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Abstract—This paper essays the effects of the choice of through-thickness representation of variables and of zig-zag 

functions within a general theory by the authors from which the theories considered are particularized. Characteristic 

feature, coefficients are calculated using symbolic calculus, so to enable an arbitrary choice of the representation. Such 

choice and that of zig-zag functions is shown to be always immaterial whenever coefficients are recalculated across the 

thickness by enforcing the fulfillment of elasticity theory constraints. Assigning a specific role to each coefficient is shown 

immaterial. Moreover, the order of representation of displacements can be freely exchanged with one another and, most 

important, zig-zag functions can be omitted if part of coefficients are calculated enforcing the interfacial stress field 

compatibility. Vice versa, accuracy of theories that only partially satisfy constraints, is shown to be strongly dependent upon 

the assumptions made. Applications to laminated and soft-core sandwich plates and beams having different length-to-

thickness ratios, different material properties and thickness of constituent layers, various boundary conditions and 

distributed or localized loading are presented. Solutions are found in analytic form assuming the same trial functions and 

expansion order for all theories. Numerical results show which simplifications are yet accurate and therefore admissible. 

Keywords—Composite and sandwich plates, zig-zag theories, interlaminar transverse shear/normal stress continuity, 

localized and distributed loadings, FEA 3-D elastostatic solutions. 

I. INTRODUCTION 

Laminated and sandwich composites, which find continuously increasing applications because of their superior specific 

strength and stiffness, better energy absorption, fatigue properties and corrosion resistance than traditional materials, need to 

be analyzed with specific structural models.  

Indeed, differently from non-layered materials their displacement field can no longer be C1-continuous, but instead has to be 

C°-continuous, i.e. slope discontinuities must occurs at the interfaces of layers with different properties as only in this way 

local equilibrium equations can be satisfied, which means that out-of-plane shear and normal stresses and the transverse 

normal stress gradient must be continuous at interfaces (zig-zag effect). 

As a result of the strong differences between in-plane and transversal properties, 3-D stress fields arise whose out-of-plane 

components can assume the same importance as those in the plane and which play a fundamental role in the formation and 

growth mechanisms of damage and for failure. Considered that multilayer composites are used for the construction of 

primary structures, this being the only way to fully exploit their advantages, so far many multilayered theories of various 

order and degree have been developed, wherein sandwiches are described as multilayered structures whenever cell scale 

effect of honeycomb core aren’t the object of the analysis. Sandwiches are often described as three-layer laminates where the 

core is assumed as the intermediate layer being shear resistant in the transverse direction, free of in-plane normal and shear 

stresses and deformable in the thickness direction (see, e.g. Frostig and Thomsen [1]). But often higher-order sandwich 

theories are considered wherein in-plane and transverse displacements vary nonlinearly across the thickness, taking different 

forms in the faces and the core (see, Rao and Desai [2] and Yang et al. [3]), or a separate representation is used for each of 

them (see, Cho et al. [4]).  

A broad discussion of this matter is found, among many others, in the papers by Carrera and co-workers [5-9], Demasi [10], 

Vasilive and Lur’e [11], Reddy and Robbins [12], Lur’e, and Shumova [13], Noor et al. [14], Altenbach [15], Khandan et al. 

[16] and Kapuria and Nath [17] and the book by Reddy [18]. As shown by the quoted contributions, theories can be 

categorized into equivalent single-layer (ESL) formulations borrowed from those for isotropic materials, which completely 

disregard layerwise effects and therefore they are only suitable for predicting overall response quantities (but not even for all 

loading, material properties and stack-up and certainly not for sandwiches as shown e.g. [19] to [25]) and layerwise 

formulations which differently account for layerwise and zig-zag effects, presenting a different degree of accuracy in 

predicting through-thickness displacement and stress fields and a different computational burden. Layerwise theories further 
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subdivide into discrete-layer (DL) and zig-zag (ZZ) theories (acronyms used throughout the paper are defined in Table 1), the 

former assuming a representation apart for each layer having its own d.o.f., which could overwhelm the computational 

capacity when structures of industrial interest are analyzed but that is still always accurate irrespective for lay-up, layer 

properties, loading and boundary conditions considered, the latter incorporating layewrise functions into a global 

representation. 

TABLE 1 

Acronyms; in bold the new teories; 
(n)

 degree of displacements 

Acronym Description(section) Acronym Description(section) 

FEA-3D Mixed solid finite elements [31]. MHWZZA4 Mixed HW theory [25]. 

HRZZ 

 Mixed HR theory,

(3)

,u   , 
(0)u , [25]. 

ZZA 
(3)

,u   , 

(4)u  [23] (2.3). 

HRZZ4 
Mixed HR theory, 

(3)

,u   , 

(4)u , [25] 
ZZA* 

(3)

,u   , 

(4)u  [24] (2.4). 

HSDT_34 
Enriched adaptive versions of HSDT 

(3)

,u   , 
(4)u (2.6). 

ZZA*_43 
(4)

,u   , 

(3)u  (2.6). 

HWZZ HW mixed version of ZZA [25] (2.5). ZZA*_43PRM 
(4)

,u 
(3)u  (2.6). 

HWZZ_RDF Modified HWZZ theory (2.6). ZZA_RDF Modified ZZA theory (2.3). 

HWZZM 
HWZZ with different zig-zag functions [24] 

(2.7). 
ZZA-XX 

Zig-zag general theory with exponential 

representation (3). 

HWZZM* 
HWZZ with different zig-zag functions [24] 

(2.7). 
ZZA-XX’ 

Zig-zag general theory with power representation 

(3). 

MHR 

 

Mixed HR theory  with Murakami’s zig-zag 

function for 

(3)

,u  , ( 

(4)u  lacking), [25] 

ZZA_X1 

ZZA_X2 

ZZA_X3 

ZZA_X4 

(3)

,u   , 

(4)u  (3).
 

MHR4 

 

Mixed HR theory, displacements with 

Murakami’s zig-zag function [25]. 

ZZA_X1* 

ZZA_X2* 

ZZA_X3* 

ZZA_X4* 

(3)

,u   , 
(4)u  (3). 

MHWZZA Mixed HW theory [25].   

 
ZZ subdivide in turn into displacement-based and mixed theories, as strains and stresses could be chosen separately from one 

another using mixed variational theorems, and into physically-based (DZZ) and kinematic-based (MZZ) theories, since 

layerwise contributions are expressed differently. Regardless of this, ZZ have anyway intermediate features between ESL 

and DL that allow them to strike the right balance between accuracy and cost saving and so to meet designers’ demand of 

theories in a simple already accurate form. Layerwise contributions are embodied in DZZ as the product of linear [26] or 

nonlinear [27] zig-zag functions and unknown zig-zag amplitudes, while they are a priori assumed to feature a periodic 

change of the slope of displacements at interfaces in MZZ, as it happens for periodic lay-ups but applying it in any case, 

consequently they are referred as kinematic-based theories. Stresses being assumed apart from kinematics, MZZ constitute 

mixed theories that because their layerwise functions are insensitive to the physical characteristics of the lamination and their 

kinematics is simplified in general accurately describe through-thickness stress fields but not always as accurately 

displacements [23-25]. Generally but still not always, because mixed formulations are also known as discussed in [25], 

stresses of DZZ derive from kinematics which, having to adequately represent them through strain-displacement relations, 

has to be rather complex so to a priori satisfy interfacial stress compatibility conditions (hence DZZ generally constitute 

physically-based theories), provides through-thickness displacement fields that are adequately reproduced even at interfaces 

where the slope doesn’t reverse and so MZZ fail. 

Carrera Unified Formulation (CUF) [6], which to date is extensively used to carry out analyses of multi-layered structures, as 

it allows displacements to take arbitrary forms that can be chosen by the user as an input and therefore allows to study 

general loading and boundary conditions, can be ascribed as a first approximation in the field of MZZ theories since no 
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physical constraints are enforced to define layerwise functions and it gets existing ESL and MZZ as particularizations. 

However also refined DZZ [23-25] have shown a comparable degree of generality and flexibility of use compared to CUF, 

resulting even more efficient because they allow the same accuracy with fewer variables. According to this, the last 

generation of DZZ with coefficients redefined across each physical or computational lamina must be tested for many other 

challenging cases similar to those already studied by researchers who used CUF and it is also necessary to check whether 

further generalizations can be produced as these DZZ have a computational burden still comparable to that of ESL and 

therefore less than that of the CUF and the DL, at least for the cases so far explored. As shown in [25], DZZ with five fixed 

d.o.f. can be developed and successfully applied to the analysis of challenging benchmarks with a through-thickness variable 

kinematic representation able to satisfy all constraints by the elasticity theory, which can be arbitrarily chosen by the user so 

that accurate theories can be derived with feature similar to those of CUF and HT theories with a hierarchical set of locally 

defined polynomials (see, Catapano et al. [28] and de Miguel et al. [29]), which neither incorporate zig-zag contributions nor 

require post-processing steps, but instead require a larger number of degrees of freedom and a larger expansion order of 

analytical solutions. As also shown in [25], advanced forms of DZZ can be developed considering forms of representation 

different for each displacement with zig-zag functions completely different from those usually considered until now, or even 

omitting them without any accuracy loss, provided that a sufficient number of coefficients is enforced which can be redefined 

across the thickness through the enforcement of physical constraints, therefore in a way to some extent similar to global-local 

superposition theories by Zhen and Wanji, e.g. [30]. 

Further research is required to get even whether these findings hold in general for arbitrary lay-ups, loading and boundary 

conditions and material properties of constituent layers. To contribute to this matter, in this paper theories developed by the 

authors in [23-25] are retaken and new ones obtained assuming differently the representation of displacement components 

are considered. They are applied to a number of challenging cases whose lay-up, material properties of layers, dimensions, 

boundary conditions, normalizations, trial functions and expansion order used to find analytical solutions are reported in 

Tables 2a and 2b, while mechanical properties of are reported in Table 2c. The results of theories for the challenging 

elastostatic cases with strong layerwise effects considered, which comprise localized loading and clamped edges, are 

compared each other and to exact solutions and to 3-D FEA [31] results, in order to show on a broader series of theories and 

benchmarks than in [25] that whenever the expressions of coefficients of displacements are determined a priori by enforcing 

the fulfillment of the full set of interfacial stress compatibility conditions, of stress boundary conditions, as well as local 

equilibrium equations at a number of selected point sufficient to determine all coefficients, the choice of the representation 

and of zig-zag functions can be arbitrary without the results changing. Under these conditions it will be proven that those zig-

zag functions can even be omitted, with self-evident advantages from the computational standpoint. The numerical results 

also aim to demonstrate that when only a partial set of conditions is satisfied, vice versa the accuracy of theories returns to 

depend heavily on the type of representation and on zig-zag functions chosen. 

TABLE 2a 

Geometry, loading and boundary conditions 

Case Layer thickness Material Sketch Loading Lx/h 

a (§) [0.1h/0.4h]s 
[Gr-Ep / Foam / 

Gr-Ep] 

 

0 0( ) sin(2 / )

if   0

u x

x

p x p x L

x L



 
 

10 

b (*§) [0.1h/0.4h]s 
[Gr-Ep / Foam / 

Gr-Ep] 
10 

c (*§) [0.1h/0.4h]s 
[Gr-Ep / Foam / 

Gr-Ep] 
 

0

0

0

     if   0 / 2
( )

   if   / 2

u x

u x x

p x L
p x

p L x L

  
 

    
10 

d (*§) 
[(2h/7) / (4h/7) 

/ (h/7) ] 
[n/n/n] 

 

0 0( )

if   0

u

x

p x p

x L



 
 

14.286 

e (§) 
[(2h/7) / (4h/7) 

/ (h/7) ] 
[n/n/n] 5.714 

Murakami’s function assumption not satisfied by u  (*), u  (⸸) or u  (§) 

 
 



International Journal of Engineering Research & Science (IJOER)                      ISSN: [2395-6992]                    [Vol-2, Issue-6 June- 2016] 

Page | 24 

  

TABLE 2b 

Trial functions, expansion order and normalizations. 

Case Trial functions Expansion Normalization 

a 
0

1

2
( , ) cos ;

M

m

m x

m x
u x y A

L





 
  

 


 
0

1

2
( , ) sin ;  

M

m

m x

m x
w x y C

L





 
  

 


 
0

1

2
( , ) cos ;

M

x m

m x

m x
x y D

L






 
  

 


 

1 
 

0 0

,
0, 4

xL
w z

u z
u w

hp hp

 
 
  

 

 

 
2 0 00

, ,
0,4 4

/

x x
xx zz

xz
xx xz zz

x

L L
z z

z

p pp L h

 


  

   
   
     

 
 

b 1 

c 1 

d 

0

1

( , ) ;

iI

i

i

x
u x y A

L

 
  

 


 

0

1

( , ) ;  

iI

i

i

x
w x y C

L

 
  

 


 

0

1

( , )

iI

x i

i

x
x y D

L




 
  

 


 
 

9 

   
0 0

, ,x xu L z w L z
u w

hp hp
 

 
 

 

 
2 0 00

, ,( , )

/

xx x zz xxz x
xx xz zz

xx

L z L zA L z

P L pp L h

 
    

 
 

e 9 

   
0 0

, ,x xu L z w L z
u w

hp hp
 

 
 

 

 
2 0 00

, ,( , )

/

xx x zz xxz x
xx xz zz

x

L z L zL z

P pp L h

 
    

 
 

TABLE 2c 

Mechanical properties of constituent layers. 
Material name E1[GPa] E2[GPa] E3[GPa] G12 [GPa] G13 [GPa] G23 [GPa] υ12 υ13 υ23 

Foam 0.035 0.035 0.035 0.0123 0.0123 0.0123 0.4 0.4 0.4 

Gr-Ep 132.38 10.76 10.76 5.65 5.65 3.61 0.24 0.24 0.49 

n [iso] - - M1 - - - 0.33 0.33 0.33 

M1  Eu/El=1.6, Eu/Ec=166.6·10
5
;          [iso]=isotropic     E1=E2=E3     G1=G2=G3 

II. THEORETICAL FRAMEWORK 

The feature of zig-zag theories retaken from [23] to [25] and those of new ones proposed in this paper are discussed below, 

but just displacement, and only for mixed formations also strain and stress fields, will be discussed since governing equations 

as well as any intermediate step can be obtained in a straightforward way using standard techniques. As in [23] to [25] a 

symbolic calculus tool is used, which allows to get closed form expressions of coefficients as a result of the enforcement of 

physical constraints once and for all and which allows the user to arbitrarily choose the form of representation, the rest being 

automatic. For clarity, first the notations and the basic assumptions used (common for all the theories) are defined, then 

theories are examined. 

2.1 Notations and basic assumptions 

Layers are assumed to be linear elastic, with a uniform thickness 
kh  and to be perfectly bonded to each other (bonding resin 

interlayer disregarded). According, sandwiches are described in homogenized form as multi-layered structures with a thick 

soft intermediate layer as the core. A Cartesian coordinate reference system ( , ,x y z ) is assumed as the reference frame, (

,x y ) being on the middle reference plane  , so z  being the thickness coordinate, and the overall thickness of the 

laminate is indicated by h. Lx and Ly symbolize the plate side-length in the x- and y-directions. Symbols ( )k z and ( )k z are 

assumed to represent the thickness coordinates just passed or just below the interface k, respectively. Subscripts k and 

superscripts 
k
 chosen as appropriate indicate that quantities belong to the layer k , while 

u
 and l indicate upper and lower faces 

of the laminate. In-plane and transverse components of elastic displacements are indicated as u and u . Strains, assumed to 

be infinitesimal, and stresses are symbolized by 
ij
 and 

ij , respectively. A comma is used to indicate spatial derivatives 

(e.g.,
,(.) x  x  ,

,(.) z z   ). The middle-plane displacements
0u ,

0v , 
0w  and the rotations of the normal (summing 

shear rotation 0
  and flexural notation 0( , ),w    ) are assumed as the only degrees of freedom for each theory. To be 

concise, symbols , ,x y z  can be replaced through the paper by Greek letters (e.g. 1,2 ,x y   ; 3 z   ). 
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Note that throughout this paper the appellation of higher-order theories is reserved to ZZA [23], ZZA*, HWZZM, HWZZM* 

retaken from [24], HWZZ [25], HSDT_34, ZZA*_43, ZZA-XX, ZZA-XX’, ZZA_RDF, HWZZ_RDF and ZZA_X1 to _X4 

retaken from an article completed just before the present one and submitted for publication to another journal and 

ZZA*_43PRM, ZZA_X1* to X4* introduced in this paper. The appellation lower-order is attributed to theories HRZZ, 

HRZZ4, MHWZZA, MHWZZA4, MHR and MHR4 from [25]. It is reminded that acronyms and basic features of all 

theories considered in this paper are explained in Table 1. 

2.2 Methodology of solution 

Solutions are searched in analytical form as a truncated series expansion of unknown amplitudes iA
 and trial functions 

( , )i x y  that individually satisfy the prescribed boundary conditions, which is symbolized as: 

( , )

1

m
i iA x y

i


  





          

 (1) 

Here   symbolises in turns the d.o.f. 
0u , 

0v , 
0w ,  . The candidate solution (1) is substituted into the Principle of 

Virtual Work, or within mixed variational functional and the solution is found using Raileigh-Ritz’s like and Lagrange 

multipliers methods. Namely, ( , )i x y are chosen to satisfy geometric boundary conditions, while mechanical boundary 

conditions are satisfied using Lagrange multipliers method. A number of unknown amplitudes are determined in this latter 

way, according to the type and number of conditions for each specific case, while the remaining ones are determined deriving 

the above mentioned functionals with respect to each amplitude 
iA and equating to zero. Table 2b reports the expressions of 

( , )i x y  for each specific case, along with the expansion order used. The same representation and the same order of 

expansion are shared by all theories for each examined problem, to carry out comparisons under the same conditions.  

Discontinuous loading distributions considered in the numerical applications are studied without using a series expansion 

with a very large number of components because the symbolic calculus tool used to construct theories allows to represent 

loading as a general function ( , )x y  acting on upper and/or lower faces, or just on a part of them, whose relative energy 

contribution is computed exactly, so that the structural model is simplified and at the same time made more accurate. 

The following boundary conditions are enforced on the reference mid-surface at the clamped edge of propped-cantilever 

beams, herein assumed at 0x  :  

0 0 0 0

,(0,0) 0; (0,0) 0; (0,0) 0; (0,0) 0x xu w w              (2) 

In order to simulate that (2) holds identically across the thickness, the following further boundary conditions are enforced: 

, , ,(0, ) 0; (0, ) 0; (0, ) 0z z xzu z u z u z               (3) 

To ensure that the transverse shear stress resultant force equals the constraint force, it should be also enforced the following 

mechanical boundary condition 

/2

/2
(0, )

h

xz
h

z dz T


            (4) 

The additional support condition 
0 ( , 2) 0w L h   holds at x=L on the lower face / 2z h  , while condition (4) is 

reformulated as:  

/2

/2
( , )

h

xz L
h

L z dz T


            (4’) 

As mentioned above, the latter mechanical boundary conditions are enforced using Lagrange multipliers method. At simply-

supported edges, the following boundary conditions are enforced on the reference mid-plane: 

0 0 0 0

, ,

0 0 0 0

, ,

(0, ) 0; ( , ) 0; (0, ) 0; ( , ) 0

( ,0) 0; ( , ) 0; ( ,0) 0; ( , ) 0

x xx x xx

y yy y yy

w y w L y w y w L y

w x w x L w x w x L

   

   

        (5) 
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The constraints being assumed to act at 0x  , xx L  and 0y  , yy L  ( xL , yL  being the length of sides parallel to x ,

y axes). In the applications, plates in cylindrical bending are considered, square or rectangular plates having been already 

extensively studied in [24],[25]. The boundary conditions for cylindrical bending follows in a straightforward way from (5) 

assuming that no variations occur in the y , so that ( x , z ) is the plane where bending take place. 

2.3 ZZA displacement-based theory 

This zig-zag theory, developed in [23], applied in [24, 25] and from which other theories of this paper are particularized or 

constitute a generalization, postulates the following displacement field across the thickness: 

     

     

0 0 0

, 0
1 1

0 2

0
1 1 1

( , , ) ( , ) ( ( , ) ( , ) ) ( ) ( , )( ) ( ) ( , ) ( )

( , , ) ( , ) ( ) ( , )( ) ( ) ( , )( ) ( ) ( , ) ( )

i

i i

n n
u k k

k k u ki c
k k

n n n
k k k

k k k k ki c
k k k

u x y z u x y z x y w x y F z x y z z H z C x y H z

u x y z w x y F z x y z z H z x y z z H z C x y H z

     



 





 

  

        

        

 

  

  (6) 

Summing up, the linear contribution 0[...] incorporates and introduces only the d.o.f. of the theory and has coefficients 

already all defined, while higher- [...] i  and layerwise [...] c  contributions contain coefficients whose expressions have to be 

determined in terms of the d.o.f. , of their derivatives, of geometric and of material properties by enforcing the fulfillment of 

stress boundary conditions 

0

, 0; ( )p                    (7) 

at upper (+) and lower (-) laminate bounding faces, 
0 ( )p   being the transverse distributed loading acting on these faces, as 

well as the enforcement of local equilibrium equations:  

, , , ,;b b                         (8) 

at selected points across the thickness and of stress-compatibility equations at material layer interfaces 

( ) ( ) ( ) ( )

( ) ( )

, ,

( ) ( ); ( ) ( );

( ) ( )
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

        (9) 

In details, any combination of independent functions  ( )u

i
F z  and  ( )

i
F z

 of any degree can be chosen 
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     (10) 

Since coefficients of contributions 
4...Oz  and

5...Oz  can be always determined by enforcing (8) in a suited number of 

points selected across the thickness. In this way, a variable kinematics representation is allowed that enables ZZA to adapt to 

changes in solutions across the thickness, which is worth the name of “adaptive” theory given to this theory. Instead, the 

expressions of coefficients 
iC , 

iD , 
ib to 

ie  are determined by enforcing the fulfilment of stress boundary conditions (7), 

while those of 
k

 , 
k  and 

k  are determined so that the continuity (9) of out-of-plane stresses and of the transverse 

normal stress gradient ,  at layer interfaces are met. The remaining layerwise contributions 
k

uC and 
kC are determined 

restoring the continuity of displacements  

( ) ( ) ( ) ( )( ) ( ); ( ) ( )k k k ku z u z u z u z   

              (11) 

at mathematical layer interfaces whenever the expressions of  ( )u

i
F z  and  ( )

i
F z

change. The readers can find 

all the details herein omitted for brevity in [23-25]. It is worth mentioning that SEUPT technique [23] can be used in order to 

obtain a C° formulation of the ZZA theory, as well as of all the other theories of this paper which follow. 
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A variant of ZZA, called ZZA_RDF and retaken from a paper recently submitted for publication is here reported, whose 

coefficients assumes a different role than ZZA. Particularly, 
k , 

k , 
k

  impose the fulfillment of local equilibrium 

equations at different points across the thickness (for i>1, where I is the number of computational layer) while 
iC , 

id  and 

ie  impose the continuity of out-of-plane stresses at the interfaces between layers. Because of some laminations, stresses 

could be erroneously predicted to vanish for z=0, a different reference plane with a distance far / 2dh h  from the bottom 

face is assumed: 
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 (11’) 

Results of this theory are indistinguishable from those of ZZA in the present numerical applications. As a consequence, it 

will be demonstrated that is not necessary to assign a specific role to coefficients if the full set of physical constraints is 

imposed and coefficients are redefined layer-by-layer across the thickness.  

2.4 ZZA* displacement-based theory 

This theory, which is the first developed by the authors [24] to prove that constraints (9) can be enforced without explicitly 

incorporating zig-zag functions and relative amplitudes 
k

 , 
k  and 

k  inside [...]c  and from which other theories 

follow as generalizations in this paper, has the following displacement field: 
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  (12) 

Contributions 0[...]  are the same as ZZA, while
i

k B
 , ,i i

kC C 
  assume the same purpose as 

k

 , 
iC  and

k

uC  inside 

ZZA,
i

k b  and 
i

k c  perform the same function as
k  and 

k  while 
i

k d the function of 
kC  because once redefined at 

material interfaces they allow to satisfy the continuity of interlaminar stresses and of displacements. Again
iC , 

iD , 
ib , 

ic , 

id  and 
ie allow stress boundary conditions (7) and local equilibrium equations (8) to be met. Therefore similar to ZZA the 

redefinition of coefficients allows the representation to vary according to the conditions imposed. In details,
ib  and 

ic  

enable the fulfillment of stress boundary conditions relating to   and ,  at the lower bounding face, then they are 

assumed to vanish in subsequent layers. Coefficients 
iC , 

iD , 
id  and 

ie allow to satisfy (8) at two points per layer, 

excluding the upper layer, and also enable stress-free boundary conditions on   and three equilibrium equations to be 

satisfied at a single point for the bottom layer. The remaining variables allow to meet three equilibrium equations at a single 

point across the upper layer and the stress boundary conditions on the upper surface. The present ZZA* theory and other 

subsequent theories that also do not explicitly encompass zigzag functions can be still considered as physically-based zig-zag 

theories, because constraints are enforced in order to determine the expressions of coefficients. 

In order to improve accuracy, the intermediate layers and the last one can be subdivided each into two or more computational 

layers, so that more equilibrium points can be enforced and, consequently, the representation order can be increased (but not 

necessarily, because coefficients can be evaluated at different positions using the same power of the thickness coordinate). 

To enable decomposition into computational layers, a sufficient number of contributions must be contained in the 

displacements field so an appropriate expansion order of summations in (12) has to be chosen. However, it will be shown by 

the present numerical results that even for the challenging benchmarks considered, just a third/fourth order overall 

representation is required to obtain very accurate results. 
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The new theories developed forward in section 3 of this paper will be aimed to prove that there is no need to assign a specific 

role to each coefficient, as just done for ZZA_RDF (explained in section 2.3), that the order and type of representation can 

arbitrarily vary and independently for the single displacement and in a more general way that zig-zag layerwise contributions 

don’t have to be incorporated explicitly (like for ZZA*). 

Numerical illustrations will show that ZZA* and the new theories with the features just mentioned achieve the same accuracy 

of ZZA with a lower processing time, but their most important advantage is that the computational effort of the preparation 

phase, which is performed once and for all via symbolic calculus, decreases strongly. 

2.5 HWZZ mixed theory 

This theory was developed in [25] as a mixed Hu-Washizu version of ZZA wherein displacement strain and stress fields are 

assumed separately from each other in order to limit the computational cost while maintaining accuracy. For this purpose, 

only the contributions of each field deemed essential are preserved. Displacements derive from those of ZZA neglecting zig-

zag contributions by 
k , along with higher-order and adaptive contributions 

4...Oz  and 
5...Oz  (10) because numerical 

test have shown their secondary importance for displacements, while they remain of primary importance for stress fields. 

Consistent with these assumptions, no decomposition into computational layers is allowed for displacements, so also 

contributions
k

uC , 
k

vC , 
k

wC  are omitted, then the displacement field simplifies to 
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   (13) 

Out-of-plane strains zz , xz , yz , are obtained from those of ZZA neglecting zig-zag contributions by
k , but preserving 

those by 
k

uC , 
k

vC , 
k

wC  that enable decomposition into computational layers, while in-plane strains x , y , xy directly 

follow from (13) and from strain-displacement relations. Once defined strains in this way, membrane stresses xx , yy , 

xy  are derived in a straightforward way from stress-strain relations, while out-of-plane stresses xz , yz , zz  are 

obtained by integrating local equilibrium equations, in order to recovery small stress jumps resulting from omission of 

contributions by 
k  in (13). 

2.6 Theories HWZZ_RDF, ZZA*_43 and HSDT_34 

A mutation of HWZZ, named HWZZ_RDF is assessed, whose master displacement, strain and stress fields are the same of 

HWZZ, except for terms 
ic  which are calculated for i>1 by imposing the continuity of the transverse normal stress gradient 

at the interfaces, instead of imposing the fulfillment of local equilibrium equations. HWZZ_RDF is considered together with 

other variants discussed forward in order to prove that it is unnecessary to assign a specific role to every single coefficient, 

instead the role can be freely exchanged without any accuracy loss, i.e. regardless of which coefficient is defined by 

imposing any of (7) to (9) and (11).  

The results of theories ZZA*_43 and HSDT_34 developed by the authors in a paper that is nearing completion are presented 

in the numerical applications in order to verify together with the new theories developed in section 3 that order and form of 

representation of displacements across the thickness can be changed freely, provided that a sufficient number of coefficients 

is incorporated so as to allow the fulfillment of (7) to (9) and (11). The features of these theories are summarized forward, 

since they provide rather accurate results and therefore can be used in practical applications. 

ZZA*_43 is a reconstruction of ZZA* which is obtained assuming each in-plane displacements as a fourth-order piecewise 

polynomial across the thickness, while the transverse displacement is assumed as a piecewise cubic polynomial: 
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  (14) 
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Namely, the expansion order of displacements is reversed with respect to ZZA*, while in accordance with it zig-zag 

functions aren’t explicitly incorporated since their role is played by coefficients to be redefined across the thickness. As in 

ZZA*, terms
i

k B
 , ,i i

kC C 
  play the role that in ZZA is played by 

k

  , 
iC  and 

k

uC , while 
i

k b  and 
i

k c play the 

same role as 
k  , 

k  and 
i

k d play the same role of 
kC . Terms

iC , 
iD , 

iE , 
ib , 

ic  and 
id  allow to satisfy and 

therefore are defined by local stress boundary conditions (7) and local equilibrium equations (8). However, numerical tests 

have shown that even permuting the role of coefficients, the result does not change, so what has been said previously about 

the role of the single coefficients can be varied arbitrarily, therefore it is not even necessary to explicitly define the functions 

of each one. As an example, the results of a variant ZZA*_43PRM, which is obtained assuming 
i

k B
  to play as 

iC  of 

ZZA, 
i

k C
  to play as 

k

 , 
iC  as 

k

uC , 
i

k b as 
kC and 

i

k c , 
i

k d to play as 
k , 

k , respectively, are reported in the 

numerical applications, which appear undistinguishable from those of ZZA*_43.  

HSDT_34 is a simplified theory derived as a particularization of ZZA starting from cubic in-plane displacements and a 

fourth-order transverse displacement, which get a piecewise variation in absence of zig-zag functions by virtue of the 

redefinition of coefficients, which for this reason have a superscript i: 
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This theory is considered for the twofold purpose of assessing whether accurate results can get by reducing the order of 

representation with respect to previous theories and of demonstrating through numerical applications that redefinition of 

coefficients is the key aspect that enables to improve accuracy, as it transforms a poor theory that without redefining the 

coefficients is a ESL into a layerwise one, and which also allows the elimination of zig-zag functions and still respecting (9), 

so ultimately confirming the results of other theories of this paper. 

2.7 HWZZM and HWZZM* mixed theories 

This theory was constructed in [25] starting from the same assumptions of HWZZ but using different zig-zag functions, in 

order to show that the choice of these functions is immaterial since the same results of ZZA and ZZA* are achieved 

whenever constraints (7) to (9) and (11) are simultaneously enforced. HWZZM is characterized by the following 

displacement field  
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   (16) 

from which expressions out-of-plane strains zz , xz , yz  are derived and from which its simplified counterpart used for 

obtaining membrane strains x , y , xy  follows in a straightforward way by neglecting adaptive contributions as in (13) 

(here (.)
 states that displacements refer to the computational layer  ). It could be noticed that layerwise functions in (16) 

derive from Murakami’s zig-zag functions ( ) ( 1)k k kM z   assuming  

1

1 1

2
, ,k k k k k k k

k k k k

z z
a z b a b

z z z z
 

 


   

 
        (16’) 

HWZZM is still a physically-based zig-zag theory because expression of amplitudes 
u

kA 
 and 

u

kB 
are not assumed a priori, 

but instead they are derived at each interface by enforcing the fulfilment of stress compatibility conditions (9), therefore all 

remains completely similar to ZZA. 

As for HWZZ, membrane stresses xx , yy , xy  derive from stress-strain relations and the strains obtained as outlined 

above, while out-of-plane master stresses come from integration of local equilibrium equations.  
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In [25], various theories have been derived from HWZZM by assuming a priori and differently from each other the 

expressions of amplitudes
u

kA  , 
u

kA 
, 

u

kB 
that characterize the displacement components (16). Because these theories have 

proven to be much less accurate than theories where zig-zag amplitudes are defined on a physical basis, they are not 

considered in this paper.  

Another mixed theory, called HWZZM*, which is retaken from [25], is considered for sake of comparison. It is obtained 

starting from the following displacement field which, similarly to that of ZZA*, does not explicitly contain any zig-zag 

function: 
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  (16’’) 

Similarly to HWZZ and HWZZM, no decomposition into mathematical layers is allowed for the displacement field of 

HWZZM* and 
i

k c , 
i

k C
 , 

i

k d  are omitted. In-plane master strains are still obtained by (16’) while 
i

k C
  and 

i

k d  are 

restored for master out-of-plane ones, since subdivision into computational layers is allowed for these strains. Again, in-plane 

stresses are obtained from stress-strain relations, while xz , yz , zz  are computed by integration of (8). Numerical 

discussion will show that also HWZZM* obtains results indistinguishable from those of ZZA and other higher-order theories, 

so corroborating that zig-zag functions can be omitted without any loss of accuracy if the full set of physical constrains (7-9, 

11) is enforced and coefficients are redefined layer-by-layer. 

III. NEW THEORIES OF THIS PAPER 

Theories are now introduced which are aimed at contributing to demonstrate that the representation form of the displacement 

field can be assumed arbitrarily whenever the full set of constraints (7) to (9) and (11) is enforced and the coefficients of the 

representation are redefined across the thickness. Under these conditions, it is aimed to show that the explicit incorporation 

of zig-zag contributions is unnecessary.  

Firstly, two quite general theories retaken from a previous paper recently submitted and called ZZA-XX and ZZA-XX’ are 

here reported which are considered in the numerical applications. The displacement field of ZZA-XX is defined as an infinite 

series of products of initially unknown amplitudes and exponential functions of the thickness coordinate iz
: 
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        (17) 

Coefficients are redefines for each computational layer   of thickness ih  and calculated by imposing the full set of physical 

constrains (7-9, 11), where the expansion order can be chosen arbitrary by user, even if at least (7-9, 11) have to be imposed 

to obtain maximal accuracy. The displacement field of ZZA-XX’ is: 
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         (17’) 

and the meaning of symbols if the same of (17). Starting from ZZA-XX and ZZA-XX’ more general theories can be 

obtained, whose displacement field is assumed differently from one another and differently for even and odd layers. Such 

theories can be viewed as particularizations of the general representation 
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obtained through a different specification of i

kF  and i

kG , respectively for the in-plane and the transverse displacement 

component. Four different particularizations ZZA-X1 to ZZA-X4 have been so far already considered by the authors, to 

which another 4 new ones will be added here. Those already considered previously are particularized from (17) as follows: 

ZZA_X1  

  
( 1)/2

( /( 2 ))

1,3

max2
( 3)

k

kz h

z if ki k

e if k
u F k 





 

 
odd layers  ( 1,2,3)i k ku F z k   

  

even layers  ( 1,2,3)i k ku F z k   
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Hereafter, four new theories ZZA_X1* to ZZA_X4* are considered. They are new variants of (17’’) that don’t contain any 

zig-zag functions. Like (18) to (21), their purpose is to demonstrate what claimed from theoretical standpoint, i.e. that 

through-the-thickness representations can be chosen arbitrary for each displacements and from point to point, without any 

loss of accuracy. It will be shown that such theories will provide results indistinguishable from others obtained by other 

higher-order theories, if coefficients are redefined layer-by-layer across the thickness and are calculated by imposing the 

fulfillment of (7) to (9) and (11): 
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ZZA_X3* 
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IV. NUMERICAL ASSESSMENTS AND DISCUSSION 

Henceforth the accuracy of theories will be assessed considering a number of elasto-static challenging benchmarks having 

pronounced layerwise effects deriving from geometric and material properties, lay-ups and loading that are often typical of 

cases of industrial interest. These benchmarks are selected as they require simultaneously a very accurate modeling of 

transverse normal deformation effects. Of interests, here are transverse anisotropy effects, accordingly strong different elastic 

properties of layers are considered rather than ones from just reoriented layers, which is simply omitted. Cases are retaken 

from [24] and [25], wherein it is indicated who studied them previously.  

The prefixed purpose of numerical illustrations is to show that refined physically-based zig-zag theories of this paper very 

accurately describe layerwise effects, with a smaller number of d.o.f. than widespread theories described in [5-8], [11-17], 

whenever the full set of physical constraints (7) to (9) and (11) is enforced, which lets the present theories to assume the 

appellation of physically-based, the following holds. 

(i) The functions expressing the variation of displacements across the thickness can be arbitrarily chosen without having any 

difference in the results; (ii) also zig-zag functions can be arbitrarily chosen and (iii) even be omitted, if a sufficient number 

of coefficients is still considered, whose expressions are re-determined across the thickness, with the advantage of containing 

computational of phases carried out in symbolic form; (iv) a different representation varying from region to region across the 

thickness can be freely chosen as desired and different zig-zag functions can be assumed for each single displacement 

(variable-kinematics form) without any accuracy loss, (v) a specific role need not be assigned to individual coefficients 

whenever their expressions are re-defined across the thickness by imposing (7) to (9) and (11), as the role can be freely 

exchanged if overall the same conditions are imposed. 

Because industrial designers are interested to know whether lower order theories of low cost can be used to carry out 

analysis, the present study consider these theories in order to confirm that, as shown in literature, they can be accurate for 

certain cases but not in general; consequently, (vi) a partial fulfilment of (7) to (9) and (11) even with a fairly high degree of 

representation implies a loss of validity of (i) to (v), so that accuracy back to being strongly dependent upon the 

representation adopted. 

4.1 CASE A 

It concerns a simply supported sandwich beam under two half-waves sinusoidal loading applied at the upper face, with 

graphite-epoxy faces and foam core and a side length-to-thickness ratio of 10. This case is a modified version of that 

formerly studied in [25], in order to prove that because of the presence of an inflection point in the loading distribution the 

effects played by the transverse normal deformability on equilibrium of transverse shear and normal stresses are still equally 

enhanced. This is confirmed by the numerical results of Fig. 1 and Table 4a for this case because, indeed, inaccurate results 

are obtained by lower-order theories like MHWZZA, MHWZZA4, HRZZ, HRZZ4 but in particular, by MHR and MHR4 in 

mixed form that assume a polynomial or piecewise representation of the transverse displacement across the thickness, 

respectively and kinematic-based zig-zag functions. The reason is that such lower-order theories cannot accurately reproduce 

the trend of transverse normal and shear stresses across the thickness, not even when out-of-plane stresses are derived from 

the membrane components through the integration of local equilibrium equations. Errors cannot be recovered even when 

strain and stress fields are assumed apart and with an already rather high order, like in the case of mixed theory MHWZZA 
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that incorporates strains and stress fields of HWZZ, as well as also even when the transverse displacement comes from ZZA, 

as in the case of MHWZZA4, a sign that a description capable of representing the effects of normal transverse deformation 

and the relative stress is required without any simplification being used. The results of the theories considered in this paper 

reported in Fig. 1 and Table 4a leave out theories that had already demonstrated their inadequacy in [24,25]. These omitted 

theories are all those having simplifying assumptions that result in a poor description of displacement and stress fields, such 

as all kinematic based theories with immutable zigzag contributions because defined once and for all. Since errors 

characterize mixed theories HRZZ and HRZZ4 are lower than MHR and MHR4 that include Murakami’s zig-zag functions, 

it is demonstrated the superiority of physically-based theories over kinematic based ones. Results show that only higher-order 

adaptive theories (ZZA, ZZA*, HWZZM , HWZZM*, HWZZ, HSDT_34, ZZA*_43, ZZA-XX, ZZA-XX’, ZZA_RDF, 

HWZZ_RDF, ZZA_X1 to _X4, ZZA*_43PRM and ZZA_X1* to X4*), whose coefficients are redefined layer-by-layer 

across the thickness and that impose the fulfillment of full set of physical constraints (7) to (9) and (11) are always accurate 

and that their results are indistinguishable from one another. This therefore shows that zig-zag functions can be freely 

changed, so, even they can be assumed in Murakami’s form, provided that amplitudes are recalculated at each interface. 

Moreover, it is shown that they can be omitted if coefficients are recomputed across the thickness, as shown by the results of 

ZZA-X1 to ZZA-X4 and ZZA-X1* to ZZA-X4* having a different representation form for each displacement, which is 

differently assumed form point to point across the thickness. 

 

FIGURE 1: Normalized in-plane displacement, transverse displacement, transverse shear stress, in-plane stress (in the 

inset) and transverse normal stress (in the inset) for case a. Symbol ♠ indicates that theories ZZA, ZZA*, HWZZM, 

HWZZM*, HWZZ, HSDT_34,  ZZA*_43, ZZA-XX, ZZA-XX’, ZZA_RDF, HWZZ_RDF, ZZA_X1 to _X4, 

ZZA*_43PRM and ZZA_X1* to X4*obtain results which differ for less than 1%. 

Table 3, shows that processing time of higher-order theories is still always comparable to those of ESL and that lower-order 

ones, which however cannot obtain a similar or acceptable degree of accuracy, so their advantage in terms of computational 

burden is only apparent. It could be seen from Table 3 that anyway theories wherein zig-zag functions are omitted are the 

most efficient theories considered in this paper being able to achieve the same accuracy of theories incorporating zig-zag 

functions with a lower processing time. 
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TABLE 3 

Processing time [s]; errors: 
♥ 

> 3%;  
♣
> 10%. 

Type Theory Features Cases a b c d e 

 FSDT Reference theory  2.3014 2.3045 2.4710 5.9211 6.1245 

N
ew

 t
h

eo
ri

es
 

ZZA_X1* 

Arbitrary representation 

 3.7673 3.7015 4.2532 11.4310 12.0417 

ZZA_X2*  3.8680 3.8254 4.3774 11.7316 12.3256 

ZZA_X3*  3.9032 3.8444 4.3979 11.9151 12.5217 

ZZA_X4*  3.8969 3.8535 4.4288 11.8392 12.4289 

M
ix

ed
 H

R
 

HRZZ Uniform w0  ♥5.3990♣ ♥5.5423♣ ♥7.4582♣ ♥18.4274♣ ♥18.2287♣ 

HRZZ4 Polynomial w4  ♥5.4094♣ ♥5.2737♣ ♥11.0258♣ ♥18.9174♣ ♥18.4489♣ 

MHR 
Murakami’s zig zag 

u3,v3 
 4.3663 ♥4.5619♣ ♥4.8186♣ ♥6.7118♣ ♥6.9651♣ 

MHR4 
Murakami’s zig zag 

u3,v3,w4 

 ♥4.3310♣ ♥4.3291♣ ♥4.9692♣ ♥6.1582♣ ♥6.4367♣ 

M
ix

ed
 H

W
 

HWZZ   4.4949 4.5726 5.2894 12.0471 12.3960 

HWZZ_RDF   4.3621 4.2988 4.9147 13.2034 13.9751 

HWZZM* No zig-zag functions  3.6891 3.6223 4.1572 11.1507 11.7533 

HWZZM 
Murakami’s zig zag 

u3,v3,w4 

 4.0107 3.9760 4.5548 12.1959 12.8123 

MHWZZA  4.4726 ♥4.6131♣ ♥5.1828♣ ♥7.2626♣ ♥7.9157♣ 

MHWZZA4  4.6211 ♥4.7301♣ ♥5.2798♣ ♥7.1210♣ ♥7.8126♣ 

 

ZZA Adaptive 

u3,v3,w4 

 4.9770 4.9120 5.6127 15.0929 15.8988 

ZZA_RDF  4.7548 4.6900 5.3309 14.4480 15.1919 

ZZA* No zig-zag functions 

u3,v3,w4 

 3.7181 3.6988 4.2332 11.3110 11.9627 

HSDT_34  3.7371 3.6694 4.2077 11.3441 11.9652 

ZZA*_43 No zig-zag functions 

u4,v4,w3 

 3.7393 3.7005 4.2142 11.3391 11.8843 

ZZA*_43PRM  3.7438 3.6955 4.2329 11.3713 11.9072 

ZZA_X1 

Arbitrary representation 

 3.7705 3.7064 4.2545 11.4102 12.0588 

ZZA_X2  3.8508 3.7999 4.3686 11.6656 12.3498 

ZZA_X3  3.9127 3.8502 4.3945 11.9047 12.4688 

ZZA_X4  3.9074 3.8509 4.4108 11.9031 12.4591 

ZZA-XX 
General representation 

 9.4659 9.3495 10.6582 28.5583 30.1960 

ZZA-XX’  9.2262 9.1041 10.3746 28.0411 29.4950 

On a computer with quad-core CPU@2.60GHz, 64-bit OS and 8.00 GB RAM; FSDT shear correction factor 5/6. 

TABLE 4a 

Results for case a. 

Case a Position 3-D FEA 
Theories with 

similar results ♠ 
HRZZ HRZZ4 MHR MHR4 MHWZZA MHWZZA4 

uα 

x10-3 

up/min -4.1022 -4.1021 -4.2829 -4.2703 -3.9624 -2.7736 -4.1093 -4.1112 

down/max 3.7999 3.7925 4.3434 4.3061 4.0179 2.8125 3.8025 3.8063 

uς 

x10-1 

up 1.2362 1.2359 1.2220 1.3003 1.2002 1.1882 1.2358 1.2360 

down 1.1799 1.1796 1.2220 1.2406 1.1998 1.1878 1.1795 1.1797 

max 1.2364 1.2361 1.2220 1.3005 1.2004 1.1884 1.2360 1.2362 

min 1.1799 1.1796 1.2220 1.2406 1.1998 1.1878 1.1795 1.1797 

σαα 
up/max 3.4318 3.4329 3.5828 3.5722 3.3149 3.2517 3.4331 3.4328 

down/min -3.1755 -3.1797 -3.6297 -3.5985 -3.3577 -3.4353 -3.1808 -3.1770 

σας max 5.7202 5.8346 6.4703 6.3773 5.5537 3.1530 5.7264 5.7349 

σςς up/max 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Symbol ♠ indicates that theories ZZA, ZZA*, HWZZM , HWZZM*, HWZZ, HSDT_34, ZZA*_43, ZZA-XX, ZZA-XX’, ZZA_RDF, 

HWZZ_RDF, ZZA_X1 to _X4, ZZA*_43PRM and ZZA_X1* to X4*obtain results which differ for less than 1% 
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4.2 CASE B 

In this case the same sandwich beam of case a is considered, except that the lower face is assumed to be damaged, its 

mechanical properties being reduced of two order of magnitude, according to the ply-discount theory (E1111 E1122 E2222 E1212 

reduced by 2•10
-2

) because it happens often in practice, e.g. due to the impact of a foreign object that even if occurring only 

locally, it still represents an area where the analysis must be as accurate as possible, but also because the strong asymmetry of 

material properties enhances 3-D elastic effects, becoming a very severe test from the standpoint of theories. 

The results for this case given in Fig. 2 and in Table 4b confirm the primary role played by a very accurate modelling of the 

transverse displacement once a marked difference of elastic properties of faces is considered. It can be seen that the through-

thickness variation of the in-plane displacement is quite accurately predicted by all theories, so it does not represent a 

discriminating quantity, so different representations prove to be adequate. The opposite occurs instead for the transverse 

displacement, but for this case error on u  are not seen to reflect on out-of-plane stresses. Indeed, such stresses are quite 

accurately predicted also by MHR, MHR4, MHWZZA, MHWZZA4, HRZZ and HRZZ4 since the reduced elastic properties 

of the lower face, which are somewhat more similar to those of the core rather to those of the upper one, prevent the 

spreading across the thickness, causing their concentration near to it. 

 

FIGURE 2: Normalized in-plane stress, in-plane displacement (in the inset), transverse shear stress (in the inset), 

transverse displacement and normalized transverse normal stress (in the inset) for case b. 

TABLE 4b 

Results for case b. 

Case b Position 3-D FEA 
Theories with 

similar results ♠ 
HRZZ HRZZ4 MHR MHR4 MHWZZA MHWZZA4 

uα 

x10
-3

 

up/min -7.3337 -7.3412 -6.4956 -6.4713 -6.2484 -6.5608 -6.3837 -6.3718 

down/max 37.6515 37.7012 38.8976 37.5123 36.1826 37.9917 36.3228 36.3345 

uς 

x10
-1

 

up 1.9529 1.9529 1.9257 1.9980 1.9124 1.8933 1.9529 1.9529 

down/min 1.8611 1.8609 1.9257 1.9041 1.8779 1.8591 1.8608 1.8609 

max 1.9533 1.9533 1.9257 1.9983 1.9128 1.8937 1.9533 1.9533 

σαα 

up/max 5.3383 5.3330 5.4319 5.4115 5.2253 5.2343 5.3446 5.3465 

down -0.1926 -0.1925 -0.2062 -0.1989 -0.1918 -0.1919 -0.1966 -0.1921 

min -4.8293 -4.8261 -5.0463 -4.9921 -4.8346 -4.8520 -4.8078 -4.8196 

σας max 8.7600 8.8067 8.8180 8.7679 8.5258 8.8528 8.7773 8.7777 

σςς 
up 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

max 1.0000 1.0000 1.0061 1.0107 1.0000 1.0000 1.0000 1.0000 
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Anyway, once again, the only theories shown capable of correctly reproducing stress and displacement through-thickness 

variations are shown to be ZZA, HWZZ together with all the remaining higher-order theories. The results also show that 

what clamed in (i) to (vi) holds also for this case since ZZA, ZZA*, HWZZM , HWZZM*, HWZZ, HSDT_34, ZZA*_43, 

ZZA-XX, ZZA-XX’, ZZA_RDF, HWZZ_RDF, ZZA_X1 to _X4, ZZA*_43PRM and ZZA_X1* to X4* achieve the same 

accuracy degree, their results being indistinguishable from one another. Use of higher-order theories is still confirmed 

preferable to that of lower-order ones, both because the latter misestimate displacement and stress fields and do not provide 

advantages in terms of computational costs (see Table 3). As results from this table, higher-order theories that omit layerwise 

functions are the most efficient theories of this paper, having the same accuracy of other higher-order models and lower 

processing time.  

4.3 CASE C 

In this case, a similar simply supported sandwich structure with graphite-epoxy faces and foam core of previous cases a and b 

is still considered (dimension and material properties are reported in Table 2a). The structure is loaded by a step compressive 

loading on its upper and lower faces, as indicated in Table 2b. This type of load is considered because it shows stronger 

layerwise effects than those of sinusoidal loading considered in cases a and b. 

Results of Fig. 3 and Table 4c for this case referring to u  and   are reported at / 0xx L  , while those for u ,   and 

  are reported at / 0.25xx L  , because at these two positions they exhibit peaks. Despite the strong layerwise effects due 

to the loading considered, theories unexpectedly show results in a better agreement each other and with FEA 3-D than in the 

previous cases. Anyway, some errors are shown by lower-order theories, that is to say MHR, MHR4, MHWZZA, 

MHWZZA4, HRZZ, HRZZ4, as regards displacements across the core, as only , ZZA, ZZA*, HWZZM , HWZZM*, HWZZ, 

HSDT_34, ZZA*_43, ZZA-XX, ZZA-XX’, ZZA_RDF, HWZZ_RDF, ZZA_X1 to _X4, ZZA*_43PRM and ZZA_X1* to 

X4* turn out to be able to provide an adequate information in this case. From the standpoint of accuracy of theories, this is 

signing a strong case-dependence by loading, as it results from the comparison with previous cases a and b. Even if errors are 

not very large, theories based on Murakami’s zig-zag function whose coefficients are not redefined across the thickness 

appear inadequate because in the present case the slope of in-plane and transverse displacements don’t reverse at interfaces. 

In the same way, theories which have a simplified kinematics of u  like MHR, MHR4, HRZZ, HRZZ4, MHWZZA and 

MHWZZA4 are inadequate, not even when using the best theories like ZZA, ZZA*, HWZZM , HWZZM*, HWZZ, 

HSDT_34, ZZA*_43, ZZA-XX, ZZA-XX’, ZZA_RDF, HWZZ_RDF, ZZA_X1 to _X4, ZZA*_43PRM and ZZA_X1* to 

X4* as post-processors. Errors in u  reflect into an overestimation of the transverse shear stress across the upper face, 

which is more evident for theories MHWZZA and MHWZZA4, and in a underestimation by HRZZ and HRZZ4 across both 

faces. So this is signing that u  assumes a paramount importance under step loading. To highlight the largely case-sensitive 

behavior of theories based on simplifying hypotheses, and therefore the unpredictability of their predictions, it could be noted 

that while MHWZZA and MHWZZA4 inadequately predict the variation of the in-plane displacement across the core, their 

lower-order counterparts MHR, MHR4 give results much closer to FEA-3D due to a mutual compensation of errors. 

Only higher-order adaptive theories (ZZA, ZZA*, HWZZM , HWZZM*, HWZZ, HSDT_34, ZZA*_43, ZZA-XX, ZZA-

XX’, ZZA_RDF, HWZZ_RDF, ZZA_X1 to _X4, ZZA*_43PRM and ZZA_X1* to X4*), whose coefficients are redefined 

layer-by-layer across the thickness and that impose the fulfillment of full set of physical constraints (7) to (9) and (11) appear 

always able to get accurate displacements and stresses. Indeed, their results are indistinguishable from one another and from 

those of 3-D FEA, irrespective of zig-zag functions or representation assumed. So ultimately this confirms that their choice is 

immaterial and so what clamed in (i) to (vi) also for this case.  

The same still holds as regards the computational cost seen for the previous cases, because the little less expensive but 

inaccurate lower-order theories cannot provide real advantages over higher-order ones, see, Table 3. Higher-order theories 

that do not contain zig-zag functions are shown again to require a nearly or little more calculation time than their lower-order 

counterparts (which however are less accurate), proving to be the most efficient theories of this paper. 
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FIGURE 3: Normalized in-plane displacement, transverse displacement, transverse shear stress, transverse normal 

and in-plane stresses (in the insets) for case c. 

TABLE 4c 

Results for case c. 

Case c Position 3-D FEA 
Theories with 

similar results ♠ 
HRZZ HRZZ4 MHR MHR4 MHWZZA MHWZZA4 

uα 

x10-3 

(x=0) 

up -5.0694 -5.1284 -6.1288 -6.1299 -5.0448 -3.9548 -6.1457 -6.2844 

down 4.8842 4.8354 5.9176 5.9003 5.1157 5.5149 4.6516 4.9863 

max 5.0889 5.1345 5.9176 5.9003 5.1157 5.5149 4.6516 4.9863 

min -5.0694 -5.1284 -6.1288 -6.1299 -5.0448 -3.9548 -7.7749 -6.2844 

uς 

x10-1 

(x=Lx/4) 

up 1.5639 1.5640 1.5928 1.6993 1.4660 1.5320 1.6264 1.5013 

down/min 1.5088 1.5089 1.5928 1.6178 1.4001 1.5316 1.5605 1.4769 

max 1.5641 1.5642 1.5928 1.6997 1.4661 1.5323 1.6264 1.5016 

σαα 

(x=Lx/4) 

up/max 3.7846 3.7596 4.5093 4.5153 4.1485 4.0898 4.2213 4.2635 

down -3.7772 -3.7316 -3.9002 -3.9081 -4.0382 -4.0905 -4.2200 -4.2622 

min -3.7772 -3.7316 -4.1253 -4.1325 -4.0382 -4.0905 -4.2200 -4.2622 

σας 

(x=0) 
max 12.2525 12.2550 10.7842 10.8634 7.0695 6.8761 17.4821 13.9216 

σςς 

(x=Lx/4) 
up/max 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

 

4.4 CASE D 

A propped-cantilever sandwich beam under uniform loading and with a length-to-thickness ratio / 14.286xl h   is considered, 

whose geometric and material properties are indicated in Table 2a. Fig. 4 and Table 4d show the through-thickness variation 

of displacements and transverse shear and normal stresses for this case, formerly considered in [25], as predicted by the 

various theories considered in this paper. Although the structure is rather slim, major discrepancies still exist among the 

predictions of theories because strong layerwise effects still persist like in the thickest structures.  

Because of this, simplified kinematics assumptions of theories MHR, MHR4, MHWZZA, MHWZZA4, HRZZ, HRZZ4 

become completely inadequate, although in the literature it is often claimed that even ESL can be used when /xl h similar to 
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the one is considered here. Moreover, the stress field is described in an imprecise way by all theories except by ZZA and 

theories ZZA*, HWZZM, HWZZM*, HWZZ, HSDT_34, ZZA*_43, ZZA-XX, ZZA-XX’, ZZA_RDF, HWZZ_RDF, 

ZZA_X1 to _X4, ZZA*_43PRM and ZZA_X1* to X4*, which indeed provide indistinguishable results from each other. So, 

it is demonstrated what is claimed in this paper regarding the arbitrary choice of zig-zag functions and of the representation, 

provided that all physical constraints are contemporaneously satisfied. In particular, the transverse normal stress is 

misestimate by all lower-order theories. Nevertheless the slope of displacements reverses at both face-core interfaces, 

theories MHR and MHR4 based upon Murakami’s zig-zag function incorrectly predict displacement and stress fields. 

Instead, theories whose coefficients are redefined layer-by-layer across the thickness by imposing the fulfilment of full set of 

physical constraints (7) to (9) and (11) are always accurate, irrespective of zig-zag functions or the representation assumed, 

so confirming what claimed in (i) to (vi).It is confirmed also for this case that higher-order theories are more efficient than 

lower-order ones, as shown by Table 3, and the most efficient are those that do not explicitly contain zig-zag functions, as 

thy have the same accuracy but a lower processing time. 

 

 

FIGURE 4: Normalized in-plane displacement, in-plane stress (in the inset), transverse displacement, transverse 

normal stress (in the inset), transverse shear stress for case d.  

TABLE 4d 

Results for case d. 

Case d Position 3-D FEA 
Theories with 

similar results ♠ 
HRZZ HRZZ4 MHR MHR4 MHWZZA MHWZZA4 

uα 

x10-3 

up 9.1138 9.1078 2.3007 2.2945 -1.1155 -1.1063 -0.2381 -0.2315 

down -11.9627 -11.9506 -3.9677 -3.9760 0.9058 0.9143 2.0341 2.0360 

max 9.1138 9.1078 2.8215 2.8208 1.6311 1.6285 5.3391 5.3242 

min -11.9627 -11.9506 -3.9677 -3.9760 -1.1393 -1.1367 -1.7104 -1.7185 

uς 

x10-3 

up 7.0780 7.0543 0 5.0978 8.0429 8.0510 1.9002 1.9019 

max 7.0801 7.0815 0 5.1247 8.1313 8.1673 1.9002 1.9002 

down/min 0 0 0 0 0 0 0 0 

σαα 

up 0.0562 0.0554 0.0711 0.0717 0.3440 0.3453 0.1071 0.1061 

down/min -0.4320 -0.4314 -0.3980 -0.3922 -0.3139 -0.3162 -0.4000 -0.4015 

max 0.3215 0.3252 0.2872 0.2839 0.3440 0.3453 0.4818 0.4808 

σας min -0.7192 -0.7189 -0.7200 -0.7245 -0.5228 -0.5168 -0.6989 -0.7043 

σςς up/max 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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4.5 CASE E 

Now it is considered a propped-cantilever sandwich beam under uniform loading like for case d, but actually a thicker 

structure with / 5.714xl h   and damaged lower face and core are considered, according to the ply-discount theory (E1111 

E1122 E2222 E1212 4•10
-2

 for Layer 1, E1122 E2222 E1212 E1313 E2323 2•10
-2

 for Layer 2).  

Given the strong discrepancies between the indications of the theories shown by the results of Fig. 5 and Table 4e, the 

present benchmark turns out to be decidedly challenging and therefore particularly selective and suited to highlight the 

discrepancies among lower- and higher-order theories. Again, only ZZA, ZZA*, HWZZM , HWZZM*, HWZZ, HSDT_34, 

ZZA*_43, ZZA-XX, ZZA-XX’, ZZA_RDF, HWZZ_RDF, ZZA_X1 to _X4, ZZA*_43PRM and ZZA_X1* to X4* are 

capable to express the variation of displacement and stress fields everywhere by virtue of their better capacity to describe all 

the variations that occur in the displacement and stress fields, thanks to the possibility they offer of redefining the 

coefficients of representation in such a way as to satisfy all the requirements of the theory of elasticity.  

MHR and MHR4 making use of Murakami's zig-zag functions appear decidedly inaccurate in this case, as they predict a 

wrong nearly uniform variation of in-plane displacements because of their too simple kinematics. Besides, all lower-order 

theories (MHR, MHR4, MHWZZA, MHWZZA4, HRZZ and HRZZ4) incorrectly predict the transverse shear stress and in a 

totally wrong way the transverse normal stress elsewhere across the thickness. Again, HRZZ (that assume a uniform u  

across the thickness) obtain the worst results as regards the transverse displacement. Table 3 shows again that the processing 

time of lower-order theories remains similar to that of higher-order adaptive theories, so, the former theories which are less 

accurate are not useful neither from the point of view of accuracy, nor from computational burden. It is also confirmed that  

higher-order physically-based zig-zag adaptive theories ZZA, ZZA*, HWZZM , HWZZM*, HWZZ, HSDT_34, ZZA*_43, 

ZZA-XX, ZZA-XX’, ZZA_RDF, HWZZ_RDF, ZZA_X1 to _X4, ZZA*_43PRM and ZZA_X1* to X4* are the only always 

everywhere accurate and that their results are indistinguishable from each other. Higher-order theories without zig-zag 

functions are shown again as the most efficient theories of this paper. 

 

 

 

FIGURE 5: Normalized in-plane displacement and stress (in the inset), transverse displacement, transverse shear 

stress and transverse normal stress for case e. 
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TABLE 4e 

Results for case e. 

Case e Position 3-D FEA 
Theories with 

similar results ♠ 
HRZZ HRZZ4 MHR MHR4 MHWZZA MHWZZA4 

uα 

x10-2 

up 2.4904 2.4922 0.2563 0.2542 -0.0264 -0.0262 0.0657 0.0656 

down -5.1031 -5.1067 1.0438 1.0458 -0.0639 -0.0637 1.3600 1.3658 

max 5.7212 5.7306 2.3987 2.3922 0.0191 0.0191 1.6521 1.6626 

min -5.1031 -5.1067 -0.5210 -0.5220 -0.0705 -0.0703 -0.1118 -0.1115 

uς 

x10-2 

up 19.8052 19.8180 0 4.2621 3.6543 3.6636 10.1240 10.1369 

down 0 0 0 0 0 0 0 0 

max 19.8219 19.8317 0 4.2701 3.6543 3.6636 10.2232 10.2440 

min -0.2638 -0.2628 0 -0.1643 0 0 0 0 

σαα 

up 32.0528 32.0557 -10.4441 -10.4670 -2.1000 -2.1188 0.3965 0.3927 

down 18.1345 18.1394 4.5979 4.5857 0.4217 0.4219 7.5403 7.5542 

max 32.0528 32.0557 10.8333 10.8228 1.0373 1.0368 7.5403 7.5542 

min -29.9257 -29.9093 -10.4441 -10.4670 -2.1000 -2.1188 -8.6119 -8.6280 

σας 
max 31.0936 31.0955 0 0 0 0 0.7090 0.7126 

min -36.6918 -36.6841 -7.6042 -7.6306 -9.7470 -9.7618 -11.1936 -11.1882 

σςς 
up 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

max 1.6056 1.5961 1.0000 1.0000 1.0000 1.0000 1.0154 1.0127 

 

V. CONCLUDING REMARKS 

Various new zig-zag theories in displacement-based or mixed form, with a different representation of variables across the 

thickness and differently assumed zig-zag functions, so ultimately differently accounting for layerwise effects, or retaken 

from previous papers by the authors have been compared. Challenging elastostatic benchmarks with strong layerwise effects, 

under distributed or localized loading and simply-supported and clamped edges and with distinctly different material 

properties and thickness of layers, mainly in form of sandwich structures have been considered. 

All zig-zag theories have the same five functional degrees of freedom like FSDT and HSDT (that in the cases here examined 

are very inaccurate), so the number of unknowns is independent from the number of constituent layers. To compare theories 

under the same conditions, the same trial functions and expansion order are used to obtain solutions in closed form. 

The prefixed purpose was to show on a broader series of theories and benchmarks than in the former papers by the authors 

that whenever the expressions of coefficients of displacements are determined a priori by enforcing the fulfillment of the full 

set of interfacial stress compatibility conditions, of stress boundary conditions and of local equilibrium equations at a number 

of selected point sufficient to determine the expressions of all coefficients, the choice of the representation form and of zig-

zag functions can be arbitrary without the results changing. When all these conditions are mutually occurring, it has been 

shown that zig-zag functions can even be omitted, with self-evident advantages from the computational standpoint. 

Higher-order zig-zag theories, whose coefficients are redefined layer-by-layer by imposing the fulfillment of interfacial 

displacement and stress compatibility conditions, stresses boundary conditions at upper and lower bounding faces and local 

equilibrium equations at different points across the thickness proved to be always those most accurate and efficient, as a 

computational burden still comparable to that of ESL was required for all benchmarks. In particular, it was demonstrated that 

zig-zag functions can be freely chosen and variables can be assumed in an arbitrary form, i.e. different form one to another 

and from region to region across the thickness, without the results changing. According, a specific role does not need to be 

assigned to individual coefficients of displacements, being sufficient that the total number of coefficients to be determined 

corresponds to the number of conditions to be imposed. Consequently the expansion order of displacements can be freely 

chosen if this condition is met and at least it cubic/quartic. 

In fact theories ZZA, ZZA*, HWZZ, HWZZ_RDF, ZZA*_43, HSDT_34, HWZZM, ZZA-X1 to ZZA-X4 and ZZA-X1* to 

ZZA-X4* based on totally different forms of representation but satisfying the conditions mentioned above show 

indistinguishable results from each other and always prove to be the most accurate and efficient. The most efficient of all are 
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ZZA*, ZZA*_43, HSDT_34, ZZA-X1 to ZZA-X4 and ZZA-X1* to ZZA-X4* that omit the explicit presence of zig-zag 

functions, therefore they constitute a convenient option to much expensive 3-D finite element methods and discrete-layer 

models. 

A partial fulfillment of above mentioned constraints implies instead that the accuracy decreases and becomes strongly 

depending on assumptions made. Lower-order theories HRZZ, HRZZ4, MHWZZA, MHWZZA4 and in particular ones that 

incorporate Murakami’s zig-zag function MHR and MHR4 belong to this category. However in some cases they provide 

quite accurate results, but in general are rather inaccurate so, it is not possible to deduce any general rule about their usability. 

The only rule that can be drawn is that the higher-order zigzag theories of this paper with a redefinition of the coefficients 

obtained through the enforcement of the complete set of physical constraints are always accurate and efficient. 
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