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Abstract The spread of voice-driven devices has a pos-

itive impact for people with disabilities in smart envi-

ronments, since such devices allow them to perform a

series of daily activities that were difficult or impos-

sible before. As a result, their quality of life and au-

tonomy increase. However, the speech recognition tech-

nology employed in such devices becomes limited with

people having communication disorders, like dysarthria.

People with dysarthria may be unable to control their

smart environments, at least with the needed profi-

ciency; this problem may negatively affect the perceived

reliability of the entire environment. By exploiting the

TORGO database of speech samples pronounced by

people with dysarthria, this paper compares the accu-

racy of the dysarthric speech recognition as achieved by

three speech recognition cloud platforms, namely IBM
Watson Speech-to-Text, Google Cloud Speech, and Mi-

crosoft Azure Bing Speech. Such services, indeed, are

used in many virtual assistants deployed in smart en-

vironments, such as Google Home. The goal is to in-

vestigate whether such cloud platforms are usable to

recognize dysarthric speech, and to understand which

of them is the most suitable for people with dysarthria.

Results suggest that the three platforms have compara-

ble performance in recognizing dysarthric speech, and

that the accuracy of the recognition is related to the

speech intelligibility of the person. Overall, the plat-

forms are limited when the dysarthric speech intelligi-

bility is low (80-90% of word error rate), while they

improve up to reach a word error rate of 15-25% for
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people without abnormality in their speech intelligibil-

ity.

Keywords Automatic speech recognition · Speech-to-

text · Dysarthria · Accessibility · Comparison · Cloud

Platform

1 Introduction

Speech recognition technology entered the public life

rather recently, with launch events from tech giants

making worldwide headlines. Voice-driven interfaces are,

therefore, becoming commonplace: people can use their

voice to control their smart home or their in-car sys-

tems. Such devices, mostly powered by Automatic Speech

Recognition (ASR) cloud platforms like Google Cloud

Speech, have a positive impact for people with disabil-

ities [18,4,15]. Through such devices, people with dis-

abilities can indeed perform a series of activities that

were difficult or impossible before, e.g., controlling their

connected vacuum robots, setting alarms, turning on

and off lights, playing music, etc.

However, the ASR technology employed in contem-

porary voice-driven devices becomes limited with users

having moderate to severe speech disorders like dysar-

thria. Dysarthria is a motor speech disorder resulting

from neurological injury of the motor component of the

motor-speech system, characterized by poor articula-

tion of phonemes. Problems in word articulation impact

the performance of ASR, with a consequent negative

impact on the perceived reliability of the entire smart

environment in which voice-driven devices are used.

By exploiting the TORGO [20] database of speech

samples pronounced by people with dysarthia, this pa-

per compares the accuracy of the dysarthric speech
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recognition as achieved by three popular ASR plat-

forms, i.e., IBM Watson Speech-to-Text, Google Cloud

Speech, and Microsoft Azure Bing Speech. We focused

on such cloud platforms due to their global availabil-

ity, their wide usage, and the fact that their algorithms

are continuously maintained and updated. To have a

common baseline to conduct the comparison, the three

platforms were also evaluated with the same TORGO

speech samples, but pronounced by people without any

speech impairments. Such platforms are used in dif-

ferent voice-based devices and interfaces, like Google

Home ans the in-car “Ask Mercedes”.

TORGO, in fact, is a well-know dataset of dysarthric

speech, developed as a result of collaboration between

the University of Toronto’s departments of Computer

Science and Speech Language Pathology, and the Hol-

land-Bloorview Kids Rehab hospital in Toronto, Canada.

It contains dysarthric speech samples, the correspond-

ing original textual sentences, and documentation from

8 speakers (5 males, 3 females) with cerebral palsy (CP)

or amyotrophic lateral sclerosis (ALS), all of them with

dysarthria. The database also contains an evaluation of

speech intelligibility for the eight participants, accord-

ing to the “Intelligibility Severity Rating” section of

the Frenchay Dysarthria Assessment [5]. In addition, it

contains speech samples and the corresponding original

textual sentences from a control group of 7 speakers (4

males, 3 females) without any speech impairment.

The goal of this paper is two-fold: to investigate

whether such cloud platforms are usable to recognize

dysarthric speech, and to understand which of them is

the most suitable for people with dysarthria. To do this,

we rely on the transcribed sentences provided by the

ASR platform. ASR cloud platforms, indeed, process

speech samples and produce a default transcribed sen-

tence and a set of transcription alternatives (also called

alternatives). Alternatives transcriptions are variations

of the default sentences, presented in no particular or-

der. To evaluate the accuracy of the dysarthric speech

recognition by the three ASR platforms, we computed

the word error rate (WER) by comparing each default

transcribed sentence with the original text sentence (pro-

vided by TORGO). In addition, to understand which

cloud platform is the most suitable for people with

dysarthria, we further analyzed the results of the best

ASR platforms to get some additional insights about

the mistakes in the default transcribed sentences and to

check whether a transcription alternative is better than

the default transcribed sentence.

Results of the comparison suggest that the perfor-

mances in recognizing dysarthric speech are comparable

among the three platforms. Moreover, the accuracy of

the recognition is strictly related to speech intelligibility

of persons with dysarthria, for all the three ASR plat-

forms. In particular, the ASR platforms present lim-

ited results when the dysarthric speech intelligibility is

severely distorted, with a WER in the range of 55-75%

(S.D. around 10-20%). When the speech intelligibility

has no particular abnormalities, instead, the average

WER is in the range of 15-25% (S.D. around 20%), not

so different from the average WER of the control group

(5%). Finally, results show that, in 60% of the cases,

the default transcribed sentence is not the best tran-

scription for the original text sentence, and that Google

Cloud Speech is currently the most suitable platform for

handling dysarthrich speech.

2 Related Works

This work provides an overview on the issues that may

arise from the usage of voice-driven interfaces when

they need to handle dysarthric speech. To do so, it con-

tributes with an evaluation of the behavior and relia-

bility of popular Automatic Speech Recognition (ASR)

systems.

Despite speech technology in general, and ASR in

particular, are not new for people with disabilities, spe-

cific research in the domain of technology for people

with speech impairments is still quite limited. Speech

technology and ASR have been used to increase acces-

sibility in mainstream operating systems since decades,

as an alternative method to compose documents through

dictation systems, to control computers and smartphon-

es. Similarly, speech recognition as an input to elec-

tronic assistive technology was investigated both in gen-

eral and for dysarthria.

In 2002, Hawley [8] presented an early overview,

based on a literature review and clinical observations,

upon the suitability and performance of speech recogni-

tion for computer access by people with disabilities, in-

cluding people with dysarthria. He reported that, given

adequate time, training, and support, commercial ASR

systems for computers are often appropriate for people

with no, mild, or moderate speech impairments. Peo-

ple with dysarthria achieve lower recognition rates, but

speech recognition can be still a useful input method

for some individuals. Conversely, Hawley discovers that

speech as a mean of controlling electronic devices such

as smartphones and appliances is more troublesome, es-

pecially for dysarthric speech.

To overcome this kind of issues, researchers inves-

tigated several new methods, datasets, and proposed

dedicated dysarthric speech recognition systems. Rudz-

icz et al. [20], for instance, describes the acquisition and

the composition of TORGO, a database of dysarthric

speech in terms of aligned acoustics and articulatory
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data, mainly from individuals whose speech impedi-

ments were caused by cerebral palsy or amyotrophic

lateral sclerosis.

Rudzicz [19], starting from the TORGO database

and leveraging the task-dynamics theory, also proposes

a new method for acoustic-to-articulatory inversion for

dysarthria, which estimates positions of the vocal tract

given acoustics using a nonlinear Hammerstein system.

The approach uses adaptive kernel canonical correla-

tion analysis and is found to be significantly more ac-

curate than mixture density networks, at or above the

95% level of confidence for most vocal tract variables

for dysarthric speech. In addition, he introduces a new

method for ASR in which acoustic-based hypotheses

are re-evaluated according to the likelihoods of their

articulatory realizations in task-dynamics.

Kim et al. [14,13] investigate dysarthric speech recog-

nition using Kullback-Leibler divergence-based hidden

Markov models. In the model, the emission probabil-

ity of state is modeled by a categorical distribution us-

ing phoneme posterior probabilities from a deep neu-

ral network, and therefore, it can effectively capture

the phonetic variation of dysarthric speech. Through

an experimental evaluation on a database of several

hundred words, they show that the proposed approach

provides substantial improvement over the conventional

Gaussian mixture model and deep neural network based

speech recognition systems.

More recently, Joy et al. [10] adopted the TORGO

database to explore multiple ways to improve Gaussian

mixture model and deep neural network (DNN) based

hidden Markov model (HMM) ASR systems. Their work

shows significant improvements over the previous at-

tempts in building such ASR systems with TORGO. In

their work, they trained speaker-specific acoustic mod-

els by tuning various acoustic model parameters, using

speaker normalized cepstral features and building com-

plex DNN-HMM models with dropout and sequence-

discrimination strategies. The DNN-HMM models for

severe and severe-moderate dysarthric speakers were

further improved by leveraging specific information from

dysarthric speech to DNN models trained on audio files

from both dysarthric and normal speech, using gener-

alized distillation framework.

Yu et al. [21] presents an initial attempt to develop

an ASR system for the Universal Access Speech (UA-

Speech) database [12]. A range of deep neural network

(DNN) acoustic models and their more advanced vari-

ants based on time delayed neural networks (TDNNs)

and long short-term memory recurrent neural networks

(LSTM-RNNs) were developed. Speaker adaptation by

learning hidden unit contributions (LHUC) was used.

The authors further built a semi-supervised comple-

mentary auto-encoder system, to improve the bottle-

neck feature extraction. Two out-of-domain ASR sys-

tems separately trained on broadcast news and switch-

board data were cross domain adapted to the UA-Speech

data and used in system combination. The final com-

bined system gave an overall word accuracy of 69.4%

on a 16-speaker test set.

While several efforts were oriented in developing

novel, yet dedicated, ASR systems for people with dif-

ferent degrees of dysarthria, only a few works explore

accessibility issues of virtual assistants and voice-driven

devices when they need to handle sentences pronounced

by people with speech impairments. Glasser et al. [6] fo-

cus on the issues that may arise from the usage of two

virtual assistants by people who are deaf and hard of

hearing. Bigham et al. [3], instead, propose two techni-

cal approaches for enabling deaf people to provide input

to voice-driven devices, i.e., human computation work-

flows for understanding speech and mobile interfaces

that can be instructed to speak on the user’s behalf.

Ballati et al. investigate the interaction of dysarthric

speech data with three widely used virtual assistants,

included in several standalone and mobile devices (Ap-

ple’s Siri, Google Assistant, and Amazon Alexa), both

in English [2] and in Italian [1].

Similar to the work of Glasser et al. and Ballati

et al., we focus on the issues that may arise from the

usage of voice-driven assistants, but we are specifically

interested in dysarthric speech and in the evaluation

of the behavior and reliability of the contemporary and

popular ASR cloud platforms that often empower voice-

driven devices, namely Google’s, IBM’s, and Microsoft’s

services. In addition, we would also understand which

of them (if any) could be the most suitable platform to

be used by people with dysarthria.

3 Background and Problem Statement

3.1 The TORGO Database

To study the behavior of the three ASR cloud plat-

forms we need to obtain an appropriate number of sen-

tences pronounced by people with dysarthria. A few

datasets about dysarthric speech were produced by the

research community, with the most notable being the

TORGO database of dysarthric articulation [20], UA-

Speech database of spastic dysarthria [12], and the Ne-

mours database of dysarthric speech [16]. Despite all

those datasets were used to improve or create new ASR

models able to tackle dysarthric speech, for the pur-

pose of this paper we decided to adopt the TORGO

database. We looked for an available dataset with full

sentences, indeed, to have samples as ecologically valid
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as possible, and with a set of related speech samples

pronounced by people without any speech impairments;

UA-Speech does not include sentences (but only words)

nor non-dysarthric speech samples, and we were not

able to get the Nemours database. Moreover, the TORGO

database is the newest one and its speech samples were

collected within a professional setting.

The TORGO dataset is the result of a collabora-

tion between the departments of Computer Science and

Speech-Language Pathology, both at the University of

Toronto and the Holland-Bloorview Kids Rehab Hospi-

tal in Toronto, Canada. It includes a large number of

sentences, with data collected between 2008 and 2010.

It contains approximately 23 hours of English speech

samples, transcripts, and documentation from 8 speak-

ers (5 males, 3 females) with cerebral palsy or amy-

otrophic lateral sclerosis (ALS), and from 7 speakers (4

males, 3 females) from a non-dysarthric control group.

Both cerebral palsy and ALS speakers were affected by

dysarthria with disruptions of motor commands of the

vocal articulators, with an atypical and relatively un-

intelligible speech in most cases [11].

The speech intelligibility of the 8 speakers with dys-

arthria ranges from “no abnormalities” (for three of

them, 2 females and 1 male) to “severely distorted”

(the remaining speakers, 4 males and 1 female).

Sentences in the TORGO database consist of non-

words, short words, restricted sentences, and unrestricted

sentences. Non-words were used to control baseline abil-

ities of speakers with dysarthria, especially to gauge

their articulatory control in the presence of plosives

and prosody, like high-pitch and low-pitch vowels. The

short words (e.g., ’yes’, ’no’, ’select’, ’increase’, . . . ) are

useful for studying speech acoustics without the need

for word boundary detection. The restricted sentences

include 162 sentences from the sentence intelligibility

section of “Assessment of intelligibility of dysarthric

speech” [5] and 460 sentences derived from the TIMIT

database [22]. The unrestricted sentences were elicited

by asking participants to spontaneously describe thirty

images in interesting situations taken randomly from

Webber Photo Cards - Story Starters, originally de-

signed to prompt students to tell or write a story [20].

Each speaker was recorded while reading different sen-

tences, only partially shared among them. For the pur-

pose of this paper, to perform an appropriate compar-

ison, we only considered the sentences shared among

speakers, i.e., 38 sentences for male speakers and 13 for

females.

3.2 Cloud Platforms

To perform a comparison to recognize dysarthric speech,

we selected three of the most used cloud ASR plat-

forms: IBM Watson Speech-to-Text [9], Google Cloud

Speech [7], and Microsoft Azure Bing Speech [17]. We

choose such cloud platforms due to their global avail-

ability, the fact that they are constantly and directly

maintained and updated, and their wide usage also in

voice-based devices.

To transcribe the human voice accurately, these ser-

vices leverage machine intelligence to combine infor-

mation about grammar and language structure with

knowledge of the composition of the audio signal. Those

cloud services continuously return and retroactively up-

date a transcription as more speech is heard. For all

three platforms, the service interfaces share many com-

mon input features for transcribing speech-to-text, such

as supported audio formats, languages and models. The

platforms also support various output features like speaker

labels, keyword spotting, maximum alternatives and in-

terim results, word alternatives, word or sentence con-

fidence, word timestamp, profanity filtering, and smart

formatting. These features are exploited in the analysis

to look for the most accurately transcribed sentence.

3.3 ASR for Dysarthric Speech

To better understand which features a sentence pro-

nounced by a person with dysarthria exhibit, we present

here three examples (a, b, c). In each example, the first

sentence is the original text sentences as in the TORGO

database. The second one is the default transcribed sen-

tence obtained by IBM Watson Speech-to-Text, start-

ing from the audio file produced by one of the five males

with dysarthria present in the dataset.

a.1 A long flowing beard clings to his chin.

a.2 A long flowing gear things to his chin.

b.1 You wished to know all about my grandfather.

b.2 You wish to know all about nine.

c.1 She had your dark suit in greasy wash water all

year.

c.2 She had your dark suit an greasy wash water all re

a.

By comparing the original text sentences (“1”) with

the default transcribed sentence (“2”) for each of the

three examples, we can notice that the second sentences

are not the correct transcription of the first one. In these

cases, the person with dysarthria could not fully benefit

from using an ASR platform.

In general, three problems may arise when an ASR

platform does not recognize a sentence correctly. First,
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some wrong words may be present into the default tran-

scribed sentence (e.g., as in “a.2”). Second, some of the

words present in the original text sentences can be miss-

ing in the default transcribed sentence (e.g., “b.2”). Fi-

nally, the default transcribed sentence may present more

words than the original text sentences (e.g., “c.2”).

Wrong words, missing words, and words in excess

are the three typical error types in dysarthric speech

recognition. They may happen separately or together,

according to the speech intelligibility of the speaker

(e.g., “c.2” exhibits both words in excess and wrong

words).

3.3.1 Research Questions

The following research questions guided our work to-

wards the goal of investigating whether and to which

extent the three ASR cloud platforms are usable to suc-

cessfully recognize dysarthric speech:

RQ1 Are ASR platforms suitable for recognizing dys-

arthric speech? What is the attained recognition

rate?

RQ2 What kinds of transcription errors are more fre-

quent, in case of imperfect/partial recognition?

RQ3 Can transcription alternatives (as provided by

ASR platforms) be used to improve the overall recog-

nition result?

To answer RQ1, we will investigate the accuracy in

transcription of the three ASR platform by computing

the WER for the default transcribed sentence of the

TORGO speech samples. For RQ2, instead, we will ana-

lyze the transcription error for each default transcribed

sentence, to define the most common type of errors that

arise for the transcription of dysathric speech. Finally,

to answer RQ3, we will start from the transcription al-

ternatives to check whether one of them would be the

best transcription for the original sentence.

4 Methodology

The analysis about the accuracy of ASR platforms with

dysarthric speech has as the initial input the speech

samples and the relative original text sentences from

the TORGO database, and as the final output the anal-

ysis of the transcription alternatives from ASR plat-

forms. Figure 1 shows the four phases of the analy-

sis described in this paper. First, we selected the com-

mon original text sentences and related speech sample

from the TORGO database, separately for males and

females, to perform a balanced comparison. In the sec-

ond phase, each speech sample was fed to each ASR

platform, and the resulting default transcribed sentence

and the set of transcription alternatives is saved for

each speech sample. In the third phase, we compute

the WER for all the transcribed sentences to answer

RQ1. The last phase analyzed the sentences from the

best platforms (emerged from the previous phase), to

answer both RQ3 and RQ4.

4.1 Phase 1 - TORGO Sentences Selection

First of all, we identified the common original text sen-

tences and the related speech samples separately for

males and females from the TORGO database. In fact,

each speaker from TORGO database was recorded while

reading different sentences, only partially shared among

them. To perform a balanced and fair comparison, we

selected the common sentences. To keep the number

of sentences as high as possible, we needed to consider

sentences pronounced by male speakers separate from

the ones from females. The output of the first phase is

13 common original text sentences with related speech

samples for the three females, and 38 original text sen-

tences with related speech samples for the five males.

For the control group, we selected the same sentences.

4.2 Phase 2 - Automatic Speech Recognition

In the second phase, we submit each speech sample

identified in the Phase 1 to every ASR platform, sep-

arately, to analyze the speech samples related to the

common original text sentences. Each ASR platform

recognized all speech samples from each speaker. The

output of the automatic speech recognition process is

a list of thirty transcription alternatives (plus the de-

fault transcribed sentence) and the related level of con-

fidence, for each platforms and for each speaker.

4.3 Phase 3 - Suitability Analysis

The third phase analyzes the default transcribed sen-

tence in terms of its “suitability”. In this phase, we an-

alyzed the sentences from speakers belonging to both

the “no abnormal” and the “severely distorted” intel-

ligibility speech categories. The goal of this suitability

analysis is to evaluate the accuracy in transcription of

the default transcribed sentence, for each speaker, thus

answering RQ1. We computed the WER between the

original text sentences and the default transcribed sen-

tence, as provided by each platform. The WER is de-

fined as WER = (S + I +D)/(S +D +C), where I is

the number of word insertions, D the number of word

deletions, S the occurrence of word substitutions, while

C is the number of correctly transcribed words.
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Fig. 1 The phases followed to perform the analysis.

4.4 Phase 4 - Error Analysis

The error analysis consisted in two different evaluation:

error classification and best analysis. The best plat-

forms from the quantitative analysis were selected as

a reference for this phase.

4.4.1 Error Classification

For the error classification, we classified the mistakes

that are present in each of the default transcribed sen-

tence to define the most common typology of error

which stem from the ASR process of dysarthric speech.

The “error classification” step allowed us to answer

RQ2.

4.4.2 Best Analysis

The goal of the “best analysis” is to find out a tran-

scription alternative better than the default transcribed

sentence. To do so, we computed the WER between

the original text sentences and each transcription al-

ternative from the list of 30 alternatives. Afterwards,

we selected the best transcription alternative for each

ASR platform.

The best transcription alternative is the alternative

with the smallest WER, i.e., the best transcription re-

sult among all the alternatives. The identification of

the best transcription alternative is possible due to the

knowledge of the original text sentences. We also kept

into account the position of the selected best transcrip-

tion alternative into the list of the 30 alternatives. This

step allowed us to answer RQ3.

Table 1 WER from the suitability analysis

Speaker WER

Google Microsoft IBM

All dysarthric users 59.81% 62.94% 67.35%
- “No abnormalities” 16.11% 23.16% 14.89%
- “Severely distorted” 78.21% 78.59% 89.08%

Control group 3.95% 6.94% 5.26%

Table 2 Correctly transcribed sentences (default transcrip-
tion)

Speaker Correctly transcribed sentences

Google Microsoft IBM

All dysarthric users 15.28 (35) 9.17 (21) 14.85 (34)
- “No abnormalities” 51.56 (33) 31.25 (20) 53.15 (34)
- “Severely distorted” 1.21(2) 0.61 (1) 0.00 (0)

Control group 69.15 43.02 62.99

5 Results: Suitability Analysis

For what concerns Phase 3 - Suitability Analysis, Ta-

ble 1 shows the accuracy in transcription, in terms of

WER, evaluated for all the users and the two speech in-

telligibility categories. In addition, in the bottom of Ta-

ble 1, we show the results for the control group. Table 2

shows, instead, the quantity of correctly transcribed

sentences, evaluated for users in the same way as we

did in table one.

Considering all the analyzed sentences from all dys-

arthric speakers, the average WER for Google is slightly

lower than the average WER for Microsoft and IBM

(WER: 59.81% for Google vs. WER: 62.94% for Mi-

crosoft vs. WER: 67.35% for IBM, SD around 35% for

each ASR platform). Instead, the number of correctly

transcribed sentences is generally low for all three ASR
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platforms, with the platforms provided by Google and

IBM that show similar values, while is clearly lower for

Microsoft’s platform.

By looking at the three users evaluated as “no ab-

normalities” in speech intelligibility, results confirm the

positive behavior for Google, close to the performance

of IBM Watson Speech-to-Text (WER around 15% for

both ASR platforms). Microsoft cloud platform, instead,

is the worst among the three ASR platform, with a

WER of 23.16%. Almost all the correctly transcribed

sentences for the three ASR platforms belong to speak-

ers with this speech intelligibility.

The average WER for the remaining five speakers,

i.e., those who exhibit a “Severely distorted” speech in-

telligibility, grows strongly, in the range between 75%

and 90%. Result for those speakers substantiate the pre-

vious data for Google. In fact, the WER for Google is

around 80%. The WER obtained for IBM is around

90%, while Microsoft’s ASR platform exhibits a good

WER at 80%. For these speakers, the number of cor-

rectly transcribed sentences is unfortunately close to

zero.

Finally, the average WER for the control group are

clearly low and similar for all ASR platforms (Table 1),

around 5%. For what concerns the number of correctly

transcribed sentences in the control group, Google’s and

IBM’s platforms presents much better performances than

Microsoft’s (Table 2).

5.1 Discussion

The suitability analysis explores the accuracy of the

speech samples transcriptions for all the speakers across

the two speech intelligibility categories. From this anal-

ysis emerges that, overall, Google Cloud Speech has the

best performance in terms of WER (59,81%, first row

of Table 1), strictly followed by Microsoft Azure Bing

Speech (62,94%). In addition, the analysis points out

that the behavior of the three ASR platforms is strictly

related to the speech intelligibility, with a level of accu-

racy for people with a mild level of disarthria (“No ab-

normalities” row in both Tables 1 and 2) slightly higher

than the control group.

For the speakers who have a “severely distorted”

speech intelligibility, instead, the average WER is high:

this suggests that, at the moment, the use of ASR

cloud platforms is not suitable or advisable, to avoid

misbehavior or deficiency in the perceived reliability

of a voice-driven device powered by such a technol-

ogy. In this case, we should acknowledge that the best

results are provided by Google’s and Microsoft’s plat-

forms (around 78% for both platforms, see Table 1).

Finally, for what specifically concerns speakers with

a “no abnormalities” speech intelligibility, results for

Google’s and IBM’s platforms are similar (16.11% vs.

14.89%, respectively) and sharply better compared with

the result of the other dysarthric speakers. For these

people, Google Cloud Speech and IBM Watson Speech-

to-Text recognize correctly half of the sentences (33 vs.

34, respectively, as shown in Table 2). For the “severely

distorted” speakers, conversely, all the platforms only

recognize 0-2 sentences at most (Table 2).

Nevertheless, to answer RQ1, people with mild speech

impairments cannot fully exploit such voice-driven de-

vices which only use Google Cloud or IBM Watson,

at least with the same proficiency of people without

any speech impairment. Indeed, the average WER for

speakers in the control group is around 5% vs. the

WER of around 15% obtained for people with a mild

dysarthria.

6 Results: Error Analysis

The best platforms from the quantitative analysis (i.e.,

Google Cloud Speech and IBM Watson Speech-to-Text)

were selected as a reference for the error analysis. We

also considered speakers with the “no abnormalities”

speech intelligibility, since no further analysis can be

done upon the results of the other dysarthric speakers.

6.1 Error Classification

We analyzed the default transcribed sentences from Google

Cloud Speech and IBM Watson Speech-to-Text with a

WER different from 100%, by only considering speak-

ers with a “no abnormalities” speech intelligibility. To

answer RQ2, we find out 5 main typologies of mistakes:

One Wrong Word: in the transcribed sentence, there

is a single incorrectly transcribed word.

Wrong Words: in the transcribed sentence, there are

two or more incorrectly transcribed words.

Missing word(s): in the transcribed sentence, there

are one or more words for which the transcription

is missing.

Split word(s): in the transcribed sentence, two or more

words are the transcription of a single word from the

original text sentence .

Multiple mistakes: in the transcribed sentence, there

are multiple occurrences of the previous errors.

Starting from this error typologies, we classified all

the transcribed sentences. Table 3 shows how many

transcribed sentences occur for each typologies of er-

rors. From the analyzed default transcribed sentences,



8 Luigi De Russis, Fulvio Corno

Table 3 Occurrences for error typologies

Error typology Error occurrences

Google IBM
One Wrong Word 12 13
Wrong Words 6 1
Missing word(s) 1 2
Split word(s) 1 3
Multiple mistakes 7 9
Correctly transcribed 34 33

most of the errors are about incorrect words. In fact, 20

sentences out of 27 (for Google) and 14 sentences out

of 28 (for IBM) have “One Wrong Word” or “Wrong

Words” types of mistake. The error typology “Missing

Word” and “Word split” were not particularly common.

A quite big number of sentences falls in the “Multiple

mistakes” type.

6.1.1 Discussion

The main typology of error is “One Wrong Word” which

is the only error that arise in around 50% of the ana-

lyzed sentences for both ASR platforms. Iin these sen-

tences, often the error is related to articles or prepo-

sitions: this could entail a low impact on the semantic

meaning of the sentence and an opportunity to tackle

as future work.

The other main source of error is “Multiple mis-

takes’. In this case, for each sentence there are more

than one error, belonging to different error typologies.

For this reason, sentences classified as “Multiple mis-

takes” are strongly different from the original sample.

6.2 Best Analysis

Table 4 shows, for Google’s and IBM’s platforms sepa-

rately, the comparison between default transcribed sen-

tences and best transcription alternatives. By analyzing

the best transcription alternatives, the average WER

decreases sharply for both platforms. The WER for

the two ASR platforms is lower than 10% (close to 5%

for Google Cloud Speech). Moreover, results in terms

of correctly transcribed sentences grows for IBM (∆ +

15%) and increases even more for Google(∆ + 25%).

Finally, Table 5 shows, in parenthesis, the number

of correctly transcribed sentences emerging from the

“best analysis” for each of the error typologies previ-

ously defined. By considering one of the most common

type of error, i.e., the “One Wrong Word”, both ASR

platforms have the best transcription alternatives as the

correct transcription in almost all the cases. By look-

ing at the other main source of errors, i.e., “Multiple

mistakes”, Table 5 shows that Google’s and IBM’s plat-

forms do not have the correct transcription among their

transcription alternatives, in almost all cases. For sen-

tences in the category “Wrong Words”, quite numerous

for Google Cloud Speech, the ASR platform has the

correct transcription in just one case (out of 6).

We conclude that we can positively answer to RQ3,

since in most cases the best transcription is already pro-

vided by each ASR platform. However, such a positive

answer is strongly dependent from our knowledge of the

“original sentence”, which is typically not available to

ASR platforms.

6.2.1 Discussion

In the “best analysis”, we looked for the best transcrip-

tion among the various transcription alternatives pro-

vided by Google’s and IBM’s platform. We would like

to define whether and which of them is the best tran-

scription of the original text sentence. This was possible

thanks to the knowledge of the original text sentence

(provided by TORGO).

Result in terms of WER and correctly transcribed

sentences significantly improve the good results of both

platforms. In particular, the WER for Google Cloud

Speech is around 5%, a value close to the WER of con-

trol group and declared for people without speech im-

pairments by the all the three ASR platforms.

By considering the improved performance obtained

after selecting the best transcription, we discovered that

the set of transcription alternatives should be leveraged

to improve the recognition accuracy. This means that,

for ASR platforms, it is already possible to retrieve

a better transcription, without modifying the under-

line models and methods adopted for speech recogni-

tion. However, we should highlight that we exploited

the knowledge of the original text sentence provided by

TORGO, which is usually unknown for an ASR plat-

form.

7 Limitations

Our study exhibits some limitations. First of all, we as-

sumed that voice-driven devices (and virtual assistants)

only rely on ASR cloud platform for the speech anal-

ysis and comprehension. This seems confirmed by pre-

vious studies both with dysarthric speech (e.g., [2,1])

and with other voice impairments (e.g., [3,6]). However,

further investigations are needed: voice-driven devices

can leverage from other information like the context or

the overall conversation to partially tackle some errors,

thus being able to provide a correct interpretation and

appropriate actions. For sure, virtual assistants should
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Table 4 Results for speakers with“no abnormalities” speech intelligibility

Google IBM

Default Best ∆ Default Best ∆

% correctly transcribed sentences 51.56 77.05 +25.49 53.15 68.85 +15.70
Residual WER (%) 16.11 5.32 −10.79 14.89 8.87 −6.02

Table 5 Occurrences for error typologies within the “best
analysis”

Error typology Error occurrences

Google IBM
One Wrong Word 12 (9) 13 (11)
Wrong Words 6 (1) 1 (0)
Missing word(s) 1 (1) 2 (0)
Split word(s) 1 (1) 3 (2)
Multiple mistakes 7 (1) 9 (2)

exploit other information to improve the overall recog-

nition of the speech.

Eventually, the study leverages on a single dataset

(i.e., TORGO), not designed for virtual assistants and

with speech samples collected in a professional setting.

Despite TORGO proved to be a valid option for this

study, different datasets with speech samples collected

in a more ecological way could further enhance the

behavior of ASR platforms (and/or voice-driven assis-

tants) with dysarthric speech.

8 Conclusion

Voice-activated device, powered by automatic speech

recognition platforms like Google Cloud Speech, have

now become common. However, the usability of such

devices and the perceived reliability of the resulting

operations is strictly related to their capability of ac-

curately recognize speech, and to correctly understand

its meaning.

In this paper, we studied an accessibility challenges

presented by automatic speech recognition platforms

when they have to manage dysarthric speech. By us-

ing different sentences pronounced by 8 diverse speak-

ers with dysarthria, we evaluated the performances of

the three most common automatic speech recognition

cloud platforms, namely, IBM Watson Speech-to-Text,

Google Cloud Speech, and Microsoft Azure Bing Speech.

We performed two analyses: a suitability and an error

analysis.

Results show that the three cloud platforms have

different behavior. In terms of word error rate and by

considering all the dysarthric speakers, Google Cloud

Speech has the best results among all the platforms,

with an average WER of 59.81% (WER: 62.94% for

Microsoft’s and WER: 67.35% for IBM’s platforms).

Nevertheless, for dysarthric speech, the Google plat-

form does not reaches the WER of speakers without

any speech impairment (i.e., 4.9%). Comparable per-

formance between people with dysarthria and people

without speech impairments can only be obtained by

considering a best transcription alternative, computed

starting from the set of sentences provided by Google

Cloud Speech. This is possible thanks to apriori knowl-

edge of the original text sentence, only. Lastly, we dis-

cover that the most common mistakes in transcription

of dysarthric speech with “no abnormalities” are about

incorrect transcription of one or more words. Often,

these mistakes do not prevent the understanding of the

sentences.

Future work will include the study for an algorithm

able to improve the selection among the transcription

alternatives, which should not be based on apriori knowl-

edge of the original text sentence.
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