The use of an automotive 77 GHz radar as a microwave rain gauge

<u>Silvano Bertoldo^(1, 2), Claudio Lucianaz⁽¹⁾, Luca Bongarzone⁽¹⁾, Marco Allegretti^(1,3)</u>

(1) Politecnico di Torino, Department of Electronics and Telecommunications (DET), Corso Duca degli Abruzzi 24, 10129, Torino, Italy. (2) 3ntr, Jdeal-form s.r.l, Via Montegiudeo 9, 28047, Oleggio (NO), Italy. (3) Envisens Technologies s.r.l., Corso C. Menotti 4, 10138, Torino, Italy.

Email: <u>silvano.bertoldo@gmail.com</u>

INTRODUCTION

Automatic Cruise Control "long-range radar" operating at 77 GHz. This enables a vehicle to maintain a cruising distance from a vehicle in front (European **Telecommunication Standards Institute, ETSI).**

Use common cruise control long-range radar operating at 77 GHz for rain monitoring and Quantitative Precipitation Estimation (QPE).

77 GHz RADAR SPECIFICATIONS

RADAR PARAMETER	VALUE
Nominal Transmitted Power (P _{TX})	4 dBm
Operational Frequencies	76 - 77 GHz
Sweep Time (<i>T_s</i>)	75 ms
Chirp Bandiwidth (BW)	1 GHz
Transmitted Waveform	Sawtooth
Radar Type	FMCW

- This kind of mini weather radar can extend the concept of "car as sensor", in a wider view of the Internet of Things (IoT).
- A set of car equipped with such weather radar can constitute a capillary network for rain estimation and nowcasting operations.

MIE SCATTERING THEORY FOR 77 GHz RADAR

Siversima CO1000A/00 Power and controller board

Siversima RS3400W/04 77 GHz radar sensor

VALUE
28 dB
40 mm
28 mm

Antenna ELVA-1 SLHA-W

PRELIMINARY RESULTS

Acquisition procedure

- Acquisition of a single spectrum: average on 30 consecutive sweeps.

New Z-R equation properly determined!

The use of Rayleigh approximation with a 77 GHz radar used for meteorological purposes may lead up to a 20 dB of underestimation of the radar reflectivity factor **Z**!

- 1 acquisition every $T_{ACQ} = 30$ seconds
- Rain rate spectrum based on the average of N spectra acquired during $T_{RAINRATE} = 1 \min (N = 1)$ $T_{RAINRATE}/T_{ACQ}$).
- Spatial average of rain over 5 m space interval.
- Total acquisition time T_{RAIN} = 1 hour \rightarrow Computation of cumulated rain.

Priliminary validation procedure

- Acquisition of rain measuremennt of a co-located rain gauge (G).
- Computing the bias considering all the values of cumulated rain corresponding to each of the

M spatial interval of 5 m (R_i) $BIAS = \frac{\sum_{i=1}^{M} R_i}{M \cdot G}$

6th November 2017

77 GHz radar results (*R*):

Rain gauge data (G):

Cumulated rain 10 am – 11 am: 1.1 mm

BIAS=0.35 Radar underestimation of - 4.5 dB

