]. Other approaches focus on data distributions of target and
source domain and they aim to make these domains statistically similar to keep the
classifier unchanged [45, 72, 66, 104]. Other methods rely on adaptation of classifier
rather than data distributions across domains [80, 65]. In addition, inspired by the
generative adversarial networks (GAN) [32], some recent studies have been carried
out in order to learn representations which are invariant to domain shift with the aid
of an additional adversarial term to the total cost function.[23, 17]. Whereas domain
adaptation techniques have been proven successful in image classification, they have
received less attention for satellite image segmentation, leaving the covariate shift
issue largely open.

In this work, we tackle the segmentation problem of satellite images designing
a network capable of learning high-level semantic features that are more robust to
image variation and hence can generalize over a wider range of satellite images.
Moreover, we devise methods to further improve its performance with respect to
each image to be segmented.



4.2 Proposed Architecture 67

4.2 Proposed Architecture

Our proposed architecture is composed of one encoder network paired with a decoder
network which processes the input image in top-down bottom-up manner as shown
in Fig. 4.1. The encoder takes as input the image to be segmented and generates
a number of feature maps on different semantic level and with different resolution.
While the decoder takes as input such feature maps and outputs a segmentation map,
where each pixel is labeled according to one of the possible land usage classes. In
the following, we detail the architecture of each network part and the operations of
the encoder and the decoder in detail.

Fig. 4.1 Proposed encoder-decoder convolutional architecture for satellite image segmenta-
tion.



68 Satellite Image Segmentation on Heterogeneous Datasets

4.2.1 Encoder

Fig. 4.2 Encoder architecture with depth of 18 and input size of 256 by 256 is visualized.

As it is provided in Fig. 4.2, the encoder is composed of five residual blocks.
As it has been discussed in section 2.9, we recall that the first convolutional layer
of each block of a ResNet has a stride of two pixels. Therefore, the resolution of
output feature maps at each block is halved with respect to input feature maps. On
the contrary, as the feature maps processed by each block, the number of generated
feature maps in output increases with respect to the number of input feature maps.

For clarity of exposition, let us consider the case where an encoder with a depth
of 18 convolutional layers is employed. Let the input image be a 256× 256×D
image, where D is the number of spectral or color channels. With such setting, the
first block in encoder takes as input the 256× 256×D image, and in output, 64
feature maps of resolution 128×128 are generated. Next, the second encoder block
takes as input such feature maps and produces accordingly 64 feature maps sized
64×64 in outputs. Following the same rule, 128 feature maps sized 32×32 and 256
feature maps sized 16×16 are output in third and fourth encoder block respectively.
In the end, the fifth and last block of encoder produces 512 feature maps each sized
8×8. Table 4.1 details the number of feature maps output by each block and the
number of convolutional layers in the block for encoders with different depths.

Therefore, by proceeding to deeper layers in the encoder, the number of output
feature maps increases hence enabling capturing higher-level visual representations.
In addition, the field of view of feature maps increases at each block as well, allowing
learning visual representations across wider spatial ranges. On the contrary, as we
proceed to deeper encoder layers, the resolution of feature maps decreases thus
producing more coarse feature maps in deeper encoder blocks.



4.2 Proposed Architecture 69

Table 4.1 Number of convolutional layers, output feature maps and their spatial size for each
encoder block and for different depths.

Depth Block 1 Block 2 Block 3 Block 4 Block 5

18
conv. 1 4 4 4 4
feat. 64 64 128 256 512
size 128×128 64×64 32×32 16×16 8×8

34
conv. 1 6 8 12 6
feat. 64 64 128 256 512
size 128×128 64×64 32×32 16×16 8×8

50
conv. 1 9 12 18 9
feat. 64 256 512 1024 2048
size 128×128 64×64 32×32 16×16 8×8

101
conv. 1 9 12 69 9
feat. 64 256 512 1024 2048
size 128×128 64×64 32×32 16×16 8×8

152
conv. 1 9 24 108 9
feat. 64 256 512 1024 2048
size 128×128 64×64 32×32 16×16 8×8

Relying only on coarse feature maps generated at the last encoder block can result in
blurred segmentation, hence output feature maps in all encoder blocks are utilized in
the decoder in order to leverage all information available and combine the feature
maps of various resolutions and semantic levels and also with different fields of view.
Therefore, a number of shortcut connections are implemented between encoder and
decoder networks which will be discussed in the next section.

While the encoder design pattern follows that of a ResNet, the proposed encoder
differentiates from standard ResNet in a number of noticeable aspects. First, the
pooling layer found in standard ResNets after the 5-th block is omitted to avoid
an unneeded loss of spatial information. Second, we obtain a fully convolutional
architecture by dropping the fully connected layer found in standard ResNets. In
principle, this allows the network to efficiently process input images of arbitrary size
without the need for shifting and stitching. Third and most important, the output of
each block is not just provided as input to the following block, but is also provided
as input to a specific block of the decoder unit. Providing feature maps extracted at
multiple scales helps the decoder to refine its output as detailed in the following.

Our choice to design the encoder around a residual architecture rather than a
plain convolutional one is meant to improve the network ability to generalize over



70 Satellite Image Segmentation on Heterogeneous Datasets

a wider range of images. Our conjecture is that the residual encoder enables the
depth required to learn visual representations of high-level which are more robust
to statistics variations and as a result are more robust to domain shift between
training and test images. Hence, such learned visual representations are the key
contributor to improving network performance on novel images. In Sec. 4.6, the
connection between residual encoder depth and the network performance will be
verified experimentally.

4.2.2 Decoder

Fig. 4.3 Decoder architecture corresponds to encoder with depth of 18 and input size of 256
by 256.

Table 4.2 Number of deconvolutional layers, output feature maps and their spatial size for
each decoder block and for different depths.

Depth Block 1 Block 2 Block 3 Block 4 Block 5

18,34
deconv. 1 1 1 1 1

feat. 256 128 64 64 64
size 16×16 32×32 64×64 128×128 256×256

>34
deconv. 1 1 1 1 1

feat. 1024 512 256 64 64
size 16×16 32×32 64×64 128×128 256×256

Fig. 4.3 illustrates the architecture of the decoder, which is composed of five
deconvolutional blocks symmetric to the five residual blocks of the encoder. Each
decoder block includes one deconvolutional layer, one batch normalization [46] layer
and ReLU activations, as illustrated in the dotted box in Fig. 4.3.

Deconvolutional layers (backward convolution) were originally proposed to address
the loss of mid-level cues [108] caused by pooling operators used in convolutional



4.2 Proposed Architecture 71

networks. Each deconvolutional layer contains one or more deconvolutional filters,
where each filter can be interpreted as a learnable upsampling function. Deconvo-
lution works in two steps: first, a sparse feature map is generated by interleaving
zeros within the pixels, thereby upsampling the input feature maps by a specific
factor (unpooling). Next, a dense feature map is generated by applying a convolution
filter to the sparse feature map. Thus, each decoder block reverses the subsampling
operation performed by the first convolutional layer of each encoder block.

Skip connections contribute to more precise and finer predictions as the spatial
information of early layers in the encoder is used as well. Thus, output feature
maps by each decoder block are concatenated with the feature maps produced by the
corresponding encoder block. Notice that the number of feature maps coming from
the previous block and those from skip connections remains identical. We experi-
mentally verified that this prevents one group of feature maps from dominating the
other when they are concatenated and provided as input to the next deconvolutional
block.

For the sake of clarity, we exemplify the operations of a decoder module with
reference to an 18-layers encoder. Following the example given in the previous
section for the encoder, let the input image be 256×256×D image, where D is the
number of spectral or color channels. Hence, as it is observed, the encoder last block
would output 512 feature maps sized 8×8. The 1-st decoder block takes as input
such 512 8×8 feature maps then using deconvolutional layer these feature maps are
scaled up by a factor of two, reaching a 16×16 resolution. In addition to scaling up
the spatial size, deconvolutional layer also performs dimensionality reduction over
feature maps. Therefore, regarding this example, 1-st decoder block takes as input
512 8× 8 feature maps and outputs 256 16× 16 feature maps. Such 256 feature
maps are then concatenated with the identically sized 256 feature maps generated by
the 4-th encoder block. The rule is same for all decoder blocks and for any depth: the
spatial size and number of output feature maps should be identical to output feature
maps of corresponding block in the encoder which intended to be concatenated and
fed to the subsequent block in the decoder. The 512 concatenated 16×16 feature
maps are then provided as input to the 2-nd decoder block, and so forth. The decoder
output finally consists of 64 feature maps with a size of 256×256.

Next, the decoder output is processed by a convolutional layer with C filters (where
C is the number of land classes) of size 1 × 1. The output of such layer consists



72 Satellite Image Segmentation on Heterogeneous Datasets

in C feature maps of size 256×256 pixel: the i-th pixel in the k-th feature map oi,k

(k ∈ [1,C]) represents the relative confidence that the i-th pixel in the input image
belongs to the k-th class. We are interested in estimating, for each i-th pixel, a class
probability distribution over the k classes yi,k. For each i-th pixel, the spatial SoftMax
produces a normalized score map for each k-th class as follows:

yi,k = eoi,k/
C

∑
k=1

eoi, j (4.1)

such that:

C

∑
k=1

yi,k = 1 (4.2)

Finally, each i-th pixel is labeled according to the k-th class that maximizes the
pixel score yi: the 256×256 map of labels is referred to as segmentation map in the
following.

4.3 Constructing Dataset

Given a dataset of annotated satellite images, it should be first subdivided into three
sets as follows.

First, the training set which refers to images (or parts thereof) used for training the
network is constructed and it usually includes 60 to 70 percent of available images.
Then, the validation set referring to images (or parts thereof) used to validate the
training procedures is prepared to contain 30 to 40 percent of the available dataset.
We recall that training and validation images are required to be annotated with proper
ground truth of segmentation maps where each pixel is assigned a label according
to a set of predefined classes. Moreover, it is necessary that training and validation
sets follow similar statistics and probability distributions. Such condition enables
accurate evaluation of the network performance during training enabling fine-tuning
hyperparameters such as learning rate and weight decay.

The third set of images is test set which refers to images representative of those over
which the trained network is to be deployed. As such, their statistics may differ even



4.3 Constructing Dataset 73

by a large margin from the statistics of training and validation images. It is common
that in case of publicly available datasets, benchmark organizer will not publish the
ground truth corresponds to images in the test set.

As it has been discussed earlier, in this study we are investigating CNN based
architectures with the purpose of increasing the network robustness to the potential
changes which are commonly present between training and test images. To be
precise, generally, such condition is defined as dataset shift when the joint distribution
between input and out of a model differs in training and test stages [93]. Particularly
in this study, we are dealing with a more common case of dataset shift namely
covariate shift, where only input distribution varies between training and test sets. It
is well-known that the variation in acquisition conditions or mapping locations leads
to covariate shift in satellite images [97]. Many datasets that have been studied for
satellite image segmentation includes training and test images which come from the
same location, hence the covariate shift is small. Nevertheless, few datasets have
recently been made publicly available which contain images captured over different
locations introducing considerably large covariate shift between training and test set
[63].

Commonly the dataset is provided as large images in a scale of thousands pixels
over each side. Additionally, some other information such as near infrared band
and sometimes digital surface models (DSM) is provided as well. Considering
the high resolution of current satellite missions, the size of such large images can
exceed tens of Gigabytes. Hence, first training, validation and test images required
to be subdivided into much smaller tiles. In the following, we provide the detailed
procedure employed for extracting training, validation and test tiles.

Concerning the training and by taking to account the available GPU memory, the
network size and reasonable mini-batch size of 8, we choose the network input patch
size to be 256×256 in training, although it allows any other sizes since the architec-
ture is fully convolutional. Additionally, as discussed in Section 2.8.2, a number of
affine transformation with random parameters can be utilized as data augmentation
techniques helping the network generalization. To this end, we also implement a
number of data augmentations such as cropping at random position, horizontal and
vertical flips and rotation with a random angle. However, the augmentation is applied
during training and over tiles instead of applying such augmentation over original
large images which require more computation and memory resources. Therefore,



74 Satellite Image Segmentation on Heterogeneous Datasets

Fig. 4.4 Extracting training tiles (left), rotation (upper right) and cropping (bottom right) are
illustrated.

to enable transformations such as rotation with random angle, we consider training
tile size to be larger than input patch size. As it is shown in Fig. 4.4, in this way,
first the tile is rotated then the input patch is extracted from the center of rotated tile
limiting the input patch within tile boundary. The training tile are extracted with
size of 364 × 364 allowing rotation with a random angle θ where θ ∈ (0,2π) while
keeping the center patch 256×256 within tile boundary in worst case scenario of
θ = π

4 . To conclude, first each training image is subdivided into 364 × 364 tiles,
then, a 256×256 sample is randomly extracted from each tile as follows. Note that
these tiles are extracted using a translation of 108 (364−256) to ensure all possible
patches are used during training. Next, with 50% probability, a 256×256 patch is
cropped at a random position from the tile. Otherwise, a 256×256 patch is cropped
from the center of the image which has undergone a bi-linear rotation with a random
angle θ drawn from a uniform distribution in the interval θ ∈ (0,2π). In addition to
crop and rotation, horizontal and vertical flips each with the probability of 50% are
applied over each tile independently.

Concerning validation images, each image is simply subdivided into 256 × 256 non-
overlapping tiles and no further random alterations are applied to the sample. Note
that since augmentation such as random rotation is not applied during validation,
validation tiles have the same size as the input patch size of the network.

Concerning test images, we extract 512 × 512 partially overlapping samples from
each test image. Whereas our network design is fully convolutional and allows in



4.4 Training Methodology 75

principle to operate over images of arbitrary size, 512 × 512 was the maximum
image size allowed by our memory setup. It should be noted that during training 256
× 256 is considered as patch size to enable reasonable sufficient samples in each
mini-batch improving the training optimization. Whereas in the test stage, we are
more interested in spatial consistency across predicted segmentation maps rather
than mini-batch size, hence we choose the maximum patch size allowing by memory
constraint. Concerning overlapping, we found it to be necessary in order to cope
with potential artifacts at the boundaries of the network output.

4.4 Training Methodology

After the training samples are generated according to the procedure defined in the
previous section, we proceed to train the proposed architecture. In this section, we
first define the loss function to minimize at training time then we detail the related
optimization procedures.

4.4.1 Cost Function

The network is trained end-to-end in a fully supervised manner providing the proper
segmentation map ground truth.
For clarity of exposition, let θ be the parameters representing the weights and the
biases of the network, let x be the sample provided as input to the network, let y be
the segmentation map predicted by the network and let t be the expected (target) map
(i.e., the ground truth). In detail, let yi,k and ti,k indicate the predicted and expected
output for the i-th pixel xi and for the k-th class among C different possible classes.
Let ti take the form of a one-hot vector, i.e. only the element corresponding to the
correct class is equal to one, whereas all the other C−1 elements are equal to zero.
The network is trained by minimizing the loss function:

L(θ ,y, t) =−
H×W

∑
i=1

C

∑
k=1

ti,k log (yi,k). (4.3)

we recall that yi,k is computed using spatial Softmax layer after network output layer:



76 Satellite Image Segmentation on Heterogeneous Datasets

yi,k = eoi,k/
C

∑
k=1

eoi, j (4.4)

where oi,k is the i-th pixel in the k-th output feature map.

Such loss function, known also as spatial cross-entropy, represents the network
inaccuracy in predicting the segmentation map of the sample x across the C classes.
Additionally, to prevent the network from overfitting to training samples, a regular-
ization term R(θ) is added to loss function, obtaining final cost function

J(θ ,y, t) = ηL(θ ,y, t)+R(θ) (4.5)

where η is the learning rate, i.e. the size of the parameters update step. R(θ) is the
squared L2 norm of all the weights in the network:

R(θ) =
λ

2m

m

∑
i=1
∥θi∥2

2 (4.6)

where λ is the corresponding regularization factor and m is the number of learn-able
parameters.

4.4.2 Training and Optimization

After generating the samples and defining the cost function in Eq. (4.5), we proceed
training the network via stochastic gradient descent with an additional momentum
of 0.9. Concerning the learning rate adaptation strategy, we chose a base learning
rate of 10−2 that is divided by factor of 10 every 50 epochs. A factor of 5×10−3 is
applied to the regularization term in Eq. (4.6). Given the size of the training samples
which is equal to 256 × 256, we train the network with 8 samples in each mini-batch
which is the maximum allowed by memory constraint. In our experimental setup,
the training ends when the validation error stops decreasing or after 300 epochs.

The training process is summarized in Algorithm 2, where the proposed network
is denoted by NN, and xs, ys and ts denote input samples, network outputs and
target maps over the training set (source domain) respectively. ∇wJ denotes network
parameters gradients with respect to the cost function, γ is the momentum used in



4.5 Domain Adaptation Strategies 77

Algorithm 2 Training process
Training NN over training set (source domain)

1: for e = 1...ntrain do ▷ training over ntrain epochs
2: ys← NN(xs) ▷ forward pass
3: L(w,ys, ts)← (ys, ts) ▷ computing loss
4: J(w,ys, ts) = ηL(w,ys, ts)+λR(w) ▷ computi. cost
5: ∇wJ(w,ys, ts)← J(w,ys, ts) ▷ backward pass
6: ve = γve−1 +∇wJ(w,ys, ts) ▷ momentum
7: we = we−1− ve ▷ parameters optimization
8: end for

optimization and ntrain is the number of training epochs. Notice that in practice,
the training is carried out over mini-batches of samples, however, in order to avoid
unnecessary complexity, the mini-batches are not shown in Algorithm 2.

4.5 Domain Adaptation Strategies

In this section, we propose two domain adaptation strategies to improve the perfor-
mance of a trained network when applied to a specific image to be segmented. The
two strategies differ mainly in the required inputs, the first proposed strategy requir-
ing no human intervention, while the second one needs manual image interpretation
over a small subset of samples.

4.5.1 Batch Normalization Statistics Refinement

Algorithm 3 Batch Normalization Statistics Refinement
Note: NN is first trained according to Alg. 2

1: for e = 1...nre f ine do ▷ refining over nre f ine epochs
2: for n = 1...nmb do
3: {un...m+n}← NN({xt

n...m+n}) ▷ forward pass
4: µδn =

1
m ∑

m
i=1 un+i ▷ n-th mini-batch mean

5: σ2
δn
= 1

m ∑
m
i=1(un+i−µδn)

2 ▷ n-th mini-b. var.
6: zδn ←{µδn ∪σ2

δn
} ▷ n-th mini-batch statistics

7: zn = α zn−1 +(1−α) zδn ▷ refining statistics
8: end for
9: end for



78 Satellite Image Segmentation on Heterogeneous Datasets

The first domain adaptation strategy we propose consists of refining the BN
statistics learned during training over each image to be segmented. As introduced in
Sec. 2.7, BN speeds up the training by normalizing the inputs to each layer activation
function throughout a network. Borrowing the notation from [46], let the vector
u = (u(1), ...,u(d)) represent the inputs of a layer activation function. The normalized
inputs are computed as:

û(k) =
u(k)−E[u(k)]√

Var[u(k)]
(4.7)

where E[u(k)] and Var[u(k)] are computed over each mini-batch of train data. Since
the procedure is the same for every activation function (any k), for brevity in the
following we omit k e.g. replacing u(k) with u. Next, to prevent the activation
functions operating exclusively in their saturated region, the normalized inputs are
shifted and scaled as

v = γ û+β (4.8)

where γ and β are learned independently for each layer.

During training, BN keeps track of computed statistics (i.e. mean and variance),
then such stored statistics are used to normalize the activations inputs during evalua-
tion. Let z(n−1) be the statistics tracked at the end of the n−1-th mini-batch; at the
n-th mini-batch they are updated as

z(n) = αz(n−1)+(1−α)zδn, (4.9)

where zδn are the statistics computed during the n-th mini-batch and α is the momen-
tum.

Under some assumption, the statistics computed at training time can be used to
normalize the activation function inputs at deployment time. However, when the
network is deployed over data whose statistics do not match those of the training
samples, the statistics computed at training time may be useless towards normalizing
the activation function inputs. Therefore, we propose an improved BN strategy
where after the network is trained, the computed statistics z are preliminarily refined
over (a subset of) the image to be segmented. Algorithm 3 details the proposed
BN statistics refinement. First, the proposed network is required to be trained over



4.5 Domain Adaptation Strategies 79

the source domain according to Algorithm 2. Next, for every image on the target
domain (xt), the trained network is refined without requiring any annotations. Such
refinement is carried out for nre f ine epochs over patches extracted from the image
on the target domain. After patches are split into nmb mini-batches with length m,
in each iteration a mini-batch of patches ({xt

n...m+n}) is input to the trained network
so that the activation functions inputs can be obtained ({un...m+n}) throughout the
network. Next, the mean and variance of the activations are computed over the
mini-batch (µδn , σ2

δn
) in order to update and refine BN layer statistics according to

(4.9) where Zδn is the new observed statistics over n-th mini-batch, and Zn−1 is the
previously updated statistics. As a result, after nre f ine epochs, BN layers statistics are
refined according to statistics of patches over the target domain. In our experiments,
we found that the network performance is maximum when the BN statistics are
updated for about 10 epochs (nre f ine = 10) with momentum α = 0.9, independently
over each test image. Further refining the BN statistics has the effect of overfitting to
the image area used for updating the statistics, jeopardizing the network performance
over the rest of the image.

We would like to point out that this strategy does not require additional image
labeling over the target domain, since BN statistics refinement is carried out without
computing loss function and without performing back-propagation as shown in
Algorithm 3.

4.5.2 Active Learning

The second domain adaptation strategy we propose relies on active learning [80, 49,
65]. In this strategy, a number of patches from each image on the test set (target
domain) are first hand-selected and annotated by the user. Then, the annotated
patches are used to refine a network previously trained on training images (source
domain). The strategy is divided into three steps and is illustrated in Fig. 4.5 and
detailed in Algorithm 4.

The first step a) deals with the selection of suitable regions over the test image.
Since a satellite image usually covers a large geographical area (e.g. a city and the
rural surroundings), land usage classes are not distributed evenly across each image.
For example, over an image, some areas may contain just buildings, whereas other
areas may contain just vegetation. Furthermore, each land usage class statistics may



80 Satellite Image Segmentation on Heterogeneous Datasets

Source Domain 

𝑥𝑠        𝑡𝑠 

User 

NN 

NN has been trained 

providing (𝑥𝑠, 𝑡𝑠) 

Target Domain 

𝑥𝑡 (a) representative areas 

 on 𝑥𝑡 are selected by user 
 

(b) 𝑛𝑎 most uncertain  

patches are labelled by user 

(c) NN is refined 

 providing (𝑥𝑡 , 𝑡𝑡) 
   

Fig. 4.5 Proposed active learning method depicted over three steps. NN stands for the
proposed neural network, xs, ts, xt and tt denote images and target maps over source and
target domains respectively.

Algorithm 4 Active Learning
Note: NN is first trained according to Alg. 2
Step(a): Selecting representative areas over xt and extracting patches

1: {xt
1...n}←USER(xt)

Step(b): Selecting most uncertain patches
2: {yt

1...n}← NN({xt
1...n}) ▷ forward pass

3: {uc1...n}← {yt
1...n} ▷ computing uncertainty

4: {xt
1...na
}← sort({uc1...n}) ▷ na uncertain patches

Step(c): Labelling na patches and refining NN
5: {tt}←USER({xt

1...na
}) ▷ labelling patches

6: for e = 1...nre f ine do ▷ refining over nre f ine epochs
7: yt ← NN(xt) ▷ forward pass
8: L(w,yt , tt)← (yt , tt) ▷ computing loss
9: J(w,yt , tt) = ηL(w,yt , tt)+λR(w) ▷ computi. cost

10: ∇wJ(w,yt , tt)← J(w,yt , tt) ▷ backward pass
11: ve = γve−1 +∇wJ(w,yt , tt) ▷ momentum
12: we = we−1− ve ▷ parameters optimization
13: end for



4.5 Domain Adaptation Strategies 81

be affected by some internal variance (e.g. buildings in some areas of a city may not
look like other buildings in other areas of the same city). Therefore, during step a)
the user manually locates image areas that are both representative of the different
land use classes and account for at least some of each class internal variance.

During step b), at first, an uncertainty metric is computed for each patch which is
extracted over representative areas during the previous step. For example, considering
a binary segmentation problem of building-background, the uncertainty of the k-th
patch is computed as uck =∑i 1−|yk,i,1−yk,i,2|, where yk,i, j is the pretrained network
score for the j-th class of the i-th pixle of the k-th patch. Metric uck indicates how
much the network is uncertain about the classification of the k-th patch. Patches
over which the network is more uncertain about the pixel classes are in fact more
useful for active learning [97]. Thus, the top-na patches with higher uncertainty are
selected to be hand-annotated by the user, for example using a graphical tool for
image segmentation.

Finally, during step c), the network is refined over the na patches labeled by the
user. The refinement consists in further optimizing the network parameters over the
hand-labeled patches (xt , tt) according to the training procedure defined in Sec. 4.4.1.
Therefore, the network can be optimized over a set of informative samples on the
test image itself, finally closing the semantic gap between training and test samples.

In our experiments, the refinement employs a more conservative learning rate
of 10−4 and only for 30 epochs. Due to the relatively small number of annotated
patches, high learning rates or long training may lead to overfitting to the selected
patches, jeopardizing the ability of the refined network to generalize well over the rest
of the test image. Note that in the first domain adaptation method, only BN statistics
are refined which does not require annotations over the test image, however in the
second approach, network parameters along with BN statistics are both optimized
providing labels over test image.



82 Satellite Image Segmentation on Heterogeneous Datasets

4.6 Experiments and Results

In this section, we evaluate our proposed architecture over two public and one
homegrown dataset of high-resolution satellite images. Whenever possible, we
compare our results with state-of-the-art references.
The experimental setup used for all the experiments below consists of a 12-cores
Intel server with 128 GB of CPU memory and four NVIDIA GeForce GTX 1080 Ti
GPUs with 11 GB of memory each.
The interested readers will find more information about the implementation in the
GitHib repository 1 where all codes necessary to generate the presented results have
been made publicly available.

4.6.1 Evaluation Metrics

The predicted segmentation maps are evaluated using a set of metrics which will be
defined in the following.

Precision

Precision is defined as the fraction of predicted positive pixels which is detected
correctly.

Precision =
t p

t p+ f p
(4.10)

where t p , f p are correctly predicted and inaccurately predicted pixels respectively
regarding a segmentation class. Considering binary image segmentation, precision is
computed for one class while for multi-class segmentation precision is computed for
every segmentation class.

1https://github.com/sinaghassemi/semanticSegmentation

https://github.com/sinaghassemi/semanticSegmentation


4.6 Experiments and Results 83

Recall

Recall is defined as the fraction of labeled positive pixels which is detected accurately.

Recall =
t p

t p+ f n
(4.11)

where t p , f n are correctly predicted pixels and inaccurately missed pixels respec-
tively regarding a segmentation class. Considering binary image segmentation, same
as precision, recall is computed for one class while for multi-class segmentation
recall is computed for every segmentation class.

F1-Score

F1-Score is defined as the harmonic mean of precision and recall.

F1 = 2 · (precision · recall)/(precision+ recall) (4.12)

same as recall and precision, F1-score is computed for each segmentation class.

Intersection over Union

Intersection over Union (IoU) is the ratio of correctly predicted area to the union of
predicted pixels and the ground truth for each class as shown in Fig. 4.6.

Fig. 4.6 Intersection (green area) over union (the whole colored area).



84 Satellite Image Segmentation on Heterogeneous Datasets

Overall Accuracy

Overall accuracy (Acc) is the fraction of all pixel population which are correctly
predicted for all classes.

Acc =
∑

Nclass
i=1 t pi

Npixels
(4.13)

where, Nclass and Npixels are number of classes and pixels respectively and t pi denotes
true positive regarding class i.

4.6.2 Buildings Dataset

The first dataset we consider for our experiments is composed of nine high resolution
images acquired by three different Earth observation satellite sensors, WorldView-2 ,
Pléiades-1A and Pléiades-1B and over nine different urban areas worldwide. The
nominal spatial resolution of the images is 50 centimeters and each image includes
4 bands: red, green, blue and near infrared. Moreover, the images are not acquired
from a perfect nadiral angles. Areas (cities) B1, B2, B3, B4, B5, and B6 have been
chosen for training and validation , whereas areas (cities) B7, B8 and B9 are reserved
for testing. That is, the network is tested over cities that are different from the cities
used for training, which introduces a particularly challenging covariate shift scenario.
Table 4.3 shows a detailed description over each image while Fig. 4.7 illustrated
some samples from building dataset.

Table 4.3 Image description on buildings dataset.

Size Resolution Spectral Satellite Off-nadir
Image (pixels) (meter) bands sensor angle Set

B1 15000 ×14000 0.5 R,G,B,IR Pleiades-1A 26.5◦ train & val
B2 14000 ×11000 0.5 R,G,B,IR Pleiades-1A 23◦ train & val
B3 14000 ×16000 0.5 R,G,B,IR Pleiades-1B 24.7◦ train & val
B4 23000 ×15000 0.5 R,G,B,IR Pleiades-1B 18◦ train & val
B5 25000 ×17000 0.5 R,G,B,IR WorldView-2 17.4◦ train & val
B6 13000 ×11000 0.5 R,G,B,IR Pleiades-1B 17◦ train & val
B7 13000 ×11000 0.5 R,G,B,IR Pleiades-1A 17◦ test
B8 10000 ×9000 0.5 R,G,B,IR WorldView-2 23◦ test
B9 15000 ×10000 0.5 R,G,B,IR Pleiades-1B 17.2◦ test



4.6 Experiments and Results 85

Fig. 4.7 Six samples from building dataset.

That is, the network is deployed over cities that are different from those used for
training. Training and validation samples are generated as described in Section
4.3, reserving 70% of areas B1, B2, B3, B4, B5 and B6 for training and the rest
for validation. For each area, the ground truth includes the two classes of building
and background. Thus, the problem of segmenting such dataset is a binary pixel
classification problem.

Network Depth

In the first experiment, we evaluate the performance of our proposed architecture as a
function of encoder depth. Table 4.4 (middle) shows that performance increases with
the residual encoder depth. The network with the 34-layers encoder outperforms the
18-layers counterpart by 1.93% and 0.39% respectively. As the inner architecture of
the residual units is identical (see Tab. 4.1), we attribute such gain to the 16 extra
residual layers. The proposed network with 152-layers encoder outperforms the
18-layers counterpart by about 9% and 1% respectively. As the number of filters
in each residual unit increases in blocks 2 to 4, we attribute such gain both to the
four-fold increase in the number of filters per layer and to the 134 extra layers.
This result is in line with those of [36], where a ResNet performance in an image
classification task was found to increase with its depth.



86 Satellite Image Segmentation on Heterogeneous Datasets

Table 4.4 F1-score and accuracy over the buildings dataset test areas. Top: The proposed
network and U-net with different encoder depths and Deeplab V3+ with two different
backbone, Bottom: Adapted networks using BN statistics refinement (Norm), active learning
over 10% (AL-10%) and 30% (AL-30%) of each test area.

Average Oveall
F1-score [%] F1- score Acc.

Method B7 B8 B9 [%] [%]

Prop-18 65.81 71.92 76.07 71.26 94.78
Prop-34 69.26 74.79 75.54 73.19 95.17
Prop-50 72.34 74.08 76.07 74.16 95.23

Prop-101 75.82 78.87 79.47 76.33 95.47
Prop-152 79.27 79.16 83.51 80.65 95.76

U-net-19 [82] 66.31 69.96 73.22 69.83 94.13
U-net-35 [82] 67.47 68.14 75.60 70.40 94.48

DeepLab V3+∗ [12] 71.88 75.02 78.98 75.29 95.14
DeepLab V3+∗∗ [12] 72.15 73.82 70.00 71.99 94.82

Prop-152 (Norm) 83.23 81.06 86.23 83.51 96.10
Prop-152 (AL-10%) 81.98 85.06 86.97 84.67 96.10
Prop-152 (AL-30%) 86.87 85.99 87.80 86.88 96.71

U-net-35 (Norm) 69.12 70.95 75.90 71.99 94.75
U-net-35 (AL-10%) 70.37 71.58 76.17 72.70 94.89
U-net-35 (AL-30%) 73.03 75.12 77.85 75.33 95.11

Deeplab V3+∗ (Norm) 74.15 79.99 79.11 77.75 95.32
Deeplab V3+∗ (AL-10%) 75.56 80.80 79.25 78.53 95.39
Deeplab V3+∗ (AL-30%) 81.57 81.36 83.10 82.01 95.82

Deng et al. [16] 52.33 58.38 58.90 56.53 92.85
∗ with ResNet101 backbone
∗∗ with Xception backbone

As a reference, we implemented an encoder according to the plain convolutional U-
Net architecture [82] with depths of 19 and 35 layers (i.e., the decoder is untouched).
The two resulting networks were trained from scratch according to the procedure
described in [82]. Table 4.4 (top) shows that the 18 and 34 layers residual encoder
outperforms the plain convolutional encoder for similar depths of 19 and 35 layers by
1.4 % and 2.8 % respectively in terms of average F1-score. Moreover, the 18 layers



4.6 Experiments and Results 87

residual encoder outperforms the 35 layers U-Net plain convolutional counterpart on
the average. Similar result was found in [36], where an 18 layers residual network
outperformed a plain 34 layers CNN in an image classification task. Such results
suggest that a shallower residual encoder offers better generalization ability than a
deeper plain convolutional architecture (Fig. 4.8). Our experience with deep residual
networks also suggests they are easier to train than plain convolutional networks,
so we hypothesize that careful fine-tuning of the U-Net optimization algorithms
parameters may reduce at least in part such gap.

Fig. 4.8 Score maps over area B7 (top left) using proposed network with encoder depth of 18
(top right), 50 (bottom left), 152 (bottom).

We conclude that a deep residual encoder has better generalization ability than a
shallower residual counterpart (and to some extent of a deeper plain convolutional
encoder). We hypothesize that such advantage comes from the larger number of filters
a deep encoder can learn at training time that allows it to learn visual representations
of high semantic level, contributing to network performance over a wider range of
satellite images.



88 Satellite Image Segmentation on Heterogeneous Datasets

In addition to U-Net, we compare with Deeplab V3+ [12], which achieved state-
of-the-art performance over PASCAL VOC 2012 [19] and Cityscapes [14] datasets.
Deeplab V3+ has an encoder-decoder architecture which makes use of a backbone
network in the encoder for extracting feature maps. Deeplab V3+ with ResNet-101
and Xception backbones obtained the best performance in [18], therefore, we also
train Deeplab V3+ once with ResNet-101 and another time with Xception backbone
over the building dataset. As Table 4.4 (top) shows, Deeplab V3+ with ResNet-101
backbone achieves better performance compared with Xception backbone. These
results are in line with our previous findings and suggest that ResNet has better
generalization ability. Nevertheless, our proposed architecture with the same depth
(Prop-101) outperforms Deeplab V3+ with ResNet-101 backbone. We conjecture
such gain is first related to the larger number of skip connections employed in
our architecture which results in finer segmentation maps, and secondly to the
deconvolutional layers used in our architecture which can be optimized during
training comparing with the bilinear upsampling layers used in Deeplab V3+ decoder
which have fixed filters parameters.

Domain Adaptation

In the second experiment, we assess the domain adaptation techniques proposed in
Sec. 4.5. As a baseline, we refer to the architecture with the 152-layers encoder that
achieved top performance in the previous experiment.

Considering the scheme in Sec. 4.5.1, we update the batch normalization statistics
over each test image independently. In detail, we applied the procedure provided in
Algorithm 3 over the trained network of Prop-152 for 10 epochs (nre f ine = 10) and
momentum of 0.9 (α = 0.9). Table 4.4 (bottom) shows that the proposed strategy
improves the network performance by about 3% over the baseline in terms of average
F1-score and without the need for human input. Considering the scheme in Sec. 4.5,
we independently refine the trained network over 10% (AL-10%) or 30% (AL-30%)
of each test image.

Moreover, we also apply our proposed adaptation methods with the same parameters
to the 35-layers U-Net (U-Net-35) and Deeplab V3+ with ResNet-101 backbone.
As seen in Table 4.4 (bottom), U-Net-35 average F1-score improves by 1.6%, 2.3%
and 4.9%, whereas Deeplab V3 average F1-score increases by 2.4%, 3.2% and
6.7% using BN statistics refinement (Norm) and active learning (AL-10%, AL-



4.6 Experiments and Results 89

30%) respectively. These results imply that the proposed adaptation techniques
are not specific to our architecture and other deep learning schemes can benefit
from such adaptations. Nevertheless, since our proposed architecture exhibits better
performance, it outperforms the other schemes.

Fig. 4.9 shows results with and without batch normalization update on area B8.

Fig. 4.9 Score maps over area B8 (left) using proposed network with encoder depth of 152
without domain adaptation (middle) and with domain adaptation using batch normalization
update (Norm) on B8 area (right).

Additionally, we have implemented the active transfer learning network proposed in
[16] for hyperspectral images, and applied it to our 4-bands building dataset. Authors
in [16] addressed the related problem of domain adaptation over satellite images by
proposing a spectral-spatial feature learning network. The network includes three
sparse stacked autoencoders (SSAE): one operating on extended morphological
attribute profiles (spatial SSAE), another one operating on the spectrum (spectral
SSAE) and the last one is used to fuse the features learned using spatial and spectral
SSAEs. SSAEs are trained first unsupervisedly over training samples, then based
on a query criterion, a set of samples along with the labels are used to iteratively
train the last softmax layer and also to fine-tune the SSAEs. As Table 4.4 shows
the results of our implementation of [16] over building datasets, it can be seen that
our approach outperforms it by a great margin. However it should be noted that the
method in [16] is originally proposed for hypersepctral images which cover very
small geographical areas; conversely, our datasets include vast geographical areas
and contains only 4 spectral bands.

This experiment confirms that active learning can improve the performance of a
previously trained network in a satellite image segmentation context. However, about



90 Satellite Image Segmentation on Heterogeneous Datasets

Fig. 4.10 Score maps over area B7 (left) using proposed network with encoder depth of 152
without domain adaptation (middle) and with domain adaptation using network refinement
over 30% (FT-30) on annotated B7 area(right).

50% of such improvements are actually due to updating the batch normalization
statistics alone, which has the advantage of requiring no additional annotations.

Finally, we compare the complexity of training the proposed network (152-layers
encoder) from scratch with that of adapting a previously trained network. Training
network from scratch for 300 epochs required 37 hours in our experimental setup.
Adapting the trained network with the strategy in Sec. 4.5.2 required 5 minutes,
without accounting for the time required to annotate the area of test image used
for network refinement. Otherwise, updating the batch normalization statistics in
Sec. 4.5.1 required about 200 seconds (no extra annotations required). Concluding,
adapting a previously trained network is significantly less complex than retraining a
network from scratch, offering a remarkable edge in time-critical applications such
as emergency mapping.

4.6.3 INRIA Aerial Image Labeling Dataset

The second dataset we consider for our experiments is the INRIA Aerial Image
Labeling Dataset [63]. Such dataset covers dissimilar urban settlements, ranging
from urban areas (e.g., San Francisco’s financial district) to alpine towns with a
nominal resolution of 0.3 meters. As provided in Table. 4.5, the training set consists
of 180 tiles of 5000 × 5000 pixels from the cities of Austin, Chicago, Kitsap County,
Western Tyrol, and Vienna. The test set includes the same number of identically
sized tiles covering the cities of Bellingham, Bloomington, Innsbruck, San Francisco,
and Eastern Tyrol. Fig. 4.11 shows three tiles of Inria training images.



4.6 Experiments and Results 91

Fig. 4.11 Three tiles from Inria dataset (top) and their corresponding ground truth segmenta-
tion maps (bottom).

As in the previous experiment, the network is tested over cities different from those
used for training indicating covariate shift in the dataset. The training set is annotated
labeling each pixel as building or background; conversely, test images annotations
are retained by the benchmark provider. We subdivide the annotated images into
training and validation sets according to the benchmark organizer suggestions , i.e.
for each city, the first five tiles are reserved for validation and the rest are used for
training.

As a first experiment, we evaluate the performance of our proposed architecture
as a function of the encoder depth. Since for this dataset, no ground truth is provided
for the test set, the performance is first evaluated on the validation set using a larger
set of 5 different encoder depths (18, 34, 50, 101, 152).

Table 4.6 shows that as the encoder depth increases, the segmentation quality im-
proves. Such results are aligned with our previous findings in Table 4.4 with the
buildings dataset. While validation and training sets are drawn from the same cities,
we argue that the network shall be able to learn features relative to multiple cities,
thus the network shall still be able to generalize across different areas of the same
city.



92 Satellite Image Segmentation on Heterogeneous Datasets

Table 4.5 Image description on Inria dataset.

Image Size (meter) Resolution (meter) Spectral bands Set

Austin 1500 ×1500 0.3 3 bands train & val
Chicago 1500 ×1500 0.3 3 bands train & val

Kitsap County 1500 ×1500 0.3 3 bands train & val
Western Tyrol 1500 ×1500 0.3 3 bands train & val

Vienna 1500 ×1500 0.3 3 bands train & val
Bellingham 1500 ×1500 0.3 3 bands test

Bloomington 1500 ×1500 0.3 3 bands test
Innsbruck 1500 ×1500 0.3 3 bands test

San Francisco 1500 ×1500 0.3 3 bands test
Eastern Tyrol 1500 ×1500 0.3 3 bands test

Table 4.6 F1-Score and Accuracy of the proposed architecture over INRIA validation areas
as a function of the encoder depth.

Encoder F1-score [%] Overall
Depth Austin Chicago K. County W. Tyrol Vienna Avg. Acc. [%]

18 93.58 88.77 83.41 92.00 91.82 89.91 94.88
34 93.66 88.95 84.93 92.82 92.01 90.47 95.02
50 93.82 89.59 85.23 93.04 91.85 90.70 95.12

101 93.92 89.92 85.27 94.68 92.61 91.28 95.37
152 94.61 89.82 87.36 94.75 93.39 91.98 95.62

Hence, the results demonstrate that the encoder depth plays a key role in learning
more robust visual representations with respect to covariate shift.

In the second experiment, we investigate how the encoder depth and the proposed
batch normalization statistics refinement affect the network performance over test
images. For this experiment, we used the previously trained networks, however,
with a smaller set of encoder depths including 18, 50 and 152 layers encoders to
segment the 5 test images. Then, only for the 152-layers network, we applied the
adaptation strategy in Section 4.5 to segment the 5 test images (due to the lack of the
annotations required for refinement, we could not evaluate the domain adaptation
strategy in Section 4.5). The BN statistics refinement is carried out following the
procedure detailed in Algorithm 3 and for 10 epochs (nepochs = 10) over each image
with momentum of 0.9 (α = 0.9). Then, the resulting segmentation maps were
provided to the benchmark organizer that computed and returned us the relative



4.6 Experiments and Results 93

Fig. 4.12 Results over test area 6 in Bloomington city of INRIA dataset. The RGB input
image is on the top left while score maps (Decoder SoftMax outputs) for the proposed
network with 50, 101 and 152 layers provided in the top right, bottom left and bottom right
respectively. As the encoder depth increases, the quality of the score maps improves.

segmentation accuracy in terms of Intersection over Union (IoU) as shown in Table
4.7 together with the top-5 performing references reported in [41].

Consistently with our previous experiments over the buildings dataset, the results
show that a deeper encoder improves the network performance over most test images.
Namely, the 152-layers encoder network achieves a 2.26 % gain over the 18-layers
encoder network in terms of average IoU and a 0.14 % gain in overall accuracy.
This gain supports our finding that a deep residual encoder is able to learn visual
representations that are more robust to covariate shifts, results in better performance
over unseen images. Fig. 4.12 shows how the output score map over an area of
Bloomington city from test set improves as encoder depth increases.



94 Satellite Image Segmentation on Heterogeneous Datasets

Fig. 4.13 In the left column, RGB images from INRIA test set are provided. Each of
these images shows an area in the cities of Bloomington (top), Innsbruck (middle) and San
Francisco (bottom). The central column shows the segmentation maps predicted by the
proposed network (152 layers encoder). The right column shows the segmentation maps
predicted by the adapted network using normalization statistics refinement over each test
image.

Finally, BN statistics refinement considerably improves by 2.87% in terms of average
IoU over our baseline, outperforming the other references in 4 out of 6 cities and all
other references both in terms of mean IoU and overall accuracy. Fig. 4.13 illustrates
the improvement due to batch normalization statistics refinement over three images
of INRIA test set.



4.6 Experiments and Results 95

Table 4.7 Segmentation performance as IoU and Accuracy over INRIA test images (numbers
provided by the benchmark organizer).

Method San East Mean Overall
Bellingham Bloomington Innsbruck Francisco Tyrol IoU Acc.

AMLL [41] 67.14 % 65.43 % 72.27 % 75.72 % 74.67 % 72.55 % 95.91 %
NUS [41] 70.74 % 66.06 % 73.17 % 73.57 % 76.06 % 72.45 % 95.90 %

ONERA [41] 68.92 % 68.12 % 71.87 % 71.17 % 74.75 % 71.02 % 95.63 %
Raisa [41] 68.73 % 60.83 % 70.07 % 70.64 % 74.76 % 69.57 % 95.30 %

INRIA [63] 56.11 % 50.40 % 61.03 % 61.38 % 62.51 % 59.31 % 93.93 %

Proposed-18 69.70 % 66.70 % 72.16 % 65.85 % 73.91 % 68.50 % 95.40 %
Proposed-50 68.17 % 67.97 % 73.07 % 66.78 % 75.42 % 69.20 % 95.52 %

Proposed-152 69.13 % 70.30 % 72.51 % 69.64 % 75.31 % 70.76 % 95.54 %
Prop-152 (Norm) 69.47 % 75.17 % 75.90 % 72.76 % 76.89 % 73.63 % 96.10 %

4.6.4 Vaihingen ISPRS 2D Semantic Labeling Dataset

The third and last dataset we consider for our experiments is the ISPRS 2D Semantic
Labeling Dataset [15], which includes 33 areas extracted from the city of Vaihingen,
Germany as provided in Fig. 4.14. Each area consists of a true orthophoto (TOP)
image (near-infrared, red and green bands) and relative Digital Surface Model
(DSM); the ground sampling distance is 9 cm. A total of 16 areas out of 33 are meant
for training and validation and are annotated with ground truth. The remaining 17
areas are meant for testing and so the related ground truth is not made available by
the benchmark organizer.

While in the two previous datasets training and test images are captured from different
satellites across multiple cities, with this dataset all images account for the same city
as captured by the same satellite. Therefore, the covariate shift between training and
test sets is small compared with the other datasets. However, while two previous
datasets address a binary building-background segmentation problem, this dataset
classifies each pixel into six classes: impervious surfaces, building, low vegetation,
tree, car, and clutter (background). Thus, whereas this dataset is less suitable to stress
a network robustness to covariate shift, the presence of similar classes such as low
vegetation and trees and the difficulty in distinguishing small objects such as cars
from background clutter makes it a challenging test for our architecture. Moreover,
this dataset includes DSM which our network is not designed to handle.

The training and validation samples are generated subdividing the 16 annotated areas
into validation and training subsets. Following the approach of [50] and [99], we



96 Satellite Image Segmentation on Heterogeneous Datasets

Fig. 4.14 Vaihingen city subdivided into 33 tiles.

reserve areas (11, 15, 28, 30, 34) for validation, whereas the rest is used for training.
Most of the previous studies carried out on this dataset process the DSM separately
and then the results are fused with those of TOP files in reason of the different nature
of DSM data. However, since our goal is not to devise a scheme specialized for
DSM images, we consider the DSM data as an additional color band for a total of
four input bands. As for the other datasets, all networks are retrained from scratch
following the same procedure.

As the first experiment, we study the effect of the encoder depth on the network
performance over the validation areas as the ground truth of the test areas is not
available to us. Table 4.8 shows that the segmentation quality improves with the
encoder depth, coherently with our previous results (the clutter class was excluded
from the table following the example of the dataset provider as it is of limited



4.6 Experiments and Results 97

Table 4.8 F1-Score and accuracy of the proposed architecture over Vaihingen validation
images as a function of the encoder depth.

F1-score [%] Overall
Enc. depth Imp. Sur. Building Low Veg. Tree Car Avg. Acc.[%]

18 85.96 91.15 72.63 83.99 68.01 80.34 83.83
34 86.01 91.80 73.27 84.30 67.98 80.67 84.15
50 86.70 92.30 74.76 84.86 71.36 81.99 84.99

101 87.24 93.65 74.31 84.71 82.82 84.57 85.56
152 89.17 93.78 77.08 85.54 83.84 85.88 86.77

Fig. 4.15 Results over a validation area in Vaihingen city . The RGB input image is on the
left while score maps (Decoder SoftMax outputs) for the proposed network with 50, 101 and
152 follows.

interest). We observe that besides the low vegetation that can be possibly mistaken
with trees, cars represent the most difficult objects to recognize, we hypothesize due
to the small scale of vehicles.

Fig. 4.15 and 4.16 shows an example from validation set for different encoder
depth.

As a second experiment, we use the 152-layers encoder network to segment the
17 test areas. The segmentation maps were provided to the benchmark organizer
who computed the performance against the retained ground truth. Table 4.9 contains
the confusion matrix (top half) and per-class precision, recall and F1-Score averaged
over the 11 test areas (bottom half). The matrix supports our hypothesis that low
vegetation can be easily mistaken with trees and shows that cars are often mistaken
by impervious surfaces, which are characterized by similar small scale. Yet, our



98 Satellite Image Segmentation on Heterogeneous Datasets

Table 4.9 Confusion matrix (top half) and segmentation performance (bottom half) for our
proposed architecture with 152-layers encoder over the Vaihingen test images (numbers
provided by the benchmark organizer).

[%]
Imp. Sur. Building Low Veg. Tree Car Clutter

Imp. Sur 90.6 3.6 4.6 0.8 0.3 0.1
Building 2.5 95.6 1.5 0.3 0 0.1
Low Veg. 5.7 1.7 81.2 11.3 0 0.1

Tree 1.1 0.3 9.4 89.2 0 0.0
Car 11.8 7.4 0.8 0.4 79.2 0.4

Clutter 24.7 30.0 4.6 4.0 0.8 36.0

Precision 91.1 93.6 81.8 88.1 87.2 77.2
Recall 90.6 95.6 81.2 89.2 79.2 36.0

F1-score 90.8 94.6 81.5 88.7 83.0 49.1

architecture is capable of correctly identifying buildings with an F1-score close to
95%.

Table 4.10 Segmentation accuracy over the 17 Vaihingen dataset test images (numbers
provided by the benchmark organizer).

F1-Score [%]
Imp. Sur. Building Low Veg. Tree Car Overall Acc.[%]

Pa. et al. [74] 89.5 93.2 82.3 88.2 63.3 88.0
Ka. et al. [50] 92.1 95.3 83.9 91.0 83.6 89.2
Au. et al. [3] 91.0 94.5 84.4 89.9 77.8 89.8
GSN [101] 91.8 95.0 83.7 89.7 81.9 90.1
DLR-9 [64] 92.4 95.2 83.9 89.9 81.2 90.3

Proposed-152 90.8 94.6 81.5 88.7 83.0 89.0

Table 4.10 compares our proposed architecture with the top-5 best performing
references made available on the benchmark organizer website. The DLR-9 [64]
scheme achieves top performance via a network operating on three different scales.
Moreover, two distinct networks are employed, one for detecting class boundaries and
the other one to predict score maps. Then, the boundaries and segmentation results
are fused to generate the final segment map. Audeber et al. [3] proposes a similar
strategy, deploying a multi-scale and multi-modal architecture to address the pixel-



4.6 Experiments and Results 99

Fig. 4.16 Results over a validation area in Vaihingen city . The RGB input image is on the
left while segmentation results for the proposed network with 50, 101 and 152 follows. Red
colors indicates false predictions while the rest are true predictions.

based classification. Kampffmeyer et al. [50] also devised multi-modal strategy
using patch-based and fully convolutional networks and also median frequency
balancing is implemented on loss function to overcome the issue of unbalanced
classes in the dataset. By comparison, our architecture is considerably less complex
since it relies on a single scale network and is not designed to deal with DSM data.
Despite our architecture being simpler and meant to improve performance against
covariate shift, still, it performs almost as well as specialized and more complex ones.
For this dataset, we do not report any result concerning the adaptation strategies in
Sec. 4.5 since train and test samples are captured from the same city by the same
satellite, thus covariate shift is minimal.



Chapter 5

Onboard Cloud Screening for
Satellite Images

A cloud screening unit on a satellite platform for Earth observation can play an
important role in optimizing communication resources by selecting images with
interesting content while skipping those that are highly contaminated by clouds. In
this chapter, we address the cloud screening problem by investigating an encoder-
decoder CNN similar to architecture proposed in the previous chapter in Sec. 4.2.
Nevertheless, as we have seen, CNNs usually employ millions of parameters to
provide high accuracy; on the other hand, the satellite platform imposes hardware
constraints on the processing unit. Hence, to allow an onboard implementation, in
this chapter we investigate experimentally several solutions to reduce the resource
consumption by the CNN while preserving its classification accuracy. We experi-
mentally explore approaches such as halving the computation precision, using fewer
spectral bands, reducing the input size, decreasing the number of network filters and
also making use of shallower networks, with the constraint that the resulting CNN
must have sufficiently small memory footprint to fit the memory of a low-power
accelerator for embedded systems. The trade-off between the network performance
and resource consumption has been studied over the publicly available SPARCS
dataset [44], [98]. Finally, we show that the proposed network can be implemented
on the satellite board while performing with reasonably high accuracy compared
with the state-of-the-art.



5.1 Related Work 101

5.1 Related Work

A very well-known cloud detection algorithm is F1-mask [116] which is employed
on Landsat imagery and employs top-of-atmosphere reflectance and brightness tem-
perature for all Landsat bands, detecting cloudy pixels through a series of spectral
tests. Similarly, authors in [34] report that the EO-1 spacecraft employs calcula-
tion of top-of-atmosphere reflectance followed by a few threshold tests in order to
perform onboard cloud screening. While this is the first demonstration of cloud
screening, screening a 1024x256 image requires about 30 minutes, which is far
too much for real-time processing. In addition, as many traditional remote sensing
approaches make use of handcrafted features such as pixel shape index [111] or
morphological functions [5, 4, 42, 43], such features are also found to be an effective
tool to detect clouds as described by authors in [21] over images acquired by SPOT
Earth observation satellites. More recently, cloud detection has been addressed by
employing machine learning techniques including Bayesian statistical techniques
[68, 96], decision-tree classifier [88], support vector machine [83] and also random
forest [100]. Finally, authors in [71] study a combination of machine learning ap-
proaches such as linear, quadratic and nonparametric discriminant analysis, principal
component and independent component discriminant analysis to handle the cloud
detection over MODIS images.

The recent decade has witnessed rapid development in the area of deep learning
leading to an outstanding performance in many fields including computer vision.
Well-known convolutional neural networks (CNNs) have advanced the state-of-
the-art in many computer vision tasks such as image classification and semantic
segmentation [54, 95, 36, 12, 37, 27]. Not an exception to such trend, remote sensing
has been also enjoying the benefits of deep learning algorithms in achieving state-of-
the-art performance in many tasks such as land-use classification and segmentation
[103, 2, 76, 114, 26, 25]. CNNs usually consist of thousands of filters with millions
of learnable parameters which are trained to detect semantic representations useful
for a particular task and over a large amount of annotated images. Regarding
cloud detection, recent studies have been carried out to make use of CNNs also
in performing such detection task [87, 56, 102, 113]. For instance, in [87], to
perform cloud detection, satellite images first undergo a simple linear iterative
clustering process in which homogeneous pixels are clustered into superpixels, then
a four layers CNN employed to extract features and finally, two fully connected



102 Onboard Cloud Screening for Satellite Images

layers predict the superpixels class. In [56], authors show that a similar CNN
architecture with 6 convolutional layers operating on 32×32 patches when combined
with superpixel clustering can perform cloud detection with reasonably high accuracy
on SPOT 6 images. A very well-known CNN architecture which is widely used
in many segmentation tasks is U-net [82] which is originally proposed to address
biomedical image segmentation. U-net has a simple yet effective architecture which
consists of an encoder and a decoder network which are connected together with skip
connections. The use of skip connections contributes to finer segmentation results
without the need of post-processing step as the spatial information of early layers in
the encoder is used in the decoder. Authors in [69] address the cloud detection over
Landsat 8 images proposing an architecture similar to U-net. To train such network,
first a snow/ice removal framework which is based on gradient-based identification
is applied over Quality Assessment (QA) band of Landsat images, then this layer is
used as a groundtruth in the course of training which results in high accuracy cloud
detection.

A lightweight convolutional encoder-decoder network is proposed in [113] to
address cloud screening, whose input features are not the pixel values, but their
wavelet coefficients. Authors construct experiments over SPARCS dataset using
4 out of 11 bands and the proposed architecture outperforms common machine
learning techniques such as Adaboost, random forest and SVM by a considerable
margin. The same architecture is used in [22] for high-resolution videos.

Cloud screening differs from cloud detection in that the outcome of the detection
process is not used for scientific applications, but just to decide whether an image
or part thereof has to be discarded. However, satellite board imposes hardware
constraints on the cloud screening unit in terms of memory and power consumption.
Additionally, in order to be useful, a cloud screening algorithm should be able to
process an image in a near real-time manner with high precision.

In this study, we consider the cloud screening problem as a binary pixel-based
segmentation problem where the image pixels are divided into cloud and non-cloud
classes. We focus on multispectral images as such images do not contain finely-
grained spectral information about the wavelengths at which clouds can be detected.
Conversely, in hyperspectral images, one can pick a few wavelengths and efficiently
detect the presence of clouds using very simple methods, see e.g. [96].



5.1 Related Work 103

To tackle such problem, we also employ an encoder-decoder CNN inspired
by U-net in which the encoder extracts visual representations (i.e. feature maps)
over the input image, then the decoder takes as input such representations and
generates segmentation maps. However, unlike previous work and original U-net
architecture, we take into account the hardware limitations imposed by satellite
platform, by designing and testing several variants of this encoder-decoder network
having different representation power, classification accuracy, memory footprint,
and complexity. Since most state-of-the-art CNNs include millions of parameters,
such limitations introduce unique challenges which require to be addressed carefully.
In particular, we study the trade-off between the resource consumption and the
network performance in terms of classification accuracy by investigating several
approaches such as limiting the number of network filters, decreasing the network
depth, reducing the input size both in spatial and spectral domains and also operating
on half-precision floating points. We provide our experimental results over the
SPARCS (Spatial Procedures for Automated Removal of Cloud and Shadow) publicly
available dataset [44], [98], and we show that the proposed network can perform
close to the state-of-the-art CNNs, while consuming fewer resources. In terms of
resources, we consider that a low-power accelerator for embedded systems such as
the Intel Myriad family typically provides 500 MB of memory to accommodate the
neural network, temporary data, and input data; so we target the design of neural
networks whose memory footprint is around this value or lower.

In the following, first, we detail the architecture of the proposed network which
we use as a baseline in our experiments. Then, the procedure used to generate training
samples is described in detail. Next, the cost function used to optimize the network
parameters and the related training process are defined. then the experimental results
over SPARCS dataset are provided.



104 Onboard Cloud Screening for Satellite Images

5.1.1 Network Architecture

The proposed network as depicted in Fig. 5.1 includes encoder and decoder networks.
The encoder utilizes a sequence of convolutional layers to extract feature maps which
can be seen as semantic representations of the input image. Then, the decoder takes
as input such feature maps and through deconvolutional layers, it generates the
segmentation map which labels the pixels into cloud and non-cloud classes. In the
following, we describe separately the architecture of encoder and decoder networks
in detail.

5.1.2 Encoder

The encoder network includes five convolutional layers illustrated as gray blocks
in Fig. 5.1. Each convolutional layer is followed by a batch normalization layer
and employs rectified linear unit (ReLU) as activation function, except for the
last convolutional layer before the output which employs sigmoid activations and
performs the final classification as explained in the following section. Note that
in Fig. 5.1, for simplicity, batch normalization layers and activation functions are
omitted.

Each convolutional layer in the encoder extracts feature maps from the input
image using a number of filters. In Fig. 5.1, the number of input and output feature
maps (i.e. channels), the filter size, stride and padding size are provided for each
layer accordingly. An important aspect of CNNs that should be addressed in a
segmentation task is the field of view of the network. Each generated feature map
in the network has a specific field of view which is defined as the number of input
pixels which are used to compute a pixel in that feature map. Therefore, the field
of view of a specific feature map defines the window size on the input image over
which each feature is computed. The field of view in the networks can expand by
proceeding to the deeper layers or using large filter size or even using larger stride
size. In our proposed network, all encoder layers, except the first layer, have 3×3
convolutional filters. Nevertheless, in the first encoder layer, the filter size is chosen
to be 7×7 to increase the field of view in the first layer. Moreover, to better handle
the memory consumption and also in order to further expand the field of view of
encoder layers, all convolutions have a stride of two. Therefore, each layer outputs
feature maps whose resolution is halved with respect to the feature maps taken as



5.1 Related Work 105

Conv 7 x 7 
Channels = 4 -> 16 

Stride = 2 
Padding = 3 

Conv 3 x 3 
Channels = 16 -> 32 

Stride = 2 
Padding = 1 

Conv 3 x 3 
Channels = 32 -> 64 

Stride = 2 
Padding = 1 

Conv 3 x 3 
Channels = 64 -> 128 

Stride = 2 
Padding = 1 

Conv 3 x 3 
Channels =128-> 256 

Stride = 2 
Padding = 1 

Deconv 4 x 4 
Channels =256-> 128 

Stride = 2 
Padding = 1 

Deconv 4 x 4 
Channels =256-> 64 

Stride = 2 
Padding = 1 

Deconv 4 x 4 
Channels =128 -> 32 

Stride = 2 
Padding = 1 

Deconv 4 x 4 
Channels = 64 -> 16 

Stride = 2 
Padding = 1 

Deconv 4 x 4 
Channels = 32 -> 8 

Stride = 2 
Padding = 1 

Conv 1 x 1 
Channels = 8 -> 2 

Stride = 1 
Padding = 0 

C 

C 

C 

C 

INPUT 

OUTPUT 

Fig. 5.1 Network architecture: the encoder (bottom) and the decoder (top) are illustrated in
dashed boxes. Number of input and output channels (i.e. feature maps) as well as the size of
filter, stride and padding are provided for each layer.



106 Onboard Cloud Screening for Satellite Images

input. On the other hand, as we proceed to the deeper layers in the encoder, the
number of output feature maps is increased by a factor of two starting with 16 feature
maps in the first layer and ending with 256 feature maps at the last encoder layer.

To exemplify, let us consider the input image with the size of 256×256 with 4
spectral channels, the first encoder layer takes as input such 256 x 256 image and
outputs 16 feature maps with the size of 128×128. Then, the second layer takes as
input 16 feature maps with the size of 128×128 and outputs 32 feature maps with
the size of 64×64. Therefore, by proceeding into deeper layers in the encoder, the
generated feature maps resolution decreases as their number increases. At the end,
the last encoder layer output 256 feature maps with the resolution of 8×8 pixels.

5.1.3 Decoder

The decoder network includes five layers paired to the five encoder layers as shown
in Figure 5.1 by blue blocks. Each decoder layer consists of one deconvolutional
layer followed by batch normalization layer and ReLU activation function. Deconvo-
lutional layer (backward convolution) was originally proposed to address the loss
of mid-level cues caused by pooling operators used in convolutional networks [62].
In our proposed decoder, we also make use of deconvolutional layers to upsample
the feature maps generated by the encoder, in order to be able to recover the spatial
resolution of the input image. A deconvolutional layer operates in two stages: first,
the pixels over the input image (or input feature map) are interleaved with zeros,
thus the input is upsampled and a sparse output is generated. Then, by applying
a convolution filter to such sparse image, a dense output is finally produced. As a
result, a deconvolutional layer can be seen as an upsampling layer which consists
of learnable filters that attempt to reverse the sub-sampling operation performed by
convolutional layers in the encoder.

Skip connections are also employed between the encoder and decoder layers to
generate more precise and finer predictions as the spatial information of early layers
in the encoder is used also in the decoder. Therefore, the output feature maps by
each encoder layer are concatenated with the feature maps which are output by the
corresponding layer in the decoder. In addition, in our design, we chose the number
of filters in each decoder layer so that the number of feature maps coming from skip
connections matches the number of feature maps generated by previous decoder



5.1 Related Work 107

layer. We experimentally verified that such condition is necessary to prevent one
group of feature maps from dominating the other when they are concatenated and
forwarded to the next decoder layer.

For the sake of clarity, we exemplify the operations of the decoder network using
the same example as provided in the previous section for the encoder. Thus, let
us consider the input image with the size of 256×256, the 1-st decoder layer takes
as input the 256 feature maps sized 8×8 generated by the 5-th encoder layer. The
feature maps are then scaled up by a factor of two by the 128 deconvolutional filters,
reaching a 16×16 resolution. Such 128 feature maps are then concatenated with the
identically sized 128 feature maps generated by the 4-th encoder layer. The resulting
256 concatenated 16×16 feature maps are provided as input to the 2-nd decoder
layer, and so forth. The 5-th decoder layer finally outputs 8 feature maps with the
size of 256×256 matching the input size. Next, the decoder output is processed by a
convolutional layer with 1×1 filters generating 2 feature maps with size 256×256
pixels: the i-th pixel in the k-th feature map oi,k represents the relative confidence
that such pixel in the input image belongs to the k-th class, where in our case of
binary segmentation k = 2. At the end, a sigmoid activation is applied over resulting
feature maps squeezing the numbers in the interval (0,1): yi,k = 1/(1+ eoi, j).

In the end, to compare our proposed network with the original U-net, we would
like to highlight some of the differences which result in more efficient implementa-
tion. In our architecture, we don’t utilize the pair of stride one convolutional layers
in each encoder and decoder layer as they are used in the original U-net architec-
ture which significantly reduces the number of network parameters (see Table 5.1).
Moreover, since in our design, each encoder layer includes a convolutional layer
with the stride of two, the max pooling layers which are used in the original U-net
architecture has been omitted. Another difference is the use of larger convolutional
filters in the first encoder layer with the size of 7 x 7 instead of 3 x 3 in original
U-net. Such design enlarges the field of view of the network at this layer as well
as proceeding layers. Additionally, unlike the U-net architecture, the output feature
maps are not cropped in our architecture, since the spatial domain of concatenated
feature maps is identical. Finally, the number of convolutional filters and hence the
output feature maps with respect to original U-net has been decreased by a factor of
four which considerably reduces the memory usage.



108 Onboard Cloud Screening for Satellite Images

5.2 Generating Training and Test Samples

Similar to what we have seen in Sec. 4.3, given a dataset of annotated satellite
images, the dataset is first subdivided into training and test sets as follows. To recall,
the training set refers to images used for optimizing the network parameters. The
test set refers to images used to validate the training procedure by measuring the
trained network performance over such images.

The remote sensing datasets are usually provided in the form of very large
images where each image side contains thousands of pixels. However, due to
memory constraint, to be able to train the network, we first subdivide the image
into smaller tiles. Therefore, as shown in Fig. 2, first, each image in the training
set is subdivided into tiles of size 364×364. Notice that we consider the network
input size to be 256×256, however, we extract larger tiles to be able to apply a set of
augmentation transformations in the course of training as follows. From each tile,
with 50% probability, a 256×256 patch is cropped at a random position. Otherwise,
a 256×256 patch is cropped from the center of the tile which has been rotated using a
bilinear transformation with a random angle drawn from a uniform distribution in the
interval [0, 2π]. Next, horizontal and vertical flips each with the probability of 50%
are applied independently over the extracted patch. Such augmentation techniques
are necessary to prevent the network from being overfitted on the training set.

Concerning test images, since no augmentation is planned during the evaluation,
we extract tiles of size 256×256 with partially overlapping samples from each test
image. Averaging the network outputs over overlapped areas and on the neighboring
patches helps to avoid artifacts.

Fig. 5.2 Patch extraction and data augmentation during training similar to procedure detailed
in Sec. 4.3.



5.3 Cost Function and Optimization 109

5.3 Cost Function and Optimization

After the training and test samples are generated, the network is trained end-to-end
in a fully supervised manner minimizing the binary cross-entropy loss function. To
be precise, letting ti,k be the one-hot target vector corresponding to class k, i.e. only
the element corresponding to the correct class is equal to one, whereas all the other
elements are equal to zero, then the binary cross-entropy loss function is computed
as follows:

L(θ ,y, t) =−
H×W

∑
i=1

2

∑
k=1

(ti,k log (yi,k))− ((1− ti,k) log (1− yi,k)). (5.1)

where H and W are the input image width and height respectively and θ represents
the network parameters. In addition, in order to prevent the network from overfitting
on the training samples the final cost function we actually optimize at training time
is:

J(θ ,y, t) = ηL(θ ,y, t)+λR(θ), (5.2)

where R(θ) is a regularization term defined as the squared L2 norm of all the weights
in the network, and η and λ are the learning rate and regularization factor.

We train the network via stochastic gradient descent with a momentum of 0.9
and with the mini-batch size of 8. Concerning the learning rate adaptation strategy,
we chose a base learning rate of η = 0.05 that is divided by a factor of 10 every
100 epochs and we trained the network for a total of 300 epochs. Moreover, L2
regularization with λ = 0.001 is applied during training.



110 Onboard Cloud Screening for Satellite Images

5.4 Results

In this section, first we describe the dataset used in this study, then we define the
evaluation metrics used to measure the performance; finally, the experiential results
are provided.

Dataset

The dataset used in this study has originally been created by Hughes et al. [44] and
is obtained manually from Landsat 8 Operational Land Imager (OLI) scenes. Its
purpose was to validate cloud and cloud shadow masking derived from the Spatial
Procedures for Automated Removal of Cloud and Shadow (SPARCS) algorithm.
The dataset includes 10 spectral bands, however in most of our experiments we use
only 4 bands corresponding to red, green, blue and infrared. The annotations are
given for seven classes including shadow, shadow over water, water, snow, land,
cloud, and flooded areas. In our experiments, we convert such annotations to the
binary case of clouds and non-clouds pixels. 80 images with the size of 1000 by
1000 pixels are provided which we use 80% for training and the remaining 20% for
testing. The training and test sets are chosen so that they cover different scenes over
different geographical locations. Training set includes 64 images from which 1024
patches (16 patches over each image) of size 364×364 have been extracted, and test
set includes 16 images from which 256 patches (16 patches over each image) of size
256×256 have been extracted.

Fig. 5.3 Two images from SPARCS dataset with the corresponding masks.



5.4 Results 111

5.4.1 Evaluation Metrics

In our experiments, we measure the network performance by measuring the following
metrics.

• F1-score is defined as the harmonic mean of precision and recall: F1 =

2 · (precision · recall)/(precision+ recall), where Precision is defined as the
ratio of correctly predicted pixels to all predicted pixels regarding a segmen-
tation class: Precision = t p/(t p+ f p), and Recall is defined as the ratio of
correctly predicted pixels to all pixels that belongs to a segmentation class:
Recall = t p/(t p+ f n).Moreover, t p , f n and f p are true positive, false nega-
tive and false positive pixels respectively.

• Overall accuracy is the fraction of correctly labeled pixels for all classes,
Acc = ∑

nc
i=1 t pi/np where nc and np are the number of classes and the number

of pixels respectively and t pi denotes true positives for class i.

• mIOU is the ratio of correctly predicted area to the union of predicted pixels
and the ground truth IOU = t p

t p+ f p+ f n which is averaged over all classes.

• Inference memory is the amount of GPU memory which is occupied by the
network during evaluation. The memory consumption is measured based
on the maximum allocated GPU memory during inference using a Pytorch
implementation of the proposed methodology.

• Computation time considers data loading time, the time interval in which the
network processes the extracted patches over a 1000×1000 test image, the
time needed to stitch patches to form segmentation maps and also the time
required to compute the evaluation metrics.



112 Onboard Cloud Screening for Satellite Images

Fig. 5.4 The results of the proposed network (1-st row in Table 5.1) over 6 test images of
SPARCS dataset. Green and white pixels represent true positive and true negative while blue
and red pixels represent false negative and false positive outputs respectively.

5.4.2 Experiments

In this section, we provide the experimental results obtained by the network archi-
tecture defined in Sec. 5.1.1. In order to be able to measure the trade-off between
the network resource consumption and its performance on the cloud screening task,
we set up several experiments. In these experiments, we use different settings by
considering a number of factors which can affect memory consumption as well as
the network performance. The factors which are considered include the computation
precision, the network encoder depth, the number of convolutional filters, the number
of input spectral bands and also the input size. In all experiments, the network is
trained from the samples generated over SPARCS dataset based on the procedure
defined in Sec. 5.2 and employing the training methodology detailed in Sec. 5.3.

The experimental setup used for all the experiments below consists of running
the methodology implemented in Pytorch framework [77] over NVIDIA GeForce
GTX 1080 GPU with Pascal architecture and 8 GB memory.

Input bands: In the first experiment, we investigate how the number of spectral
bands which are input to the network can affect both the network performance and its
memory usage. Therefore, the proposed network defined in Sec. 5.1.1 is trained once
over 4 bands of red (R), blue (B), green (G) and infrared (IR) bands, and another time
over each one of these bands separately and also once over all 10 bands provided by
SPARCS dataset. As is reported in Table 5.1, the best result in terms of F1-score,
mIOU and accuracy is obtained when the network is trained over 4 bands of red,
blue, green and infrared. Moreover, it can be seen that when the network trained over



5.4 Results 113

Table 5.1 The proposed network performance is provided (top) with different encoder
networks, encoder depths, computation precision, input spatial and spectral sizes. Moreover,
the performance of state-of-the-art CNN, namely DeepLab V3+, is provided as well (bottom)
with two different encoder.

Input Number Inference Overall
Encoder Input size of memory accuracy F1-score mIOU

type depth Precision bands [pixels] parameters [MB] [%] [%] [%]

Plain 5 full R,B,G,IR 256×256 1,269,018 15.52 95.24 90.36 83.53
Plain 5 full R 256×256 1,266,666 14.72 94.51 87.99 80.37
Plain 5 full B 256×256 1,266,666 14.72 94.36 88.27 80.55
Plain 5 full G 256×256 1,266,666 14.72 94.06 87.25 79.30
Plain 5 full IR 256×256 1,266,666 14.72 92.38 85.15 76.08
Plain 5 full All 256×256 1,273,722 17.11 95.15 90.22 83.49
Plain 5 full R,B,G,IR 128×128 1,269,018 10.20 95.46 90.06 83.55
Plain 5 full R,B,G,IR 64×64 1,269,018 9.20 95.27 89.16 82.39
Plain 5 half R,B,G,IR 256×256 1,269,018 8.05 85.06 75.45 55.49
Plain∗ 5 full R,B,G,IR 256×256 318,478 7.03 95.28 90.08 83.09
Plain+ 5 full R,B,G,IR 256×256 80,232 3.87 94.79 88.90 81.37
ResNet 18 full R,B,G,IR 256×256 16,550,722 132.56 96.24 92.59 86.85
ResNet 34 full R,B,G,IR 256×256 26,658,882 267.23 96.42 92.39 86.45
ResNet 50 full R,B,G,IR 256×256 103,629,954 889.29 96.23 91.77 85.62

U-net [82] 9 full R,B,G,IR 256×256 39,402,946 315.36 96.08 91.01 84.89
FMask [115] - full All 1000×1000 - - 86.81 70.11 62.01

Deeplab V3+ [12]

ResNet 101 full R,B,G,IR 256×256 59,342,562 503.7 94.87 89.47 82.07
Xception - full R,B,G,IR 256×256 54,700,722 481.69 89.85 83.58 73.51

∗ number of filters divided by two
+ number of filters divided by four

one spectral band, the more informative band is red in terms of overall accuracy and
blue in terms of F1-score. We should note that the difference between F1-score and
overall accuracy is that the overall accuracy takes into accounts also the true negative
pixels, however, F1-score does not consider true negatives. Thus, this explains the
variations between overall accuracy and F1-score also in the remaining experiments,
where one network may outperform another network only in one metric.

Considering the inference, the network with one input band is faster by a small
margin of 1 ms in the processing input image (inference time is shown in Table
5.2) and consume 2.4 MB less than the network with 10 input bands. The results
imply that the number of input spectral bands has a small effect on network resource
consumption since only the number of input channels of the first convolutional layer
in the encoder (see Figure 5.1) changes and the rest of the network remains the same.
This also shows that using more than 4 bands does not bring any improvement to the
problem of cloud screening.



114 Onboard Cloud Screening for Satellite Images

Table 5.2 The time interval which is required to: a) load the extracted patches (over
1000×1000 pixels test image) from hard drive into memory b) compute the network outputs
over the input patches (i.e. patches extracted from a test image) c) stitch the network outputs
(to produce 1000×1000 segmentation maps) d) compute the evaluation metrics, are provided.

Input Data Eval
Encoder Input size loading Inference Stitch metrics Total

type depth Precision bands [pixels] [ms] [ms] [ms] [ms] [ms]

Plain 5 full 4 256×256 37 168 110 415 730
Plain 5 full 1 256×256 8 167 110 415 700
Plain 5 full 10 256×256 7240 170 110 415 7935
Plain 5 full 4 128×128 45 146 110 415 716
Plain 5 full 4 64×64 80 1136 110 415 1741
Plain 5 half 4 256×256 18 158 110 415 701
Plain∗ 5 full 4 256×256 37 153 110 415 715
Plain+ 5 full 4 256×256 37 100 110 415 662
ResNet 18 full 4 256×256 37 407 110 415 969
ResNet 34 full 4 256×256 37 536 110 415 1098
ResNet 50 full 4 256×256 37 733 110 415 1295

U-net [82] 9 full 4 256×256 37 720 110 415 1282
FMask [115] - full 10 1000×1000 37 1470 - 415 1922

Deeplab V3+

ResNet 101 full 4 256×256 37 422 110 415 984
Xception - full 4 256×256 37 441 110 415 1003

∗ number of filters divided by two
+ number of filters divided by four

Input size: In this experiment, we study the connection between network perfor-
mance and the input size. Accordingly, we train the proposed network in Sec. 5.1.1
over samples which are generated based on the procedure described in Sec. 5.2, using
different sizes for extracting patches i.e. 256×256, 128×128 and 64×64. Since the
proposed network is fully convolutional, it can take as input an image with arbitrary
size as long as its size is a multiple of 32. In all experiments in this part, the four
spectral bands corresponding to red, green, blue and infrared are used. The 1-st, 7-th
and 8-th rows in Table 5.1 show the results for input size of 256×256, 128×128 and
64×64 respectively; it can be seen that in terms of cloud screening performance, the
network with input size of 128×128 has the best overall accuracy and mIOU while
the network with input size of 256×256 performs with the best F1-score. In terms of
memory consumption, decreasing the input size from 256×256 to 128×128 results
in releasing about 5.3 MB of the memory, and in terms of inference time (Table 5.2)
it processes the input data 22 ms faster. However, we note that further decreasing
the input size contributes only marginally to memory consumption, although it can
worsen the network performance and it leads to slower inference time due to the



5.4 Results 115

larger number of patches that should be extracted to cover the test image. Such
performance decline for smaller input size can be related to shrinking the network
field of view. As is mentioned in Sec. 5.1.1, the larger the network field of view
is, the more neighboring pixels are considered in predicting the score maps. To
conclude, smaller input size can decrease the network memory consumption, but this
comes at the expense of shrinking the network field of the view which may worsen
the overall performance.

Precision: In this experiment, we investigate how the network performance
can be influenced by the floating point precision employed for the representation
of network parameters and the corresponding computations, hence we experiment
with half precision computations. Pytorch framework by default uses full precision
floating-point which occupies 32 bits, thus by halving the precision of the floating
points, 16 bits will be occupied. As Table 5.1 shows, the network with half precision
(9-th row) occupies 8.05 MB of memory. Comparing to the network with full
precision (1-st row) which consumes 15.52 MB, half precision computations leads
to releasing about 50% of the memory during inference. Moreover, the network with
half precision process the input 10 ms faster. However, in terms of segmentation
performance, halving the precision results in a considerable drop of 14% in terms
of F1-score, 33% in mIOU and 10% in overall accuracy. To conclude, as it will be
explored in the next sections, comparing with other approaches, halving the precision
can be regarded as an expensive approach of managing memory in terms of network
segmentation performance.

Convolutional filters: In this part, we consider the number of convolutional
filters in the network which can have a significant impact on the network performance.
We measure the cloud screening performance and the memory consumption for the
network with the same architecture defined in Sec. 5.1.1 but with a number of
convolutional filters which is divided first by a factor of two (Plain∗) and then by a
factor of four (Plain+). As reported in Table 5.1, dividing the number of network
filters by a factor of two (10-th row) and by a factor of four (11-th row) results in 75%
and 90% reduction in the number of network parameters respectively. As a result,
the first (Plain∗) and second (Plain+) networks consume about 8.5 MB and 11.6 MB
less memory during inference compared with the original architecture (1-st row).
While the performance of the first network (Plain∗) drops by 0.28% in F1-score,
0.44 % in mIOU and remains approximately the same in terms of overall accuracy,
the performance of second network (Plain+) drops by larger margin of 1.4%6 in



116 Onboard Cloud Screening for Satellite Images

F1-score, 2.16 % in mIOU and 0.45% in overall accuracy. Such results imply that, to
some extent, reducing the number of convolutional filters within a specific network
can reduce the network memory consumption while preserving its performance, but
this must not be overdone.

Fig. 5.5 ResNet with 18 layers depicted in five blocks.

Encoder depth: Finally, we measure how a deeper encoder can improve network
performance. It is well known that deeper networks generalize better over large
datasets[95]. Moreover, it has been shown that among deeper networks, residual
networks (ResNets) have better generalization ability and can converge faster thanks
to the employment of skip connection [26, 36]. Hence in this experiment, we deepen
the encoder by using residual networks with 18, 34 and 50 layers in the encoding
stage of the proposed network. As a result, the convolution layers in the encoder
are replaced by residual blocks as shown in Figure 5.5 for ResNet-18, while the
decoder architecture remains the same. As can be seen from the last three rows in
Table 5.1, the residual encoder brings a considerable improvement in terms of both
F1-score and overall accuracy. Using ResNet with 18, 34 and 50 layers as encoder
leads to a increase of 2.23%, 2.03% and 1.41% in F1-score, 3.32 %, 2.92 % and 2.09
% in mIOU and 1%, 1.18% and 0.9% in overall accuracy respectively. However, the
number of network parameters grows by a factor of 13, 21 and 81 for ResNet 18, 34
and 50. In terms of inference time for the forward pass, as can be seen from Table
5.2, using ResNets as encoder leads to an increase by a margin of 239, 368 and 565
ms for depth of 18,34 and 50 layers respectively. Therefore, using deeper residual
networks can improve cloud detection performance significantly, but it comes at the
expense of an increased cost in terms of memory consumption and inference time.

Comparison with state-of-the-art: Finally, we compare the performance of the
proposed network with that of Deeplab V3+ [12] which achieved state-of-the-art
performance over PASCAL VOC 2012 [19] and Cityscapes [14] datasets. Deeplab
V3+ also makes use of encoder-decoder architecture to perform image segmentation.
Authors showed in [18] that Deeplab V3+ with ResNet-101 and Xception encoders



5.4 Results 117

obtained the best performance. Therefore, we also train Deeplab V3+ once with
ResNet-101 and another time with Xception encoder over SPARCS dataset. As can
be seen in the last two rows of Table 5.1, for the cloud screening task Deeplab V3+
with ResNet encoder outperforms its variant with Xception encoder by a consider-
able margin in overall accuracy and F1-score. In terms of memory consumption,
comparing Deeplab with our proposed network and both with ResNet as the encoder,
Deeplab has fewer parameters and occupies much less memory. This is due to the
Deeplab architecture which does not include deconvolutional filters in its decoder
and relies on upsampling operations which do not include parameters. Nevertheless,
as can be seen from the results, our proposed network with the plain encoder (Plain∗

in Table 5.1) outperforms Deeplab in both overall accuracy and F1-score while
consuming about 71 times less memory. We conjecture such decrease in Deeplab per-
formance is related to the use of deeper encoder which makes it prone to overfitting.
Analogously, we have noticed a similar decline in our proposed network performance
when the encoder becomes larger. For instance, a drop in F1-score and mIOU can
be seen in Table 5.1 by comparing the proposed network with ResNet 18 and 50
as the encoder. In addition to overfitting, we notice that the deconvolutional layers
which are used in our network instead of bilinear upsampling layers in Deeplab,
contributes to higher performance however increase the number of network param-
eters. Concerning the processing time, since the upsampling operation in Deeplab
decoder is carried out on CPU in Pytorch, Deeplab takes more time compared with
our proposed network. In addition to Deeplab V3+, we train the original U-net
architecture over SPARCS dataset. Due to the differences which are highlighted in
Sec.5.1.1, U-net consumes about 300 MB more memory during inference comparing
with our proposed network with the plain encoder (1st row), however, it contributes
to the performance by a margin of 0.65 and 1.36 in F1-score and mIOU respectively.
Nevertheless, considering the proposed network with ResNet18 encoder, it not only
outperforms original U-net in performance but also consumes less memory during
inference. In the end, F-mask [115] algorithm is applied over the SPARCS test
images using all available 10 bands. As Table 5.1 reports, CNN based approaches
surpass F1-mask by a great margin.



Chapter 6

Conclusions

In this thesis, first we addressed fine-grained object recognition over vehicle makes
and models, secondly, we addressed the segmentation of satellite images in a global-
scale and in the end, we studied CNN-based approach for cloud screening to be
implemented on satellite platform.

In the first problem, we addressed the VMMR problem via a multi-scale attention
windows CNN architecture. Our architecture enables locating most discriminative
parts of a vehicle at different scales by minimizing an end-to-end joint make-model
classification error. Additionally, the proposed network architecture can be trained
over two types of ground truth enabling simultaneous prediction on two vehicle
attributes thanks to the devised loss function and the classifier module with multiple
outputs. The module demonstrated state-of-art performance over two publicly
available car datasets. Future direction of this work can address broader range of
fine-grained as well as coarse grained classification tasks.

In the second work, we designed an encoder-decoder CNN for satellite image
segmentation deployable over images different from those used from training. Our
experiments revealed that residual encoders offer better generalization abilities
than a plain convolutional counterpart, and that generalization ability improves
with the encoder depth. We hypothesize that deep residual architectures with a
large number of filters spanning across a wider range of semantic levels allow the
encoder to learn more robust features to covariate shift. To further improve the
segmentation performance of the proposed network over a novel image, we proposed
two domain adaptation techniques. First method entails adopting a previously
trained network using smaller number of samples over the novel image and in an



6.1 Future Work 119

active learning framework which we experimentally show that such approach can
significantly improve the segmentation. Secondly, we devised a domain adaptation
methodology based on fine-tuning batch normalization statistics over the novel image
which empirically show considerable segmentation improvement without requiring
annotations over novel image. Finally, the proposed architecture outperformed
multiple references over two datasets characterized by large differences between
train and test images.

Finally, we addressed the cloud screening problem by considering the hardware
constraints imposed by the satellite platforms. We proposed an encoder-decoder
CNN to perform pixel-based classification on satellite images, in order to discard
images which are highly contaminated by clouds to preserve resources. To enable an
onboard implementation, we limit the resource consumption by CNN while preserv-
ing its performance by optimizing the network architecture. The results show that
the proposed network can outperform the state-of-the-art CNN over SPARCS dataset
while consuming much less resources during inference. The memory consumption
allows these networks to easily fit in the memory of low-power accelerators for em-
bedded applications. The sustainable throughput depends on the specific accelerator
and its integration with the CPU. Our results show that the time needed for the for-
ward pass of the neural network is small on a powerful GPU, whereas a low-power
accelerator would require more time. Moreover, a significant amount of time is
devoted to data transfers between CPU and GPU; in an onboard implementation,
these would be highly dependent on the specific architecture of the processing unit,
highlighting the need of a careful design.

6.1 Future Work

As we have shown the effectiveness of multi-scale attention windows on VMMR,
further research is required to extend the proposed methodology to other fine-grained
classification tasks. We believe that the proposed multi-scale attention mechanism
has the potential to capture discriminative features over other objects rather than
vehicles, hence it can be advantageous for many other classification applications.
Moreover, since in the proposed methodology the multi-scale constraint is imposed
on the attention windows by pretraining the convolutional layers over patches with
different scales, the training should be performed in two stages. Therefore, further



120 Conclusions

advancement of the proposed architecture can facilitate such pretraining stage if the
multi-scale constraint can be imposed during the overall architecture training.

Regarding the proposed methodology for satellite image segmentation on hetero-
geneous datasets, further studies can be undertaken to explore the use of proposed
domain adaptation methodologies in other transfer learning problems. In particular,
the developed BN statistics refinement can be investigated in other domain adapta-
tions scenarios. Due to the use of BN layers in almost all recent neural networks,
such domain adaptation technique can be advantageous to many other problems and
can be explored through future experimentation.

The proposed cloud screening CNN has shown to be applicable to low power
satellite platforms while performing with high accuracy thanks to its memory efficient
architecture. In the future, further experimental investigations should measure the
actual throughput and memory consumption of the network after its implementation
over low-memory accelerators.



References

[1] European Parliament (EP). Directive 2010/40/EU of the European Parlia-
ment and of the Council of 7 July 2010 on the framework for the deployment
of Intelligent Transport Systems in the field of road transport and for inter-
faces with other modes of transport. 2010.

[2] Hasan Arief et al. “Land cover segmentation of airborne LiDAR data using
stochastic atrous network”. In: Remote Sensing 10.6 (2018), p. 973.

[3] Nicolas Audebert, Bertrand Le Saux, and Sébastien Lefèvre. “Semantic
segmentation of earth observation data using multimodal and multi-scale
deep networks”. In: Asian Conference on Computer Vision. Springer. 2016,
pp. 180–196.

[4] Jón Atli Benediktsson, Jón Aevar Palmason, and Johannes R Sveinsson.
“Classification of hyperspectral data from urban areas based on extended
morphological profiles”. In: IEEE Transactions on Geoscience and Remote
Sensing 43.3 (2005), pp. 480–491.

[5] Jon Atli Benediktsson, Martino Pesaresi, and Kolbeinn Amason. “Classifica-
tion and feature extraction for remote sensing images from urban areas based
on morphological transformations”. In: IEEE Transactions on Geoscience
and Remote Sensing 41.9 (2003), pp. 1940–1949.

[6] Yoshua Bengio et al. “Greedy layer-wise training of deep networks”. In:
Advances in neural information processing systems. 2007, pp. 153–160.

[7] Mohsen Biglari, Ali Soleimani, and Hamid Hassanpour. “A Cascaded Part-
Based System for Fine-Grained Vehicle Classification”. In: IEEE Transac-
tions on Intelligent Transportation Systems 19.1 (2018), pp. 273–283.

[8] Léon Bottou. “Large-scale machine learning with stochastic gradient de-
scent”. In: Proceedings of COMPSTAT’2010. Springer, 2010, pp. 177–186.

[9] Lorenzo Bruzzone and Claudio Persello. “A novel approach to the selec-
tion of spatially invariant features for the classification of hyperspectral
images with improved generalization capability”. In: IEEE Transactions on
Geoscience and Remote Sensing 47.9 (2009), pp. 3180–3191.

[10] Florian Chabot et al. “Deep MANTA: A Coarse-to-fine Many-Task Network
for joint 2D and 3D vehicle analysis from monocular image”. In: Proc. IEEE
Conf. Comput. Vis. Pattern Recognit.(CVPR). 2017, pp. 2040–2049.



122 References

[11] Yuning Chai, Victor Lempitsky, and Andrew Zisserman. “Symbiotic segmen-
tation and part localization for fine-grained categorization”. In: Computer
Vision (ICCV), 2013 IEEE International Conference on. IEEE. 2013, pp. 321–
328.

[12] Liang-Chieh Chen et al. “Deeplab: Semantic image segmentation with deep
convolutional nets, atrous convolution, and fully connected crfs”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 40.4 (2018),
pp. 834–848.

[13] Ronan Collobert and Jason Weston. “A unified architecture for natural lan-
guage processing: Deep neural networks with multitask learning”. In: Pro-
ceedings of the 25th international conference on Machine learning. ACM.
2008, pp. 160–167.

[14] Marius Cordts et al. “The cityscapes dataset for semantic urban scene under-
standing”. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2016, pp. 3213–3223.

[15] Michael Cramer. “The DGPF-test on digital airborne camera evaluation–
overview and test design”. In: Photogrammetrie-Fernerkundung-Geoinformation
2010.2 (2010), pp. 73–82.

[16] Cheng Deng et al. “Active transfer learning network: a unified deep joint
spectral-spatial feature learning model for hyperspectral image classifica-
tion”. In: IEEE Transactions on Geoscience and Remote Sensing (2018).

[17] Ahmed Elshamli et al. “Domain adaptation using representation learning for
the classification of remote sensing images”. In: IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing 10.9 (2017),
pp. 4198–4209.

[18] “Encoder-decoder with atrous separable convolution for semantic image
segmentation”. In: European Conference on Computer Vision. 2018, pp. 833–
851.

[19] Mark Everingham et al. “The pascal visual object classes challenge: A
retrospective”. In: International journal of computer vision 111.1 (2015),
pp. 98–136.

[20] Clement Farabet et al. “Learning hierarchical features for scene labeling”.
In: IEEE Transactions on Pattern Analysis and Machine Intelligence 35.8
(2013), pp. 1915–1929.

[21] Adrian Fisher. “Cloud and cloud-shadow detection in SPOT5 HRG imagery
with automated morphological feature extraction”. In: Remote Sensing 6.1
(2014), pp. 776–800.

[22] A.M. Francis, P. Sidiropoulos, and E. Vazquez. “Real-Time Cloud Detection
in High-Resolution Videos: Challenges and Solutions”. In: Proc. of Onboard
Payload Data Compression Workshop. 2018.

[23] Yaroslav Ganin et al. “Domain-adversarial training of neural networks”. In:
The Journal of Machine Learning Research 17.1 (2016), pp. 2096–2030.



References 123

[24] Sina Ghassemi et al. “Fine-grained vehicle classificationusing deep residual
networks with multiscale attention windows”. In: Multimedia Signal Pro-
cessing (MMSP), 2017 IEEE 19th International Workshop on. IEEE. 2017,
pp. 1–6.

[25] Sina Ghassemi et al. “Learning and Adapting Robust Features for Satellite
Image Segmentation on Heterogeneous Datasets”. In: IEEE Transactions on
Geoscience and Remote Sensing, under review ().

[26] Sina Ghassemi et al. “Satellite image segmentation with deep residual archi-
tectures for time-critical applications”. In: 26th European Signal Processing
Conference. IEEE. 2018, pp. 2235–2239.

[27] Sina Ghassemi et al. “Vehicle joint make and model recognition with multi-
scale attention windows”. In: Signal Processing: Image Communication 72
(2019), pp. 69–79.

[28] Golnaz Ghiasi and Charless C Fowlkes. “Laplacian pyramid reconstruction
and refinement for semantic segmentation”. In: European Conference on
Computer Vision. Springer. 2016, pp. 519–534.

[29] Girshick. “Fast R-CNN”. In: IEEE International Conference on Computer
Vision. IEEE. 2015, pp. 1440–1448.

[30] Ross Girshick et al. “Rich feature hierarchies for accurate object detection
and semantic segmentation”. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2014, pp. 580–587.

[31] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of training
deep feedforward neural networks”. In: Proceedings of the thirteenth inter-
national conference on artificial intelligence and statistics. 2010, pp. 249–
256.

[32] Ian Goodfellow et al. “Generative adversarial nets”. In: Advances in Neural
Information Processing Systems. 2014, pp. 2672–2680.

[33] Philippe-Henri Gosselin et al. “Revisiting the fisher vector for fine-grained
classification”. In: Pattern recognition letters 49 (2014), pp. 92–98.

[34] M Griggin et al. “Cloud cover detection algorithm for EO-1 Hyperion im-
agery”. In: Geoscience and Remote Sensing Symposium, 2003. IGARSS’03.
Proceedings. 2003 IEEE International. Vol. 1. IEEE. 2003, pp. 86–89.

[35] Hongsheng He, Zhenzhou Shao, and Jindong Tan. “Recognition of car makes
and models from a single traffic-camera image”. In: IEEE Transactions on
Intelligent Transportation Systems 16.6 (2015), pp. 3182–3192.

[36] Kaiming He et al. “Deep residual learning for image recognition”. In: Pro-
ceedings of the IEEE conference on Computer Vision and Pattern Recogni-
tion. 2016, pp. 770–778.

[37] Kaiming He et al. “Mask r-cnn”. In: IEEE International Conference on
Computer Vision. IEEE. 2017, pp. 2980–2988.

[38] Geoffrey E Hinton et al. “Improving neural networks by preventing co-
adaptation of feature detectors”. In: arXiv preprint arXiv:1207.0580 (2012).



124 References

[39] Jun-Wei Hsieh, Li-Chih Chen, and Duan-Yu Chen. “Symmetrical surf and its
applications to vehicle detection and vehicle make and model recognition”.
In: IEEE Transactions on intelligent transportation systems 15.1 (2014),
pp. 6–20.

[40] Qichang Hu et al. “Deep CNNs With Spatially Weighted Pooling for Fine-
Grained Car Recognition”. In: IEEE Transactions on Intelligent Transporta-
tion Systems 18.11 (2017), pp. 3147–3156.

[41] Bohao Huang et al. “Large-scale semantic classification: outcome of the
first year of Inria aerial image labeling benchmark”. In: IEEE International
Geoscience and Remote Sensing Symposium–IGARSS 2018. 2018.

[42] Xin Huang and Liangpei Zhang. “A multidirectional and multiscale morpho-
logical index for automatic building extraction from multispectral GeoEye-1
imagery”. In: Photogrammetric Engineering & Remote Sensing 77.7 (2011),
pp. 721–732.

[43] Xin Huang and Liangpei Zhang. “Morphological building/shadow index
for building extraction from high-resolution imagery over urban areas”. In:
IEEE Journal of Selected Topics in Applied Earth Observations and Remote
Sensing 5.1 (2012), pp. 161–172.

[44] M Joseph Hughes and Daniel J Hayes. “Automated detection of cloud and
cloud shadow in single-date Landsat imagery using neural networks and
spatial post-processing”. In: Remote Sensing 6.6 (2014), pp. 4907–4926.

[45] Shilpa Inamdar et al. “Multidimensional probability density function match-
ing for preprocessing of multitemporal remote sensing images”. In: IEEE
Transactions on Geoscience and Remote Sensing 46.4 (2008), pp. 1243–
1252.

[46] Sergey Ioffe and Christian Szegedy. “Batch normalization: Accelerating deep
network training by reducing internal covariate shift”. In: arXiv preprint
arXiv:1502.03167 (2015).

[47] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. “Spatial trans-
former networks”. In: Advances in neural information processing systems.
2015, pp. 2017–2025.

[48] Xiuping Jia, Bor-Chen Kuo, and Melba M Crawford. “Feature mining for hy-
perspectral image classification”. In: Proceedings of the IEEE 101.3 (2013),
pp. 676–697.

[49] Goo Jun and Joydeep Ghosh. “An efficient active learning algorithm with
knowledge transfer for hyperspectral data analysis”. In: Geoscience and
Remote Sensing Symposium, 2008. IGARSS 2008. IEEE International. Vol. 1.
IEEE. 2008, pp. I–52.

[50] Michael Kampffmeyer, Arnt-Borre Salberg, and Robert Jenssen. “Semantic
segmentation of small objects and modeling of uncertainty in urban remote
sensing images using deep convolutional neural networks”. In: Proceed-
ings of the IEEE conference on Computer Vision and Pattern Recognition
workshops. 2016, pp. 1–9.



References 125

[51] Jonathan Krause et al. “3D Object Representations for Fine-Grained Catego-
rization”. In: 4th International IEEE Workshop on 3D Representation and
Recognition (3dRR-13). Sydney, Australia, 2013.

[52] Jonathan Krause et al. “3d object representations for fine-grained categoriza-
tion”. In: Computer Vision Workshops (ICCVW), 2013 IEEE International
Conference on. IEEE. 2013, pp. 554–561.

[53] Jonathan Krause et al. “Fine-grained recognition without part annotations”.
In: Computer Vision and Pattern Recognition (CVPR), 2015 IEEE Confer-
ence on. IEEE. 2015, pp. 5546–5555.

[54] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classi-
fication with deep convolutional neural networks”. In: Advances in neural
information processing systems. 2012, pp. 1097–1105.

[55] Anders Krogh and John A Hertz. “A simple weight decay can improve
generalization”. In: Advances in neural information processing systems.
1992, pp. 950–957.

[56] Matthieu Le Goff et al. “Deep learning for cloud detection”. In: (2017).
[57] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In:

nature 521.7553 (2015), p. 436.
[58] Yann LeCun et al. “Gradient-based learning applied to document recogni-

tion”. In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324.
[59] Liang Liao et al. “Exploiting effects of parts in fine-grained categorization of

vehicles”. In: Image Processing (ICIP), 2015 IEEE International Conference
on. IEEE. 2015, pp. 745–749.

[60] Tsung-Yu Lin, Aruni RoyChowdhury, and Subhransu Maji. “Bilinear cnn
models for fine-grained visual recognition”. In: Proceedings of the IEEE
International Conference on Computer Vision. 2015, pp. 1449–1457.

[61] David Fernández Llorca et al. “Vehicle model recognition using geometry
and appearance of car emblems from rear view images”. In: Intelligent
Transportation Systems (ITSC), 2014 IEEE 17th International Conference
on. IEEE. 2014, pp. 3094–3099.

[62] Jonathan Long, Evan Shelhamer, and Trevor Darrell. “Fully convolutional
networks for semantic segmentation”. In: Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition. 2015, pp. 3431–3440.

[63] Emmanuel Maggiori et al. “Can semantic labeling methods generalize to
any city? the inria aerial image labeling benchmark”. In: IEEE International
Symposium on Geoscience and Remote Sensing (IGARSS). 2017.

[64] Dimitrios Marmanis et al. “Classification with an edge: Improving seman-
tic image segmentation with boundary detection”. In: ISPRS Journal of
Photogrammetry and Remote Sensing 135 (2018), pp. 158–172.

[65] Giona Matasci, Devis Tuia, and Mikhail Kanevski. “SVM-based boosting of
active learning strategies for efficient domain adaptation”. In: IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing 5.5
(2012), pp. 1335–1343.



126 References

[66] Giona Matasci et al. “Semisupervised transfer component analysis for do-
main adaptation in remote sensing image classification”. In: IEEE Transac-
tions on Geoscience and Remote Sensing 53.7 (2015), pp. 3550–3564.

[67] Farid Melgani and Lorenzo Bruzzone. “Classification of hyperspectral re-
mote sensing images with support vector machines”. In: IEEE Transactions
on Geoscience and Remote Sensing 42.8 (2004), pp. 1778–1790.

[68] CJ Merchant et al. “Probabilistic physically based cloud screening of satellite
infrared imagery for operational sea surface temperature retrieval”. In: Quar-
terly Journal of the Royal Meteorological Society 131.611 (2005), pp. 2735–
2755.

[69] Sorour Mohajerani, Thomas A Krammer, and Parvaneh Saeedi. “A Cloud
Detection Algorithm for Remote Sensing Images Using Fully Convolutional
Neural Networks”. In: 2018 IEEE 20th International Workshop on Multime-
dia Signal Processing (MMSP). IEEE. 2018, pp. 1–5.

[70] Abdel-rahman Mohamed et al. “Deep belief networks using discriminative
features for phone recognition”. In: Acoustics, Speech and Signal Processing
(ICASSP), 2011 IEEE International Conference on. IEEE. 2011, pp. 5060–
5063.

[71] Loredana Murino et al. “Cloud detection of MODIS multispectral images”.
In: Journal of Atmospheric and Oceanic Technology 31.2 (2014), pp. 347–
365.

[72] Allan A Nielsen and Morton J Canty. “Kernel principal component and
maximum autocorrelation factor analyses for change detection”. In: Image
and Signal Processing for Remote Sensing XV. Vol. 7477. International
Society for Optics and Photonics. 2009, 74770T.

[73] Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. “Learning decon-
volution network for semantic segmentation”. In: Proceedings of the IEEE
International Conference on Computer Vision. 2015, pp. 1520–1528.

[74] Sakrapee Paisitkriangkrai et al. “Effective semantic pixel labelling with con-
volutional networks and conditional random fields”. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition Workshops.
2015, pp. 36–43.

[75] Sakrapee Paisitkriangkrai et al. “Semantic labeling of aerial and satellite
imagery”. In: IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing 9.7 (2016), pp. 2868–2881.

[76] Teerapong Panboonyuen et al. “Semantic segmentation on remotely sensed
images using an enhanced global convolutional network with channel atten-
tion and domain specific transfer learning”. In: Remote Sensing 11.1 (2019),
p. 83.

[77] Adam Paszke et al. “Automatic differentiation in pytorch”. In: (2017).



References 127

[78] Claudio Persello and Lorenzo Bruzzone. “Kernel-based domain-invariant
feature selection in hyperspectral images for transfer learning”. In: IEEE
Transactions on Geoscience and Remote Sensing 54.5 (2016), pp. 2615–
2626.

[79] Ning Qian. “On the momentum term in gradient descent learning algorithms”.
In: Neural networks 12.1 (1999), pp. 145–151.

[80] Suju Rajan, Joydeep Ghosh, and Melba M Crawford. “An active learning
approach to hyperspectral data classification”. In: IEEE Transactions on
Geoscience and Remote Sensing 46.4 (2008), pp. 1231–1242.

[81] Girshick Ren He and Sun. “Faster R-CNN: Towards Real-Time Object De-
tection with Region Proposal Networks”. In: Neural Information Processing
Systems 28. NIPS. 2015.

[82] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-net: Convolutional
networks for biomedical image segmentation”. In: International Conference
on Medical image computing and computer-assisted intervention. Springer.
2015, pp. 234–241.

[83] Riccardo Rossi et al. “Techniques based on support vector machines for cloud
detection on quickbird satellite imagery”. In: Geoscience and Remote Sensing
Symposium (IGARSS), 2011 IEEE International. IEEE. 2011, pp. 515–518.

[84] Sara Saravi and Eran A Edirisinghe. “Vehicle make and model recognition
in CCTV footage”. In: (2013).

[85] Ravi Kumar Satzoda and Mohan Manubhai Trivedi. “Multipart vehicle
detection using symmetry-derived analysis and active learning”. In: IEEE
Transactions on Intelligent Transportation Systems 17.4 (2016), pp. 926–
937.

[86] R Wl Saunders and K Ts Kriebel. “An improved method for detecting clear
sky and cloudy radiances from AVHRR data”. In: International Journal of
Remote Sensing 9.1 (1988), pp. 123–150.

[87] Mengyun Shi et al. “Cloud detection of remote sensing images by deep
learning”. In: Geoscience and Remote Sensing Symposium (IGARSS), 2016
IEEE International. IEEE. 2016, pp. 701–704.

[88] Smadar Shiffman. “Cloud detection from satellite imagery: A comparison of
expert-generated and automatically-generated decision trees”. In: (2004).

[89] Patrice Y Simard, Dave Steinkraus, and John C Platt. “Best practices for
convolutional neural networks applied to visual document analysis”. In: null.
IEEE. 2003, p. 958.

[90] Karen Simonyan and Andrew Zisserman. “Very deep convolutional net-
works for large-scale image recognition”. In: arXiv preprint arXiv:1409.1556
(2014).

[91] Jakub Sochor, Adam Herout, and Jiri Havel. “Boxcars: 3d boxes as cnn
input for improved fine-grained vehicle recognition”. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. 2016,
pp. 3006–3015.



128 References

[92] Nitish Srivastava et al. “Dropout: a simple way to prevent neural networks
from overfitting”. In: The Journal of Machine Learning Research 15.1 (2014),
pp. 1929–1958.

[93] Masashi Sugiyama, Neil D Lawrence, Anton Schwaighofer, et al. Dataset
shift in machine learning. The MIT Press, 2017.

[94] Richard Sutton. “Two problems with back propagation and other steepest
descent learning procedures for networks”. In: Proceedings of the Eighth
Annual Conference of the Cognitive Science Society, 1986. 1986, pp. 823–
832.

[95] Christian Szegedy et al. “Going deeper with convolutions”. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. 2015,
pp. 1–9.

[96] David R Thompson et al. “Rapid spectral cloud screening onboard aircraft
and spacecraft”. In: IEEE Transactions on Geoscience and Remote Sensing
52.11 (2014), pp. 6779–6792.

[97] Devis Tuia, Claudio Persello, and Lorenzo Bruzzone. “Domain adaptation for
the classification of remote sensing data: An overview of recent advances”.
In: IEEE Geoscience and Remote Sensing Magazine 4.2 (2016), pp. 41–57.

[98] “U.S. Geological Survey, L8 SPARCS Cloud Validation Masks. U.S. Geo-
logical Survey data release”. In: (2016).

[99] Michele Volpi and Devis Tuia. “Dense semantic labeling of subdecimeter res-
olution images with convolutional neural networks”. In: IEEE Transactions
on Geoscience and Remote Sensing 55.2 (2017), pp. 881–893.

[100] Kiri L Wagstaff et al. “Cloud Filtering and Novelty Detection using Onboard
Machine Learning for the EO-1 Spacecraft”. In: (2017).

[101] Hongzhen Wang et al. “Gated convolutional neural network for semantic
segmentation in high-resolution images”. In: Remote Sensing 9.5 (2017),
p. 446.

[102] Xi Wu and Zhenwei Shi. “Utilizing multilevel features for cloud detection
on satellite imagery”. In: Remote Sensing 10.11 (2018), p. 1853.

[103] Yongyang Xu et al. “Road extraction from high-resolution remote sensing
imagery using deep learning”. In: Remote Sensing 10.9 (2018), p. 1461.

[104] Hsiuhan Lexie Yang and Melba M Crawford. “Spectral and spatial proximity-
based manifold alignment for multitemporal hyperspectral image classifica-
tion”. In: IEEE Transactions on Geoscience and Remote Sensing 54.1 (2016),
pp. 51–64.

[105] Linjie Yang et al. “A large-scale car dataset for fine-grained categorization
and verification”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2015, pp. 3973–3981.

[106] Xiwen Yao et al. “Semantic annotation of high-resolution satellite images
via weakly supervised learning”. In: IEEE Transactions on Geoscience and
Remote Sensing 54.6 (2016), pp. 3660–3671.



References 129

[107] Sergey Zagoruyko and Nikos Komodakis. “Wide residual networks”. In:
arXiv preprint arXiv:1605.07146 (2016).

[108] Matthew D Zeiler et al. “Deconvolutional networks”. In: Computer Vision
and Pattern Recognition (CVPR), 2010 IEEE Conference on. IEEE. 2010,
pp. 2528–2535.

[109] Lefei Zhang et al. “Ensemble manifold regularized sparse low-rank approx-
imation for multiview feature embedding”. In: Pattern Recognition 48.10
(2015), pp. 3102–3112.

[110] Lefei Zhang et al. “On combining multiple features for hyperspectral remote
sensing image classification”. In: IEEE Transactions on Geoscience and
Remote Sensing 50.3 (2012), pp. 879–893.

[111] Liangpei Zhang et al. “A pixel shape index coupled with spectral informa-
tion for classification of high spatial resolution remotely sensed imagery”.
In: IEEE Transactions on Geoscience and Remote Sensing 44.10 (2006),
pp. 2950–2961.

[112] Ning Zhang et al. “Part-based R-CNNs for fine-grained category detection”.
In: European conference on computer vision. Springer. 2014, pp. 834–849.

[113] Zhang Zhaoxiang et al. “Small satellite cloud detection based on deep
learning and image compression”. In: ("Preprint Feb. 2018, available at
www.preprints.org").

[114] Kaiqiang Zhu et al. “Deep convolutional capsule network for hyperspectral
image spectral and spectral-spatial classification”. In: Remote Sensing 11.3
(2019), p. 223.

[115] Zhe Zhu, Shixiong Wang, and Curtis E Woodcock. “Improvement and expan-
sion of the Fmask algorithm: Cloud, cloud shadow, and snow detection for
Landsats 4–7, 8, and Sentinel 2 images”. In: Remote Sensing of Environment
159 (2015), pp. 269–277.

[116] Zhe Zhu and Curtis E Woodcock. “Object-based cloud and cloud shadow
detection in Landsat imagery”. In: Remote sensing of environment 118 (2012),
pp. 83–94.



Appendix A

VMMR with Conditioned Spatial
Pooling

A.1 Conditioned Spatial Pooling

In this part, we briefly describe a classification architecture similar to the architecture
proposed in Sec. 3. However, the proposed architecture differs in several aspects
with designed multi-scale classification in Sec. 3.

First of all, the proposed architecture as it is shown in Fig. A.1 aims to predict
attention masks in place of attention windows and in the form of spatially weighted
pooling masks. Secondly, rather than realizing and aggregating visual representations
over multiple scales as performed in Sec. 3, here we are interested in defining most
discriminative parts of a vehicle in pixel-level. Accordingly, we replace common
average pooling layer in classifier with a spatially weighted pooling layer as shown
in Fig. A.1 and similar to the proposed pooling layer in [40] however with a major
difference.

Authors in [40] employ a spatially weighted pooling with learnable masks in place
of penultimate commonly used global pooling before fully connected classifier.
Therefore, for each generated feature map by the classifier, one or several masks
with learnable parameters are optimized during training. Such masks are used in
weighted pooling layer to magnifying those pixels of feature maps which belongs to
discriminative parts of the image, as well as diminishing feature maps pixels which
belong to part of the image of less significance. However, the learned masks in [40]



A.1 Conditioned Spatial Pooling 131

Localizer 

Classifier 

Fully  

Connected 

Conditioned 

Weighted 

Pooling 

Class Probability 

Input image 

Predicted mask 

Fig. A.1 Proposed architecture.

are constant for every image which challenges its robustness for images where object
scale and position varies.

In this work, we proposed a scheme with spatial learnable pooling layer replacing
penultimate global pooling in CNN similar to [40], however such pooling uses
masks that are conditioned on input image, unlike [40] where masks are fixed for
every image. Similar to the architecture proposed in Sec. 3.2, a localizer module
is employed. Nonetheless, the localizer module predicts spatially weighted masks
which are then used by pooling layer to pool feature maps. Therefore, depending
on the input image, localizer predicts a number of pooling masks where more
deterministic pixels in feature maps are assign bigger weight than less discriminative
pixels.

In the following, we provide details on network architecture and also preliminary
results. Thus far, the results of predicted masks indicate that localizer can indeed
determine discriminative feature maps pixels, however, we could not be able to



132 VMMR with Conditioned Spatial Pooling

improve the classification accuracy using conditioned pooling comparing with global
pooling. Hence, we additionally discuss the possible issues with the current proposed
scheme which we could not explore further regarding thesis scope and time constraint,
however, we conjecture that if they are addressed properly in future, classification
would benefit from conditioned weighted pooling.

A.1.1 Architecture

The localizer module includes a ResNet without the penultimate pooling and the last
fully connected layers. Additionally, a 1 × 1 convolutional layer is added which
takes as input generated features sized h×w and outputs Nmask h×w feature maps
which will be used as Nmask attention masks. These masks can be represented by
matrix M:

MNd×Nm =


f1,1 f1,2 · · · f1,Nm

f2,1 f2,2 · · · f2,Nm
...

... . . . ...
fNd ,1 fNd ,2 · · · fNd ,Nm

 (A.1)

where Nd = hw. Hence, every mask is vectorized over its height and width and
represented as one row in M.

The classifier module also is ResNet without the penultimate pooling and last fully
connected layers. Therefore, it generates N f feature maps having hight and width of
h and w respectively. As a results it can be seen as a matrix F :

FN f×Nd =


f1,1 f1,2 · · · f1,Nd

f2,1 f2,2 · · · f2,Nd
...

... . . . ...
fN f ,1 fN f ,2 · · · fN f ,Nd

 (A.2)

where Nd = hw. Hence, every feature map is vectorized over its height and width
and represented as one row in F .



A.1 Conditioned Spatial Pooling 133

Then, the conditioned spatial weighted pooling can be seen as matrix multiplier as
follows:

VN f×Nm = FN f×Nd ×MNd×Nm (A.3)

where V is the resulting pooling feature maps using weighted masks with the follow-
ing form:

VN f×Nm =


f1,1 f1,2 · · · f1,Nm

f2,1 f2,2 · · · f2,Nm
...

... . . . ...
fN f ,1 fN f ,2 · · · fN f ,Nm

 (A.4)

Next, the matrix V is vectorized and fed into fully connected layers with a number
of inputs of N f ×Nm and a number of outputs equal to the number of classes.

A.1.2 Results

We have trained the proposed architecture with ResNet18 in localizer and ResNet50
in classifier over Standford car datasets. Therefore N f = 2048 , h,w = 7 and Nd = 49
and we chose only 1 mask Nm = 1, hence the size of fully connected layer remains
the same comparing with Standard ResNet.

The classifier base learning rate is 10−3 and localizer base learning rate is set to 10−4

and every 50 epochs it divided by a factor of 10. The training is carried out for 200
epochs using SGD optimization with weight decay of 5×10−3.

Fig A.2 shows the predicted masks for a number of different samples of Stanford
dataset. As it is evident, the predicted mask assigns more weights (i.e. black regions)
to deterministic areas in the images Therefore the localizer is able to accurately
realize significant pixels in terms of representation value for classification. However,
numerical classification results imply that the fully connected layer could not benefit
from such spatially weighted mask applied in pooling layer compare with regular
average pooling.



134 VMMR with Conditioned Spatial Pooling

Fig. A.2 Samples of Stanford datasets with corresponding predicted 7 × 7 masks.

Nevertheless, as it has been proven in [40] that weighted pooling aims to better clas-
sification, and regarding that our proposed architecture enjoys conditioned weighted
pooling unlike its unconditioned variant proposed in [40], we conjuncture that the
classification can be improved by further exploring and improving the proposed
architecture. Such as applying the conditioned weighted pooling layer in classifier
intermediate layers where feature maps pixels are less correlated and therefore can
benefit more from a weighted pooling, or introducing a mask for each generated fea-
ture map by taking to account that a particular feature map may have a deterministic
region which differs from another feature map.


	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Vehicle Make and Model Recognition
	1.1.1 Motivation
	1.1.2 Objectives

	1.2 Semantic Segmentation of Satellite Images
	1.2.1 Motivation
	1.2.2 Objectives

	1.3 Cloud Screening
	1.3.1 Motivation
	1.3.2 Objectives

	1.4 Publications

	2 Convolutional Neural Network
	2.1 Convolutional Layers
	2.2 Fully Connected Layers
	2.3 Pooling Layers
	2.4 Deconvolutional Layers
	2.5 Activation Functions
	2.6 Softmax Layers
	2.7 Batch Normalization
	2.8 Training
	2.8.1 Dataset
	2.8.2 Data Augmentation
	2.8.3 Loss Function
	2.8.4 Optimization
	2.8.5 Regularization

	2.9 Residual Networks
	2.10 Fully Convolutional Networks

	3 Vehicle Make and Model Recognition
	3.1 Related Work
	3.2 Proposed Architecture
	3.2.1 Localizer Module
	3.2.2 Spatial Transform Module
	3.2.3 Classifier Module

	3.3 Generating Samples
	3.3.1 Extracting Patches with Different Scales
	3.3.2 Data Augmentation

	3.4 Training
	3.4.1 Cost Function Formulation
	3.4.2 Training the Classifier Convolutional Trunks
	3.4.3 Initializing the Network
	3.4.4 Training and Optimization

	3.5 Results
	3.5.1 Stanford Car Dataset
	3.5.2 CompCar Dataset
	3.5.3 Optimizing the Localizer Module Architecture
	3.5.4 Optimizing the Classifier Module Architecture
	3.5.5 Training a Baseline Classifier
	3.5.6 Training the Proposed Architecture
	3.5.7 Comparison with State-of-the-art
	3.5.8 Single Attention Window as Localizer


	4 Satellite Image Segmentation on Heterogeneous Datasets
	4.1 Related Work
	4.2 Proposed Architecture
	4.2.1 Encoder
	4.2.2 Decoder

	4.3 Constructing Dataset
	4.4 Training Methodology
	4.4.1 Cost Function
	4.4.2 Training and Optimization

	4.5 Domain Adaptation Strategies
	4.5.1 Batch Normalization Statistics Refinement
	4.5.2 Active Learning

	4.6 Experiments and Results
	4.6.1 Evaluation Metrics
	4.6.2 Buildings Dataset
	4.6.3 INRIA Aerial Image Labeling Dataset
	4.6.4 Vaihingen ISPRS 2D Semantic Labeling Dataset


	5 Onboard Cloud Screening for Satellite Images
	5.1 Related Work
	5.1.1 Network Architecture
	5.1.2 Encoder
	5.1.3 Decoder

	5.2 Generating Training and Test Samples
	5.3 Cost Function and Optimization
	5.4 Results
	5.4.1 Evaluation Metrics
	5.4.2 Experiments


	6 Conclusions
	6.1 Future Work

	References
	Appendix A VMMR with Conditioned Spatial Pooling
	A.1 Conditioned Spatial Pooling
	A.1.1 Architecture
	A.1.2 Results



