Information Models to Manage Complexity for an Integrated Knowledge Project - Modelli informativi e gestione della complessità per un progetto integrato di conoscenza

Original

Availability:
This version is available at: 11583/2738712 since: 2019-07-01T22:41:27Z

Publisher:
Unione Italiana per il Disegno

DOI:10.26375/disegno.4.2019.21

Terms of use:
openAccess
This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

(Article begins on next page)
Information Models to Manage Complexity for an Integrated Knowledge Project

Raissa Garozzo, Massimiliano Lo Turco, Cettina Santagati

Abstract

The study aims to identify optimal workflows to create information models oriented to the management and the knowledge of architectural heritage in a state of ruin, through the analysis of the critical issues found in the parametric modeling of the existing artifact. The methodology is aimed at analysing possible criteria for the enhancement of the data detected in the transition from point cloud to a semantic model, and the management of the level of graphic detail (LoG, Level of Geometry) and information attributes (LoI, Level of Information), in order to define possible procedures to measure the Level of Reliability of the survey. The case study is the Mother Church of the ancient Misterbianco (Catania), one of the rare surviving vestiges of the eruption of Mount Etna in 1669 and the earthquake in Val di Noto in 1693. Thanks to its state of preservation and its cultural relevance, it represents the ideal case study for the proposed experimentation. (R.G., M.L.T., C.S.)

Parole chiave: laser scanning, photogrammetry, 3D modeling, H-BIM, Levels of Accuracy and Reliability.

Introduction

The documentation and conservation of Cultural Heritage plays an essential role in the transmission to future generations of the unique and universal values it represents. Tangible and intangible values that testifies to the tenacity and resiliency of men in case of catastrophic natural events, such as eruptions and earthquakes. The case of eastern Sicily is emblematic, because it was affected, at the end of the seventeenth century, by two significant events that erased centuries of historical evidence: the eruption of Mount Etna in 1669 and the earthquake of Val di Noto in 1693. The collection of the few fragments of memories is so complex and meaningful that requires new approaches using information models and structured databases. These are knowledge-based system useful to know and better understand this evidence, promoting the information exchange and the integration of complex data in the field of Cultural Heritage. Among the digital methodologies that allow a holistic approach in the construction field, BIM (Building Information Modeling) is a virtuous process which could relate virtual models of building components and alphanumeric databases [Bianchini et al. 2017]. However, the full maturity achieved by the building information modeling approach in new constructions domain, is not yet observable in the Cultural Heritage field, where there are only a few research experiences aimed at verifying the potentialities, setting out best practices and defining standards. This
The current methodologies for architectural survey allow, through the integrated use of laser scanning and photogrammetric technologies, to acquire geometric/spatial data of the historical heritage. As such, they provide a 3D database that describes the surface of the building, recording information on the characteristics of the materials and their state of preservation [Bertocci, Bini 2012; Bianchini 2007]. The reverse modeling from point cloud to parametric geometric model is, however, still an open issue. Dealing with historical architecture, a critical point is the lack of specific semantic and parametric libraries [Fai, Rafeiro 2014]. Moreover, the definition of the level of geometric detail or the degree of adherence between the numerical model and its geometric abstraction becomes particularly complex in the presence of damaged, abandoned or very degraded artifacts, whose irregularities (out of lead, deformations, lacks) are part of the memory of the architecture and could provide information useful to define the structural setting or the state of conservation. The main characteristics of a BIM oriented approach can be summarized as follows: parametric intelligence, relationships and attributes [Barazzetti et al. 2015, p. 340]. In the literature some interesting works illustrate several approaches, adopting different applications for converting point clouds into intelligent parametric objects, introducing the concept of “level of accuracy” [Santagati, Lo Turco 2017, p. 011007-4; Biagini et al. 2016]. The very crucial phase refers to the difficulty of preserving the metric accuracy acquired by laser scanners and photogrammetric points’ clouds, even in the infographic modelling phase. Defining the tolerance level of the modeling leads to the determination of the level of accuracy, in relation to the survey data; on this issue the references provided by legislation, guidelines and international standards are poor: A definition of the level of accuracy may be found in COBIM2012 - series 2 [Rajala 2012, p. 6]. Such document has introduced the concept of BIM Inventory and its level of precision, where tolerance (which may vary for specific systems/components of the building and it’s expressed in ±mm) refers to the quantitative measurement of the deviation between the point cloud and the model. Similarly to the “Modelling tolerance” defined in Great Britain [Historic England 2017] or to the “Level of precision”
Fig. 2. The site during the excavation a) a view from above, b) excavation of the "gothic" chapel, c) consolidation of walls (pictures: G. Sciaccia)
explicit in the requirements of the Finnish CoBIM [Rajala 2012, p. 11], we refer to the levels of LoD (Level of Development) for restoration, as defined by the Italian legislation. In this direction, a new approach for the modeling of historical buildings that takes into account the critical issues related to the conversion of 3D survey data and the possibility of having flexible LOD is given by [Banfi 2016, pp. 116-118], which proposes the concept of ReversLOD. Other studies may refer to a “rigorous BIM” [Barazzetti et al. 2015, p. 340], in which the focus key refers to a topic that is sometimes underestimated: in the field of historical construction the adoption of the BIM methodology should not be considered only on geometric precision, but requires more careful consideration, also considering other variables specific to an information system: parametric objects, relations, attributes, correct definition of the level of graphic detail (Level of Detail / GraDe / Graphic Detail, renamed in the Italian legislation in LoG, Level of Geometry) and information (LoI, Level of Information, as illustrated in the Italian legislation) [Brumana et al. 2018]. A virtuous organization of the compendium of information regarding Cultural Heritage is crucial; the methodologies in the realization of models usable and related to databases that may be easily readable and updated is one of the main objectives carried out in cooperation between the Scientific Community and the professional world: a model developed for the architectural heritage may constitute to all the intents and purposes a database organized in a coherent manner, in which the different aspects of management, enhancement, maintenance and conservation are mutually related through parameters. (C.S.)

The Church of Santa Maria delle Grazie in the ancient Misterbianco

The following study refers to the Mother Church of the ancient Misterbianco (Catania), identified as a very interesting case study due to its unique state of preservation (unleded walls, deformed flooring, original wall texture overlaid by today’s integrations). Located 5 km north-east of the current town, the remains of the ancient place of worship dedicated to the Madonna delle Grazie preserve traces of historical and architectural memory from the fifteenth to the seventeenth century. Just very
few examples of this type remain in south-eastern Sicily, tragically marked by the eruption of 1669 and the earthquake of Val di Noto in 1693. Preserved under the 12 metres of lava that buried it and the ancient town of Misterbianco in 1669, the church, identifiable thanks to the vestiges of the bell tower soaring the lava landscape until 1693 big earthquake (hence the name Campanarazzu of the locality), has always aroused the interest of curious and scholars [Politano, Santonocito 1999, pp. 156-157]. Starting from 2002 till 2015, the site has been interested by excavations and consolidation works carried out by the Soprintendenza ai Beni Culturali e Ambientali di Catania, that brought the layout of the church to the light, enabling the access to visitors (figs. 1, 2). The church, whose longitudinal axis is arranged along the east-west axis, was reached by a staircase leading to the main portal located to the east side. The building, still partially gripped by lava stone, has a single nave, just over 26 meters, ending with a large presbytery apse (9x13 meters), slightly raised, which hosts the main altar (fig. 3).

On the southern front there is the access to the bell tower and the chapel of the Holy Crucifix, a quadrangular vaulted room connected to a room probably used as a sacristy. On the northern wall, concealed by the niche of the imposing altarpiece that housed the marble statue of the Madonna delle Grazie (realized by Gaginian school), there is the so-called “gothic” chapel, the oldest nucleus of the church, accessible by a side hallway of the presbytery and an eastern additional room, currently occluded [Santagati, Mondello, Garozzo 2017; Garozzo 2018]. The nave is adorned by eight altars, five of which preserve a substantial part of the altarpiece of seventeenth-century Mannerist style; to these may be add the monumental decorative structure of the access to the chapel of the Holy Crucifix (fig. 4). The floor of the nave, in hexagonal terracotta tiles, holds thirteen tomb slabs which close the corresponding vaulted sepulchral chambers below.
Fig. 5. Laser scan project (graphic elaboration: R.G.)
From survey to infographic representation: between interpretation and interoperability

The geometrical, morphological and formal features of the case study required an approach using integrated digital technologies, such as laser scanning (fig. 5) and photogrammetry. The Leica Geosystem HDS 3000 laser scanner was used, with 17 scans – 7 external and 10 internal – for a total of 107 ML of points, then aligned through 6 spherical and homologous targets. The alignment error is 3 mm. The scans have been processed to be used in the most common BIM platforms, as a metric reference for subsequent modeling. Moreover, several photographic datasets have been acquired, in order to integrate the acquired scans, using photogrammetric techniques (fig. 6). Since this building is characterized by many geometric irregularities (deformations, missing parts), an in-depth analysis has been carried out in order to define the proper level of geometric accuracy of the model, to evaluate the opportunity to effectively use systems and procedures created for the standardization of building components in the presence of complex architectures, to reconcile the study purpose with the documentation and management of the architectural asset. Each building component of the church (walls, floors, openings, vaults, altars) shows the signs of the impact of the lava flow and the subsequent contemporary attempt to redefine a spatial coherence to the building (through the reconstruction of part of the walls, for instance) after the excavation. It was considered fundamental, therefore, to preserve all these particularities of the model, both from a geometric and informative point of view. It made necessary to carry out an experimentation to identify, on a case-by-case basis, the most suitable workflow to pursue the objectives set out above. One of the major problems revealed was the lack of interoperability between the different software platforms used, since the modeling was not conducted exclusively within the chosen BIM platform. In order to preserve the documentation of the deformations affecting the floor of the nave (about 20 cm), two different workflows have been tested. The first one involves the use of a plug-in (PointSense for Revit) to create range maps and profiles, with consequent deformation of the surface, initially simplified, according to a preset grid (fig. 7); the other one, considered more efficient than others in this case, involves the creation of a mesh converted into a NURBS surface and imported into the BIM platform for the characterization and the information enrichment. The same approaches have been tested on the walls (fig. 8); in particular, to simplify the modeling of wall geometry by keeping track of irregularities and out-of-plumb, we consider more efficient to rely on simplified modeling to enrich with depth maps and generated profiles of the plug-in (Pointsense for Revit). Finally, a specific reasoning was applied to the altars, which present several lacks due to the violence of the lava flow that invested them. A reconstructive geometric modeling would have lost trace of the missing parts, improving the graphic rendering of the model but erasing the signs of the eruption on the artifacts. It was therefore decided to import the mesh model, subsequently categorized through the plug-in (MeshImportfromOBJ), obtaining a high level of geometric accuracy of the surfaces, although the adopted solution generates outputs that take up a lot of memory and are difficult to be managed (fig. 9). Doing this, the obtained model preserves the peculiarities of the object of study, both from a geometric and informative point of view (fig. 10). (R.G.)

The reliability of the collected data, between measurement and semantic classification

An integrated survey implies a double control, by providing to relate the definition of the level of geometric accuracy, obtained in the phase of graphic restitution, with the modeling of the attributes, semantically related to the digital artifact and its components. Moreover, as mentioned above, the Italian legislation also distinguishes between LoG and LoI the different graphic and alphanumeric connotations of the BIM models. Therefore, not only the level of accuracy (LoA) but also the Level of Reliability (LoR) takes on a wider meaning, as broad and inclusive is the open system of knowledge that characterizes the operations of integrated survey. In the last years, it has been proposed an articulated system of numerical evaluation of the level of reliability of BIM models relating to existing architectures, taking into account the possible retrieval of archival and bibliographic data, several investigations about the building, knowledge of construction techniques, analysis of the construction materials, through a numerical evalu-
Fig. 6. Sections with orthophotos from photogrammetry (graphic elaboration: R.G.)

<table>
<thead>
<tr>
<th>Object</th>
<th>Nave - north side</th>
<th>'Gotica' chapel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of images</td>
<td>68</td>
<td>131</td>
</tr>
<tr>
<td>Resolution</td>
<td>3456 x 5184 pixels</td>
<td>3456 x 5184 pixels</td>
</tr>
<tr>
<td>Mesh triangles</td>
<td>670'269</td>
<td>849'236</td>
</tr>
</tbody>
</table>

Canon EOS 1200D
ation system consisting of parameters associated with the building components [Bianchini, Nicastro 2018, pp. 54-58]. In a similar manner, since the first activities carried out on the case study, it was proposed to populate the components detected with new attributes, through the preparation of specific parameters deriving from the survey operations carried out. The model and its components are defined by means of a dedicated list of shared parameters, in a logical sequence that provides to verify the presence of the data, the author and the date of its recording and a note field. These definitions take on different connotations according to the nature of the collected data or the technique used to make a particular measurement, including: presence of archival material; documentation attesting to any latter day additions by the asset; photographic survey, direct survey and construction of dimensioned sketches; photogrammetric survey; laser scanner survey; survey of finishing materials and degradation; invasive measurements. Unlike the approach proposed by Bianchini and Nicastro, at the moment we have focused only on the structuring of the attributes; therefore, we have not yet come to formulate a proposal for a quantitative measurement of the reliability of the detected artifact, even though the first evaluation grids have been formulated through the development of parallel research activities [Lo Turco et al. 2018, p. 2528]. The aim is to extend the experimentation to a significant number of experiences in order to systematise these processes, involving a greater number of researchers of the Scientific Community in the evaluation of the weight to be attributed to the individual instances and to the critical analysis of the proposed method. (M.L.T.)

Conclusions

This research aimed to verify the applicability of HBIM processes on a complex and ruined artifact, such as the church of Madonna delle Grazie in the ancient Misterbianco, reasoning on the verification of the metric and informative accuracy: the conversion from the numerical model, constituted by the point cloud, to a math-
Fig. 9. Experimentation on the altar (graphic elaboration: R.G.)

Fig. 10. Axonometrical vertical sections of the model (graphic elaboration: R.G.)
Mathematical and semantic model is a process that involves simplifications and deductive hypotheses [Santagati, Lo Turco 2017, p. 011007-3]. However, the high level of detail is an essential feature of the information modeling process in the field of Cultural Heritage, since some singularities that characterize the historical architecture could acquire crucial relevance for subsequent interventions. Now, the processes of acquisition and infographic restitution are poorly automated and very time-consuming. It is therefore desirable that the Scientific Community works on the systematization of automation processes based on ontologies and on the semantic recognition of information, with a specific regard to the cultural heritage field [Messaudi et al. 2018]. A second theme concerned a critical examination of the definition of the “Level of Reliability” of the numerical model, through a new interpretation of the term “measurability”, not only from a geometric point of view, but aimed at an ontological approach that structures and supports a quantitative evaluation of the degree of alphanumeric reliability of a survey. In this sense, the BIM methodology can be considered a bridge between the archival documentation and the digital model, especially if data description processes related to object-oriented formal language are activated. To give even more evidence to the collected documentary apparatus, it is necessary to create a shared work environment able to store and provide graphic and alphanumeric information through a direct association between the BIM environment and the formalization of ontologies. [Quattrini et al. 2017; Bonsma et al. 2018]. Through interoperable processes it is possible to figure out operational scenarios in which all actors can directly implement the recordings made in situ in an easy and accessible form. To do this, it is necessary to support the object-oriented paradigm with the conceptual aspects of relational approaches useful for the management of heterogeneous, numerous and constantly updated data. From a scientific point of view, the application of these tenets will allow to address and define new methodologies for the knowledge (and representation) of Cultural Heritage through more transparent processes. Finally, a last consideration on integrated approaches of analysis and design is proposed, leading to new forms of representation, which expand the frontiers of our discipline in the direction of a greater formal qualification and in the permanent relationship between architectural space and information space. (M.L.T.)

Acknowledgments
The authors thank Father Giovanni Condorelli, president of the Monasternium Album Foundation, and the members of the same institution, for allowed the authorization to the photographic reproduction of images and the accessibility to the places and the willingness to discuss the issues addressed. Eric Boehlke of the Truevis company for allowing free use of the MeshImportfromObjfiles plugin. This work has been partially financed by the University of Catania within the project “Piano della Ricerca Dlapmentale 2016-2018” of the Department of Civil Engineering and Architecture.

Authors

Raissa Garozzo, Department of Civil Engineering and Architecture, University of Catania, raissa.garozzo@unict.it
Massimiliano Lo Turco, Department of Architecture and Design, Politecnico di Torino massimiliano.loturco@polito.it
Cettina Santagati, Department of Civil Engineering and Architecture, University of Catania, cettina.santagati@dau.unict.it

Reference list


Abstract

Lo studio si pone l’obiettivo di individuare flussi di lavoro ottimali per la realizzazione di modelli informativi orientati alla gestione e alla conoscenza del patrimonio architettonico in stato di rudere, attraverso l’analisi delle criticità riscontrabili nella modellazione parametrica dell’esistente. La metodologia adoperata si propone di ragionare su possibili criteri per la valorizzazione del dato rilevato nel delicato passaggio dalla nuvola di punti alla modellazione semantica, per la gestione del livello di dettaglio grafico (LoG, Level of Geometry) e degli attributi informativi (LoI, Level of Information), con l’obiettivo di definire possibili procedure di misurazione del Livello di Affidabilità del rilievo. Il caso studio è la chiesa Madre dell’antica Misterbianco (Catania), una delle rare testimonianze superstiti all’eruzione dell’Etna del 1669 e al terremoto del Val di Noto del 1693. Lo stato di conservazione e l’istanza culturale che la caratterizzano, ne fanno l’oggetto di studio ideale per la sperimentazione proposta. (R.G., M.L.T., C.S.)

Parole chiave: laser scanning, fotogrammetria, 3D modeling, H-BIM, livelli di accuratezza e affidabilità.

Introduzione

La documentazione e la conservazione del patrimonio culturale materiale rivestono un ruolo essenziale per la trasmissione alle future generazioni dei valori unici e universali che esso rappresenta. Valori tangibili e intangibili che testimoniano la tenacia e la resilienza dell’uomo di fronte a eventi naturali catastrofici, quali possono essere eruzioni e terremoti. Emblematico il caso della Sicilia orientale interessata, alla fine del XVII secolo, da due eventi significativi, l’eruzione dell’Etna del 1669 e il terremoto del Val di Noto del 1693, che hanno cancellato secoli di testimonianze storiche. La documentazione delle poche memorie superstite richiede nuovi approcci in grado di governare la complessità e l’unicità di tali testimonianze attraverso modelli informativi e basi di dati strutturate. Questi, di fatto, consentono di formalizzare in maniera quanto più esaustiva e rigorosa il percorso conoscitivo sull’oggetto di studio, attraverso una rappresentazione gerarchica dei dati, che agevola lo scambio e l’integrazione tra le informazioni. Tra le metodologie digitali che permettono un approccio olistico nell’ambito del settore delle costruzioni, il BIM (Building Information Modeling) è un processo virtuoso che consente di relazionare modelli virtuali di componenti edilizie e basi di dati alfanumeriche [Bianchini et al. 2017]. Tuttavia, la piena maturità raggiunta dall’approccio informativo negli interventi di nuova edificazione non è ancora riscontrabile nell’ambito del cultural heritage, dove si registrano esigue esperienze di ricerca volte alla comprensione delle potenzialità, alla messa a punto di best practice e alla definizione di stan-

**Fig. 1. Planimetria di inquadramento generale (elaborazione grafica di R.G.)**
Fig. 2. Immagini del sito durante i lavori di scavo: a) vista dall’alto, b) scavo della cappella “gotica”, c) consolidamento della muratura (foto di G. Sciaccia)

In questa direzione, un nuovo approccio per la modellazione degli edifici storici che tenga conto delle criticità legate alla conversione dei dati di rilievo 3D e alla possibilità di avere LoD flessibili è dato da Banfi [Banfi 2016, pp. 116-118], che propone il concetto di ReversLoD. Altri studi sono riconducibili a un “BIM rigoroso” [Barazzetti et al. 2015, p. 340], in cui si pone l’accento su un tema a volte sottovalutato: l’adozione della metodologia BIM in ambito di costruito storico non è solo da intendersi in termini di precisione geometrica, ma necessita di una più attenta riflessione, considerando anche altre variabili proprie di un sistema informativo: in particolare oggetti parametrici, relazioni, attributi, corretta definizione di livello di dettaglio grafico (Level of Detail/GraDe/Graphic Detail, rideclinati nella normativa italiana in LoG, Level of Ge-

ometry) e informativo (LoI, Level of Information, come illustrato nella normativa italiana) [Brumana et al. 2018]. La necessità di organizzare in maniera virtuosa il compendio di informazioni riguardante il patrimonio culturale è quindi di forte centralità; le metodologie operative nella realizzazione di modelli fruibili e relazionabili a banche dati consultabili facilmente e aggiornabili costituisce uno degli obiettivi primari delle attività di avanguardia, svolte di concerto tra la comunità scientifica e il mondo professionale: un modello sviluppato per il patrimonio architettonico può costituire a tutti gli effetti una base di dati organizzati in maniera coerente, in cui i diversi aspetti di gestione, valorizzazione, manutenzione e conservazione sono vicendevolmente relazionabili tra loro attraverso parametri. (C.S.)

La Chiesa di Santa Maria delle Grazie dell’antico Misterbianco

La sperimentazione proposta si riferisce alla chiesa madre dell’antica Misterbianco (Catania), individuata quale caso studio ottimale grazie al singolare stato di con-
servazione che la caratterizza (muri fuori piombo, pavimentazione deformata, tessitura muraria originale cui si sovrappongono le odierne integrazioni). Situati a 5 km a Nord-Est rispetto all’attuale centro abitato, i ruderi dell’antico luogo di culto intitolato alla Madonna delle Grazie custodiscono tracce della memoria storico-architettonica dal XV al XVII secolo, di cui rimangono solo rari esemplari nella Sicilia sud-orientale, tragicamente segnata dall’eruzione del 1669 e dal terremoto del Val di Noto del 1693. Preservatasi sotto i 12 metri di basalto lavico che la seppellirono nel 1669, la chiesa, individuabile grazie dalle vestigia del campanile rimasto svettante fino al 1693 (da qui il nome Campanarazzu della località), suscita da sempre l’interesse di curiosi e studiosi [Politano, Santonocito 1999, pp. 156-157]. È a partire dal 2002, in occasione degli scavi e dei lavori di consolidamento condotti dalla Soprintendenza ai Beni Culturali e Ambientali di Catania, conclusi nel 2015, che l’impianto rivede la luce, diventando fruibile ai visitatori (figg. 1, 2). La chiesa, il cui asse longitudinale è disposto lungo la direttrice est-ovest, era raggiungibile mediante una scalinata che conduceva all’ingresso principale collocato ad est. L’edificio, ancora parzialmente stretto dalla morsa del fronte lavico, presenta una navata unica, di poco superiore ai 26 metri, conclusa da un ampio presbiterio absidato (9x13 metri), leggermente sopraelevato, che ospita l’altare maggiore (fig. 3). Sul fronte meridionale si aprono l’accesso alla torre campanaria e quello alla cappella del Santissimo Crocifisso, ambiente voltato di impianto quadrangolare collegato a un ampio vano verosimilmente utilizzato come sacrestia. Sulla parete settentrionale, celata dalla nicchia decorata dell’imponente macchina d’altare che ospitava il simulacro della Madonna di scuola gaginiana, si trova la cosiddetta cappella “gotica”, nucleo più antico della chiesa, accessibile da un disimpegno a latere del presbiterio e da un ulteriore ambiente posto ad est, attualmente occluso [Santagati, Mondello, Garozzo 2017; Garozzo 2018]. La navata è punteggiata da otto altari, cinque dei quali conservano una consistente parte della macchina d’altare
Fig. 5. Progetto di ripresa laser scanner (elaborazione grafica di R.G.)

<table>
<thead>
<tr>
<th>Scans</th>
<th>Number of points</th>
<th>Targets</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.041.796</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>10.841.885</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>16.874.188</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>12.956.703</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>4.629.414</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>5.269.019</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>4.422.367</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>10.182.513</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>1.451.366</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>5.732.248</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>4.009.638</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>4.769.934</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>4.268.328</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>5.224.888</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>6.563.334</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>2.546.830</td>
<td>-</td>
</tr>
<tr>
<td>17</td>
<td>3.638.050</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>107.422.501</td>
<td>6</td>
</tr>
</tbody>
</table>

Leica HDS 3000
dalla facies seicentesco-manierista; a questi si aggiunge l'imponente impianto decorativo dell'accesso alla cappella del Santissimo Crocifisso (fig. 4). Il pavimento della navata, in formelle esagonali in cotto è punteggiato da tredici lastre tombali, a chiusura delle camere sepolcrali volte sottostanti. (R.G.)

Dal rilievo alla restituzione: tra interpretazione e interoperabilità

Le caratteristiche geometriche, morfologiche e formali dell’oggetto di studio hanno richiesto un approccio mediante tecnologie digitali integrate, in particolare laser scanning (fig. 5) e fotogrammetria. È stato utilizzato il laser scanner HDS 3000 Leica Geosystem, prevedendo 17 scansioni – 7 esterne e 10 interne – per un totale di 107 milioni di punti, successivamente allineate attraverso 6 target sferici e punti omologhi. L’errore di registrazione riscontrato è di 3 mm. Le scansioni sono state elaborate e processate per poter essere utilizzate nelle più comuni piattaforme BIM, come riferimento metrico per la successiva modellazione. Sono stati acquisiti, inoltre, diversi dataset fotografici, allo scopo di integrare le scansioni acquisite, mediante tecniche fotogrammetriche (fig. 6). Trattandosi di un edificio caratterizzato da molte irregolarità geometriche (deformazioni, parti mancanti) ci si è interrogati sulla definizione del livello di accuratezza geometrica del modello, dell’opportunità di utilizzare efficacemente sistemi e procedure nati per la standardizzazione dei componenti edilizi in presenza di architetture complesse o in stato di rudere e sulla necessità di conciliare le esigenze di studio con quelle di documentazione e gestione del bene architettonico. Ogni componente edilizio del santuario (muri, Pavimenti, aperture, volte, altari) mostra i segni dell’impatto del flusso lavico e del successivo tentativo di ridefinire una coerenza spaziale all’edificio (ad esempio attraverso la ricostruzione di parte delle murature) dopo lo scavo. Si è ritenuto fondamentale, dunque, preservare tutte queste specificità nel modello, sia da un punto di vista geometrico che informativo. Ciò ha reso necessaria una sperimentazione volta all’individuazione, caso per caso, del flusso di lavoro più idoneo a perseguire gli obiettivi precedentemente enunciati. Una delle maggiori problematiche emerse è la scarsa interoperabilità tra le diverse piattaforme software utilizzate, poiché la modellazione non è stata condotta esclusivamente all’interno della piattaforma BIM prescelta. Per preservare la documentazione delle deformazioni che interessano il pavimento della navata della chiesa (che oscillano intorno ai 20 cm) sono stati impiegati due differenti approcci. Il primo prevede l’uso di un plug-in (Pointsense for Revit) per la creazione di range maps e profili, con conseguente deformazione della superficie, initialmente semplificata, secondo una griglia preimpostata (fig. 7); l’altro, giudicato più efficiente nel caso specifico, prevede la creazione di una mesh, convertita in superficie NURBS e successivamente importata nella piattaforma BIM per la caratterizzazione e l’arricchimento informativo. I medesimi approcci sono stati testati sulle murature (fig. 8); in particolare, per semplificare la modellazione della geometria dei muri mantenendo traccia delle irregolarità e dei fuori piombo, si considera più efficiente affidarsi a una modellazione semplificata da arricchire con le mappe di profondità e i profili generati del plug-in (Pointsense for Revit). Un ragionamento specifico, infine, è stato condotto sugli altari, che presentano diverse mancanze dovute alla violenza del fronte lavico dal quale sono stati investiti. Una modellazione geometrica di tipo ricostruttivo avrebbe perso traccia delle parti mancanti, migliorando la resa grafica del modello ma cancellando i “segni” dell’eruzione sui manufatti. Si è pertanto scelto di importare il modello mesh, successivamente categorizzato attraverso il plug-in (MeshImportfromOBJ), ottenendo un elevato livello di accuratezza geometrica delle superfici, sebbene la soluzione adottata generi elaborati che occupano molta memoria e risultano difficilmente gestibili (fig. 9). Il modello ottenuto preserva, così, le peculiarità dell’oggetto di studio, sia da un punto di vista geometrico che informativo (fig. 10). (R.G.)

L’affidabilità del dato rilevato, tra misurazione e classificazione semantica

Un rilievo integrato implica un duplice controllo, prevedendo di relazionare la definizione del livello di accuratezza geometrica, ottenuto in fase di restituzione grafica, con la modellazione degli attributi, semanticamente ronzabili all’artefatto digitale e alle sue componenti. Del resto, come ricordato in precedenza, anche la normativa italiana distingue in LoG e LoI le diverse connotazioni grafiche e alfanumeriche proprie dei modelli BIM. Dun-
Fig. 6. Elaborati in sezione con ortofoto da fotogrammetria digitale (elaborazione grafica di R.G.)
que, non soltanto livello di accuratezza (LoA) ma livello di affidabilità del dato – *Level of Reliability* (LoR) – che assume un’accezione più ampia, come ampio e inclusivo è il sistema aperto di conoscenze che caratterizza le operazioni di rilievo di tipo integrato. Negli ultimi anni è stato proposto un articolato sistema di valutazione numerica del livello di affidabilità dei modelli BIM relativi ad architetture esistenti, tenendo conto del possibile reperimento di dati d’archivio, bibliografici, delle indagini sul manufatto, della conoscenza delle tecniche costruttive, dell’analisi sui materiali, attraverso un sistema valutativo di tipo numerico costituito da parametri associabili ai componenti edilizi [Bianchini, Nicastro 2018, pp. 54-58]. In modo analogo, già dalle prime attività condotte sul caso studio oggetto di sperimentazione, ci si è proposto di popolare di nuovi attributi i componenti rilevati, attraverso la predisposizione di specifici parametri derivanti dalle operazioni di rilievo condotte. Il modello e le relative componenti sono definite mediante un elenco dedicato di parametri condivisi, in una sequenza logica che prevede di verificare la presenza del dato, l’autore, la data della sua registrazione e un campo note. Queste definizioni assumono diverse connotazioni in base alla natura del dato rilevato o alla tecnica utilizzata per operare una particolare misurazione, tra cui: presenza del materiale archivistico; documentazione attestante eventuali superfetazioni subite dal bene; rilievo fotografico, rilievo diretto e costruzione degli eidotipi; rilievo fotogrammetrico; rilievo al laser scanner; rilievo dei materiali di finitura e dei degradi; misurazioni di tipo invasivo. A differenza dell’approccio proposto da Bianchini e Nicastro, ci si è al momento concentrati sulla sola strutturazione degli attributi; non si è pertanto ancora giunti a formulare una proposta di una misurazione quantitativa dell’affidabilità dell’oggetto rilevato, seppure siano state formulate prime griglie di valutazione mediante lo sviluppo di attività di ricerca parallele [Lo Turco et al. 2018, p. 2528]. L’obiettivo è di estendere la sperimentazione a un numero significativo di esperienze per mettere a sistema tali processi, coinvolgendo un maggior numero di rappresentanti della Comunità Scientifica nella valutazione dei relativi pesi da attribuire alle singole istanze e all’analisi critica del metodo proposto. (M.L.T.)
Fig. 9. Sperimentazione condotta sull’altare (elaborazione grafica di R.G.)
Fig. 10. Spaccato assonometrico del modello finale (elaborazione grafica di R.G.)

**PROS**
- No Plug-in needed
- The semantic subdivision is preserved

**CONS**
- The visibility filters is displayed only on edges
Conclusioni

Questa ricerca ha inteso verificare l'applicabilità di processi HBIM su un bene complesso e in stato di rudere, quale la chiesa della Madonna delle Grazie dell'antica Misterbianco, ragionando sulla verifica dell'accuratezza metrica e informativa: la conversione dal modello numerico, costituito dalla nuvola di punti, al modello matematico e semantico è un processo che comporta semplificazioni e ipotesi deduttive [Santagati, Lo Turco 2017, p. 011007-3]. Tuttavia, l'alto livello di dettaglio è un carattere essenziale della modellizzazione informativa dei beni culturali, in quanto alcune singularità che caratterizzano l'architettura storica possono acquisire una rilevanza cruciale per le successive scelte di intervento. Al momento, i processi di acquisizione e di restituzione infografica sono scarsamente automatizzati e richiedono molto tempo. È quindi auspicabile che la comunità scientifica lavori sulla sistematizzazione dei processi di automazione basati sulle ontologie e sul riconoscimento semantico delle informazioni specifiche per il campo dei beni culturali [Messaudi et al. 2018]. Un secondo tema ha riguardato una disamina critica relativa alla definizione del “livello di affidabilità” del modello numerico, mediante una nuova interpretazione del termine “misurabilità”, non soltanto dal punto di vista geometrico, ma tesa ad un approccio ontologico che strutturi e supporti una valutazione quantitativa del grado di affidabilità informativa di un rilievo. In tal senso, la metodologia BIM può essere considerata un ponte tra la documentazione di archivio e il modello digitale, specie se si attivano processi di descrizione dei dati correlati al linguaggio formale object-oriented. Per dare ancora più evidenza all'apparato documentario raccolto, è necessario creare un ambiente di lavoro condiviso in grado di memorizzare e fornire informazioni grafiche e alfanumeriche attraverso un'associazione diretta tra l'ambiente BIM e la formalizzazione delle ontologie [Quattrini et al. 2017; Bonsma et al. 2018]. Attraverso dinamiche interoperabili è possibile immaginare scenari operativi in cui tutti gli attori possano implementare direttamente le registrazioni effettuate in situ in forma agile e accessibile. Per fare questo, occorre supportare il paradigma object-oriented con gli aspetti concettuali di approcci relazionali utili alla gestione di dati eterogenei, numerosi e costantemente aggiornati. Da un punto di vista scientifico, l'applicazione di questi principi consentirà di affrontare e definire nuove metodologie per la conoscenza (e la rappresentazione) dei beni culturali attraverso processi più trasparenti. Si propone, quindi, una riflessione sugli approcci integrati di indagine e progettazione, che porti a nuove forme di rappresentazione, che espandano le frontiere della nostra disciplina nel verso di una maggiore qualificazione formale e nel permanente rapporto tra spazio architettonico e spazio dell'informazione. (M.L.T.)

Ringraziamenti
Gli autori ringraziano padre Giovanni Condorelli, presidente della Fondazione Monasterium Album, e i membri della stessa istituzione per aver consentito l'accesso ai luoghi, per aver concesso l’autorizzazione alla riproduzione fotografica delle immagini e per la disponibilità al confronto sulle tematiche affrontate; Eric Boehlke della società Truevis per aver consentito l’utilizzo gratuito del plugin MeshImportFromObjfiles. Gli autori ringraziano l’Università degli Studi di Catania che ha parzialmente finanziato la presente pubblicazione con il progetto “Piano della Ricerca Dipartimentale 2016-2018” del Dipartimento di Ingegneria Civile e Architettura.

Autori
Raissa Garozzo, Dipartimento di Ingegneria Civile e Architettura, Università degli Studi di Catania, raissa.garozzo@unict.it
Massimiliano Lo Turco, Dipartimento di Architettura e Design, Politecnico di Torino, massimiliano.loturco@polito.it
Cettina Santagati, Dipartimento di Ingegneria Civile e Architettura, Università degli Studi di Catania, cettina.santagati@dau.unict.it

Riferimenti bibliografici


