
Doctoral Dissertation

Doctoral Program in Computer and Control Engineering (30thcycle)

Evolution and Fragility of Mobile
Automated Test Suites

By

Riccardo Coppola

Supervisor(s):
Prof. Maurizio Morisio

Doctoral Examination Committee:
Prof. Robert Feldt, Referee, Chalmers Tekniska Högskola AB
Prof. Paolo Tonella, Referee, Università della Svizzera italiana
Prof. Andrea Bottino, Politecnico di Torino
Prof. Fulvio Corno, Politecnico di Torino
Prof. Cristina Gena, University of Turin

Politecnico di Torino

2019

Declaration

I hereby declare that, the contents and organization of this dissertation constitute my
own original work and does not compromise in any way the rights of third parties,
including those relating to the security of personal data.

Riccardo Coppola
2019

* This dissertation is presented in partial fulfillment of the requirements for Ph.D.
degree in the Graduate School of Politecnico di Torino (ScuDo).

Acknowledgements

The PhD years are indeed quite a roller-coaster voyage. Nevertheless, I feel really
enriched by the experience gathered in this time window and I want to express my
gratitude to all the people that helped me to reach until its conclusion.

First and foremost, my thanks go to my tutor, Prof. Maurizio Morisio, for the
trust and responsibility he gave me selecting me as a PhD candidate, and basically
for making all of this possible; to Prof. Marco Torchiano, for being an important
guidance and inspiration for my research interests; to Luca Ardito for the countless
brainstorming sessions and precious advice. I would also like to mention (in strict
alphabetical order) Alysson, Amir, Diego, Erion, Francesco, Iacopo, Rifat and all
the other people who contributed to make Lab 1 the friendly and warm environment
I have always been very happy to work in.

My thanks also go to the nameless reviewers that helped me improve my works,
and to the many colleagues known in various locations during these years of work-
shops and conferences, with whom I had useful chats about (but not limited to) my
research fields. In particular, I would like to mention Dr. Emil Alégroth, for the
collaboration from which some researches detailed in this manuscript sparked.

Lastly but not less importantly, in a rapid glance outside the world of academia, I
would like to wholeheartedly thank my family, for its long-distance yet continuous
and fundamental support over all these years; the loyal fellows I have known back
in the days of high school and bachelor’s in my hometown, who still ring my
phone albeit being spread at varied latitudes; the assorted bunch of folks populating
with me the disastrously gloomy landscape of Turin, with whom I fuel the most
heartfelt discussions about topics of very questionable importance. And of course
Joy, for being an inexhaustible source of the indispensable feeling that her name
itself suggests.

Abstract

Context. Android applications have reached a level of diffusion and complexity that
was once exclusive of desktop computing, hence demanding a thorough validation
and verification phase to ensure that they meet their requirements. Such need
especially applies to their GUIs (i.e., Graphical User Interfaces) through which
most of the interaction with the final user is performed. However, although many
approaches, techniques and tools exist to test Android apps, evidence from the
literature suggests that GUI testing is generally limited among practitioners.

Goal. The main goals of the studies reported in this thesis have been: (i) assess the
usability of existing GUI testing techniques applicable to Android apps; (ii) quantify
the adoption of existing tools by developers from the open-source environment; (iii)
investigate the amount of effort needed in maintaining test suites during their co-
evolution with the AUT (Application Under Test) and the principal reasons behind
the interventions; (iv) identify the main issues faced by Android testers, and provide
guidelines and tools to aid reducing their impact on testing design and maintenance.

Method. These goals were pursued by performing five different studies, after a
preliminary exploratory study on a popular open-source app. An experiment with
Graduate students and a survey with developers from the industry were conducted
in order to gather qualitative information about the usability of testing tools and
techniques, and to understand what are the needs and difficulties felt by different
categories of users of those tools. Starting from a mining of all tested Android
applications published on GitHub, a set of metrics for quantifying testware evolution
and maintenance and a taxonomy of maintenance reasons were defined and validated.
Finally, a tool that leverages the benefits of two GUI testing techniques (Layout-
based and Visual) was implemented and validated.

Results. The studies showed that the diffusion of testing tools is limited on the set
of projects mined from GitHub, the largest context for this kind of quantitative exper-

v

iments up to date. It is deduced that GUI testing frameworks are characterized by a
steep learning curve and are often considered imprecise by developers. Additionally,
test suites suffer from many types of fragility, requiring a relevant maintenance effort
(estimated as 5% of total development effort). To mitigate the fragility issues, the
TOGGLE tool has been developed. The implemented translational approach proved
to be able to relieve the testers from part of the effort in maintaining test suites, and
mitigate the drawbacks of the two approaches that were considered in the studies.

Conclusion. In summary, Automated GUI testing frameworks for Android are
still far from being widely adopted by either open-source or industry developers,
and a relevant reason for this missing diffusion is their fragility to the evolution of
the tested AUT. The results of the study gathered in this thesis suggest that there is
still room for improvement of existing testing techniques to mitigate their current
drawbacks. The proposed translational approach can serve as a first effort in reducing
the complexities of co-evolving mobile apps along with their testware.

Contents

List of Figures xi

List of Tables xiv

1 Introduction 1

1.1 Research Goals and Questions . 2

1.2 Dissertation Structure . 5

2 Background 7

2.1 System and GUI Testing . 7

2.2 Classification of Automated GUI testing techniques 9

2.2.1 Evolution of GUI testing tools 10

2.3 The Android application framework 11

2.3.1 Android Apps . 12

2.4 Mobile and Android App testing 15

2.4.1 Peculiarities of Mobile testing tools 15

2.4.2 Categories of Mobile testing tools and services 16

2.5 Challenges in Mobile app testing 20

2.5.1 Fragmentation . 21

2.5.2 Testing Hybrid and Web-Based applications 23

2.6 Maintenance of Automated tests 24

Contents vii

2.6.1 Definition of Fragile GUI Tests 25

3 Research Design and Approach 27

3.1 Overall study design . 27

3.2 Selected testing tools for the studies 30

3.2.1 Selected Layout-based testing tools 30

3.2.2 Selected Visual GUI testing tools 33

3.3 Mining of Android repositories from GitHub 34

3.3.1 Search for Android projects 34

3.3.2 Search for Testing Tools code 37

4 Study 0: Case study with K-9 Mail 39

4.1 Study Design . 39

4.2 Results . 41

4.2.1 Implementation of test cases in different releases 41

4.2.2 Changes in Test Suite . 45

5 Study 1: Survey with mobile developers from the industry 47

5.1 Study design . 47

5.1.1 Threats to Validity . 50

5.2 Results . 50

5.2.1 Adoption of mobile testing techniques and tools 50

5.2.2 Peculiarities of mobile application testing 53

5.2.3 Challenges and desires of mobile app testers 54

6 Study 2: Controlled experiment with Graduate Students 58

6.1 Study design . 58

6.1.1 Experimental procedure 60

viii Contents

6.1.2 Threats to Validity . 63

6.2 Results . 65

6.2.1 Demographic characteristics of the sample 65

6.2.2 Productivity and Quality of developed test suites 65

6.2.3 Errors performed in test scripts 68

6.2.4 Usability of testing tools 69

6.2.5 Preference towards Layout-based or Visual GUI testing tools 76

7 Study 3: Measures of Diffusion and Evolution of Testware in OS projects 78

7.1 Study design . 78

7.1.1 Adoption and size metrics 80

7.1.2 Test Evolution metrics . 81

7.1.3 Metrics computation . 84

7.1.4 Threats to Validity . 86

7.2 Results . 88

7.2.1 Diffusion and Size measures 90

7.2.2 Evolution measures . 94

8 Study 4: Taxonomy of fragility causes 97

8.1 Study Design . 97

8.1.1 Grounded Theory and Taxonomies 98

8.1.2 Diff Files Analysis . 99

8.1.3 Threats to Validity . 101

8.2 Results . 101

8.2.1 Modification Causes . 102

8.2.2 Diffusion of Modification Causes and Fragility Occurrences 113

Contents ix

9 Study 5: Layout-based vs Generated visual test cases: An experiment
with TOGGLE 118

9.1 Motivation . 119

9.1.1 Motivating Example: a test script for K-9 Mail 121

9.2 Layout-based to Visual Translator Architecture 126

9.2.1 Enhancer . 127

9.2.2 Executor . 132

9.2.3 Log Parser . 136

9.2.4 3rd generation script creator 138

9.3 Visual to Layout-based GUI test scripts translator (Proof of Concept) 140

9.4 Experimental Validation . 142

9.4.1 Experiment Design . 142

9.4.2 Threats to Validity . 145

9.4.3 Experiment Results . 146

10 Revisit of Study Findings 153

10.1 Study 1 - Survey with mobile developers from the industry 153

10.2 Study 2 - Controlled experiment with Graduate students 155

10.3 Study 3 - Measures of Diffusion and Evolution of Testware in OS
projects . 157

10.4 Study 4 - Taxonomy of Fragility causes 159

10.5 Study 5 - Layout-based vs Generated visual test cases: An experi-
ment with TOGGLE . 162

11 Conclusion and Future Work 164

References 167

Appendix A Summary of all Research Questions and Sub-questions 176

x Contents

Appendix B Running Sample of Metrics Computation 178

Appendix C Translated Espresso Commands 181

C.1 Espresso Commands . 181

C.1.1 Click actions . 181

C.1.2 Keyboard actions . 182

C.1.3 Swipe actions . 182

C.1.4 Special actions . 183

C.2 Translation to 3rd-generation specific syntax 183

Appendix D Publication List 186

List of Figures

2.1 V-Model for Software Development Process 8

2.2 Android Software Stack . 12

2.3 Relationship between activities and GUI in the Android OS. 14

2.4 Concepts about Automated functional testing tools for mobile appli-
cations (Tramontana et al. [97]) 16

2.5 Relative screen sizes of Android devices available at August 2015
(source: https://www.xda-developers.com) 22

2.6 Different layouts inflated for the same Activity on different de-
vices (source: https://developer.android.com/training/multiscreen/
screensizes) . 22

3.1 Search procedure for Android projects and test classes associated
with the considered testing tools 37

4.1 Screen captures from K-9 Mail, release v5.010 40

4.2 User interface differences between release v2.995 and v3.309 of K-9
Mail. 43

6.1 Screens and Activities of Omni Notes app 59

6.2 Experiment with graduate students: Violin plot of delivered and
working test cases . 66

6.3 Omni-notes menu button . 69

6.4 Non-working assertion generated by the Espresso Test Recorder . . 69

https://www.xda-developers.com
https://developer.android.com/training/multiscreen/screensizes
https://developer.android.com/training/multiscreen/screensizes

xii List of Figures

6.5 Experiment with graduate students: distributions of answers to Likert
questions . 70

6.6 Experiment with graduate students: answers to question The user
scenario descriptions were clear to me 71

6.7 Experiment with graduate students: Word Clouds based on the
answers to questions 2.5 and 2.9 73

6.8 Experiment with graduate students: perceived Obstacles to Visual
Testing . 73

6.9 Sleep instructions generated by the Espresso Test Recorder 74

6.10 Experiment with graduate students: perceived Obstacles to Layout-
based Testing . 75

6.11 Experiment with graduate students: answers to question 2.10 Which
tool would you choose if you had to perform visual testing again? . 76

7.1 Number of Android projects mined from GitHub and associated
with the six considered testing tools, after each step of the filtering
procedure . 89

8.1 Graphic taxonomy of modification causes 103

9.1 TOGGLE motivating example: Screens and Activities traversed by
the authentication use case . 123

9.2 TOGGLE motivating example: Modification in the layout file be-
tween v1 and v2a . 124

9.3 TOGGLE motivating example: Graphic changes in Screen 3 between
v1 and v2b . 126

9.4 TOGGLE: Architecture of 2nd to 3rd generation translator 127

9.5 TOGGLE - Enhancer: Sample input Espresso test script 130

9.6 TOGGLE - Enhancer: Sample enhanced Espresso test script 131

9.7 TOGGLE - Executor GUI: project selection 133

9.8 TOGGLE - Executor GUI: AVD creation 133

List of Figures xiii

9.9 TOGGLE - Executor: Screen Capture extracted for the Main Activity
of the Omni Notes application . 135

9.10 TOGGLE - Executor: Screen Dump extracted for the Main Activity
of the Omni Notes application (excerpt) 135

9.11 TOGGLE - Executor: Log extracted after the execution of a test
script on the Omni Notes application 136

9.12 TOGGLE - Log Parser: ToggleInteraction Class 137

9.13 TOGGLE: Architecture of the translator from Visual to Layout-based
GUI testing tools (Proof of Concept) 140

9.14 TOGGLE: Graphical summary of individual test success rate 147

9.15 TOGGLE: Average success rate by tool and app with 95% CI 148

9.16 TOGGLE: Proportion of passing, flaky and failing translated test cases148

9.17 TOGGLE: Average Execution time, by tool and app 150

9.18 TOGGLE: Average Execution time normalized by interaction, by
tool and app . 150

B.1 Diff file for test class TestAlertForumActivity.java of WheresMy-
Bus/android, between releases 1.3.0 and 1.4.0. 180

List of Tables

1.1 Studies detailed in the thesis . 3

3.1 Goals of the thesis . 29

3.2 Performed studies and main research questions 29

3.3 Details of performed studies . 29

3.4 Characteristics of the selected Layout-based GUI Testing Frameworks 30

4.1 Test cases defined for K-9 mail . 40

4.2 Test suite implementation on various versions of K-9 Mail, with
Espresso, UIAutomator and Selendroid. 44

4.3 Tests compatible with previous versions, with Espresso, UIAutoma-
tor and Selendroid. 45

4.4 Causes of fragilities in broken test cases. 45

4.5 Test suite implementation on various versions of K-9 Mail, with Sikuli. 46

4.6 Tests compatible with previous versions, with Sikuli. 46

5.1 Interviewed developers from the industry 48

5.2 Structure of the survey to developers from the industry 49

5.3 Survey with developers from industry: tools used by the respondents 52

6.1 Description of use cases for the empirical experiment with graduate
students . 61

List of Tables xv

6.2 Questions of the survey for undergraduate students 62

6.3 Experiment with graduate students: delivered and working test cases 65

6.4 Experiment with graduate students: null hypotheses about Produc-
tivity and Quality . 66

6.5 Experiment with graduate students: statistics about recorded and not
recorded layout-based test suites 67

6.6 Experiment with graduate students: wilcoxon tests for Likert an-
swers of the survey . 70

7.1 Defined metrics for the computation of diffusion and evolution of
test suites for Layout-based GUI testing 80

7.2 Acronyms used for Diffusion and Size Metrics 88

7.3 NTR, NTC, TTL, TLR per testing tool: average and median (in
parentheses) values for master release. 88

7.4 Acronyms used for Evolution Metrics 93

7.5 Measures of the evolution of test code (averages on the sets of
repositories) . 93

7.6 Percentage of projects without modifications in test suites, classes
and methods . 95

8.1 Absolute (relative) frequency of occurrence of modification causes . 114

8.2 Frequency of occurrence of modification causes 117

9.1 TOGGLE motivating example: Steps for the Authentication use case
of K-9 mail . 122

9.2 TOGGLE motivating example: Retrieved IDs for Layout-based test
case . 122

9.3 TOGGLE motivating example: Retrieved images for the EyeAuto-
mate test script . 124

9.4 TOGGLE - Enhancer: Arguments for translated interaction types . . 130

9.5 TOGGLE: devices supported by the Executor for test case execution 132

xvi List of Tables

9.6 Translation alternatives . 139

9.7 TOGGLE: sleep times introduced in generated test scripts 144

10.1 Study 1: Answers to the Research Questions 154

10.2 Study 2: Answers to the Research Questions 155

10.3 Study 3: Answers to the Research Questions 157

10.4 Study 4: Answers to the Research Questions 160

10.5 Study 5: Answers to the Research Questions 162

A.1 Summary of Research Questions and sub-questions 176

B.1 Intermediate measures for project WheresMyBus/android 179

B.2 Test class statistics for project WheresMyBus/android 179

C.1 TOGGLE - 3rd generation test script creator: Translation from Tool-
agnostic instructions to Tool-specific commands 183

Chapter 1

Introduction

At its ninth release, the Android operating system has affirmed as the choice of nearly
90% of mobile users as of Q2 20181, and the most popular among all OSs regardless
of the platform, as of Jan 20192. Today’s mobile apps have reached a complexity that
is comparable to that of desktop applications, and that should encourage a thorough
Verification and Validation phase, with a significant focus posed on testing their
GUIs (i.e., Graphical User Interfaces), since most of the interactions with the final
users are carried through them.

At the same time, in industrial practice, there is a continuous push for faster
delivery of software, with the agile trend and continuous integration seen in any
domain of software development [10]. To facilitate these practices, automated
validation and verification is nowadays a necessity, and companies apply automation
to many levels of testing.

However, regardless of the centrality of the GUIs and the push for continuous
integration, there is evidence in the literature about a lack of adoption of automated
GUI testing techniques for mobile apps. While automated lower-level (i.e., unit or
integration) testing is a widespread practice, GUI testing is performed most of the
times manually, and at high expense [21]. Even though there is evidence that relevant
players of the industry perform structured and automated testing of the GUIs of
their applications [4], several studies in academic literature showed that open-source
mobile developers rarely adopt automated testing techniques in their projects [67].

1https://www.statista.com/statistics/266136/global-market-share-held-by
-smartphone-operating-systems/

2http://gs.statcounter.com/os-market-share

https://www.statista.com/statistics/266136/global-market-share-held-by
-smartphone-operating-systems/
http://gs.statcounter.com/os-market-share

2 Introduction

This lack of adoption may be justified by several characteristics that are proper
of mobile apps, like the sensitivity to many context events, the large amount of
devices with which the apps must provide compatibility (i.e., device fragmentation),
the fast evolution of projects, the existence of many different frameworks for app
development that make the same automated tools inapplicable to all projects [83],
and finally the issues of fragility of test cases, that are easily breakable even by
small changes in the AUT (i.e., Application Under Test) [43]. At the same time,
intrinsic drawbacks are exhibited by GUI testing frameworks themselves, which may
contribute to resilience in adopting them [57].

Albeit several analyses of the adoption of automated GUI testing frameworks
were available in the literature at the beginning of the work documented in this thesis,
no prior effort in quantifying the characteristics of testware (in terms of relevance
with respect to production code, amount of maintenance needed during the evolution
of the projects, and fragilities of test cases) was applied to large-scale software
repositories. The issue of fragility of test cases, already discussed for web-based
applications [62], was still not described for mobile apps, and no discussion of
the most common causes of test breakage and maintenance was available. Finally,
while the research for new techniques of automated GUI testing had proved the
effectiveness and benefits of different approaches (e.g, layout-based or visual testing
tools), and existing tools have proved the feasibility of a combined translational
approach for web-based tests [63], no combined use of the techniques has been
studied in detail for mobile apps.

Starting from a case study on a popular Android app, and with exploratory studies
to assess the issues faced by developers and master’s students when approaching
GUI testing frameworks, the work detailed in the remainder of this thesis has been
designed to fill the research gaps discussed above.

1.1 Research Goals and Questions

The objective of this thesis can be explained by defining four main goals:

• Goal 1 - Perception and Usability: Investigate the ease of use of existing
Android testing tools, and the perception that potential users have of them.

1.1 Research Goals and Questions 3

Study Research Question Goals Addressed

S1: Survey with mobile de-
velopers from the industry

RQ 1 - What is the perception of GUI
testing for Android apps among prac-
titioners from the industry?

G1, G3, G4

S2: Controlled experiment
with Graduate Students

RQ 2 - How usable are GUI testing
tools and what is the productivity of
graduate students using them?

G1, G4

S3: Measures of Diffusion
and Evolution of Testware
in OS projects

RQ 3 - What is the adoption and typ-
ical evolution of test suites with auto-
mated GUI testing frameworks among
Android open source projects?

G2, G3

S4: Taxonomy of fragility
causes

RQ 4 - Why and with which fre-
quency fragilities occur in tested An-
droid projects?

G3

S5: Layout-based vs Gen-
erated visual test cases: An
experiment with TOGGLE

RQ 5 - What is the dependability and
performance of visual test cases gener-
ated by translation?

G3, G4

Table 1.1 Studies detailed in the thesis

• Goal 2 - Adoption and Size: Quantify the adoption of such tools by industry
and OS developers, and investigate the size and relevance of testware in tested
Android apps.

• Goal 3 - Evolution and Fragility: Quantify the effort needed in maintaining
testware during the evolution of an Android project, and identify the main
causes of test fragility.

• Goal 4 - General Android testing issues: Identify common challenges in
performing Android testing, and find possible guidelines to mitigate such
challenges.

To purse the four main goals, five different studies – plus a preliminary ex-
ploratory case study – were performed. Each study was tailored to answer a high-
level Research Question, which pertained one or more of the Goals.

Table 1.1 summarizes the studies described in this dissertation, and emphasizes
the link between the Research Question answered in each study and the high-level
goals of the thesis.

4 Introduction

The first study wanted to capture the perception of automated testing among
developers from the Italian industry, and to understand what are the factors push-
ing them towards its adoption or, on the other hand, discouraging it. The study
was performed by means of a qualitative survey subministrated to the identified
respondents, about the perceived advantages and disadvantages of automated testing
and its maintenance, and about the perceived peculiarities of Android and mobile
testing. The second study had the aim of understanding how usable are GUI testing
tools of different nature that can be applied to mobile applications; to this purpose,
a controlled experiment was conducted to measure the productivity of graduate
students approaching the different techniques. Again, a qualitative survey was sub-
ministrated to the students, to capture their perception about the techniques and
mobile application testing.

To provide a quantitative counterpart to the analysis of the interviewed developers’
responses, a set of metrics has been defined, to characterize (i) the diffusion of
available testing tools among open-source Android projects, (ii) the average size
of test suites developed with a given testing tool, and (iii) the evolution and the
amount of maintenance needed by test code during the normal evolution of the
tested software project. The metrics represent a novel contribution to the general
field of software evolution and maintenance, being at a finer level of detail than
other change metrics already available in the literature [96]. The study involved the
mining of Android open-source repositories from the GitHub platform, and allowed
the collection of a corpus of diff files that could be analyzed to understand the
motivations behind maintenance operated on test cases. The fourth study presented
in this thesis was an application of the Grounded Theory technique on the set of
collected diff files, to infer a taxonomy of reasons for modifications in test code.
Taxonomy of change reasons have been already derived for web-based applications
[50]; however, inferring a new taxonomy specific to Android test code changes is
justified by the different nature of Android applications and of the way their GUIs
are described.

While all other studies followed mainly an empirical approach, the last study
detailed in this dissertation followed an engineering approach to provide a solution
to some of the issues related to Android testing, and included the full design and
development of a tool for aiding Android GUI testing. Specifically, the results of
the interviews to the developers suggested that the frequent maintenance needed and
the high device fragmentation (i.e., the necessity of porting the same test cases to

1.2 Dissertation Structure 5

many devices) are among the biggest issues faced by testers of mobile applications.
The frequent maintenance was also quantitatively confirmed by the analysis of the
history of Android repositories hosted on GitHub, along with a relatively scarce
diffusion of automated testing tools due to those inherently high costs for adoption
and maintenance. Additionally, the taxonomy of modification causes highlighted
several trivial changes that happen quite frequently during the normal evolution of
an Android app, and that can have severe impacts on the maintenance needed by
either scripted or visual test suites. The final objective of the thesis was hence to
design a tool to fulfill the following purposes:

• Leverage the benefits of two different technologies of testing tools to counter
their drawbacks;

• Partially automate the creation of tests by allowing the reuse of existing ones
written with other tools;

• Reduce the impact of device fragmentation on the total testing effort;

• Reduce the needed maintenance effort introduced by failing test locators.

The aims above led to the definition and design of the proof of concept of an
Android-specific tool, implementing a translational approach from layout-based to
visual test cases, and vice-versa. The tool partially performs a knowledge transfer
of the PESTO tool – defined for the translation of layout-based web test scripts to
visual tests [63] – to the Android domain. The applicability of the approach to real
test cases on popular Android applications and the provided benefits were finally
measured in the experiment detailed in Study 5.

1.2 Dissertation Structure

The remainder of the present thesis can be summarized as follows:

• Chapter 2 provides positioning for the work described in this thesis. Defini-
tions of System testing, GUI testing and Mobile testing are provided, along
with basic concepts of Android development and its issues.

6 Introduction

• Chapter 3 provides a description of the studies adopted during this PhD,
and describes the preliminary parts of the study that were common to all the
following sections of the thesis.

• Chapter 4 to 9 describe the individual studies that were performed. For each
study, its design is described in detail, along with the decomposition of the
high-level Research Question that the study answers. Results and threats to
the validity of the individual studies are also discussed.

• Chapter 10 summarizes the outcomes of all the studies performed, providing
comparisons with the current state of the art and related literature.

• Chapter 11 concludes the thesis, with a roadmap of future work and a sum-
mary of contributions that can be leveraged immediately by practitioners and
researchers working in the field of Android development and testing.

Chapter 2

Background

The work presented in this thesis is positioned in the areas of software development
processes, software Validation and Verification, Automated Software Testing, and
Mobile Application Development.

This section provides background information about the basic concepts of End-2-
End testing, especially when the software is tested interacting with it through its user
interface. An overview of the different generations and techniques for performing
GUI testing is also provided.

Then, the characteristics of Android apps and of the Android application frame-
works are detailed, along with the main peculiarities of Android testing and a review
of the techniques and tools for testing Android apps through their GUIs that are
available in the literature.

Finally, the concept of fragility is introduced, along with a discussion of prior
analysis performed in the literature about testing fragility in other domains, leading
to the definition that has been adopted for all the studies that constitute the present
thesis.

2.1 System and GUI Testing

System testing is the testing step that is performed between Integration testing and
Acceptance testing (see figure 2.1). Its purpose is to execute test cases to verify the
whole software system. Typically, System Testing is a form of Black Box testing.

8 Background

Fig. 2.1 V-Model for Software Development Process

The main activities performed by System testing are to test each input provided to
the application in order to verify the respective output, and to test the user scenarios
with the software product. When other peripherals and other software systems are
tested along with the Software Under Test (SUT), the procedure is typically referred
to as End-To-End Testing.

There are many different forms of System Testing, e.g. Usability testing (testing
the ease of use of the complete software as perceived by its final users), Load testing
(checking how a software behaves under real-life loads), Functional testing (verifying
that each function of the software is compliant with the specified requirements).

GUI Testing is a form of system testing that can be applied to software which
is provided with a Graphical User Interface. A general definition of GUI testing is
provided by Banerjee et al. [19] as:

GUI testing is System Testing of software that has a graphical user
interface (GUI) front-end. During GUI testing, test cases – modeled as
a sequence of input events – are developed and executed on the software
by exercising the GUI widgets.

The first and most immediate option for performing GUI Testing is to manually
execute test cases on the SUT. The information shown by the GUI, the flow between
the different screens of the SUT and the responses to the provided inputs are hence

2.2 Classification of Automated GUI testing techniques 9

verified by human testers for conformity with the requirements. As discussed by
Kropp et al. [59], the manual execution of test cases is rarely exhaustive and error-
prone, and the performed tests are not easily reproducible. Furthermore, it requires
relevant effort from testers, especially with the capabilities offered by modern user
interfaces.

On the other hand, automated GUI testing techniques may define sets of scripts to
exercise exhaustively – in a quick and repeatable way - all the main functionalities of
a GUI. In addition to that, automated test scripts can be also used to test the presence
of regressions, in the transition between two consecutive releases of an application.

As reported by Tramontana et al. [97], even the automation of simple tasks in the
field of GUI testing can make feasible the execution of complex testing processes,
that are instead too expensive for manual testing approaches.

2.2 Classification of Automated GUI testing techniques

Several approaches have been explored in the literature for performing GUI testing
of applications of any domain. A systematic mapping of available GUI testing
techniques has been performed by Banerjee et al. [13]. Automated GUI testing
tools can be classified according to various aspects: the type of oracles that they use,
the use of models (and the specific model adopted) for the description of the user
interfaces, the way the inputs for the GUI are generated, the language that is used to
write test scripts for re-execution of the same test cases.

For being defined as automated, GUI testing tools do not need to automate the
entire workflow of testing, but at least some of its phases, e.g. the execution of test
scripts. Regarding the generation of test cases, several techniques still rely on the
manual creation of test scripts by the tester/developer in a specific syntax.

Capture & Replay testing tools, instead, rely on recording the operations per-
formed on the GUI from a tester, that are translated into a test script by an engine
and are then replicable on the AUT, to mimic human usage.

Model-based testing (MBT) techniques are black-box approaches that rely on
models of a system under test and/or its environment to derive test cases [98]. Test
cases are generated based on an abstraction of the SUT, according to a specific
test selection criteria (e.g., coverage of the structural model or coverage of the

10 Background

requirements of the SUT). Most typically, the models used by these approaches are
finite-state machines, state chars or UML diagrams. The model can either be gener-
ated by the tester/developer, provided as part of the requirements, or automatically
reverse-engineered from the AUT.

Random (also called fuzzy) testing techniques rely on aleatory sequences of
inputs that are fed to the application, in order to trigger potential defects and crashes.
Models of the GUI can be used by random test tools to distribute the inputs in
structured ways that can resemble typical human interactions with the SUT.

Automated GUI testing techniques may adopt different testing oracles (i.e.,
mechanisms to understand whether a test case has passed or failed). State references
are one of the most common forms of oracles: in this case, states of the GUI extracted
during a first execution of the AUT – known to be correct – are used to verify further
executions of test cases. In Crash Testing no explicit oracles are used, and instead a
test case is marked as failing if the AUT crashes during its execution, otherwise is
considered passing. Formal verification methods use models or specifications of the
AUT, to verify the correctness of the output of a test case.

GUI testing techniques are a relevant aid to verify the dependability of applica-
tions whose features are strictly tied with their graphical appearance, and that are
based on constant interaction with the final user. Many efforts, for instance, have
been devoted to applying the concepts of model-based testing for web applications,
where models are used to describe the transitions between different screens of the
SUT and their content [15].

2.2.1 Evolution of GUI testing tools

Automated GUI testing tools – according to a definition formulated by Alegroth et
al. and adopted for the remainder of this thesis – can also be classified in different
generations [8], according to the level of abstraction they use for interacting with the
GUI when defining sequences of commands or executing them:

• First Generation (or Coordinate-based) testing tools uses exact coordinates on
the screens of the AUT for identifying the places where interactions have to be
performed. Coordinates are recorded during manual interaction with the AUT.

2.3 The Android application framework 11

Coordinate-based testing tools have no knowledge of the components of the
screens of the application.

• Second Generation (or Layout-based) testing tools are based on a model of
the graphical user interface that is decomposed in layouts and hierarchies of
components. Properties and values are associated with each component of the
GUI, thus allowing to identify them. For instance, IDs in the definition of the
screen layout hierarchies can be leveraged to unambiguously identify elements
of the user interface on which interactions have to be performed.

• Third Generation (or Visual) testing tools use image recognition in order to
find the elements of the GUI on which to perform interactions, and to provide
assertions about the correctness of the SUT after the execution of a given
sequence of interactions. Exact screen captures of the components are hence
used at each step of the test cases.

Coordinate-based testing tools, nowadays, are rarely adopted because of their
scarce adaptability to even minor changes in the GUIs and hence their lack of
robustness. Layout-based testing tools and Visual testing tools exhibit different
benefits and drawbacks to testers. Visual testing is more appropriate to test the actual
appearance of the application, better recreating the usage of a final user; on the other
hand, Layout-based testing defines every interaction based on the properties of the
GUI components and not on their appearance, hence it is more appropriate to verify
a proper composition of the screens of the application, and a proper functioning of
the screen hierarchy.

Studies in the literature have proved the advantageous applicability of Visual GUI
testing tools to industrial contexts [7][3] and the benefits of approaches combining
Layout-based and Visual techniques [8]. However, the adoption of those tools is
hampered by lesser robustness and performance if compared to Layout-based tools.

2.3 The Android application framework

Android is an open-source Operating System paired with an application development
platform that is based on the Linux Kernel. The full Android Software Stack1 is

1https://developer.android.com/guide/platform/

https://developer.android.com/guide/platform/

12 Background

Fig. 2.2 Android Software Stack

shown in figure 2.2. The Linux Kernel is leveraged by higher-level elements of
the Android platform for functionalities like threading, memory management and
security features.

Upon the Linux Kernel stands the Hardware Abstraction Layer, a set of standard
interfaces that is used to abstract the hardware capabilities of the device to the upper
layers of the platform. To use specific functions offered by the operating system,
an application will have to require the related permission on a specific file that is
located in the main directory of any Android project, namely the Manifest XML file.

An instance of the Android Runtime (ART) is launched for every application, to
which it is also associated a process of its own. The Android Runtime is paired with
a set of Native C/C++ Libraries, needed by many components and services of the
Android operating system.

The API Framework is the set of classes that is available to Android developers
for building their apps. The View System provides developers the possibility of
building the GUIs of their applications, through which all the interactions from the
users are gathered and most functionalities are exposed. Placed on top of the Android
stack, System Apps constitute the set of core default apps with which every release
of the Android framework is equipped.

2.3.1 Android Apps

A general definition for a Mobile App has been provided by Muccini et al. as ”an
application running on mobile devices and or/taking in input contextual informa-
tion”[83]. According to this definition, a Mobile Application adds to its mobile

2.3 The Android application framework 13

nature (i.e., it can run on a movable electronic device) also a context-aware nature,
in the sense that the application is constantly adapting and reacting to the computing
environment in which it is run.

According to the way they are programmed and the way they leverage the
components offered by the specific frameworks they are developed for, Mobile Apps
can be classified into three different categories: Native, Web-based and Hybrid apps.

Native Apps are written in a specific programming language, for a specific device
platform. Java (recently paired with Kotlin) is used to write Android Native Apps.

Web-based Apps are applications that are loaded in web browsers and that provide
the user with functionalities and interactions that are specifically intended to be used
by a mobile device.

Hybrid Apps combine the principles of Native and Web-based apps, leveraging
components that are specific to a specific platform to load, at run-time, content from
the internet. On Android, the dynamic loading of the content of Hybrid apps is
performed with the usage of WebViews.

The Android development platform provides four basic components with which
Native apps can be built. Each component has a specific life cycle, which is driven by
the operating system with the invocation of a set of methods (e.g., the onCreate func-
tion which is the first one invoked by a new instance of a component). Components
belong to the following classes:

• Activities are in charge of building the user interface. Typically, each activity
is dedicated to a screen or a use case of the application. Activities handle all
responses that are triggered by user inputs.

• Services manage long-running background operations carried by the app,
which do not need any interaction by the user (e.g., management of network
connections).

• Content Providers manage the data stored by the application, and the sharing
of information with other applications of the system.

• Broadcast Receivers respond to events that are sent by the Android system
and manage the way the app must respond to them.

14 Background

Fig. 2.3 Relationship between activities and GUI in the Android OS.

Activities (see figure 2.3) are hence the main components of any Android app.
Each activity defines and builds a user interface, composed by Views arranged
according to a particular layout. A layout is defined either programmatically or
statically inside an XML layout file, which is then inflated in the first operation
performed when transitioning into an Activity. In addition to the relative disposition
of the Views inside the device screen, layouts attach properties to the elements of the
user interface, e.g. unique ids that can then be used by the application to retrieve the
elements of the GUI on which to perform operations. Callbacks can also be attached
to the elements of the layouts, in order to trigger specific behaviours in response to
interactions performed by the user.

From Android API 12 Fragments have been introduced, in order to manage more
easily interfaces that must adapt in complex ways to different device screen size,
orientation, density and format.

The strict coupling between activities and screens of the user interface of a Native
app leads to an association of GUI testing for Android application of the practice of
testing the Activities of an app, and their life cycle.

2.4 Mobile and Android App testing 15

2.4 Mobile and Android App testing

Mobile Testing, as done by Gao et al. [41], can be defined as ”testing activities
for native and Web applications on mobile devices, using well-defined software test
methods and tools, to ensure quality in functions, behaviours, performance and
quality of service”.

There are different peculiarities of Mobile applications when it comes to testing
them, and scopes that are specific to the mobile scenarios. For instance, Anureet et al.
[16] list compatibility testing, performance testing, and security testing as primary
needs for Mobile applications. Several sources identify GUI testing as a prominent
testing need for all mobile applications, since GUI malfunctions for a Mobile app
can seriously hamper the experience provided to the user.

Several of the described approaches for automated GUI testing have been adapted
to the domain of Mobile applications in general, and specifically to Android apps.
Many studies in the literature tackle the challenge of automating the whole testing
procedure for Android apps, or parts of it (e.g., generation of models or execution of
test cases on multiple different devices).

2.4.1 Peculiarities of Mobile testing tools

In a systematic mapping study by Tramontana et al. [97] it is underlined that 122
of the 131 examined papers about mobile testing are about system testing, with a
relevant portion leveraging GUI-based approaches. The possible dimensions for the
characterization of automated testing tools proposed by the authors are shown in the
mind map in figure 2.4.

According to the mapping, studies in the literature can be classified according to
the procedures they automate: test case generation, test case execution, definition
and evaluation of oracles; the techniques detailed in about 20% of the examined
papers provided automation for the full testing process. About 10% of the papers, on
the other hand, illustrated techniques that provided automation for a single activity
of the testing process.

Testing techniques can make use of different artifacts to create testing tools. Both
white box testing tools, leveraging the source code of the application, and black
box testing tools, based on executables or bytecode of the apps, are available in the

16 Background

Fig. 2.4 Concepts about Automated functional testing tools for mobile applications (Tramon-
tana et al. [97])

literature. Other techniques leverage models of the user interface (i.e., model-based
testing techniques), collections of test cases, previously recorded user sessions or
repositories of common bugs to derive test cases.

As test oracles, studies in the literature used principally the detection of crashes
or exceptions as implicit oracles for test cases. Models of the behaviour of the
application, that can be obtained also by reverse engineering of the application, can
be used to identify the expected state for a given execution of the AUT. Visual oracles
(i.e., bitmap captures of the expected screens at the end of the test case execution)
are also considered.

Concerning the generation of the test cases, many testing tools existing in the
literature adopt a dedicated syntax to create repeatable test scripts that the testing
tool itself can launch. Some tools allow exporting the generated test cases in order to
make them launchable with other testing engines (e.g., JUnit).

2.4.2 Categories of Mobile testing tools and services

An overview of the testing tools that are available for Automated Mobile App Testing,
not only limited to GUI testing, has been provided by Linares-Vasquez et al. [65][68],
who subdivided the tools in the following categories: Automation APIs/Frameworks,
Record and Replay Tools, Automated Test Input Generation Techniques, Bug and
Error Reporting/Monitoring Tools, Mobile Testing Services. More details about the
typologies of tools, along with relevant works from literature presenting examples of
them, are given in the following.

2.4 Mobile and Android App testing 17

Automation APIs/Frameworks

Automation APIs are tools that provide means for interacting with the GUI or for
obtaining GUI-related information to describe the content of the screens and to
verify the state of the AUT. Testers typically leverage those APIs to manually write
down test scripts, that can then be launched and verified automatically. Many of
the automation frameworks leverage white or grey box approaches, which extract
high-level properties of the app (e.g., the list of the activities and the list of UI
elements contained in each activity) in order to generate events and traverse the GUI
[26].

While being among the most powerful tools for the expressivity of developed
test scripts and for the possibility of using such scripts also for Regression Testing,
the main shortcoming of GUI Automation Frameworks – as it will be detailed later –
is the very high maintenance cost during the normal evolution of the App to which
tests are associated.

Two testing tools officially developed by Android, Espresso2 and UI Automator3

are among the most widespread Automation Framework and APIs. UI Automation4

is a counterpart to UI Automator designed for testing the GUI of iOS apps; its
automation engine is now the basis for Appium5, a cross-platform testing tool able
to automate both iOS and Android apps. Other open-source and widely-adopted
alternatives in the literature are Robolectric6 [88] and Robotium7 [102].

Several commercial Automation APIs, like Calabash8 [52], Quantum9 and Qme-
try10, offer to testers the possibility of writing test cases in Natural Language.

2http://developer.android.com/training/testing/ui-testing/espresso-testing
3http://developer.android.com/training/testing/ui-automator
4https://developer.apple.com/library/archive/documentation/DeveloperTools/

Conceptual/testing_with_xcode/chapters/09-ui_testing.html
5http://appium.io
6http://robolectric.org
7https://robotium.com
8http://calaba.sh
9http://community.perfectomobile.com/posts/1286012-introducing-quantum-framework/

10http://qmetry.github.io/qaf/"

http://developer.android.com/training/testing/ui-testing/espresso-testing
http://developer.android.com/training/testing/ui-automator
https://developer.apple.com/library/archive/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/09-ui_testing.html
https://developer.apple.com/library/archive/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/09-ui_testing.html
http://appium.io
http://robolectric.org
https://robotium.com
http://calaba.sh
http://community.perfectomobile.com/posts/1286012-introducing-quantum-framework/
http://qmetry.github.io/qaf/"

18 Background

Record and Replay Tools

Record & Replay tools offer tester/developers the possibility of generating test scripts
by capturing the interactions performed on the AUT during an execution of its usage
scenarios to be tested.

The important advantages exhibited by Record & Replay tools are the registration
of test cases from the final user’s perspective, the low effort required for creating test
scripts if compared to manual writing down scripts using GUI Automation APIs, and
the possibility of creating tests without having information about the implementation
of the application. As well, these techniques expose several shortcomings when it
comes to the accuracy and the portability of the generated test scripts.

Several of the available Record & Replay Tools are conceived as extensions
of existing GUI Automation APIs, to provide another way of creating test scripts:
it is the case of Espresso Test Recorder11, Robotium Recorder12, Xamarin Test
Recorder13. Other examples of testing tools cited in the literature that leverage such
approach are RERAN [45], VALERA [53], Mosaic [48], Barista [39], ODBR [79],
and SPAG-C [64].

Automated Test Input Generation Techniques

Many tools available in the literature are used to generate sequences of inputs for the
applications to test. Most of the time, in these cases implicit oracles (i.e., triggering
crashes in the AUT make test cases considering as failing) are used. Automated
Input generation can be seen as a way to reduce the effort and cost of manually
writing test scripts for GUI Automation frameworks, or for capturing sequences of
interactions with the AUT. However, as reported by Choudary et al. [26], the tools
available in the literature still expose several issues especially in terms of efficiency
in finding bugs.

The generation of inputs, in its simplest form, can be random. Monkey14 is
official random testers provided by Android; another example from literature is
Dynodroid [70].

11https://developer.android.com/studio/test/espresso-test-recorder
12https://robotium.com/products/robotium-recorder
13http://www.xamarin.com/test-cloud/recorder
14http://developer.android.com/tools/help/monkey.html

https://developer.android.com/studio/test/espresso-test-recorder
https://robotium.com/products/robotium-recorder
http://www.xamarin.com/test-cloud/recorder
http://developer.android.com/tools/help/monkey.html

2.4 Mobile and Android App testing 19

Input Generation Techniques are instead said Systematic when the inputs are
not generated randomly, but in order to maximize some coverage function (e.g.,
code coverage, or Activity coverage). Examples from literature of Systematic Input
Generation Testing Approaches are AndroidRipper [13] and CrashScope [82].

Model-Based Input Generation techniques define sequences of inputs according
to a model of the user interface, that can be provided by the tester/developer or
obtained automatically by the tool itself. Examples from literature are MobiGUItar
[14] or Swifthand [25]. Advanced testing generation is not limited to model-based
approaches, with examples of tools featuring different input generation approaches.

Several recent tools have adopted the search-based approach to software testing,
adopting meta-heuristics (such as Genetic Algorithms) to automate or partially auto-
mate testing tasks like the generation of test data or test sequences [75]: Mahmood
et al. have presented EvoDroid, that leverages an evolutionary algorithm to generate
test cases [72]; Jabbarvand et al. have described two algorithms for energy-aware
test suite minimization [54]; Mao et al. introduced SAPIENZ, a multi-objective
search-based approach for the minimization of test sequence length, fault revelation
and coverage [73]. The SAPIENZ tool has had significant industrial impacts and has
been officially adopted by Facebook to test their mobile app15.

Bug and Error Reporting/Monitoring Tools

Under this category are considered all the tools used to track the unexpected be-
haviour of Mobile apps, either via user’s reports or through automated crash detection
mechanisms.

Examples of these tools are ODBR [79], which leverages the UI Automator
framework for documenting sequences of inputs that can lead to crashes in a given
Android app, and FUSION [80], which links information about the user experi-
ence with the app provided by the user itself with program analysis performed
automatically.

15https://code.fb.com/developer-tools/sapienz-intelligent-automated-software-testing-at-scale/

20 Background

Mobile Testing Services

Lastly, several online testing services are available for Mobile apps, typically in-
tended for tackling problems like device diversity and OS compatibility, and the
generally high cost and required effort for testing Mobile apps. Mobile Testing
Services typically use sets of different devices on which automated tests are ex-
ecuted, and can be used for traditional functional testing, but also for verifying
non-functional properties of Mobile apps like usability of the GUI, security, energy
consumption, localization.

To underline the importance for the Mobile industry of such services, it is worth
reporting that both Google (with Android Robo Test16) and Amazon (with Fuzz
Test17) recently released cloud service for the automated testing of Android apps.

2.5 Challenges in Mobile app testing

Developers typically face a specific set of challenges when building apps for one or
more mobile platforms. A study performed by Joorabchi et al. [55] includes among
the most relevant difficulties in the mobile development practices: the selection
of the proper nature of the app to be developed (i.e., Native vs. Web or Hybrid
applications); the limited capabilities of the typical device for a given platform;
the choice between reusing others’ code or writing from scratch; the multiplication
of time, effort and budget due to the multitude of devices and platforms the apps
must be able to run on (i.e. Fragmentation); the rapid changes of requirements and
typically rapid life cycle of an average Mobile app.

Those difficulties experienced when developing mobile (and, specifically, An-
droid) apps are reflected, if not magnified, in the practice of testing. Moreover,
Mobile app testing also has to take into account several aspects that can be com-
pletely overlooked when testing traditional desktop applications. Muccini et al. [83],
Kirubakaran et al. [56] and Kaur et al. [16] identified a set of characteristics of
Mobile apps leading to specific forms of non-functional testing: mobile connectivity
scenarios (i.e, coping with unreliable Wi-Fi or 3G connections) and rapid changes of

16http://firebase.google.com/docs/test-lab/robo-ux-test
17http://docs.aws.amazon.com/devicefarm/latest/developerguide/

test-types-built-in-fuzz.html

http://firebase.google.com/docs/test-lab/robo-ux-test
http://docs.aws.amazon.com/devicefarm/latest/developerguide/test-types-built-in-fuzz.html
http://docs.aws.amazon.com/devicefarm/latest/developerguide/test-types-built-in-fuzz.html

2.5 Challenges in Mobile app testing 21

connectivity type; limited resources of devices; data intensivity of the applications;
constant interruptions caused by system; very short time to market; very high amount
of multi-tasking and communication with other apps.

Due to the listed difficulties, there is a substantial unanimity in the literature
about a general tendency of Android developers to neglect automated testing, and
to rely instead on manual testing only. As it emerges from sets of interviews to
contributors to open-source projects performed by Linares-Vasquez et al. [67] and
by Kochhar et al. [57], the time constraints, lack of properly documented testing
tools, and high costs for developing and managing test artifacts are the main reasons
for such preference towards manual testing procedures.

2.5.1 Fragmentation

The Fragmentation concept (also known as Device Diversity) encompasses, for the
Android ecosystem, two different concerns [51]. Hardware-based fragmentation
refers to the fact that devices based on the same Android operating system run on
different processors, graphic cards, screen sizes, pixel densities. According to a
report of August 201518, more than 24 thousand different devices, built by more than
12 hundred vendors, were existing at the time, and many display sizes, ratios and
pixel densities could be found (see figure 2.5).

Software-based fragmentation refers to the fact that several versions of the
Android OS exist in parallel and that, at the same time, vendors and carriers may
offer customizations for apps and OS GUIs. Device fragmentation is a specific issue
of the Android ecosystem and not of Mobile development in general, being the
number of available devices and maintained versions of the OS for iOS apps very
limited.

Device fragmentation has relevant impacts on many aspects of Mobile develop-
ment. First of all, for coping with software fragmentation of the OS, developers must
cope with deprecated or even removed methods of the framework they use; hence,
apps may need to be developed differently for different versions of the OS [49][99].
Software-based fragmentation, especially for what concerns the customized versions
of the OS by different vendors, also creates concerns about the security of the apps
[104].

18https://opensignal.com/reports/2015/08/android-fragmentation/

https://opensignal.com/reports/2015/08/android-fragmentation/

22 Background

Fig. 2.5 Relative screen sizes of Android devices available at August 2015 (source: https:
//www.xda-developers.com)

Fig. 2.6 Different layouts inflated for the same Activity on different devices (source: https:
//developer.android.com/training/multiscreen/screensizes)

https://www.xda-developers.com
https://www.xda-developers.com
https://developer.android.com/training/multiscreen/screensizes
https://developer.android.com/training/multiscreen/screensizes

2.5 Challenges in Mobile app testing 23

From the point of view of system and GUI testing of Android apps, fragmentation
translates specifically to the need of verifying the correct inflation of the layouts,
which can be different to comply with the screen size, density and orientation of the
device (since the same Activity can adopt different layouts according to the current
orientation of the device: see figure 2.6). Layout-based, or 2nd generation, testing
techniques must hence consider the possible different widgets of the layouts that
are used to populate the Activities. Visual, or 3rd generation, testing techniques,
must cope with the elements of the interface possibly not appearing on the screen, or
appearing at different resolutions and hence invalidating the correct recognition of
the screen captures used as visual identifiers.

2.5.2 Testing Hybrid and Web-Based applications

The development of hybrid applications comes in handy when small teams are not
capable of building and maintaining several code bases for apps that are intended to
work on different platforms. Several frameworks are available for building hybrid
apps, e.g. React, Ionic, and Google’s Flutter.

While less prone to the fragmentation problem, Web apps, even when already
tested for regular browsers, should be specifically tested in mobile environments for
what concerns battery usage, connectivity issues, and performance [2]. GUI testing
of web applications is also fundamental, in order to verify that all the elements of
the user interface are visible, aligned and rendered in the same way as in the browser
interface. A limitation for testing Web applications in the Android environment is
the partial inapplicability of GUI Automation Frameworks specific to Android, and
in general of Layout-based testing tools, with many of the most widespread testing
tools (like Espresso or Robotium) providing limited or no support to what is loaded
inside WebViews.

As reported by Ahmad et al. [1], lack of access to platform features, changes in
contextual or environmental factors of the apps, integration and conformance issues,
and diversity in user interface add other layers of complexity and fragmentation
when testing hybrid Apps. United approaches, like Squish19, are typically at the
level of abstraction of the GUI only (3rdgeneration tools), and leverage Capture &
Replay approaches for test case generations.

19https://www.froglogic.com/squish/

24 Background

2.6 Maintenance of Automated tests

One of the biggest challenges of test automation – in general – is to keep pace
with the changes of the Application Under Test [69]. Maintenance constitutes a
significant cost for all forms of automated testing, that grows with the size of the
test suite and the coverage of the features of the AUT. Maintenance of test scripts
is required to keep them aligned with the varying requirements of the AUT [20], to
its design or simply to its expected behaviour. GUI test cases are expected to face
relevant maintenance costs, since (i) GUI tests are impacted by modifications in all
abstraction layers that underlie the GUI and (ii) test scenarios performed through the
GUI are typically longer than unit tests based on individual classes or modules of
the applications.

Testware maintenance has a growing cost with the amount of code changed in the
AUT, and often requires a certain level of knowledge of the changed implementation
details, in order to make the test cases perform the same tests on the new release of
the AUT [91]. Additionally, the maintenance burden of automated testware typically
increases with time, since the relative amount of test code with respect to production
code tends to increase with time [86]. As pointed out in a work by Berner et al.
[22], who also defined a theoretical cost model for the maintenance of automated
testing, testware maintenance can also depend on factors different than the amount
and frequency of changes performed on the AUT: among them, they cite missing
architecture for the test software, reimplementation of repetitive actions through test
cases instead of reuse, poor organization of the test code and test data, and missing
verification of testware itself. Alegroth et al., who performed an empirical analysis
of factors contributing to maintenance of GUI test cases, identified a set of thirteen
factors, ranging from technical (e.g., test case similarity, test case length and presence
of loops and flows in the test cases) to human (e.g., sequential mindset to test case
description), that contribute to those costs. The applicability of a testing technique
to a real context, hence, mainly depends on the likelihood of a positive Return on
Investment (ROI) when the AUT undergoes a reasonable amount of changes. In
industrial contexts, moreover, a proper education of developers and testers to the
possible costs of testware maintenance is fundamental: as Fewster reports, if the
maintenance of testware automation is ignored and not performed as soon as possible
to comply with the changes of the AUT, the update of an entire test suite can cost as
much or even more than re-performing all the test cases manually [40].

2.6 Maintenance of Automated tests 25

Several studies in the literature have measured the costs and benefits of state of the
art GUI testing techniques and compared them to the costs of manual testing. A case
study by Andersson and Pareto, for instance, compared the needed maintenance costs
by Capture and Replay testing techniques for GUI testing of desktop applications
[90]; it was highlighted that, if the applications have frequent releases, the adoption
of automated testing techniques may become a burden for developers rather than
an advantage, because of a lower cost-effectiveness when compared to manual
regression testing. Several related manuscripts in the literature have investigated
the applicability of various testing techniques in industrial settings: examples are
the work by Borjesson and Feldt [23] and by Alegroth et al. [6], who evaluated
the advantages of adopting Visual GUI Testing techniques respectively at Saab and
Siemens; Nguyen et al. considered maintenance costs among the most important
factors in the design of their model-based tool GUITAR [85].

2.6.1 Definition of Fragile GUI Tests

Fragile tests, as defined by Garousi et al. [43], are tests that are broken during the
evolution of an application by changes that are not related to the test logic itself
or to the specific features that they exercise. Test fragility represents a significant
maintenance issue for testware of all domains, and has been largely explored in the
literature.

Grechanik et al. [47] and Memon et al. [76] propose approaches for automatically
fix broken test cases for GUI-based applications; Gao et al. developed SITAR [42],
a technique to automatically repair test suites, modeling and repairing test cases
using Event-Flow Graphs (EFGs); Leotta et al. [61][62] reported the outcomes of an
empirical study about the fragility of GUI tests for web applications.

Through the studies reported in this thesis, the following definition has been
adopted for fragile GUI tests:

A GUI test case is fragile if it requires interventions when the application
evolves (i.e., between subsequent releases) due to any modification
applied to the Application Under Test.

GUI testing differs significantly from testing of traditional software. Being
system level tests, test cases developed with GUI automation frameworks may be

26 Background

affected by variations in the features of the app, but also from even small interventions
in the appearance and presentation of the screens by which the GUI is composed. A
large number of test case executions can be lead to malfunctions if they refer to GUI
elements that have been renamed, moved or otherwise altered [74, 77].

The adopted definition distinguishes (as fragile vs. non-fragile) tests that need
interventions because of any type of change in the AUT from tests that do not require
changes because of the evolution of the app, but that instead are just subject to
variations in the test logic or in the functions that are proper of the GUI Automation
Frameworks adopted.

The assumption behind the analysis presented in this thesis is that mobile test
cases – for which fragility was not previously explored by large-scale academic
studies – may be heavily subject to fragility, because (i) mobile apps mostly rely on
their GUIs for all the interactions with the users and data presentation; (ii) mobile
GUIs are subject to frequent changes during the app’s lifespan; (iii) albeit having
several similarities with web-based apps, mobile GUIs are described in specific ways
and their layout feature properties that are not present in other domains..

Chapter 3

Research Design and Approach

The work presented in this thesis mainly follows an empirical experimental approach,
using controlled experiment designs, surveys and mining from software repositories.
In the latest phase of the study, this empirical approach was paired with the develop-
ment of a testing tool, whose requirements and design were based on the results of
the previous works.

This chapter provides a summary of the studies that were performed to pursue
the three high-level goals of the thesis, that were detailed in section 1.

The selected testing tools and the mining from repositories, that were common
to most of the different studies, are also detailed in the remaining sections of this
chapter.

3.1 Overall study design

Five different studies have been performed in order to pursue the goals of this
thesis. Each study, except for a first exploratory case study, was tailored around a
principal research question, which was linked with one of the three high-level goals
of the study. Individual research questions were then subdivided into sub-research
questions, that are presented in detail in the individual chapters dedicated to the
studies.

Table 3.2 reports the names of the studies and the main Research Questions they
responded, along with the goal(s) they were linked to (a summary of the goals is

28 Research Design and Approach

reported in table 3.1 for ease of reading); table 3.3 reports the characteristics of said
studies; table A.1, in Appendix A, reports the full list of sub-research questions of all
the studies. A brief high-level description of the studies is provided in the following:

• Study 0 - Case study with K-9 mail: an exploratory case study on an open-
source Android application, in order to assess – through qualitative analysis –
the main issues faced during the maintenance of suites created with automated
testing tools for Android GUI testing;

• Study 1 - Survey with mobile developers from the industry: a qualitative
survey conducted with IT professional from the Turin area, with the objective
of assessing the issues faced by developers and testers when developing and
maintaining test suites for Android applications;

• Study 2 - Controlled experiment with Graduate students: an experiment
conducted to gather quantitative evidence of the productivity of graduate
students with automated GUI testing tools and techniques. The gathered data
are paired with a structured interview, and examined with qualitative analysis,
thematic analysis and descriptive statistics;

• Study 3 - Measures of Diffusion and Evolution of Testware in OS projects:
a quantitative evaluation of the issue of maintenance and fragility among open-
source Android projects. The study involved a data mining experiment, and
the extracted data were analyzed with quantitative analysis and through the
definition of a novel set of metrics;

• Study 4 - Taxonomy of Fragility causes: application of the Grounded
Theory technique to a set of diff files relative to the evolution of open-source
Android projects;

• Study 5 - Layout-based vs Generated visual test cases: An experiment
with TOGGLE: description of the architecture and implementation of a
tool for a translational approach (from layout-based to visual test scripts) for
Android GUI testing. The tool is applied for a confirmative study on two
Android open-source applications, to compare the performance and quality of
generated visual test suites.

3.1 Overall study design 29

Table 3.1 Goals of the thesis

Goal number Goal name Goal description

G1 Perception and Usability Investigate the ease of use of existing Android testing
tools, and the perception that potential users have of
them.

G2 Adoption and Size Quantify the adoption of such tools by industry and
OS developers, and investigate the size and relevance
of testware in tested Android apps.

G3 Evolution and Fragility Quantify the effort needed in maintaining testware
during the evolution of an Android project, and iden-
tify the main causes of test fragility.

G4 General Android testing issues Identify common challenges in performing Android
testing, and find possible guidelines to mitigate such
challenges.

Table 3.2 Performed studies and main research questions

Study Research Question Addressed Goals

S1: Survey with mobile developers from the
Industry

RQ 1: What is the perception of GUI testing
for Android apps among practitioners from
the industry?

G1, G3, G4

S2: Controlled experiment with graduate stu-
dents

RQ 2: How usable are GUI testing tools and
what is the productivity of graduate students
using them?

G1, G4

S3: Measures of diffusion and evolution of
testware in OS projects

RQ 3: What is the adoption and typical evo-
lution of test suites with automated GUI test-
ing frameworks among Android open source
projects?

G2, G3

S4: Taxonomy of fragility causes RQ 4: Why and with which frequency
fragilities occur in tested Android projects?

G3

S5: Development and validation of TOG-
GLE, a Layout-based to Visual test case
translator

RQ 5: What is the dependability and perfor-
mance of visual test cases generated by trans-
lation?

G3, G4

Table 3.3 Details of performed studies

Study Type of Study Data collection Data analysis Context

S0 Exploratory case study Data repository Qualitative analysis OS Project

S1 Qualitative survey Interview Qualitative analysis Seven IT companies

S2 Controlled Experiment Observation Qualitative analysis Master’s students
Interview Descriptive statistics

Thematic analysis

S3 Data mining experiment Data repository Quantitative analysis GitHub software repository

S4 Grounded Theory study Data repository Qualitative analysis GitHub software repository

S5 Confirmative case study Observation Quantitative analysis Two OS projects
Descriptive statistics

30 Research Design and Approach

Table 3.4 Characteristics of the selected Layout-based GUI Testing Frameworks

Framework Black Box Non-native app testing Multi-app C&R Multi-OS Level Image Recognition

Espresso No Partial No No No GUI-Level No
UIAutomator Supported Partial Supported No No GUI-Level No
Robolectric No No No No No Unit-Level No
Robotium Yes Supported No Supported No Unit-Level No
Selendroid Yes Supported No No No GUI-Level No
Appium Yes Supported No Supported Yes GUI-Level Supported

3.2 Selected testing tools for the studies

The studies that are described in the following have taken into consideration a set of
testing tools that can be used for testing Android applications. 2nd and 3rd generation
GUI testing tools were taken into account. The main inclusion criteria for testing
tools to be considered was their open-source nature, and, for Layout-based testing
ones, the possibility of generating test scripts in a common language, to make the
application of size metrics on produced test code possible. Java has been chosen as
the common script generation language for the selected tools.

3.2.1 Selected Layout-based testing tools

Regarding the Layout-based testing technique, six testing tools have been selected,
in order to cover all the possible features offered by such generation of GUI testing.
Information about the six selected Layout-based testing tools, previously reported in
[32], is given in the following.

A classification of the main peculiarities of the tools is given in table 3.4. In
particular, the table reports the type of testing that can be performed using a given tool
(either white box or black box testing); the presence of multi-platform capabilities;
the possibility of using the tool for other forms of testing rather than GUI testing;
the support to other ways of generating test cases (possibly with add-ons of the
basic tool) in addition to manual scripting (i.e., through Capture and Replay and/or
Image Recognition); the possibility of testing multiple applications at the same time
or to span the GUI of the Android operating system in addition to the application
activities.

Based on the characteristics listed in table 3.4, and on similar investigations
available in literature [68], the selected sample of six tools is evaluated as represen-
tative of the category of Layout-based testing tools. Several other frameworks are

3.2 Selected testing tools for the studies 31

based on the six considered testing tools, and hence can be represented by them:
RaceDriver [95] or Barista [39] are based on Espresso; T+ [66] or Fusion [81] build
their testing approaches over the UI Automator APIs; Segen [84] (as Appium) works
on the Selenium WebDriver framework; many advanced tools for ripping interactions
with the GUI of Android apps and recording Capture & Replay tests are based on
Robotium (examples are A2T2 [11] and AndroidRipper [12]).

Espresso

The Espresso automation framework is part of the Android Instrumentation Frame-
work, and it is the tool officially supported by Android for testing the GUI of a single
application, without taking into consideration the host OS. The used approach for the
generation of test cases is defined gray-box, meaning that the tester/developer can
develop test scripts without knowing the internal implementation of the activities, but
needs access at least to the definition of the appearance of the activities, and to the
declaration of the internal disposition of the elements of the activities. Coding test
scripts of Espresso is typically carried in the Android Studio IDE, hence having full
access to the layout and resource files of the application. An expansion of Espresso,
namely Espresso Test Recorder, allows the definition of test scripts through the
Capture & Replay technique, executing the desired sequence of operations on an
Android Virtual Device. Espresso can be used to test native and hybrid applications,
leveraging the EspressoWeb extension1.

UI Automator

The UI Automator framework is part of the Android Instrumentation Framework,
and it is the tool officially suggested for testing multiple applications, also spanning
the GUI of the Android operating system. The tool can also perform operations on
the GUI of the operating system, and operate on the system and display settings (e.g.,
enabling the WiFi, working on the settings for fonts and colors of the screen). As
for Espresso, support for the hybrid applications is given, through the possibility of
automating WebViews. Tests written with UI Automator are based on the elements
of the app that are exposed through its user interface, hence the tool is considered as
a black-box testing tool.

1https://developer.android.com/training/testing/espresso/web.html

https://developer.android.com/training/testing/espresso/web.html

32 Research Design and Approach

Robolectric

Robolectric is a white-box unit testing tool for Android, that allows testing on the
Java Virtual Machine directly, without the need (as for all the other testing tools
considered) of a real or emulated Android device. The checks and assertions used
by Robolectric are mostly at code-level, so it cannot be used for testing the actual
appearance of the user interface of an Android app, but at most its definition and
instantiation. The optional emulation of a device can be enabled to test interaction
with a full Android environment.

Robotium

Robotium is an extension of the JUnit framework for the definition of unit tests
of Android apps; it has been very popular among Android developers before the
release of Espresso and UI Automator. Tests created with Robotium can either be
black-box or white-box, and can be deployed on any kind of Android app (either
native, web-based or hybrid), with the limitation of testing a single application at a
time and without the possibility of exercising the operating system user interface.
An extension, namely Robotium Recorder, allows the creation of test scripts with
the Capture & Replay technique.

Selendroid

Selendroid2 is conceived as the Android counterpart of Selenium, a very popular
tool for automated testing of web applications. The tool allows the execution of
automated test scripts on native, hybrid and web-based applications (thanks to the
integration with Selenium WebDriver). The generated test scripts are black box,
since the widgets of the application are retrieved without having any access to the
source code; the AUT is instrumented through the use of the Android Instrumentation
Framework.

2http://selendroid.io/

http://selendroid.io/

3.2 Selected testing tools for the studies 33

Appium

Appium is a testing tool based on Selenium WebDriver and Selendroid, to create
black-box tests for both Android and iOS. The test cases can be created through
manual scripting, and exported in a series of scripting language (ranging from Python
to C# and Java), or with the use of an Image Recognition extension based on the
SikuliX libraries.

3.2.2 Selected Visual GUI testing tools

Two different Visual testing tools have been considered for the further steps of
this doctoral work: Sikuli and EyeAutomate. Both the considered tools are not
specifically developed for working with Android applications, hence they have been
used on an emulated device on the screen of the desktop PC. The AVD provided by
Android3 or the Vysor4 tool have been used for that purpose. The main characteristics
of the tools are described in the following.

Sikuli

Sikuli5 is an open-source image recognition tool, presented originally by Yeh et al.
[100] and then no longer maintained in its original branch. The version of the testing
tool using for the following work is Raiman’s SikuliX6. The tool is powered by
OpenCV for its image recognition functions, and it can run on any desktop computer
platform. The supported languages, for the generation of test scripts, are Python,
RobotFramework, Ruby, JavaScript and any Java aware programming and scripting
language. The tool contains modules for OCR (i.e., Optical Character Recognition)
powered by the Tesseract library, and is paired with an IDE that makes a set of basic
commands easily reachable for the tester/developer.

3https://developer.android.com/studio/run/managing-avds
4https://www.vysor.io/
5http://www.sikuli.org/
6http://sikulix.com/

https://developer.android.com/studio/run/managing-avds
https://www.vysor.io/
http://www.sikuli.org/
http://sikulix.com/

34 Research Design and Approach

EyeAutomate

EyeAutomate7 is an open-source image-recognition library, developed in Java by
Auqtus and subject of several studies in literature about the advantages of Visual
testing with respect to Layout based testing techniques, and the feasibility of a Visual
testing set up on industrial settings. It comes paired with an IDE, EyeStudio, which
has embedded many simple to complex commands that can be performed on the
screen to emulate the mouse and keyboard of a desktop pc. The EyeStudio editor
can record and save test scripts in plain text format. The pairing algorithms for
the provided screenshot is based on pixel and vector-based image recognition, and
AI-based features are provided by some of its components.

3.3 Mining of Android repositories from GitHub

The following parts of this study required a statistically significant sample of tested
Android applications whose usage of GUI testing, evolution and fragility of test
code could be inspected and measured. The natural choice for finding a context
of open-source Android app was the GitHub repository, which has been mined for
searching Android applications through an automated procedure which is described
in detail in the following.

3.3.1 Search for Android projects

The first operation to conduct in order to obtain the context of tested open-source
Android projects was the extraction of all Android projects hosted on GitHub. To
that extent, the GitHub Repository Search API8 has been leveraged. Such API allows
extracting all the repositories that contain a given keyword in their names, readme
files or descriptions. The Search API also allows, with the language parameter, to
filter the projects also according to the programming language they are written into.
The created parameter of the API allows instead to filter the GitHub repositories that
have been created in the interval between the two dates passed as parameters. Since
the GitHub API has an upper limit to 1000 maximum repositories returned by each

7http://eyeautomate.com/eyeautomate.html
8https://developer.github.com/v3/search/

http://eyeautomate.com/eyeautomate.html
https://developer.github.com/v3/search/

3.3 Mining of Android repositories from GitHub 35

call, the created parameter has been used to cycle with different queries over a set of
disjoint date ranges, in order to obtain fewer than 1000 results for each of them.

The GitHub API has been used inside a bash script, using the cURL bash function,
and the results (which are provided by the API in Json format) have been examined
automatically using the jsawk tool9. The data mining process has been performed
between September and December 2016.

The resulting search string, using the GitHub search API, is the following one:

c u r l −x , −u $USER :$PASSWORD −H ’ Accept : a p p l i c a t i o n / vnd
. g i t h u b . v3 . t e x t −match+ j son ’ ’ h t t p s : / / a p i . g i t h u b . com /
s e a r c h / r e p o s i t o r i e s ? q= a n d r o i d + l a n g u a g e : j a v a + c r e a t e d :
" ’$CURR_DATE_RANGE’ "&s o r t = s t a r s&o r d e r = desc&page = ’
$CURRENT_PAGE’ ’

A second filtering step has been then applied to the Android repositories, in order
to cut out from the context all the repositories which did not have a release history.
This has been done because the final aim of the studies on the context of Android
projects was to track the evolution of test code, and the occurrences of fragilities
inside it. Hence, projects without at least another tagged release in addition to the
master were removed for the context, because they did not allow even for a single
comparison between two consecutive releases. The Git Tags API10, which outputs
the names of all the tagged releases of a given GitHub repository, has been leveraged
to this purpose, with the exclusion from the selected set of all projects which returned
a single tagged release.

A set of repositories obtained by searching the word “Android” may include
actual Android applications, but also spurious results, e.g. libraries, utilities and
applications for other systems that have interactions with Android devices. Hence, a
heuristic was needed to filter out those spurious projects automatically and as much
accurately as possible. The method used by Das et al. [36] was adopted: a given
repository was considered an actual Android application if it contained one (or more)
Android Manifest file. A Manifest file11 is a mandatory file (with that exact name) for
any Android app, since it contains essential metadata for the building, installation and

9https://github.com/micha/jsawk
10https://developer.github.com/v3/git/tags/
11https://developer.android.com/guide/topics/manifest/manifest-intro

https://github.com/micha/jsawk
https://developer.github.com/v3/git/tags/
https://developer.android.com/guide/topics/manifest/manifest-intro

36 Research Design and Approach

use of the application (e.g., all the components of the app, the required permissions
and hardware features are specified in it). Hence, repositories that do not contain
any Manifest file are cut out from the context. Repositories with multiple Manifest
files (that may suggest either the presence of multiple builds for a single app, or
the inclusion in the same repository of multiple apps) have been evaluated as single
projects for the subsequent investigations, since the metrics described in following
sections apply to whole repositories and not necessarily to single apps.

To cut out the projects without Android manifest files, the GitHub Code Search
API12 was used. The API offers the filename parameter, to search for keywords
inside files with a given filenames.

The GitHub Code Search API has some limitations, which however have been
considered not very relevant in the context of our study. As explained in its documen-
tation, (i) only the default branch (the master branch in most cases) is considered for
code search; (ii) only files smaller than 384 kb are searchable; (iii) only repositories
with less than 500,000 files are searchable. The second and third issues were not
considered a concern for searching Android applications, since the typical size of
such projects is not particularly big.

For the purposes of this study, the GitHub Code Search API has been parameter-
ized using the keyword manifest, and AndroidManifest.xml as the required filename,
as in the following:

c u r l −x , −u $USER :$PASSWORD −H ’ Accept : a p p l i c a t i o n / vnd
. g i t h u b . v3 . t e x t −match+ j son ’ ’ h t t p s : / / a p i . g i t h u b . com
/ s e a r c h / code ? q= m a n i f e s t + f i l e n a m e : A n d r o i d M a n i f e s t .
xml+ repo : l i g i / p a s s a n d r o i d ’ | j sawk ’ re turn t h i s .
i t ems ’ | j sawk ’ re turn t h i s . pa th ’

To limit the context only to applications that were provided with an actual GUI,
a second heuristic was adopted, cutting out all the projects that did not feature at
least an occurrence of a call to the setContentView method, or a declaration of a
FragmentTransaction object. The selection of those methods has been done because
setContentView is typically the first method called in the onCreate() method of any
Activity, and has the role of populating the screen with the widgets described in
a layout resource. The FragmentTransaction, on the other hand, is used to handle

12https://developer.github.com/v3/search/#search-code

https://developer.github.com/v3/search/#search-code

3.3 Mining of Android repositories from GitHub 37

Fig. 3.1 Search procedure for Android projects and test classes associated with the considered
testing tools

the creation of a Fragment to populate the activities instead of using the static
function to load a layout. Such filtering was performed, again, leveraging the GitHub
Code Search API, passing the names of the described function and object as search
keyword.

3.3.2 Search for Testing Tools code

The further step in the project selection from GitHub was a search for projects
featuring the six Layout-based testing tools detailed in section 3.2.2. The names of
the testing tools themselves have been considered as legitimate keywords to search
for their adoption, since they are part of include statements that are needed for
the tools to work. The only exception has been made for Espresso, since the term
espresso is a common word that was found in a number of projects which had no
connection to the Espresso testing framework. Hence, the keyword test.espresso,
which is contained in most of the includes needed to use the tool, was searched.

38 Research Design and Approach

To search for the usage of testing tools, the GitHub Search Code API was lever-
aged as well. Any Java class featuring a keyword related to a given testing tool was
considered as a class associated with the tool (for instance, a class featuring the state-
ment “import static android.support.test.espresso.Espresso.onView” is considered as
a class featuring Espresso). After this search phase, the projects were divided into
six sets, based on the testing tools that they featured. The sets of projects were not
considered as mutually exclusive: a repository featuring keywords associated with
multiple testing tools has been added to all the respective repository sets.

After an examination of the individual sets of repository names related to each of
the tools, it could be noticed that multiple projects were clones of the Android sdk,
or sets of frameworks or sdks that were of no interest for the study. All the projects
named after a combination of the keywords android-platform, android-framework,
framework and base were removed from the context. Also, duplicate projects were
removed from the sets.

To avoid considering in the results also projects that contained spurious usages
of the testing frameworks and considering as test classes also normal application
classes that included import statements related to the tools, a final filtering has
been performed by analyzing the names of the classes identified as associated with
the tools. The classes were considered as “test classes” only if their absolute path
featured the keyword test. All the test classes with keywords contained only in
comments were also removed from the sets.

The whole procedure adopted for searching Android repositories on GitHub and
test classes associated with the six selected testing tools is summarized in image 3.1.

Chapter 4

Study 0: Case study with K-9 Mail

The first study of this research revolved around the analysis of the selected testing
tools for Android applications with a popular app released on the Play Store, to
perform an exploratory assessment study of the difficulties encountered when using
automated testing techniques for the Android platforms.

The case study aimed at assessing the advantages and disadvantages showcased
by popular testing tools for Automated GUI testing, and at measuring, on a simple
test suite developed manually on different versions of the same applications, the
needed amount of maintenance and the occurrence of fragilities. A preliminary
classification of the causes of such fragilities was also provided.

The case study design and the results reported in this section have been originally
published as a workshop paper at INTUITEST ‘16 [34].

4.1 Study Design

The selected app for the case study was K-9 mail, a widespread (more than 5 million
downloads) e-mail client for Android devices. Figure 4.1 shows two sample screen
captures of the application. The application, whose original release dates back to
2009, had reached at the time of the conduction of the experiment the release 5.010.
The application was open-source, and publicly available on the GitHub repository.
The open-source nature of the application was fundamental for the aims of the
study, since instruments like Espresso and UI Automator have a strong connection to

40 Study 0: Case study with K-9 Mail

Fig. 4.1 Screen captures from K-9 Mail, release v5.010

Table 4.1 Test cases defined for K-9 mail

ID Description

TC1 Successful authentication
TC2 Send a message
TC3 Reply to a message
TC4 Delete a message
TC5 Add an user account
TC6 Delete an user account
TC7 Delete account data
TC8 Restore account data
TC9 Export account settings
TC10 Import account settings

the application code (for instance, for the retrieval of identifiers used to select the
elements of the user interface to interact with). The application was selected after a
search for a case study with a long enough lifespan, and a significant code base.

A test suite of ten test cases has been designed based on the latest stable version
of the App at the time of the experiment. Test scenarios were designed to test all the
main features of the applications, and are listed in table 4.1. Espresso, UI Automator
and Selendroid were selected as testing tools for the definition of test scripts. In
addition to them, the Sikuli testing tool was used, as an example of the application
of third generation testing tools to Android testing.

4.2 Results 41

Development and execution of Espresso and UI Automator test suites were
performed in the Integrated Development Environment (IDE) Android Studio 1.1.
The Eclipse Mars IDE was used for the development of Selendroid test cases, while
Sikuli was used with its IDE. The tests have been executed on two different Android
devices, using Android API 23 and Android API 19 (to comply with the limitation
of Selendroid 0.10.0, working only with Android versions prior to 20). Finally, the
Vysor tool was used to mirror the screen of the Android device on which the tests
were run on the desktop PC.

After their definition, tests then have been reproduced, when possible, for five
previous releases of the application. The last stable minor releases belonging to
three different major releases were selected: v2.995 (April 2010); v3.993 (December
2011); v4.804 (June 2014). Two other releases of the application were selected
randomly: v2.102 (November 2009); v3.309 (November 2010). Tests were based
on the localized version (in Italian) of the app. Then, the test cases developed
for one version of the application were executed on the next selected release, to
understand whether they were still working, or they needed maintenance due to the
verification of fragilities. The manual repair performed on non-working test cases,
and the examination of changed test code, posed the basis for a first assessment of
the possible causes of fragilities for Android applications.

4.2 Results

This section describes the experience gathered from the K-9 Mail case study, the
amount of maintenance to perform on 2nd and 3rd generation test suites, and the
resulting preliminary categorization of fragility issues for Android applications that
were derived.

4.2.1 Implementation of test cases in different releases

In the following, the principal aspects of the implementation of the tests for individual
versions of K-9 mail are described, along with the fragilities that occurred when
they were executed on following releases. The changes that had to be made in
order to adapt test cases to subsequent releases are highlighted. Since the AUT
requires an authentication phase, tests were intended to run sequentially, so that just

42 Study 0: Case study with K-9 Mail

one authentication had to be performed (in TC1). The app was brought back to its
original state after each full execution of the test suite.

A total number of 50 distinct test cases were developed, in addition, a few of them
had to be modified to adapt to the different releases. Since earlier versions of the
application did not offer all the functionalities that were listed after an examination
of release v5.010, only the available test cases have been developed for them (for
instance, only seven test cases could be applied to version v2.1012).

K-9 Mail v2.102

Seven tests out of the ten test cases of table 4.1 could be written for version v2.102 of
K-9 Mail, according to the features it provided. The implementation of the scripted
versions of test case TC1 (Successful Authentication) leveraged unique identifiers,
for the detection of specific buttons and text boxes to interact with. By converse,
TC2 (Send a message) and TC5 (Add User Account) needed the interaction with
a menu that could be opened only by pressing the physical Menu button of the
device. Additionally, in the menu, the individual text buttons had no unique identifier,
and hence they had to be detected through their textual description. Text boxes for
composing the e-mail message could e detected using IDs specified in the activity
layout. Unique identifiers are missing also for the development of test cases TC6
(Delete User Account), TC7 (Delete Account Data) and TC8 (Restore Account Data).

K-9 Mail v2.995

Eight tests out of ten could be written for release v2.995 of K-9 Mail. Test cases
from TC1 to TC4 were completely compatible with the ones written for release
v2.102. The functionalities for the deletion of account data and for the deletion of a
user account were moved to an advanced options menu, hence test cases TC5 and
TC7 had to be rewritten. The release featured the possibility of restoring the data of
an account, hence TC8 could be developed for it.

The textual description of the feature for adding user accounts (TC5) had a
slightly different color and dimension with respect to the previous release considered.
The test case, hence, had to be re-recorded with Sikuli, even though the Espresso, UI
Automator and Selendroid counterpart had not shown any fragility.

4.2 Results 43

Fig. 4.2 User interface differences between release v2.995 and v3.309 of K-9 Mail.

K-9 Mail v3.309

Eight tests out of ten could be written for release v3.993 of K-9 Mail. All tests
written for v2.995 were compatible with this version, except for the Sikuli version
of test case TC5. Once again, a slight difference in the appearance of the widgets
creates the need for the new capture of Sikuli test cases (see figure 4.2).

K-9 Mail v3.993

Eight tests out of ten could be written for release v3.993 of K-9 Mail. Test cases TC1
to TC6 developed for release v2.995 could be executed seamlessly on release v3.993,
without any maintenance, since all widget identifiers and textual contents did not
change between the two releases. The buttons to perform the operations of test cases
TC7 and TC8 had their text content changed, so the test cases developed for release
v2.995 were invalidated by the release transition. This version of the application
still uses physical buttons of the Android devices, and many widgets of the activities
traversed by the test cases are not described by unique identifiers.

44 Study 0: Case study with K-9 Mail

Table 4.2 Test suite implementation on various versions of K-9 Mail, with Espresso, UIAu-
tomator and Selendroid.

Test case v2.102 v2.995 v3.309 v3.993 v4.804 v5.010

Authentication n o o o o o
Send a message n o o o x o
Reply to a message n o o o x o
Delete a message n o o o o o
Add user account n o o o x o
Delete user account n x o o x o
Delete account data n x o x x o
Restore account data - n o x x o
Export account settings - - - - n o
Import account settings - - - - n o

’-’ feature not supported, ’x’ test had to be modified, ’n’ new test written, ’o’ previous
version of test still working

K-9 Mail v4.804

All the ten described test cases (including T9, Export Account Settings, and T10,
Import Account Settings) could be developed for this release of the application. The
app underwent a significant re-organization of the menus with respect to the previous
major release. Hence, most of the tests (six out of the already developed eight) had to
be re-written. The principal addition to the previous user interface was the addition
of a toolbar in the bottom part of the screen, whose contained widgets were provided
with individual unique IDs (thus making the writing of test cases easier).

K-9 Mail v5.010

All functional tests developed for release v4.804 were still functioning when applied
on release v5.010, since all the graphics and the properties of the layouts were
unchanged between the two releases.

4.2 Results 45

Table 4.3 Tests compatible with previous versions, with Espresso, UIAutomator and Selen-
droid.

v2.995 v3.309 v.3993 v.4804 v5.010

Number of unbroken tests 5/7 8/8 6/8 2/8 10/10
Percentage of unbroken tests 71% 100% 75% 25% 100%

Table 4.4 Causes of fragilities in broken test cases.

Cause v2.995 v3.993 v4.804

Text change 0/2 2/2 3/6
Identifier change 0/2 0/2 3/6
Deletion or relocation 2/2 0/2 3/6
Physical buttons 0/2 0/2 3/6

4.2.2 Changes in Test Suite

A summary of the need for maintenance of scripted (Espresso, UI Automator, Selen-
droid) test cases in the transitions between the considered releases is shown in table
4.2. The same is done for Sikuli test cases in table 4.5.

Table 4.3 shows the percentage of tests that, for each release of the application,
could be maintained as they were developed for the previously considered release.
The same is done for Sikuli test cases in table 4.6.

As it was expected, in correspondence with tangible changes in the GUI (as it
happens between the third and fourth major release), the majority of test cases had to
be rewritten. On the other hand, in the transition towards the latest releases – which
mainly corrected bugs without performing any intervention in the app appearance –
no test cases were broken.

This first case study proved that, even for a very small sample test suite for a
single application, the occurrence of fragility may require significant intervention
(re-writing up to the 75% of scripted test cases of a test suite, and up to the entirety
of a visual test suite) in existing test suites. The evolution of the K-9 Mail application
was characterized by fragilities in both the definition of the user interface and its
appearance. Table 4.4 summarizes the main causes of the fragilities found for the
Espresso, UI Automator and Selendroid test suites, with individual test cases that

46 Study 0: Case study with K-9 Mail

Table 4.5 Test suite implementation on various versions of K-9 Mail, with Sikuli.

Test case v2.102 v2.995 v3.309 v3.993 v4.804 v5.010

Authentication n o o o x o
Send a message n o o o x o
Reply to a message n o o o x o
Delete a message n o o o x o
Add user account n x x o x o
Delete user account n o o o x o
Delete account data n o o x x o
Restore account data - n o x x o
Export account settings - - - - n o
Import account settings - - - - n o

’-’ feature not supported, ’x’ test had to be modified, ’n’ new test written, ’o’ previous
version of test still working

Table 4.6 Tests compatible with previous versions, with Sikuli.

v2.995 v3.309 v.3993 v.4804 v5.010

Number of unbroken tests 6/7 7/8 6/8 0/8 10/10
Percentage of unbroken tests 85% 87% 75% 0% 100%

could be weakened by multiple different causes. The encountered fragilities were
due to the following reasons:

• Changed identifiers: modification of the identifiers that were used by test
cases for the identification of interface widgets.

• Changed text: modification of the textual content, when such text is used to
identify widgets in test cases (in absence of unique identifiers).

• Deletion or relocation: changes in the arrangements of the widgets in the
layouts of the app activities.

• Usage of physical buttons: older Android apps made use of physical buttons,
deprecated since Android 4.0 and replaced with the use of Action Bars. New
releases of applications after that version of the o.s. needed to change the in-
teraction paradigm used accordingly, thus invalidating all test cases developed
beforehand with the use of physical buttons.

Chapter 5

Study 1: Survey with mobile
developers from the industry

In order to perform a first investigation about the adoption of automated GUI testing
techniques among IT professionals, and to have insights about the testing practices
performed by IT professionals having mobile and web apps in their portfolio, a set
of semi-structured interviews were conducted with representatives of seven medium-
and large-sized companies of the Turin area.

This study allowed answering to the first research question of the study: RQ1 -
What is the perception of GUI testing for Android apps among practitioners from the
industry?

5.1 Study design

The interviewed representatives are described in table 5.1. The companies were
selected based on the location of the interviewers at the moment of the conduction of
the experiment. All the interviewed representatives were involved in the development
of mobile or web applications. The interviews have been conducted between June
and December 2017.

RQ1 can also be split into three sub-questions, related each to a different topic
covered by the whole survey subministrated to the developers. First, to understand
the testing practices adopted by developers, insights were gathered about the most

48 Study 1: Survey with mobile developers from the industry

Table 5.1 Interviewed developers from the industry

Interview ID No. of representatives Company and project

A 1 Distributor of testing tools for various typologies of applicatives.

B 2 Test factory for third party applications and test consulting.

C 1 Insurance company: web and mobile apps for insurers and customers.

D 2 Insurance company: platform for insurance management.

E 1 Test factory for third party applications and test consulting.

F 1 Full-stack development of mobile applications for multiple platforms.

G 2 Test factory for consulting of test and test management for banking applications.

common tools and techniques they adopted, and the typologies and levels of testing
performed. Hence, RQ1.1 could be formulated as:

RQ1.1 : Are mobile applications tested by the interviewed sample of
industry practitioners? How? To what extent?

As discussed in the introduction section, mobile apps showcase a set of peculiar
aspects when it comes to testing them, that must be taken into account by testers/de-
velopers wanting to design and execute automated test cases. The second section
of the survey aimed at understanding which aspects of mobile applications were
considered crucial by professionals adopting automated testing, and at the same time
which peculiarities were seen as a deterrent from the adoption of automated testing
techniques. Hence, RQ1.2 could be formulated as:

RQ1.2 : What are the most peculiar properties to test in mobile appli-
cations according to the interviewed sample of industry practitioners?
What aspects of mobile apps discourage them from adopting automated
testing?

Finally, questions were asked to characterize the interest in emerging testing
techniques, and to summarize the principal difficulties felt by developers, along with
the amount of perceived fragility of developed test cases and the needed human labour
to maintain existing test suites. Hints were gathered for possible research directions
to aid developers and testers from the industry in overcoming those difficulties.
Hence, RQ1.3 could be formulated as:

5.1 Study design 49

Table 5.2 Structure of the survey to developers from the industry

RQ Number Question

RQ1.1 1 Do you use to test your application code?

2 If you test your apps, do you take advantage of manual or automated testing techniques?

3 If you use automated testing techniques, which kind of technique do you prefer? Why?

4 What are the typologies of testing you perform?

RQ1.2 5 In your experience, what are the differences that you have found between testing mobile
applications and web/desktop applications?

6 Which aspects of mobile applications encourage you to adopt specific testing techniques?

7 Which aspects of mobile applications discourage you from testing them?

RQ1.3 8 What are the main difficulties you encounter in testing mobile applications?

9 Have you ever needed additional effort to keep test suites up to date with the evolution of
the application GUI?

10 What is your attitude towards new generations of testing like model-based testing and
visual recognition?

11 Which directions should take the academic research on mobile testing?

RQ1.3 : What are the main challenges felt by developers from the in-
dustry performing automated testing, and the directions research should
take according to them?

To gather answers to the survey, a set of questions arranged in three different
groups (each pertaining to one of the three subquestions of RQ1) were subministrated
to the interviewed developers/testers. The interview sessions lasted around 30
minutes each, and a transcript was obtained at the end of every session based on
the minutes taken during the interview. The findings were cataloged and organized,
to answer the individual questions of the survey. All the questions of the survey,
detailed in table 5.2, were open. In each interview, the motivation of the study
was clearly stated at the beginning, and the definition of testing fragility for mobile
applications was provided, according to the formulation defined in the introduction
section. Hypotheses were not stated, neither implicitly nor explicitly, at the beginning
or during the interviews, in order to avoid any bias.

50 Study 1: Survey with mobile developers from the industry

5.1.1 Threats to Validity

Threats to external validity

The findings are based on seven interviews, conducted only with developers of
industry, working on a limited set of application domains (principally, banking,
insurance and leisure) and developing mainly Android and web applications. It is
not sure whether the findings can be generalized to all mobile developers, e.g. open
source developers, iOS developers, and so on. The difficulties and needs perceived
by the interviewed developers may be strongly subjective and not representative even
of developers working on the same platform and in the same domain.

Threats to construct validity

For what concerns the fragility definition, GUI fragile test classes are linked to any
modification in the interface requiring adaptations in the test suite. The definition of
fragility may vary from other ones used in literature, and its relevance among the
issues faced by developers may hence be different.

5.2 Results

This section showcases the results gathered from the interviews to developers, subdi-
vided according to the subsresearch question that they answer.

5.2.1 Adoption of mobile testing techniques and tools

Adopted Testing Techniques

The considered respondents were active in both web and mobile application devel-
opment. All of them highlighted a priority put in testing web applications. Only
three of them performed structured and automated testing on their applications. The
formalized and structured testing procedures for their web applications were only
loosely applied to the mobile apps of the respondents’ portfolio, even when such
apps were the direct counterparts of the tested web apps.

5.2 Results 51

Capture and Replay testing was adopted by more than half of the respondents.
Representatives of company C adopted Capture and Replay in a data-driven fashion
(with parameters about the personal information taken from .csv files to populate
test cases) to perform regression testing.

Scripted testing was performed by three respondents; company B used scripted
tests on a limited number of different devices, and company E stressed the test
of device diversity with tests run on many multiple devices, leveraging dedicated
services in the cloud.

With the exception of respondent F, mobile testing was typically performed on
actual devices and not on emulators. Respondent F was also the only one fully
leveraging techniques of random/monkey testing.

Company B adopted techniques of Mobile APM (i.e., Application Performance
Management), capable of evaluating the compliance to non-functional requirements
on the application after its release, monitoring the usage of the application running
on the users’ devices.

Company G adopted techniques for static source code analysis and reporting
instruments, while the formalized testing procedures only involved manual tests
recorded through Capture and Replay techniques.

Typologies of testing

Among the respondents, mobile testing is executed principally at system and accep-
tance level, either using manual or automated testing techniques. A certain amount
of unit and integration testing is performed with automated techniques by all re-
spondents, except B and E that, being test factories for third party projects, leave
low-level test practices to the developers of the software. The rapid development
life cycle of mobile applications, and the frequent addition of new functionalities,
is seen as a deterrent for the adoption of structured regression testing. For what
concerns non-functional testing, the main focus of the respondents is on usability
and performance.

52 Study 1: Survey with mobile developers from the industry

Table 5.3 Survey with developers from industry: tools used by the respondents

Tool Type R.

MicroFocus UFT / QTP Regression and functional testing 4
Selenium Scripted web-based app testing 4
Appium Multi-platform mobile app automated testing 3

PerfectoMobile Scripted cloud-based app testing 3
JMeter Load and performance testing 3

Silk Mobile Capture and Replay testing 2
JUnit Java unit testing 2

AppliTools AI-based Visual Testing 1
Monkey Random testing 1
Qualitia Scripted testing and GUI modeling 1

TestComplete Capture and Replay testing 1

Adopted tools

For what concerns the most used testing tools for mobile applications, Selenium is
the most used for test scripts of web-based and hybrid mobile applications; Selenium
IDE is also used for the creation of Capture and Replay scripts, with a component
that allows the tester to record the test case and generate the code automatically.

Some commercial tools were cited by the interviewed developers: four respon-
dents cited HP UFT, used for web-based applications; two cited Silk Mobile, that can
be used to perform tests on native applications; three cited PerfectoMobile, which
can be used to perform cloud-based functional tests on real devices, using scripts
created by Capture and Replay.

Other test frameworks, like the official ones provided by Android with the
Android Instrumentation Framework, were cited by some respondents. Only one
respondent used a tool leveraging the new paradigm of AI-based visual testing
tool, namely AppliTools. Table 5.3 enumerates the testing tools adopted by the
interviewed developers.

Answer to RQ1.1: All the respondents to the survey performed manual testing on
their mobile applications. Among the automated testing tools used, the interviewed
developers mostly relied on Capture & Replay test, with a rare adoption of scripted
testing tools.

5.2 Results 53

5.2.2 Peculiarities of mobile application testing

Several differences have been highlighted by the interviewed developers in the
procedure of testing mobile applications, with respect to testing traditional desktop
and web applications.

Apps may be subdivided under three different categories: Native, if they are en-
gineered for a particular os/platform; Web Apps, if they are typical web applications
that are customized for being loaded by browsers on mobile devices; Hybrid, if they
have a native part that loads dynamically web pages with contents and functionalities.
As respondent B pointed out, the testing procedures for the three categories of apps
vary significantly in terms of adopted instruments, and test case definition.

For mobile applications, the complexity of the testing procedure has increased
dramatically principally because of device diversity. Mobile applications must
ensure compatibility with a set of different device types, screen sizes, pixel densities,
resolutions, screen orientations. If the applications are multi-platform, they must
also be tested on the principal operating systems. Finally, apps must comply with the
design characteristics and functionalities of new releases of the operating system they
work on -that may be published rather rapidly while guaranteeing retrocompatibility
with past versions. As respondent B highlighted, ”device diversity is a relevant
enabler for test automation, because it is impossible to execute manual tests on many
devices; to select the devices on which to run test cases, we pick the devices that are
sold the most in the market, and the ones that are used the most by the final users,
also taking into account geographic statistics.”; respondent F also pointed out that

”device diversity and form factor are the fundamental variables to take into account,
and influences mobile app testing much more than web application testing, for which
it is sufficient to test on the principal browsers.”

Different non-functional properties are peculiar of mobile applications and re-
quire specific testing procedures. The topic of Green Energy, as pointed out by
respondent C, is a very perceived issue for the test of mobile applications: ensuring
a battery consumption that is adequate to the typology of the app is fundamental
for the users’ satisfaction. In general, the usage of the device resources (that in
some cases can be very limited) is a stringent non-functional requirement for mobile
application testing: the same reasoning made for energy testing can be applied also
to the usage of network and data connection, the usage of CPU and memory, and

54 Study 1: Survey with mobile developers from the industry

the possibility of overheating. Being mobile applications strongly GUI-based, the
rendition of the graphics on the device screens is a crucial element of acceptance
testing. However, as pointed out by respondent F, the usage of preliminarily defined
and tested mock-ups, already working before the functionalities are implemented,
may relieve the developers from testing the final appearance of the app once it is
deployed.

Answer to RQ1.2: The respondents to the interviews underlined several aspects
that are peculiar to mobile vs. desktop or web development. The two main
characteristics that required specific forms of testing – according to the interviewed
developers – were resource and battery saving and adaptation to different devices
and display sizes.

5.2.3 Challenges and desires of mobile app testers

Factors limiting mobile application testing

Several difficulties have been identified by the respondents as problems hampering
the practice of mobile application testing. For commercial applications, the com-
panies may want a fixed and strict time-to-market, and compromises are necessary
to find an optimal balance between cost and quality. Respondent B considered that

“clients want the application to be published anyhow, and often the quality aspect
is sacrificed, even offering limited or malfunctioning features. The quality of the
app then grows with time, in parallel with the number of the users that use them,
and thanks to their feedback.” Respondent E added that “rarely projects have a test
strategy which is carefully defined, validated and approved, with a reasonable time
to perform it; testing, also, typically suffers from delays in the previous phases of the
development, even though it is supposed to guarantee in any case the same quality.”

Many of the interviewed developers underlined that the culture of testing mobile
applications is still limited with respect to other kinds of applications. Respondent
A highlighted that, in large companies producing software, a huge difficulty in the
adoption of automated testing is due to the fact that the testing department is managed
by members of the business department, who have a different perception of testing
with respect to people of ICT extraction. Therefore, manual testing is often preferred

5.2 Results 55

both for web and mobile applications and, in general, it is difficult to go particularly
far beyond C&R techniques. Still according to respondent A, “the mobile device,
from the business point of view, is mainly seen as a proxy to access services that are
located on the web.” Respondent D confirmed that the focus is often kept on the core
of the applications, without particular interest from the business department towards
application testing. Respondent B pointed out that “mobile application testing is still
not treated with sufficient maturity, and clients are just beginning to see the return of
investment that test automation can guarantee; in general, only companies creating
apps that manage sensitive and economically critical data tend to adopt automated
testing for them”.

Respondents B and F also highlighted that a relevant limitation for mobile
application testing, especially for small testing teams possibly not used to scripting,
is a scarce dissemination and documentation of automated testing tools. The problem
appears to be amplified for open-source tools.

Maintenance and fragility

All respondents, except respondent F, experienced issues with fragility of test cases,
that was seen as the main cause for maintenance over existing test suites.

Respondent A, who used C&R techniques, had to completely re-register test
cases when the interface was modified between a version of the application and the
subsequent one. Respondent C underlined scarce adaptability of Selenium, and found
that identifying the individual elements of mobile app was easier and less prone to
fragility using commercial tools; this developer estimated the work in modifying
existing scripts as about 30% of the total testing work, and identified this reason as
one of the most relevant in deciding to not develop huge test suites (no more than
250 scripts).

Respondent B experienced fragilities in the regression testing of its applications,
with an estimate that 20-30% of his total testing effort belongs to maintaining test
scripts. This respondent identified changes in the ID and in the text of elements of
the interfaces as the most relevant causes of fragilities of test case: the problem is
particularly felt when the names assigned to the elements of the interface are not
semantic, and are assigned by automated tools, thus possibly changing between
every pair of builds. This respondent added that “changes in the user interface are

56 Study 1: Survey with mobile developers from the industry

an aspect that significantly hamper the adoption of test automation, and the issue is
amplified when it is not the same company performing developing and testing”.

Respondent D defined fragility as a “problem that is perceived and that has to be
fought on a daily basis: test suites must be maintained daily”. For projects, fragility
is identified as a critical problem, especially for possible shortages of time: it is
often not possible to do complete maintenance of test cases that fail even though they
should not. This developer identified the effort for the maintenance of test suites as
two days every twenty days of testing.

The estimate of the cost of fragility was even higher for respondent E, which
identified the cost of maintenance of already present test scripts as 60% of the total
maintenance cost. The developer pointed out that “the impact of fragility is higher
for mobile applications, because mobile interfaces and functionalities evolve more
rapidly than traditional applications. The investment in the maintenance of test
cases is mandatory and grows with time, even though the modifications in the user
interfaces are limited.”

Requests to academia.

All the respondents considered that a solution, possibly automated, to the problem
of fragilities of automated tests, especially the ones related to GUI, should come in
handy to companies performing testing in both web and mobile applications.

Respondent C expressed a desire for a more direct and extractable link between
incidents in tests, or in running applications, to the defects running in the source/sys-
tem. Respondent B highlighted the problem of test prioritization. They already
use static analysis of source code, to extract info about code and classes changed.
Knowing what is the code coverage, when the new version of the app is available
it is possible to know what changed, and it should be desirable to launch only tests
that maximize the coverage on modified source. This can be useful if resources
and time for testing are limited, because it theoretically maximizes the amount of
useful testing performed. Obviously, the model should also take into account a sort
of higher-level functional prioritization, in addition to coverage prioritization. Still
about coverage, respondent D identified the need for a finer way to calculate the code
coverage for web/mobile test suites, with fine-grained metrics able to represent the
actual economic value of the testing procedure.

5.2 Results 57

Automation in the development of test cases was a need expressed by respondent
F, who pointed out that “an algorithmic creation of test cases during the definition
of the application logic (e.g. the definitions of API and accesses to databases) to an
even limited coverage of functionalities to be tested, would be very happily welcomed
by developers, who still see writing test cases as an overhead.”

Model-based testing is not felt as a primary need, or something that can be useful
at least in the near future. Only respondent A showed enthusiasm towards the possi-
bility of adopting model-based testing, expressing the need for a “trustable mobile
ripper, capable of semantically interpret everything that happens during the explo-
ration of an interface, proposing test cases to the business department.” Respondent
B, which represents a consulting company performing outsourced test, reported that
they actually sell their experience to their clients, so they’re not proposing something
that is not yet fully understood and managed. They highlighted that it is indeed
an interesting topic for academia, but at a first approach the model-based testing
techniques that have emerged from research are too complex and require too much
knowledge to be actually adopted by companies. Respondent E was the only one
actually performing a sort of modeling of apps for the definition of test cases, and
pointed out that an extended modularity of tests should be encouraged by research.

Answer to RQ1.3: All the interviewed mobile developers found that the mainte-
nance of test cases for mobile applications is one of the most relevant challenges
that prevent the adoption of automated testing techniques. Almost all respondents
expressed the desire for better ways to manage fragilities and to reduce the effort
for making the test suites evolve. Little enthusiasm was instead shown towards
new paradigms of testing explored by literature, like model-based testing and
visual recognition testing.

Chapter 6

Study 2: Controlled experiment with
Graduate Students

To assess the possible difficulties encountered by practitioners at the first experience
with Android Testing Tools, and at the same time to estimate the usability of two
different approaches to automated GUI testing for Android applications, a controlled
experiment with graduate students has been conducted. The experiment allowed to
answer the research question RQ2 - How usable are GUI testing tools and what is
the productivity of graduate students using them?

The design and results of this study have been accepted for presentation at the
EASE 2019 conference.

6.1 Study design

Two different testing tools were chosen for the experiment: Espresso, as a rep-
resentative of 2nd generation (Layout-based) testing tools, and EyeStudio, as a
representative of 3rd generation (Visual) testing tools.

The human subjects of the experiment were a sample of undergraduate computer
students, all enrolled in the Computer Science program, at the Polytechnic University
of Turin, and attending the Software Engineering course. The participation in the
lab sessions devoted to the empirical experiment was fostered by assuring additional

6.1 Study design 59

(a) Main Activity (b) Settings Act. (c) Info Activity (d) Note Activity

Fig. 6.1 Screens and Activities of Omni Notes app

points in the final grade for the course. Automated GUI testing was introduced in
two lectures that were part of the course.

The selected software source of the experiment was release 5.5.1 (released
May 11, 2018) of Omni-Notes, an open-source and well-reviewed (100+ thousand
downloads, and 4.4 star rating on the PlayStore) Android app for writing and storing
small text notes. Screen captures of the app activities are shown in figure 6.7. The
source code of the application is available on GitHub. The experiment was based on
the English-localized version of the app. The device used for the experiment was
an emulated Android Virtual Device (AVD) on which to launch (and capture, in the
case of Visual test cases) a Nexus 5X mounting API 25 (Android 7.11), with visible
device frame and activated keyboard inputs.

The analysis of the experiment results allowed answering three different subques-
tions of RQ2, listed in the following:

• RQ2.1 - Productivity: What is the productivity of inexperienced developers
when approaching to Layout-based and Visual GUI testing tools?

• RQ2.2 - Quality: What is the percentage of working test scripts produced by
undergraduate programmers using Layout-based and Visual GUI testing tools?

• RQ2.3 - Obstacles: What are the perceived difficulties in approaching visual
and layout-based GUI testing techniques?

60 Study 2: Controlled experiment with Graduate Students

The metric used for the productivity of the participants was the raw count of
delivered test cases after each session. To measure the quality of the test suites,
instead, the number of working test scripts on the total written by each student was
taken into account. All the delivered test cases were re-executed on the original
version of Omni-Notes, in the research environment. Non-working test cases were
found analyzing the execution reports generated by EyeStudio, or the presence of
exceptions in the Java logger of the JUnit engine.

The final subquestion was answered after a manual analysis of the answers given
by the participants to a survey, and a classification of the errors found inside delivered
test scripts.

6.1.1 Experimental procedure

The productivity of the sample of students was evaluated by asking them to develop
the same test suite for the selected application, with both the considered testing tools.
The individual scripts of the required test suites covered a set of usage scenarios that
were deemed of principal interest for the use of the Omni-Notes application. Such
usage scenarios are described in table 6.1.

The experiment was subdivided into two different lab sessions. In the first one, the
participating students were asked to produce scripted test cases, using the Espresso
testing tool inside the Android Studio development environment. The students were
allowed to use any possible way to identify the widgets of the application inside the
test cases, including recording the interactions with the Espresso Test Recorder tool,
manually checking layout files from the res folder of the apps, leveraging the Layout
Inspector, Hierarchy Viewer and UI Automator Viewer built-in tools for finding
properties of the widgets. In the second session, the students were asked to produce
Visual test cases, with the use of the EyeAutomate library and the EyeStudio IDE.
Both the sessions lasted 1.5 hours long.

At the end of the second session, students were asked to fill a structured survey,
to gather their impressions about the testing practices they performed, and their
considerations about the tools used and their usability. Demographic information
was also collected, to perform statistical evaluations of the results obtained by the
students in developing the test suites. The structure of the survey is reported in table

6.1 Study design 61

Table 6.1 Description of use cases for the empirical experiment with graduate students

Name Description

Open info
screen

The user clicks on the menu button (upper-left corner in any activity), then
clicks on the Settings button to go to the Settings screen, then on the Info
menu voice to move to the AboutActivity. In the AboutActivity, the icon of the
application and the copyright notice have to be properly shown.

Add note The user clicks on the plus button (lower-right corner in the MainActivity, the
principal activity that is opened at start-up at every launch of the application),
then selects “Text Note” and inputs title and content for a test note. The user
then goes back, clicking on the back button. The inserted note has to be shown
in the MainActivity.

Search a note The user first creates two or more notes, with different titles and contents. Then,
he clicks on the search button and inputs in the search bar a keyword that is
contained in the title or content of one of the notes. The application must show
as search result the note containing the keyword, while the other one(s) should
be hidden.

Check available
languages

The user clicks on the menu button (upper-left corner in MainActivity), then
clicks on the Settings button to navigate to the SettingsActivity, then clicks on
the Language menu voice to list all the featured languages by the activity. The
list must feature the English, Italian and French language.

Delete a note The user creates a note with test text for title and content, then goes back to
the MainActivity. The user long-clicks the newly created note, then clicks on
the Overflow Menu Button and selects Delete. The note must not be shown
anymore in the list of notes of the MainActivity.

Restore a note The user creates and deletes a note as in the previous use case, then – through
the drawer menu – navigates to the trashed notes, long clicks on the deleted
notes and restores it through a click on the Restore button. Then, the user moves
back to the MainActivity. The application must correctly show the deleted and
then restored note.

Add category The user creates a note, and – in addition to the input of test text – selects "Add
Category" for the new note, selecting for it a name and a color. The application
must show in the drawer menu the name and the color of the newly created
category.

62 Study 2: Controlled experiment with Graduate Students

Table 6.2 Questions of the survey for undergraduate students

Question
number

Question Question type

1.1 Student ID Open
1.2 Age range Multiple choice
1.3 Have you ever worked as a Java professional? Closed (Yes - No)
1.4 How many years of experience do you have in Java

programming?
Open

1.5 How many years of experience you have in Android
programming?

Open

1.6 Do you have previous experience in Java application
testing?

Closed (Yes - No)

1.6b Which tools have you used for Java testing? Open
1.7 Do you have previous experience in Android applica-

tion testing?
Closed (Yes - No)

1.7b Which tools have you used for testing Android appli-
cations?

Open

2.1 The user scenario descriptions were clear to me Likert
2.2 Implementing the test suite with EyeAutomate was

easy and intuitive
Likert

2.3 The EyeStudio IDE was helpful in the creation of
test scripts

Likert

2.4 It was easy to identify elements with the visual recog-
nition technique

Likert

2.5 What were the principal issues that you found in
identifying elements of the screen using the Visual
GUI testing approach?

Open

2.6 The implementation of the test suite with the
Espresso framework was easy and intuitive

Likert

2.7 The Android Studio IDE was helpful in the imple-
mentation of the test suite

Likert

2.8 It was easy to identify elements of the screen using
the layout-based technique

Likert

2.9 What were the principal issues that you encountered
in identifying elements of the screen using Espresso?

Open

2.10 Which tool would you choose if you had to perform
visual testing again? And why?

Multiple Choice +
Comment

6.1 Study design 63

6.2, with the questions subdivided into two groups: demographic information (group
1) and opinions about the tried testing tools and techniques (group 2).

To measure the quality of the test suites that were submitted by the participants
to the experiments, all the tests were executed on the app, on the same configuration
used by the students in the lab sessions. Layout-based test scripts were considered
incorrect when they triggered executions during their executions, or when they did
not feature any assertion to check the actual state of the application. Visual test
scripts, as well, were considered incorrect when they were not able to reach the end
of the related usage scenario, and when no visual check on the GUI was performed.
The quality of the provided test suites was computed as the fraction of the correct
test cases over the total number of provided test cases. Statistical tests were then
applied to the sets of measures about productivity and quality, to understand whether
there were statistically significant differences in the obtained data regarding the two
considered tools.

6.1.2 Threats to Validity

Threats to Internal Validity

An internal validity threat may be due to learning effects, during the first development
of the test suite, with the students that could become familiar with the proposed
usage scenarios and app, and hence produce test suites of better quality in the second
session. It was tried to limit learning effects giving a basic knowledge of the app and
of both tools before the first session of the experiment. It is also assumed that the low
complexity of the proposed usage scenarios could not constitute a relevant obstacle
for the first of the two lab sessions. The close values for the answers to questions 2.4
and 2.8 show however that in both sessions the participants encountered very similar
difficulty level in identifying the GUI components to be used in the test scripts. This
supports our belief that the order of treatments had no noticeable effect.

Threats to Construct validity

The principal threat is that the productivity and quality metrics that were defined
are not the most suitable for measuring the learnability and ease of use of testing
techniques and tools. Typical measures for productivity like the delivered LOCs,

64 Study 2: Controlled experiment with Graduate Students

however, were not applicable for a comparison between the two tools, since the
delivered test scripts were written in different syntax (plain text for visual test scripts,
Java code for Layout-based test scripts).

Researcher bias is another possible threat to the validity of this study since all
test suites delivered by the participants were manually examined by the involved
researchers. However, the researchers were not involved in the development of any
of the two approaches or tools and had no reason to favour any particular approach
neither are inclined to demonstrate any specific result.

Threats to Conclusion Validity

Non-parametric tests were adopted to account for the non-continuous and non-normal
distribution of the variables. Conclusions were drawn using the customary 5% type I
error threshold.

Threats to External Validity

A real-world open-source application was considered, thus selecting a realistic
context for the application of GUI testing techniques to Android apps.

The results of this work are applicable only to the considered testing tools – i.e.
EyeAutomate and Espresso – and it is hence unsure if they can be generalized to other
testing tools belonging to the same generations of GUI testing, and generating test
scripts using the same approaches. The two tools, however, are quite widespread in
literature and have several similarities to other common testing tools, like Selenium or
UI Automator for the Layout-based generation, and Sikuli for the Visual generation.

Another threat related to the generalizability of this study is that the results are
based on 78 participants which had little to no experience in Android development
and testing. The sample might not be representative of all new users of Android test-
ing techniques or newly hired practitioners. Results, in general, are not generalizable
to experienced Android App developers and testers.

6.2 Results 65

Table 6.3 Experiment with graduate students: delivered and working test cases

Delivered Scripts Working scripts Quality
Technique Mean Median Mean Median Average

Visual 5.38 7 4.2 4 0.76
Layout-based 5.51 7 3.51 3 0.63

6.2 Results

In this section, the results of the experiment with graduate students are reported. The
results are based on the analysis of the submissions performed by 78 students, the
ones who completely performed all the three parts of the experiment (namely, the
development of the two test suites and the survey).

6.2.1 Demographic characteristics of the sample

Information about the considered sample of students was collected from the answers
they gave to the demographic questions of the survey. The most frequent age range
for the student was between 22 and 26 years old (89.7% of the respondents). A
large percentage (89.7%) of the participants did not have any previous professional
experience in Java development at the time of the experiment, with few years of
experience in Java programming (average 2.05 years, with median equal to 2). The
experience gathered by the students in Android programming before the experiment
was little: only 41% had developed for such platform beforehand, with an average
number of years of experience equal to 0.6.

For what concerns the experience in testing practices, only 21.5% of the sample
had experience with Java testing of any kind (principally with JUnit), and only
3.8% of respondents had used testing tools designed specifically for testing Android
applications (namely, Espresso, UIAutomator and MonkeyRunner).

6.2.2 Productivity and Quality of developed test suites

To measure the productivity of the participants to the experiment the count of the
number of test scripts that they delivered at the end of each session was taken
into account. The rationale between the link of this measured productivity and the

66 Study 2: Controlled experiment with Graduate Students

Fig. 6.2 Experiment with graduate students: Violin plot of delivered and working test cases

Table 6.4 Experiment with graduate students: null hypotheses about Productivity and Quality

Name Description p-value Result

Hp0 There is no significant difference in the measured produc-
tivity between the test suites developed with EyeAutomate
and the test suites developed with Espresso

0.6252 Accept

Hq0 There is no significant difference in the measured quality
between the test suites developed with EyeAutomate and
the test suites developed with Espresso

0.02509 Reject

learnability and usability of testing tools lies in the fact that an easier to understand
testing tool should lead practitioners to develop more test scripts in the same time.

Table 6.3 shows the average and the median number of test cases that were
delivered by the respondents, using the Visual or Layout-based testing tools. Violin
plots in 6.2 show the distribution of the number of delivered and working test cases
submitted by the respondents for both techniques. Those results show that, although
a relevant portion of all the respondents tried to build the entirety of the test suite
(being the median value of delivered test scripts equal to 7 for both the techniques)
the number of working test cases was way lower than the total number of delivered
ones.

6.2 Results 67

Table 6.5 Experiment with graduate students: statistics about recorded and not recorded
layout-based test suites

Delivered Scripts Working Scripts Quality
Average Median Average Median Average

Recorded 6.69 7 3.69 3 0.57
Not Recorded 4.13 4 3.30 3 0.71

Wilcoxon paired signed rank tests were applied to the pairs of distributions about
productivity and quality, to verify whether the difference between the measured
metrics for Layout-based and Visual testing tools was statistically significant or
not. The null hypotheses in table 6.4 were validated through the computation of the
p-value of the pairs of distribution.

Being the p-value for Hp0 equal to 0.6252, the hypothesis cannot be rejected, and
hence it can be stated that there is no statistically significant difference in terms of
the number of tests written with the use of a Layout-based testing tool, or a Visual
testing tool.

Answer to RQ2.1: No statistically significant difference has been found between
the respective productivity obtained using EyeAutomate or Espresso. It can be
deduced that the learnability of the two tools is similar, for non-professional
developers approaching them.

Being the p-value for Hq0 equal to 0.02509, the hypothesis can be rejected, then
it can be stated that there is a statistically significant difference in the number of
working test scripts written with the use of a Layout-based testing tool, or a Visual
testing tool. However, such difference can be considered small.

Pertaining to layout-based test cases, an additional inspection has been performed,
to subdivide the delivered test suites between the ones that were written down
manually by the participants, and those that were obtained through the use of the
Capture & Replay tool Espresso Test Recorder. Test scripts were manually inspected
to find patterns that are typical of the automated generation of a test script through
such tool. 42 of the 78 participants made use of the tool to create their test suites.
The average and median values for delivered and working test cases were computed
also on the subsets of test scripts that were written down manually and on those that

68 Study 2: Controlled experiment with Graduate Students

were obtained automatically; they are shown in table 6.5. It can be seen that when
the Espresso Test Recorder is used, the average number of delivered test cases is
higher than the one for Layout-based test scripts delivered without using it, and even
than the one for Visual test scripts; this can be justified taking into account the slower
process of identifying manually the properties with which to identify the widgets of
the user interface, or to take one screen capture at once to compose the test script,
instead of using a capture and replay technique.

Even though the average values of delivered test cases are very distant for
recorded and not recorded test suites, the average values of working test cases are
very close (with equal median values). On average, 70.6% of the test cases created
without the use of the Recorder were working, while only the 56.7% of the recorded
test cases were working. This can be seen as evidence of lower dependability of test
scripts obtained using the Recorder tool with respect to manually written test cases.

Answer to RQ2.2: A statistically significant difference has been found between
the respective quality obtained using EyeAutomate or Espresso. In particular, test
suites developed with EyeAutomate had a higher quality than the ones that the
participants developed with Espresso.

6.2.3 Errors performed in test scripts

Regarding the development of Visual test scripts, the most common errors performed
by the participants were related to the capture of images containing variable ele-
ments (e.g., another note created beforehand, or the time in the upper-right corner
of the Android device) that made the tests completely not reproducible. Some test
scripts failed due to missing explicit sleep instructions, that come in handy when the
operations performed by the app take more time than a few seconds. Some respon-
dents experienced issues in choosing the proper command from the EyeAutomate
command library.

However, many test scripts (or entire suites) failed because some inputs to the
GUI were hardly reproducible, using the EyeAutomate tool, even when the screen
capture was taken correctly. This issue could be due to an intrinsic difficulty of the
image recognition library itself in identifying images with specific characteristics in
terms of size and content. For instance, the menu button in the upper-left corner of

6.2 Results 69

Fig. 6.3 Omni-notes menu button

Fig. 6.4 Non-working assertion generated by the Espresso Test Recorder

any activity (image 6.3) was almost never recognized by the EyeAutomate engine.
A possible solution to this issue was to capture a larger portion of the screen (not
limited to the square menu button) and then select the exact position where to click
inside the screen capture.

Regarding the development of Layout-based test scripts, several tests failed due
to the intrinsic limitations of the Espresso Test Recorder tool itself, which was used
by the majority of respondents, without performing any editing on the scripts after
their generations. At the time of the conduction of the experiment, the Espresso Test
Recorder was still incapable of detecting long clicks on widgets (hence, all the test
scenarios involving such operation were not reproducible) and several generated
assertions were based on properties of the widgets that were not unique, hence
triggering an exception when tests were executed. An example of such failing
assertions is reported in figure 6.4.

6.2.4 Usability of testing tools

The second part of the survey was aimed at understanding the difficulties experienced
by developers when using the two selected testing tools, and their opinions about
them.

With question 2.1 (distribution of answers are reported in figure 6.6), participants
were asked whether the description of the user scenario was sufficiently clear: 83.3%
of respondents answered Agree or Strongly Agree, with Agree as the median value.

70 Study 2: Controlled experiment with Graduate Students

Table 6.6 Experiment with graduate students: wilcoxon tests for Likert answers of the survey

Name Description p-value Result

Hl1−0 There is no significant difference in the respondents’
perceived easiness in using EyeAutomate or Espresso

2.053e-06 Reject

Hl2−0 There is no significant difference in the respondents’
perceived ease of use of EyeStudio or Android Studio

0.001087 Reject

Hl3−0 There is no significant difference in the respondents’
perceived easiness in finding properties to discrimi-
nate widgets, using the image recognition-based or the
layout-based approach

0.01812 Reject

Layout−based

Visual

1 2 3 4 5

(a) 2.2 - 2.6 (Implementing the test suite was easy and intuitive)

Layout−based

Visual

1 2 3 4 5

(b) 2.3 - 2.7 (The IDE was helpful in the creation of test scripts)

Layout−based

Visual

1 2 3 4 5

(c) 2.4 - 2.8 (It was easy to identify elements of the screen to interacte with)

Fig. 6.5 Experiment with graduate students: distributions of answers to Likert questions

6.2 Results 71

Fig. 6.6 Experiment with graduate students: answers to question The user scenario descrip-
tions were clear to me

This result suggests that the errors and difficulties experienced during the develop-
ment phase were related to the tools themselves, and not to an obscure description of
the task to perform.

Regarding the perceived difficulty in implementing the test suites with both the
tools, question 2.2 (Implementing the test suite with EyeAutomate was easy and
intuitive) and question 2.6 (Implementing the test suite with Espresso was easy
and intuitive) both had Agree as median answer. However, the distributions of
the answers (see violin plots in figure 6.5a) suggest a higher perceived easiness
for the Visual testing tool. A comparison between the two distributions has been
made through the application of the Wilcoxon test, validating the hypothesis of
distributions with the same median. The obtained p-value (2.053e-06) leads to a
rejection of the null hypothesis. Hence, it can be assumed that the respondents
perceived the development of test cases with the visual approach as easier with
respect to the layout-based approach with Espresso.

Regarding the perceived difficulty in using the respective IDEs for the two tools
(EyeStudio and Android Studio), questions 2.3 (The EyeStudio IDE was helpful in
the creation of test scripts) and question 2.7 (The Android Studio IDE was helpful
in the creation of test scripts) both had a prevalence for Agree or Strongly Agree
answers. The distributions of the answers (see violin plots in figure 6.5b) suggest
a higher perceived easiness when using EyeStudio rather than Android Studio. A

72 Study 2: Controlled experiment with Graduate Students

comparison between the two distributions has been made through the application of
the Wilcoxon test, validating the hypothesis of distributions with the same median.
The obtained p-value (0.001087) leads to a rejection of the null hypothesis. Hence, it
can be assumed that the respondents perceived the EyeStyudio IDE was considered
as more helpful for the creation of test scripts than Android Studio. This result was
rather expected, being EyeStudio specifically designed for the creation of visual
test scripts, and Android Studio a full development environment that may be more
difficult to master for inexperienced Android developers.

Regarding the easiness in identifying the properties to select the widgets of the
screen with the two techniques, question 2.4 (It was easy to identify elements with
the visual recognition technique) and question 2.8 (It was easy to identify elements of
the screen using the layout-based technique) had both average values around Agree.
The distributions of the answers (see violin plots in figure 6.5c) suggest a higher
perceived easiness in obtaining screen captures rather than finding useful information
in the layout files of the application. A comparison between the two distributions has
been made through the application of the Wilcoxon test, validating the hypothesis
of distributions with the same median. The obtained p-value (0.01812) leads to a
rejection of the null hypothesis. Hence, it can be assumed that the respondents had
found easier the collection of working captures of the interacted widgets instead of
the search for individual unique properties.

Table 6.6 reports a summary of the results of the Wilcoxon tests applied to
distributions of answers to Likert questions.

Obstacles to test case development with EyeAutomate

Responding to question 2.5 (What were the principal issues that you found in
identifying elements of the screen using the Visual GUI testing approach?) 27 of the
respondents did not point out any difficulty faced in using the Visual approach with
EyeAutomate.

The Word Cloud in figure 6.7a has been created upon all the textual responses
given by the respondents to question 2.5. Figure 6.8 shows a classification of the
answers given by the respondents.

The most perceived difficulty faced by the participants while using the EyeAu-
tomate library through EyeStudio was the difficulty of capturing the right screen

6.2 Results 73

(a) Issues with Visual approach (b) Issues with Layout-based approach

Fig. 6.7 Experiment with graduate students: Word Clouds based on the answers to questions
2.5 and 2.9

Fig. 6.8 Experiment with graduate students: perceived Obstacles to Visual Testing

captures to create working test cases. Sometimes, in fact, the image recognition
algorithm is not able to interact with a given element of which the screen capture
is correctly provided in the script, especially if the element is small and relatively
simple. Some respondents highlighted this difficulty, as in the following comments:
"In some cases it was required to frame a bigger portion of the screen to make the
test work."; "Sometimes it didn’t recognize the objects"; "It seems that EyeStudio
performs image recognition on the entire screen: this could lead to some problems
in case the virtualized device screen is surrounded by distracting UI elements, that
could interfere with the image recognition process. For instance, I had no problems
since I was testing on an HD-ready monitor with a solid pitch-black wallpaper: a

74 Study 2: Controlled experiment with Graduate Students

Fig. 6.9 Sleep instructions generated by the Espresso Test Recorder

few colleagues of mine, instead, had several problems due to other distracting UI
elements."

Some respondents experienced issues with the exact position at which the inter-
actions with the GUI were performed. Several respondents had significant issues in
identifying the drawer menu button of the application (on the top-left corner): many
of them solved this issue by oversizing the screen capture, including the whole Title
bar in it.

One relevant issue that has been found when collecting the results of this experi-
ment has been the necessity of recapturing some (or even all) images for a test script,
when replicating it on a different configuration – with unvaried resolution – than the
original one on which the test scripts were taken. The test scripts worked correctly
when the same screen captures were collected again, launching the application anew
on the second device.

Obstacles to test case development with Espresso

The Word Cloud in figure 6.7b has been created upon all the textual responses
given by the respondents to question 2.9 (What were the principal issues that you
encountered in identifying elements of the screen using Espresso?). Figure 6.10
shows a classification of the answers given by the respondents.

28 respondents did not point out any difficulty faced in using the Layout-based
approach to testing, with the Espresso tool. This result was expected since a signifi-
cant number of respondents leveraged the Espresso Test Recorder without checking
the correctness of the generated test suite, and hence did not find any evident problem
in the developed test scripts. Several respondents criticized the insertion of delays
– that can be up to 160,000 milliseconds, see figure 6.9 – performed after nearly

6.2 Results 75

Fig. 6.10 Experiment with graduate students: perceived Obstacles to Layout-based Testing

every interaction by the Espresso Test Recorder: "Manual layout search is too slow
unless the element has a xml file with an obvious name. The layout inspector was
faster but it still had some problems (I couldn’t find a fast way to retrieve IDs, only
text and description, which in many cases were null/not present). Also, I didn’t
find any "reload" button to update the Android screen in the layout inspector in a
timely manner. The Espresso Test Recorder was the best, even though it needs some
corrections after generation, it’s just a bit slow when typing text into the android
virtual device (1 character per second), and the pauses between actions are way
oversized (>20 seconds, sometimes even 40)"; "The automatically-generated code is
full of useless thread sleeps and it could be way simpler, in my opinion."

Among those who did not leverage the Espresso Test Recorder, most found it
difficult to find properties able to discriminate unambiguously between elements of
the screen, and to clearly identify the values for those properties using the layout
.xml files and the Layout Inspector: "I found that, even with a small background of
programming in Android, unless the project was specifically designed to be testable
(all elements have ID property), it wasn’t easy to track a specific element. The easiest
way that I found was to use the Espresso Recorder to obtain the test case and then
modify or adapt it to check that it actually matched my intentions. In fact, from the
layout inspector, it wasn’t clear to me what properties were useful to identify objects
and this was even more difficult from the view layouts (since they were many and it
was difficult even just to understand which layout corresponded to which view on the
app)."

76 Study 2: Controlled experiment with Graduate Students

Fig. 6.11 Experiment with graduate students: answers to question 2.10 Which tool would
you choose if you had to perform visual testing again?

Most difficulties were perceived in testing ListViews, the DrawerMenu of the
application, and for executing the long click instruction on the Notes for the deletion
and restoration scenarios.

6.2.5 Preference towards Layout-based or Visual GUI testing
tools

Of the 78 complete surveys that were collected, students expressed a slight preference
(see figure 6.11) towards the Visual testing technique with respect to the Layout-
based GUI testing technique. Namely, 43 students (the 55.1% of the total sample)
indicated EyeAutomate as the tool that they would use again if they had to perform
GUI testing, whereas 35 (the 44.9%) indicated Espresso.

The explanations given by the students for their preference towards one or another
testing tool seemed to be principally moved by individual preference rather than
actual advantages or disadvantages exposed by the tools. For instance, the answer "it
is easier to use", was frequently given by respondents for both the testing tools.

Most of the respondents who selected EyeAutomate as the preferred way of
testing Android apps gave the easier generation of test cases – guaranteed by the
Capture & Replay functionality of the EyeStudio IDE – as the main explanation of
such choice. Some respondent also recognized that EyeAutomate is more indicated
when the tester is not the developer itself, and when the focus of the testing is
not strictly on the functionalities of the applications but principally on the actual
appearance provided to the user. Other respondents praised the portability and
possibility to work with multiple platforms of the Visual approach to GUI testing

On the other hand, some students who preferred Espresso pointed out that the
tests developed with such tool felt more precise and reliable than the ones obtained

6.2 Results 77

through screen captures and image recognition. Emphasis was also put on the
characteristics of layout-based testing tools to be not fragile to minimal changes in
the graphics of the application. Several students highlighted as an advantage the
greater control of the application that layout-based testing tools are able to provide.
The fact that Espresso is specifically designed for Android testing – instead of being
a general purpose tool for GUI applications applied to an emulated Android device
on a desktop PC – was also highlighted as a reason for preferring Espresso to test an
Android app.

In general, however, a significant number of participants leveraged the automated
Espresso Test Recorder for the creation of test scripts, instead of manually writing
down the operations for identifying views and executing operations on them. It can
be assumed that many respondents’ answers about the preference towards Espresso
were largely influenced by the availability of such an add-on for the Android Studio
IDE.

Answer to RQ2.3: The respondents to the experiment found slightly easier the
development of test suites using the EyeAutomate library, in the context of the
EyeStudio companion IDE, with respect to developing scripted Espresso test
cases in the Android Studio IDE. The respondents identified the imprecision of
the image recognition library, and the difficulty in finding individual ids for the
widgets, the most problematic aspects of, respectively, the proposed Visual and
Layout-based testing tools.

Chapter 7

Study 3: Measures of Diffusion and
Evolution of Testware in OS projects

In order to give a quantitative evaluation of the issue of maintenance and fragility
among open-source Android projects, measurements were performed on a set of
repositories mined according to the procedure detailed in section 3.

This study allowed answer the third research question of the study: RQ3 - What
is the adoption and typical evolution of test suites with automated GUI testing
frameworks among Android open source projects?

The design and results of this study have been presented in a workshop paper
at INTUITEST 2017 [29], in a conference paper at PROMISE 2017 [28], and in a
journal paper published in IEEE Transaction on Reliability [32].

7.1 Study design

A set of metrics have been defined, in order to (i) quantify the adoption of testing
tools on sets of Android app projects; (ii) quantify the evolution needed by the test
suites, during the normal evolution of an Android app project.

Hence, RQ3 is split into the following subquestions:

• RQ3.1 - Adoption and Size: What is the level of adoption of a set of auto-
mated testing tools among open-source Android projects?

7.1 Study design 79

• RQ3.2 - Evolution: How much are GUI test classes associated with the
analyzed sets of tools modified through consecutive releases of an open-source
Android project?

To answer the two subquestions, a set of 12 metrics has been introduced. The
metrics are subdivided in two different groups, and are based on an input consisting
of test classes (of a single release, or belonging to two consecutive releases of the
same project), production code classes and .txt difference files (from now on, diff
files) computed between consecutive versions of the same file. The metrics have
been defined for Java code, and are hence applicable to any kind of Java application
provided with test code based on Java itself, not limited to Android applications.

Change metrics have been proposed by several works available in literature. A
popular example is the set of metrics defined by Tang et al. [96], which were defined
to describe the amount of bug-fixing change histories in source files. The metrics
proposed by Tang et al. are subdivided in pure size metrics (e.g., the amount of added
or removed lines of code between two releases of the same file), atomic metrics
(e.g., boolean metrics that are equal to one if a test class features added methods
or deleted methods), and semantic methods (e.g., counting the number of changed
dependencies inside a test class).

Most of the metrics defined in this work are instead relative metrics because they
aim at measuring the co-evolution of test code along with the normal evolution of
the project the tests are associated with. The metrics are also normalized, in order to
allow the comparison between different projects, with production code and test code
bases of different sizes. The normalization of the metrics makes them inapplicable to
testing tools that create test scripts in languages that are different from pure Java, or
to apps containing fragments of code in different languages (e.g., Kotlin for Android
programming).

Table 7.1 summarizes all the defined metrics, the acronyms that are used in the
remainder of the paper, and the research question they contribute to answering. The
formulas for computing them are provided in the following. In the definition of the
metrics, production code indicates all the code of the application, including both
program code and test code.

80 Study 3: Measures of Diffusion and Evolution of Testware in OS projects

Table 7.1 Defined metrics for the computation of diffusion and evolution of test suites for
Layout-based GUI testing

Group Name Explanation

Diffusion
and size
(RQ1)

TD Tool Diffusion
NTR Number of Tagged Releases
NTC Number of Test Classes
TTL Total Test LOCs
TLR Test LOCs Ratio

Test evolu-
tion
(RQ2)

MTLR Modified Test LOCs Ratio
MRTL Modified Relative Test LOCs
MRR Modified Releases Ratio
TSV Test Suite Volatility
MCR Modified Test Classes Ratio
MMR Modified Test Methods Ratio
MCMMR Modified Classes with Modified Methods Ratio

7.1.1 Adoption and size metrics

Five metrics have been defined for the measurement of the adoption of the testing tool
in a sample of Android projects and for the relative size of the test suites developed
with such tools (hence, for answering RQ3.1).

This set only comprises static metrics, i.e. they can be measured for a single
release of the given project, without the need for comparisons with the precedent or
subsequent one.

TD (Tool Diffusion) It is defined as the percentage of projects, among the context
considered, featuring a given testing tool. In the context of this research, it
is used to provide the percentage of Android projects from GitHub that are
provided with test scripts generated with automated GUI testing frameworks.

NTR (Number of Tagged Releases) It is defined as the number of releases of a
repository. In the context of this experiment, it can be used to give statistics
about the lifespan of the considered Android GitHub projects, discriminating
between long-lived and maintained projects and tryouts or smaller applications
with a short lifespan.

NTC (Number of Tool Classes) It is defined as the absolute number of classes that
can be associated with a given testing tool, according to the heuristic explained

7.1 Study design 81

in section 3.3.2. In the context of this experiment, this metric allows computing
the total number of classes generated with the considered six testing tools for
tested Android projects hosted on GitHub.

TTL (Total Tool LOCs) It is defined as the absolute number of lines of code
contained in the test classes associated with a given testing tool, inside a
repository. In the context of this experiment, this metric is used to compute
the absolute size of test suites generated with the considered six testing tools
for tested Android projects hosted on GitHub.

TLR (Tool LOCs Ratio) It is defined as:

TLRi = TTLi/Plocsi,

with Plocsi being the total number of production lines of code in release i, and
T T Li being the Total Tool LOCs metric defined before. The metric lies in the
[0,1] interval and allows to quantify the relevance of the code associated with
a given testing tool with respect to the total production code of a given project.
In the context of this experiment, it is used to compute the relevance of the six
selected testing tools in tested Android projects hosted on GitHub.

7.1.2 Test Evolution metrics

Seven metrics have been defined to evaluate the amount of evolution needed by test
code, and hence to answer RQ3.2.

The metrics belonging to this set are computed on consecutive releases of the
same project, or on the entire set of releases belonging to a project (called lifespan
hereafter).

MTLR (Modified Tool LOCs Ratio) is defined for each release i of a given project
as

MTLRi =
Tdiffi

Tlocsi−1
,

where T di f fi is the number of added, deleted or modified lines of code in all
the test classes in the transition between release i−1 and i, and T locsi−1 is

82 Study 3: Measures of Diffusion and Evolution of Testware in OS projects

the total number of lines of code associated with the studied tool in release
i−1. The metric gives an indication about the amount of intervention that is
performed on the existing test code, comparing it with the total size of test
code in the previous release of the project. The resulting value can be higher
than 1, if the number of additions and modifications of existing lines of code
is higher than all the test lines of code in the previous release. In the context
of this experiment, this metric quantifies the amount of maintenance needed
by the six selected testing tools, with respect to the size of existing test code
of Android GitHub projects.

MRTL (Modified Relative Tool LOCs) is defined for each release i of a given
project as

MRTLi =
Tdiffi
Pdiffi

,

where, considering the transition between release i− 1 and i′, Pdi f fi is the
number of added, deleted or modified lines of code in all the production classes,
and T di f fi is the number of added, deleted or modified lines of code in all
the test classes associated with a given testing tool. This metric is computed
only for releases who feature test code (i.e., TRLi > 0) and is defined only if
Pdi f fi > 0, meaning that any modification has been applied on the repository
between release i−1 and i. The metric belongs to the range [0,1], since the
added, deleted or modified test LOCs are a subset of the complete set of added,
deleted and modified LOCs for the whole project. A value close to 1 of this
metric imply that a relevant portion, among the total effort for maintaining
a given project, is devoted to the update of test code. In the context of this
experiment, the metric measures the amount of relative maintenance required
by Android GitHub repositories featuring the six selected automated GUI
testing frameworks.

MRR (Modified Releases Ratio) is defined for a given project as the ratio between
the number of tagged releases featuring at least one modification in test code
associated with a given testing tool, and the total number of tagged releases
of the project (i.e., the lifespan of the project). The metric belongs to the
[0,1] interval. Values close to 1 of this metric implies that the majority of the

7.1 Study design 83

releases of the project involved maintenance in the test code, implying high
coupling between test code and application code.

TSV (Test Suite Volatility) is defined for a given project as the ratio between the
number of test classes that were modified at least once during the lifespan of
the project, and the total number of test classes that are encountered during the
evolution of the project (also test classes that are deleted at some point in the
release history). The metric is a companion to the MRR metric, but from the
point of view of the test classes instead of that of the releases of the project.
The metric lies in the [0,1] interval. Values close to 1 of the metric imply that
the majority of the test classes had to be modified at least once during the
project lifespan, meaning that most of the test classes covered features of the
application that had to be modified during its evolution. On the other hand,
values close to 0 of the metric may imply scarce coverage of the test classes of
the features of the application, or abandonment of developed test classes after
their insertion in the repository.

MCR (Modified test Classes Ratio) is defined for each release i of a project as

MCRi = MCi/NTCi−1,

where NTCi−1 is the number of classes associated with the given testing tool in
release i−1, and MCi is the number of the test classes that have been modified
in the transition between releases i−1 and i. The metric is not defined when
release i− 1 of the project does not feature test classes associated with the
given testing tool (i.e., NTCi−1 = 0). The metric takes a snapshot of the
number of test classes requiring modifications in a single release of the project,
and tracking its evolution may give indications about which modifications on
application code have higher effects in test code maintenance.

MMR (Modified test Methods Ratio) is defined for each release i of a project as

MMRi = MMi/TMi−1,

where T Mi−1 is the number of Java methods contained by test classes as-
sociated with a given testing tool in release i− 1, and MMi is the number
of methods among those that have been modified in the transition between

84 Study 3: Measures of Diffusion and Evolution of Testware in OS projects

releases i − 1 and i. The metric is not defined when release i − 1 of the
project do not feature any test class associated with the given testing tool (i.e.,
NTCi−1 = 0).

MCMMR (Modified test Classes with Modified Methods Ratio) is defined for each
release i of a project as

MCMMRi = MCMMi/NTCi−1,

where NTCi−1 is the number of classes associated with the given testing tool in
release i−1, and MCMMi is the number of test classes that have been modified
in the transition between releases i−1 and i, and that contain modifications
inside test methods. This metric is not defined when release i− 1 of the
project does not feature test classes associated with the given testing tool (i.e.,
NTCi−1 = 0). The metric is upper-bounded by MCR, since by definition of
the intermediate metrics MCMM ≤ MC.

7.1.3 Metrics computation

Based on a given repository of git projects, the described set of metrics were com-
puted applying the procedure detailed in the following.

Computation of diffusion and size metrics

The TD metric has been computed for each of the six considered testing tools, as the
ratio of the projects obtained at the end of the filtering phase described in section
3.3.2, and the total number of mined valid Android projects.

Static metrics defined for answering RQ3.1 have been computed for each project
on the master release only. The code search for keyword related to one of the six
considered testing tools resulted in the computation of the NTC metric for each
tested repository.

For each Java test class associated with a given testing tool, the lines of code
have been counted using the cloc bash tool1. The sum of such count for all test

1http://cloc.sourceforge.net/

http://cloc.sourceforge.net/

7.1 Study design 85

classes allowed to compute the T T L metric. The count has been repeated also for the
complete set of production classes of each project, to find Plocs of the master release;
the ratio between T T L and Plocs allowed to find the T LR metric for each project.

The NT R metric was obtained, for each considered repository, by means of the
git tag command.

Computation of evolution metrics

To compute the values of the metrics designed for answering RQ3.2, for each pair
of consecutive tagged releases, the total amount of modified LOCs was computed.
Then, the total amount of LOCs added, removed or modified in classes associated
with the featured testing tool was computed. To perform such computations, the
git diff command was used. The command gives the possibility, by using the -M
parameter, to identify files that have been renamed or moved in the transition between
subsequent releases, without considering such operation as the combination of a
deletion and an addition of a file. Since the -M command is able to work with a
maximum size of the git repository, it was decided to not use such option to obtain
the same way of computing the number of changed LOCs for all considered projects,
and hence moved files were considered as different files in all release transitions.

The measurement of changed lines of code, paired with the T LRi metric measured
for each release of each project, allowed to compute the derivated metrics MT LRi and
MRT Li for each tagged release of the project. Once the exploration of the lifespan
of a given project was completed, final averaged values were obtained as T LR =

Avgi{T LRi}, MT LR = Avgi{MT LRi}, MRT L = Avgi{MRT Li}, with i ∈ [1,NT R]
being NT R the number of tagged releases featured by the project.

Volatile classes (i.e., classes featuring modifications throughout their lifespan)
were flagged during the computations described above, so that it was possible to
compute for each project its T SV value.

The evolution of individual test classes and methods was tracked with the use
of an automated Java class examiner, based on the open-source JavaParser tool2.
The tool, given two releases of the same test classes as parameters, is capable of
extracting all methods defined in both releases, finding whether the methods are
present in only a release of the two, and for those who appear in both versions

2https://github.com/javaparser/javaparser

https://github.com/javaparser/javaparser

86 Study 3: Measures of Diffusion and Evolution of Testware in OS projects

of the class finding whether they have been modified or not. The application of
this automated examiner to each class, for each release transition in the project
lifespan, allowed for the computation of the MCRi, MMRi and MCMMRi metrics.
Also in this case, average values have been computed for each project at the end
of the exploration of its lifespan, as MCR = Avgi{MCRi}, MMR = Avgi{MMRi},
MCMMR = Avgi{MCMMRi}, with i ∈ [1,NT R].

A running sample of the computation of the set of metrics, on a real application,
is provided in Appendix B.

7.1.4 Threats to Validity

Threats to internal validity

The test class identification process was based on some keywords specific to each
testing tool: any file containing one of those keywords and containing the word
test in its absolute path is considered as a test file without further inspection. This
procedure may miss some test classes, or consider a file as a test class mistakenly.
Evaluated on a sample of 100 classes that were manually examined, the proposed
heuristic guaranteed a precision (measured as the amount of true positives, i.e.
classes extracted with the code search that were actual test classes, over the number
of classes extracted using the heuristic) of about 90%. Better procedures of test
class extraction can be used, taking into account the presence (or absence) of calls to
specific methods that are proper of a specific GUI Automation Framework (e.g., the
use of the onView or onData methods, for the Espresso framework). The way the test
classes of our study were generated was also not evaluated. This may introduce bias
to our computed metrics, because test classes are re-generated in each version using
automated tools (e.g., Capture Replay tools) higher amounts of modified LOCs are
expectable, with respect to manual editing of existing test classes.

The number of tagged releases is used as a criterion to identify a project as worth
to be considered for the executed investigations; it is not assured that this check is
the most dependable one for pruning negligible projects.

The metrics have not been tested outside the scope of this study, hence the cor-
rectness of the assumptions based on them is not ensured . The reported evaluations
are based only on files that contain pure Java code. Hence, code in other languages,

7.1 Study design 87

that may be part of test suites as well as of production code of Android applications,
does not contribute to the computations. This may add biases to the presented results.

Java files containing keywords pertaining to each tool were entirely associated
to the tool, and all their lines were counted for the defined metrics. In addition to
that, no discrimination has been made about the use that was made of the individual
tools, while some considered testing frameworks can be used to perform not only
GUI testing. A manual validation of the heuristics, performed on a set of 100
classes, resulted in about 70% precision in finding test classes testing the GUI of
the respective AUT. Both threats may add biases to the results, if multiple different
testing frameworks are used in the same Java classes, and if the testing tool to which
the code is associated is not used to perform GUI testing.

Structure, provided coverage and quality of the developed test cases have not
been controlled and taken into account by the automated procedure for computing
the metrics. Hence, the effects that low-quality tests have on maintenance effort are
not taken into consideration. The study was also conducted statically, meaning that
test scripts were not executed before and after the transition between subsequent
releases of the projects. Hence, the evaluation of the needed effort in test code
modifications is based on the measurement of the modifications that were actually
performed, without evaluating whether those were sufficient to adapt to the evolution
of the app or not.

Threats to External Validity

Testing tools and techniques adopted by relevant industrial players may vary signif-
icantly from the ones discussed in this work, and by the related ones discussed in
earlier sections. It is not assured that the findings, based on a very large repository
of open-source projects, can be applicable to the development of commercial or
closed-source projects.

Measures were collected for just six scripted GUI automation frameworks. It is
not certain that such selection of tools is representative of other categories of testing
tools or even different tools of the same category, which may exhibit different trends
and fragilities throughout the history of their AUT.

88 Study 3: Measures of Diffusion and Evolution of Testware in OS projects

Table 7.2 Acronyms used for Diffusion and Size Metrics

Name Explanation

TD Tool Diffusion
NTR Number of Tagged Releases
NTC Number of Test Classes
TTL Total Test LOCs
TLR Test LOCs Ratio

Table 7.3 NTR, NTC, TTL, TLR per testing tool: average and median (in parentheses) values
for master release.

Tool n TD NTR NTC TTL TLR

Espresso 372 2.42% 13 (5) 3 (2) 418 (181) 7.63% (4.23%)
UI Automator 50 0.32% 19 (7) 3 (1) 523 (226) 7.35% (3.38%)
Robotium 129 0.84% 16 (6) 4 (1) 518 (196) 6.15% (2.96%)
Robolectric 631 4.11% 15 (6) 9 (3) 1,307 (331) 13.50% (8.47%)
Appium 12 0.08% 37 (27) 14 (3) 1,510 (927) 2.81% (1.27%)

Average 15 6 908 10.49%

The metrics can be applied only to testing tools who produce scripts in Java.
Other tools producing test scripts in other languages cannot be evaluated using the
provided metrics.

7.2 Results

In this section, the measures gathered for the metrics described in section 7.1 are
described. The metrics have been computed on the set of projects mined from GitHub
with the procedure described in section 3.3.

At the end of the mining procedure, an initial total amount of 280,447 GitHub
repositories have been found, featuring the term Android in their names, readme files
or description.

The first filtering phase, about the deletion of repositories which did not feature
any Manifest file and at most a single tagged release (which did not permit to perform
any comparison between subsequent releases, necessary for the computation of the
Evolution metrics), cut out a significant portion of the original set, with 18,930
resulting repositories (the 6.85% of the original context).

7.2 Results 89

Fig. 7.1 Number of Android projects mined from GitHub and associated with the six
considered testing tools, after each step of the filtering procedure

90 Study 3: Measures of Diffusion and Evolution of Testware in OS projects

The final filtering phase on “Android” repositories, performed in order to cut out
projects which were not likely to have any Graphical User Interface, led to a final set
of 15,326 Android repositories (5.46% of the original context).

7.2.1 Diffusion and Size measures

After the filtering phase for the starting context of Android repositories with a history
of releases, the application of the GitHub Code Search API for keywords related to
the selected testing tools led to the definition of six different groups of repositories,
with size ranging from 5 (for the set of repositories featuring Selendroid) to 372 (for
the set of repositories featuring Espresso).

The additional filtering phases performed on individual sets (i.e., the removal of
duplicate projects and clones of Android frameworks, and the removal of projects
without test classes having the “test” keyword in their absolute paths) led to a
reduction of the size of the six sets. The reduction was more substantial for the set of
projects associated with UI Automator, principally for many clones of frameworks
that figured inside it.

The graph in figure 7.1 shows the number of projects after each filtering phase.
Table 7.3 summarizes the metrics that have been computed on the projects, to answer
RQ3.1. The columns show: the total number of projects featuring the testing tools
considered, at the end of the filtering procedure and the derivated the Tool Diffusion
(TD) metric; the average and median values for the Number of Tagged Releases
(NTR), Number of Test Classes (NTC), Total Test LOCs (TTL) and Test LOCs Ratio
(TLR). The last two measures have been computed on the master releases of each
project. The last line of the table shows the average value for all projects, weighted
by the size of each set of projects. The table does not show the measures for the
single Selendroid projects which lasted after the application of the whole filtering
phase to the original set of projects featuring such tool.

To ease the reading of this section, the acronyms used hereafter for the metrics
are reported in table 7.2.

The TD metric, computed as the percentual penetration of each testing tool
among the extracted context of Android repositories, ranged from near 0% (for the
set associated with Selendroid, containing just a single project) to 4.11% for the
set of projects featuring Robolectric. The higher percentage of projects featuring

7.2 Results 91

Robolectric may be justified with the fact that Robolectric has been available for a
longer time than the other testing tools that have been considered, and it can also
be used for other forms of testing in addition to automated GUI testing. The set of
projects featuring Appium also proved to be rather small, with just 12 projects. Of
the two testing frameworks that are part of the Android Instrumentation Framework,
Espresso proved to be more widespread than UI Automator. This result may hint
at Espresso being an easier testing tool to use for creating simple test suites for
Android applications, whereas UI Automator was typically used for complex sets of
applications or frameworks in which also the interaction with the OS user interface
had to be tested. Also, the prevalence of Espresso test classes can be motivated by
the fact that the tool is indicated by the Android Developer Guide as the official way
to test individual activities of Android apps; additionally, the Android Studio IDE
features a built-in plugin for the creation of Espresso test cases through Capture &
Replay.

Overall, slightly less than 8% of the filtered set of Android projects featured tests
belonging to at least one of the selected testing tools. The six sets of projects were
not necessarily disjoint, since a single repository may contain references to multiple
testing frameworks. This may create overlaps, and hence to an overestimation of the
cumulated diffusion of the six considered testing tools. That considered, the resulting
cumulated TD gives evidence of a lack of extensive adoption of automated GUI
testing frameworks among Android repositories hosted on GitHub. As a limitation
of this result, it must be considered that such value is limited to the six testing tools
considered in this study, with the possibility of the presence of many scripted testing
tools adopted by other Android repositories.

As a final comparison for the adoption of the considered testing tools, the same
procedure of search for test classes was performed searching, this time, for the JUnit
keyword. This search would result in a set of projects featuring any kind of unit
testing classes developed with JUnit, along with classes associated with other testing
frameworks using JUnit as an automation engine. The search resulted in 3,669
projects (with tagged releases and manifest files) featuring classes containing the
JUnit keyword, for around the 20% of the total amount of extracted Android projects.
This percentage, albeit significantly bigger than the combined percentage of adoption
of the six considered testing tools, shows that the percentage of applications that
are tested with any framework based on JUnit is still quite low, testifying a rather

92 Study 3: Measures of Diffusion and Evolution of Testware in OS projects

scarce adoption of any form of testing on Android open-source repositories hosted
on GitHub.

NTR metric was used to give a statistic about the average history of the projects
of each set. The averages went from 13 (for the projects featuring Espresso) to
37 (for the projects featuring Appium). The small average and median values for
Espresso projects may suggest that Espresso is typically preferred for testing smaller
applications with shorter lifespans, possibly thanks to their higher accessibility and to
its integration (especially thanks to the Espresso Test Recorder tool) in the Android
Studio IDE. In the case of Appium, the result may be heavily influenced by the small
size of the set of projects that have been considered.

The average and median values for the NTC metric, useful for quantifying the
typical size in terms of test classes of an automated GUI test suite for an Android
project, were rather small for all the considered sets except for the set associated
with Appium. This result may be a consequence of the usual coding patterns adopted
when developing test classes for Android applications, with each test class associated
with an Activity of production code. Most apps do not feature a high number of
different screens to compose the interface shown to their users, and therefore they
do not feature many activities to be tested. An investigation about the number of
activities for the considered projects was performed, by computing the number of
declared activities in the manifest .xml file, with a measured average number of
19 activities. The smaller average value for the NTC metric (6), suggests a partial
coverage of the activities of the Android repositories, and hence small coverage of
the production code by the test classes.

Average TTL values were very large for the sets of projects featuring Appium
and Robolectric. However, it could be noticed that the TLR was very small for
the considered Appium projects. This may suggest that the amount of test code
written with Robolectric is typical more relevant, in the whole production code of
a repository, than the amount of test code written with Appium. This result also
suggests that, among all the considered sets of projects, Appium has been typically
used for testing bigger projects in terms of production LOCs. The values of TTL and
TLR were rather similar for sets of projects featuring Espresso, UI Automator and
Robotium, suggesting that the testing tools are used in a similar way on projects of
similar size. The set of projects featuring Espresso had the lowest TTL value. This
measure can be explained with following reasons: (i) the fact that using a white-box

7.2 Results 93

Table 7.4 Acronyms used for Evolution Metrics

Name Explanation

TLR Test LOCs Ratio
MTLR Modified Test LOCs Ratio
MRTL Modified Relative Test LOCs
MRR Modified Releases Ratio
TSV Test Suite Volatility
MCR Modified Test Classes Ratio
MMR Modified Test Methods Ratio
MCMMR Modified Classes With Modified Methods ratio

Table 7.5 Measures of the evolution of test code (averages on the sets of repositories)

Tool T LR MT LR MRT L MRR TSV MCR MMR MCMMR

Espresso 6.30% 4.21% 3.17% 16.64% 19.42% 15.75% 3.83% 60.12%
UI Automator 5.84% 3.10% 1.14% 10.68% 21.46% 14.48% 3.42% 55.86%
Robotium 5.11% 5.09% 3.07% 16.50% 25.13% 17.40% 3.80% 58.41%
Robolectric 11.23% 5.30% 5.93% 20.39% 18.12% 14.91% 3.88% 55.36%

Average 8.78% 4.94% 4.54% 18.37% 19.43% 15.43% 3.83% 57.21%

testing technique allows to translate the same testing scenarios in direct operations
instead of performing multiple operations on higher level widget descriptions; (ii)
the accessibility of the Espresso framework even to non-experienced developers, and
the availability of higher amounts of documentation with respect to the other testing
tools; (iii) the integration of Espresso in the Android Development environment, that
may make it the first choice for tryouts – later abandoned – of the practice of testing.

Answer to RQ3.1: The considered GUI testing tools reached a diffusion that is
always lower than 4.11% individually, and a combined adoption of about 8% by
the considered set of 15 thousand Android repositories hosted on GitHub. The
projects that are tested with the considered tools are typically rather short-lived,
with an average of 15 releases, and feature on average few very few test classes
for around 10% of total production code devoted to testing.

94 Study 3: Measures of Diffusion and Evolution of Testware in OS projects

7.2.2 Evolution measures

The measures gathered for the evolution of test suite, by comparisons of test classes
in subsequent releases throughout the entire lifespans of the considered projects, are
shown in table 7.5. The columns show, respectively, averages for Test LOCs Ratio
measured on all the releases instead on the master release only (TLR), Modified
Test LOCs Ratio (MTLR), the Modified Relative Test LOCs (MRTL), Modified
Releases Ratio (MRR), Test Suite Volatility (TSV), Modified Classes Ratio (MCR),
Modified Methods Ratio (MMR), Modified Classes With Modified Methods Ratio
(MCMMR). The last row in the table reports the average of the individual averages
for each testing tool, weighted by the size of the respective sets.

To ease the reading of this section, the acronyms used hereafter for the evolution
metrics are explained in table 7.4.

The reported value for T LR show that – when present – the test code associated
with the selected testing tools amounts on average to slightly less than 10% of the
whole production code of the projects. Comparing the values in table 7.5 to those in
table 7.3, it is evident that the averaged T LR value is smaller than the TLR measured
on master release. This result may be evidence of the graduality of construction of
test suites, or their absence in the initial release of Android projects. The measured
average values ranged from 5.11% (for the set of projects featuring Robotium) to
11.23% (for the set of projects featuring Robolectric).

The average values for the MT LR metric show that on a typical tested project,
about 5% of the testing code associated with the six considered GUI testing tools
is modified between consecutive releases of the project. The values for the MRT L
show that on average, when the selected testing tools are used, the 4.54% of the
total modified production LOCs belong to test classes. This metric is unable to
discriminate the reasons behind the maintenance performed in test code, but however
gives an indication of the amount of intervention needed between subsequent releases
by a typical test class written with one of the selected testing tools. Robolectric has
shown the highest MRT L values: this result, paired with the higher TLR for the
same tool, may suggest a higher complexity of test suites written with Robolectric,
that hence are of bigger size and need more maintenance.

The MRR metric was used as an indication about how often the developers of
the inspected open source projects had to modify the individual classes associated

7.2 Results 95

Table 7.6 Percentage of projects without modifications in test suites, classes and methods

Unmodified Unmodified Unmodified
Tool suites classes methods

Espresso 24.6% 57.0% 65.8%
UIAutomator 16.0% 40.0% 55.0%
Robotium 16.6% 44.1% 60.0%
Robolectric 15.8% 45.3% 53.3%

with the studied GUI testing tools. On average upon all projects, about 19% of
the releases of the projects contained modifications in classes associated with the
selected testing tools, with a maximum of 20.39% for projects featuring Robolectric
and a minimum of 10.68% for projects featuring UI Automator. The TSV metric
measures the occurrence of modifications from the point of view of the set of test
classes associated with a given testing tool. Also in this case the resulting average
over all the sets was of about 20% (with a maximum of 25.13% for Robotium, and a
minimum of 18.12% for Robolectric), implying that about one every five test classes
is modified during the lifespan of a project, and the other four are never modified
after they have been inserted in the repository.

The average MCR metric shows that, on average, 15.43% of test classes are
modified between consecutive tagged releases, in the set of Android repositories
considered. Average values were rather similar for all the six sets of repositories,
with the maximum value of 17.40% measured for projects associated with Robotium.
The average value for MMR metric tells that 3.83$ of the test methods are modified
between consecutive releases of the considered Android repositories. This percentage
is, as expected, smaller than MCR, because individual test classes may contain
multiple test methods, and just the modification of one method would make them
count for the computation of MCR. Also in the case of the MMR metric all the
individual values for the six sets were very close to the overall average value.

Not all modified test classes contained significant modifications, i.e. they could
contain changed lines of code only due to syntax corrections, changed comments
or changed imported files. The MCMMR metric was used to give a statistic about
how many of the modified classes contained modified methods, instead of having
changes limited to irrelevant sections of code. The measures for this metric showed
that in almost 60% of the cases of modified test classes, the modifications were also
lying inside test methods.

96 Study 3: Measures of Diffusion and Evolution of Testware in OS projects

It is worth highlighting that the average values for the evolution metrics over the
sets of projects featured quite a low variability: more specifically, the average values
for Modified Classes Ratio and Modified Methods Ratio were very similar for all
the considered testing frameworks. Since all the tools are layout-based and produce
test code in Java, these results may suggest that they share similarities in terms of
syntax, and hence are influenced to a similar extent by typical changes applied to an
Android project.

Lastly, it must be taken into account that the values measured for the MCR,
MMR and MCMMR metrics are heavily lowered if the test classes and methods are
added at some point of the lifespan of a project, and then remain unmodified during
its evolution. Table 7.6 shows statistics about the projects that have unmodified test
suites (meaning that test suites are entirely unaltered for the whole lifespan of the
project); those that only have unmodified test classes (meaning that no modifications
in any test class are made during the whole lifespan of the project, but additions
or removals of test classes are possible); those that have modified classes but no
modifications in test methods (meaning that the changes inside the test classes are
only limited to irrelevant portions of the code of test classes).

Answer to RQ3.2: An average 5% of testing code is modified between consec-
utive tagged releases of Android repositories hosted on GitHub featuring tests
associated with the six selected testing tools. 4.54% of the whole maintenance
effort on production code is limited to changes in classes that are identified as
tests developed with the studied testing tools. On average, one every five release
required efforts of maintenance on test classes, and one every five classes had to
be modified at least once during the lifespan of a project. On each new release, an
average 15.43% of test classes (3.83% of test methods) feature modifications.

Chapter 8

Study 4: Taxonomy of fragility
causes

To understand what are the typical causes of fragility for Android projects, and to
compute their frequencies of occurrence, the Grounded Theory technique has been
applied over the full set of modified test methods gathered during the previous part
of the study. This study allowed to answer the fourth research question of the study:
RQ4 - Why and with which frequency fragilities occur in tested Android projects?

A preliminary presentation of the application of Grounded Theory for the creation
of a taxonomy of modification reasons of Android GUI tests has been given at the
NEXTA 2018 workshop [31].

8.1 Study Design

This section contains a brief description of the Grounded Theory approach for the
creation of taxonomy, and the way it was applied to git diff files for the construction
from the bottom up of several distinct types of modifications triggering fragilities.

Previous definitions of categories of reasons for modifying test classes are avail-
able in the literature. For instance, Yusifoglu et al. [101] identified four types of
maintenance activities that can be performed on test code:

• Perfective maintenance: modifications performed only to improve the quality
of test code, e.g. refactoring;

98 Study 4: Taxonomy of fragility causes

• Corrective maintenance: modifications performed to fix bugs in test code;

• Adaptive maintenance: modifications performed to follow the evolution of the
AUT;

• Preventive maintenance: modifications performed to remove smells or redun-
dancies, and not after the actual detection of defects.

The element of novelty in the derivation of the taxonomy performed in this
section of the study is the application of the Grounded Theory technique, and the
derivation of a fine-grained set of categories for modification causes that are specific
to Android development.

8.1.1 Grounded Theory and Taxonomies

The way this study has been performed follows the methodological guidelines and
quality criteria described by Ralph [87] for obtaining process theories and taxonomies
in Software Engineering. A critical review is also given by Stol et al. [93] about the
usage of Grounded Theory as a tool for Software Engineering research, along with a
literature review of studies leveraging such method.

The Grounded Theory approach has been primarily introduced by Glaser and
Strauss [44] and is a qualitative method to generate theory through continuous and
progressive analysis and comparison of available data. In its original form, the
research carried using the Grounded Theory method does not contemplate answering
a Research Questions which is defined a-priori, but the Research Question emerges
itself during the data analysis steps.

Grounded Theory has then undergone a revision by Strauss and Corbin [94] that
led to the Straussian Grounded Theory: this less stressed-out version of the technique
allows the a priori definition of a Research Question, and the consultation of existing
literature during the generation of the survey, instead of limiting only to the analyzed
set of data.

Whatever the type of Grounded Theory adopted, the fundamental practices of the
methodology are the coding activities: Open Coding, which based on line-by-line
analysis of text data extracts the concepts and categories of the theory; Axial Coding,
i.e., the process of analysing the categories that have been found to find structures

8.1 Study Design 99

and relationships between them; Selective Coding, i.e. the selection of a central
category for the taxonomy, to which all other categories can relate.

8.1.2 Diff Files Analysis

For this study, the Straussian definition of Grounded Theory has been adopted, with
the definition of a Research Question upfront as a follow-up of the previous parts of
this study. In particular, the aim of this part of the study was answering the following
two research subquestions to characterize the fragility issue for Android open-source
projects:

RQ4.1 Modification Causes: what are the main causes behind the need for main-
taining GUI test code in Android open-source projects?

RQ4.2 Fragility: how fragile are test methods and classes to modifications in the
AUT or in its appearance?

To construct a taxonomy of modification causes from the bottom up, the Straus-
sian definition of the Grounded Theory method has been adopted, with the Research
Questions defined upfront following the previous part of the study, and not emerging
from the research.

The site for the Grounded Theory studies, an organization or group in the original
Straussian definition of the technique, can be interpreted in the case of Grounded
Theory in Software Engineering as an artifact or a repository of artifacts. In this
study, the chosen site is the repository of Android open-source projects mined in the
previous step of the study.

Among the possible Data Collection strategies identified by Ralph in the guide-
lines for Grounded Theories in Software Engineering, the selected one for this study
was the strategy of Technical observation, defined as “accessing, creating or copying
digital artifacts such as source code, unit tests, server logs or database entries”. In
particular, the copied digital artifacts were the diff files computed for each test class
of the mined repositories, for each transition between consecutive releases in which
they were featured.

Starting from modified lines in test methods, the corresponding production classes
and layout files have been individuated and examined, to understand what was the

100 Study 4: Taxonomy of fragility causes

underlying reason for each modification emerging from diff files. The inspection,
hence, moved from the usage of widgets inside the test classes to the layout files
where such widgets were defined, that were inspected to find changes in the definition,
properties, and arrangement of the widgets; then, the activities in charge of inflating
the identified layouts were also inspected, to understand whether the modifications in
the layouts or test code were paired with changes in the production code. When, on
the other hand, the modifications in test methods were not evidently linked to widgets
of the user interface, the search for modified lines of code was not propagated to
layout files and production code, and the modification was flagged as pertaining to
test code only.

Following the described inspections, the categories of the taxonomy were gen-
erated incrementally through Open Coding, with each modified test method being
classified under one or more classes of the taxonomy, that were thus not deemed
as mutually exclusive (i.e., two or more different causes can concur to a single
modification operated on a test method). The open coding procedure involved two
iterations over the collected set of diff files. Axial Coding was used then to find
macro-categories of modifications in the taxonomy.

The taxonomy building procedure was applied over four different sets of diff
files, related to Android repositories that featured the Espresso, UI Automator,
Robolectric and Robotium testing tools. The application of the taxonomy over a
considerably high amount of diff files generated with four different tools proved
also as a conceptual evaluation of the transferability of the taxonomy. Percentages
of occurrence were gathered for each of the defined categories of the taxonomy, in
order to find the most common causes for maintenance in Android test code (and
hence answering RQ4.1).

Finally, the modification causes have been split between modification causes
related to test code only, and modification causes related to changes in the AUT
or, more specifically, to its GUI appearance or definition; the latter ones have been
deemed as fragile according to our definition of fragile test cases of section 2.6.1.
This way, an estimation of the fragility of the test suites obtained with the selected
GUI automation frameworks was obtained (and hence, RQ4.2 was answered).

8.2 Results 101

8.1.3 Threats to Validity

Threats to Internal validity

The analysis of diff files in existing Android projects has been conducted at a
release granularity, considering all the tagged releases of projects hosted on GitHub.
The commit granularity would take in consideration also smaller and/or temporary
modifications; hence, the results in terms of frequencies of maintenance causes may
vary sensibly.

The scripts and tools used for the inspection of diff files, and the individuation
of modifications inside test methods, assume that there are no syntax errors inside
test classes; the correctness of the extraction of modified methods – and thus of the
diffs considered for the inspection of maintenance cause – is thus not ensured for
any project.

Threats to External Validity

The findings are based solely on projects hosted on the GitHub open-source project
repository. Even though the set of projects is very large and varied in terms of types
of applications, it is not assured that the findings can be generalized to closed-source
Android applications, or to other sets of open-source applications. This particularly
applies to the frequencies of maintenance causes, that can vary significantly if test
classes are produced using different testing tools.

8.2 Results

This section illustrates the taxonomy of modification causes that has been derived
applying the procedure described in section 8.1.

The open coding procedure was applied on all the diff files containing modifica-
tions in test methods for Android open-source projects featuring code written with
Espresso (819 diff files), Robotium (424 diff files) and UI Automator (59 diff files).
The set of diff files of projects associated with Robolectric was instead sub-sampled,
due to the size that was excessive for manual examination. This selection led to 422

102 Study 4: Taxonomy of fragility causes

randomly extracted diff files out of the full set of 4221 (10%). To sum up, the open
coding procedure involved the manual examination of a total of 1724 diff files.

8.2.1 Modification Causes

All causes for modifications in test cases that have been found, and the macro-
categories in which individual causes are grouped, are described hereafter. The 28
individual causes have been divided into nine macro-categories.

Only the first one of the categories, namely Test Code Change, is not related to the
AUT. The macro-categories Application Logic Change, Execution Time Variability,
Compatibility Issues are related to the AUT, but not specifically to its GUI. The
remaining five categories, namely GUI Interaction Change, GUI Views Arrangement,
View Identification, Access to Resources and Graphic Changes, are strictly related to
changes in the graphical appearance of the AUT.

The taxonomy is shown graphically in figure 8.1, with the individual categories
graphically divided in macro-categories, and the three groups of macro-categories
described before depicted using different colors.

Test Code Change

To this macro-category of modifications are assigned all the changes that are per-
formed in test code without any link to maintenance in the application code or in
the GUI definition and appearance of the app. Those modifications are only related
to how test cases are defined, set up and executed, and hence are cases – in the
prior classification given by Yusifoglu et al. [101] – of Perfective and/or Corrective
maintenance.

Test Logic Change. Modifications in the test code and in the usage of the GUI au-
tomation frameworks inside the examined test methods. For instance, different
functions belonging to the adopted test framework can be used, or adaptations
may be needed due to the natural evolution of the GUI testing frameworks
used.

8.2 Results 103

Fig. 8.1 Graphic taxonomy of modification causes

Changed Assertions. Modifications in the assertions that are checked in the same
test method, or in the sequence of oracles that are verified during the test case,
as if the use case on which the test case is based is changed slightly.

Test Refactoring. This category includes all the refactoring modifications that are
performed on test code, without any influence from modifications (including
refactoring) operated on production code. Examples of this category are

104 Study 4: Taxonomy of fragility causes

modifications of the names of the variables and/or functions declared inside
test methods, or the creation of helper functions in test classes to simplify the
code of existing methods and make it less redundant.

Logging. Addition, removal or modification of logging operations inside test meth-
ods, using the built-in Logcat tool of the Android Development Bridge or
third-party logging tools.

Screenshots. Screen captures are used to create test traces that can be analyzed after
the execution of test suites. This category of modification causes includes
additions, removals or changes of the places where screenshots are taken inside
test methods.

Test Syntax Corrections and Comments. Modifications only in the syntax of test
classes/methods (e.g., adding white lines or spacing inside brackets, adding or
removing comments).

Application Code Change

All the changes related to production code – but not related to the appearance of the
app – contribute to this macro-category of modification causes for test code. Here
are considered all the functionality changes inside the app, like the addition or modi-
fication of methods inside activities, or changes in the data model managed by the
app. This macro-category of modifications cover Yusifoglu’s Adaptive maintenance
category when the adaptations are limited to the app features and not to its GUI
appearance and definition.

Application Functionalities Change. Changes in the functionalities provided by
the application, in classes and methods that do not pertain to the graphical
appearance of the app. An example of this category can be a modification in
the way a connection to a remote server is performed.

Application Startup / Intents. Changes in the definitions of the activities, in the
parameters exchanged between them, and in the operations that must be
performed at the startup (or teardown) of each screen.

8.2 Results 105

Application Data Change. Changes in the data models, classes and objects used
by the activities of the app. Those changes must be reflected by test code if
operations involving data have to be performed.

Application Code Refactoring. Refactoring operations performed in the code of the
AUT, and that must be reflected by test code (e.g. changed names of activities,
methods, data structures).

Execution Time Variability

This category of modifications is related to the adaptations to the changed amount
of time required by the app for performing an operation. Changes in the execution
time may be due to the behaviour of the app (e.g., time for establishing a network
connection or to download a picture from a database) or to the appearance of the
GUI (e.g., changed duration of an animation).

If the tests are performed on real handheld devices and not on emulated ones,
this issue may become more serious because of the concurrence with multiple other
applications in the same system.

Maintenance due to Execution Time Variability is identified in diff files of test
classes by finding addition, deletion or modifications of Thread.sleep instructions,
like in the following excerpt:

− Thread . s l e e p (5 0 0) ;
+ Thread . s l e e p (1 0 0 0) ;

Compatibility Adaptations

Under this category are classified all the modifications in test code that are made
in order to guarantee compatibility with different versions of the Android OS, or to
take into account features of the new releases of the OS. Often, those modifications
are in the form of adoption of new classes for the same widget because of deprecated
previous ones.

For instance, the following diff file excerpt contains a modification in a test
method due to a different orientation behaviour shown by the app to comply with the
GUI of varying OS versions:

106 Study 4: Taxonomy of fragility causes

− r o t a t e T o P o r t r a i t (t h i s) ;
+ i f (VERSION . SDK_INT >= VERSION_CODES . JELLY_BEAN_MR2) {
+ r o t a t e T o P o r t r a i t (t h i s) ;
+ }

GUI Interaction Change

Under this category are classified all the modifications in test code that reflect
changed interactions with unaltered screen appearance, e.g., changes in the order of
operations on the widgets, changes in the interactions supported by the same widget,
changes in the way to access some specific view of the GUI.

Navigation Change. This category contemplates modifications in test code due to
changed order interactions with the views of a tested activity, without the
views themselves being altered.

The following diff file excerpt shows the effect that the necessity of an ad-
ditional click on a second button – already present on-screen – has on the
corresponding test method, developed with Espresso.

+ onView (w i t h I d (R . i d . c o n n e c t B u t t o n)) . pe r fo rm (c l i c k ()) ;
onView (w i t h I d (R . i d . s t a r t B u t t o n)) . pe r fo rm (c l i c k ()) ;

Changed Operations Performed on Views. Changes in test code due to different
gestures to be performed on the same widgets (e.g., long clicks instead of
normal clicks), without the widgets being altered.

In the following diff file excerpt, an example regarding the addition of a click
operation on a widget, using the Espresso GUI Automation Framework, is
shown.

− E s p r e s s o . onView (w i t h I d (R . i d . f i t n e s s P r o g r a m B u t t o n))
. pe r fo rm (ViewAct ions . s c r o l l T o ()) ;

+ E s p r e s s o . onView (w i t h I d (R . i d . f i t n e s s P r o g r a m B u t t o n))
. pe r fo rm (ViewAct ions . s c r o l l T o () , c l i c k ()) ;

Changed Keyboards / Input Methods. Modifications in the way the software key-
board of the application is accessed, used or removed from the interface.

8.2 Results 107

For instance, in some diff files with Espresso test code, the call to a function
for closing the software keyboard explicitly has to be added:

− InputMethodManager manager = (InputMethodManager) view
− . g e t C o n t e x t () . g e t S y s t e m S e r v i c e (C o n t e x t . INPUT_METHOD_SERVICE) ;
− manager . t o g g l e S o f t I n p u t (InputMethodManager .SHOW_FORCED, 0) ;
+ mCloseSof tKeyboard . pe r fo rm (u i C o n t r o l l e r , view) ;

Changed Checked Properties. Changes in the properties that are checked on the
widgets of the user interface in different releases of the same test case. The
properties need not be only graphic, but may also be related to the description
of a widget.

In the following diff file excerpt, the properties that are checked for an element
of the interface now include also the contained text and not only its position
on the screen:

onData (a n y t h i n g ())
. inAdap te rView (w i t h I d (a n d r o i d . R . i d . l i s t))

− . a t P o s i t i o n (2 4) ;
+ . a t P o s i t i o n (2 4)
+ . check (matches (w i t h T e x t (" p u r u s "))) ;

Changed Way of Accessing Widgets. The category contemplates changes in the
way the same type of widgets is accessed by specific operations in the user
interface (e.g., show the widget from the context menu instead of normally
inside the inflated layout of the activity).

In the following example, the way to access the menu of the application
through Espresso functions is changed:

− onView (w i t h I d (R . i d . c o n s o l e _ f l i p))
. pe r fo rm (pressMenuKey ()) ;

+ openAct ionBarOverf lowOrOpt ionsMenu
(I n s t r u m e n t a t i o n R e g i s t r y . g e t T a r g e t C o n t e x t ()) ;

GUI Views Arrangement

As opposed to the previous macro-category, related to changed operations on un-
changed widgets, this macro-category covers all the modifications in the type and
number of elements that compose the tested activities.

108 Study 4: Taxonomy of fragility causes

View Addition. It may be possible that new elements are added in the visual hierar-
chy of the activity to test, even though they are not essential for the completion
of the tested functionalities. Those elements may need initialization values
that may make test cases working on the activities fail. Modifications caused
by View Additions have been identified by examining layout files relative to
the tested Activities, and verifying that the operations added in the new release
of the test class are on widgets that were not present in the previous version of
the layout file.

A possible automated solution to this kind of modification is the creation of
methods to fill automatically the newly added widgets in the tests with default
values, if it is fundamental to populate them.

View Substitution. Views can be substituted between two consecutive releases of
the application, with other ones having similar functionalities. For instance, a
TextView may be changed to an EditText view, and the test code may need to
be changed accordingly (e.g., in the retrieval of the pointer to the view).

Modifications caused by View Substitutions have been identified by examining
layout files relative to the tested Activities, and verifying that the operations
changed in the new release of the test class are on widgets whose type or
characteristics have been changed with respect to the previous version of the
layout file.

View Removal. Between different releases of the same app, it may occur that an
element of a screen is removed or moved to another activity. Consequently, a
test that has to use it is invalidated.

Modifications caused by View Removals have been identified by examining
layout files relative to the tested Activities, and verifying that the operations
removed in the new release of the test class are on widgets that were present
in the previous version of the layout file, and that have been removed.

Screen orientation change. Operations with the orientation of the application may
need to be added in test methods, to comply with similar modifications in
the production code. The orientation change is considered among the GUI
Arrangement Change macro-category because of the possibility that a change
in the screen orientation may lead to a complete rearrangement of the screen
shown by the current activity.

8.2 Results 109

Hierarchy Change. Changes in the definition of layouts used by activities, and in
the arrangement between widgets of the user interface. For instance, the same
activity may be re-arranged using a ConstraintLayout instead of a RelativeLay-
out or LinearLayout in the passage to a new version, without modifications in
the functionalities offered or in the widgets it contains; another example is the
movement of a widget from one layout to another inside the same activity.

As in the following diff file excerpt, modifications in test methods due to
Hierarchy Change can be linked to changed parents or views that are related
to the widgets interacted in test code:

e x p e c t V i s i b l e (v iewThat (
− h a s A n c e s t o r T h a t (w i t h I d (R . i d . a t t r i b u t e _ s y m p t o m s _ o n s e t _ d a y s)) ,
+ h a s A n c e s t o r T h a t (w i t h I d (R . i d . a t t r i b u t e _ w e i g h t)) ,

View Identification

This category applies to all modifications that are due to changes in the identifiers
(either text-based or id-based) that are used for finding the widgets inside the currently
inflated layout. Also, the cause of a modification is considered as View Identification
if the chosen way to identify an individual view changes (e.g., id to text).

ID Change. Elements can be identified in visual hierarchies of the application
through the use of the (optional) unique ID that can be attributed to them,
either programmatically with Java code or in the layout .xml files. A test that
detects elements by their identifier is invalidated if they are changed.

A first possible guideline to avoid fragilities due to changes in the IDs of the
widgets is to use semantic IDs that clearly describe the functionalities of the
widgets, and that are not related to their position in the layout arrangement or
appearance, nor randomly generated. This way, even though the operations on
a widget are changed, or the widget is moved inside the layout, it is unlikely
that its ID will have to change.

The following diff file excerpt shows the effect that a variation in the ID of an
unchanged element has on a test method developed with Espresso:

− onView (w i t h I d (R . i d . m o r s e _ i n p u t _ t e x t _ c a r d))
+ onView (w i t h I d (R . i d . m o r s e _ i n p u t _ t e x t _ c o n t a i n e r))

. check (matches (i s D i s p l a y e d ())) ;

110 Study 4: Taxonomy of fragility causes

Text Change. Elements that do not possess a unique identifier, but contain text,
can be detected by their textual description. This case is frequent in menus
where options have no individual identifier but obviously show distinct textual
descriptions. This strategy is not robust for tests, because the textual attributes
are more likely to change during the evolution of the app (and not only: for
instance, they also depend on the device language) than identifiers, so tests
must be modified at any change of the textual content of the widgets.

It is worth highlighting that image recognition testing tools – like Sikuli –
which cannot rely on identifiers to discriminate between the elements of the
GUI are particularly subject to this kind of fragility (as they are with pure
graphical modifications).

In this category also fall the modifications of the text that is expected to be
given as input to a text view of the user interface. Screen name changes are
also subcases of the Text Change category.

A possible guideline to avoid this fragility is to always use String resources to
identify text so that a modification in the String resource file has no impact in
the management of test cases and classes.

The following diff file excerpt shows an example of modification in plain text
used by a test case to identify a widget:

− onView (w i t h T e x t (" No Account has been added y e t "))
. check (matches (i s D i s p l a y e d ())) ;

+ onView (w i t h T e x t (" No a c c o u n t has been added y e t "))
. check (matches (i s D i s p l a y e d ())) ;

Changed Way of Identifying Elements. The way in which widgets are retrieved
may need to change between consecutive releases of the app. For instance, it
may be possible that a view, once referred by its ID, is now referred by text, or
class name, or other properties.

In the following example, the original text contained in a text view is no longer
set as text but as a hint in the new release; the diff file excerpt highlight the
corresponding modification in the Espresso test method:

− onView (w i t h T e x t (" Log In ")) . pe r fo rm (c l i c k ()) ;
+ onView (w i t h H i n t (" Log In ")) . pe r fo rm (c l i c k ()) ;

8.2 Results 111

Access to Resources

Resources, mainly text, can be used as oracles and hence loaded and confronted
with the proper appearance they should have inside test methods. The place and
the identifiers with which the oracles (if there are any) are addressed may change
between consecutive releases of the app, and hence test methods need to be changed
accordingly.

Changed Retrieval of Text Resources. Text resources can be defined in several
ways: Strings can be hardcoded, defined as constants inside Java classes,
or as resources in the ”strings” .xml file in the ”res” folder of the Android
project. This makes it difficult to maintain several classes that work on the
same logical content (i.e., when a hardcoded string is modified in the product
code, all the test classes using it have to be modified accordingly). Strings can
also be defined as constants inside Java classes; if this approach is adopted, a
proper refactoring and usage of constants can avoid fragility in relative test
cases, when text values are changed. However, the best practice for identifying
text resources is to use the ”strings” .xml file in the “res” folder of Android
apps, so that in each (test) class of the app the proper string to be shown or
tested can be referenced by its unique – and unchanging – ID.

When the way text resources are defined and accessed changes between two
consecutive releases of the app, and even if the contained text does not change,
it is likely that test classes have to be modified to reflect the modifications in
the production code.

The following diff file excerpt shows the changes in an Espresso method due
to the the change of access to a text resource through a String identifier, instead
of the previously used hardcoded text:

− onView (w i t h T e x t (" Coupon ")) . pe r fo rm (c l i c k ()) ;
+ onView (w i t h T e x t (R . s t r i n g . c a t e g o r y _ c o u p o n))

. pe r fo rm (c l i c k ()) ;

Changed Retrieval of Other Resources. The way graphic resources are accessed in
the production code may change (e.g. using the root view inside a fragment,
or accessing them through identifiers declared in .xml resource files). This can
apply, for instance, to colors used for the graphic appearance of the widget, to
drawable images or to fonts used in TextViews.

112 Study 4: Taxonomy of fragility causes

In the following diff file excerpt, the way a graphic characteristic of the activity
(a font size) is retrieved is changed, and the modification propagates to a test
method using it:

− P r e f e r e n c e s S t a t e . g e t I n s t a n c e () .
s e t S c a l e (C o n s t a n t s . FONTS_LARGE) ;

+ P r e f e r e n c e s S t a t e . g e t I n s t a n c e () .
s e t S c a l e (g e t A c t i v i t y I n s t a n c e () . g e t S t r i n g (R . s t r i n g .
f o n t _ s i z e _ l e v e l 2)) ;

Graphic Changes

Even though the widgets are not entirely modified, small modifications in their
appearance (e.g. animations, transparencies, themes, absolute coordinates, sizes)
can invalidate tests, especially if they are based on graphic recognition, or on exact
coordinates of the position of the widgets on the screen (i.e., tests are coordinate-
based).

The following diff file excerpt shows the modifications that have to be performed
when an element of the interface is identified through its exact coordinates, that are
changed between two consecutive releases of the app:

− f i n a l f l o a t sc reenX = s c r e e n P o s [0]
+ x * (view . ge tWid th () / gameSize) ;

− f i n a l f l o a t sc reenY = s c r e e n P o s [1]
+ y * (view . g e t H e i g h t () / gameSize) ;

+ f i n a l f l o a t sc reenX = s c r e e n P o s [0]
+ (0 . 5 f + x) * (view . ge tWid th () / gameSize) ;

+ f i n a l f l o a t sc reenY = s c r e e n P o s [1]
+ (0 . 5 f + y) * (view . g e t H e i g h t () / gameSize) ;

8.2 Results 113

Answer to RQ4.1: Examining a set of 1724 diff files related to Espresso, UI
Automator, Robotium and Robolectric, 28 different possible causes were identified
for modifications of test methods developed for Android apps with the use of GUI
Automation frameworks. Nine different macro-categories of change reasons were
identified: changes in the functions and logic of test code, changes in the application
functionalities, changes in the interaction with the GUI, varied arrangements of
the widgets of the layout, changed identification of views, changed retrieval of
resources, pure graphic changes, execution time variations, and adaptations to
provide compatibility with different OS versions.

8.2.2 Diffusion of Modification Causes and Fragility Occurrences

After the identification of the classes of the taxonomy of modification causes, an
analysis of the frequency of occurrence of each type of modification cause was
performed, in order to quantify the most common reasons for maintenance of test
classes for Android applications.

Table 8.1 reports the absolute and relative frequency of occurrence for any
category of modification causes, for four different testing tools (namely, Espresso,
UI Automator, Robotium and Robolectric), upon the considered context of mined
Android repositories. The first row (Total Classes) shows the number of diff files that
have been considered, after the test class filtering operated in previous parts of the
study and a subsampling of the test classes featuring Robolectric. By construct, the
frequencies in the columns of the table do not necessarily sum up to 100%: this is due
to the fact that the causes of modification were not considered as mutually exclusive,
hence multiple different causes can concur to the same maintenance operation on a
test method.

Test Logic Change was a fairly common modification reason for all the four
testing tools that were considered. This highlights a high frequency of situations
in which the maintenance made on test code is related to changes in the way the
functions of the specific tools are used. Modifications caused by Assertions Change,
related to changes in the design of test cases, happened more rarely, suggesting that
the use cases of the apps – on which the tests are based – were rather stable during
the evolution of the projects. Test Refactoring modifications, albeit being common
for all the four testing tools, were more frequent for Robolectric and Robotium test

114 Study 4: Taxonomy of fragility causes

Table 8.1 Absolute (relative) frequency of occurrence of modification causes

Espresso UI Automator Robotium Robolectric
Total Classes 819 59 424 422

Test Code Change Test logic change 130 (15.85%) 10 (17.95%) 87 (20.52%) 126 (29.86%)
Assertions Change 21 (2.56%) 4 (6.78%) 19 (4.48%) 23 (5.42%)
Test refactoring 41 (5.24%) 3 (5.08%) 76 (17.92%) 76 (18.01%)
Logging 20 (2.44%) 1 (1.69%) 2 (0.48%) 5 (1.18%)
Screenshots 20 (2.44%) 0 (0.00%) 4 (0.94%) 0 (0.00%)
Test syntax corrections and comments 49 (5.98%) 9 (15.25%) 52 (12.26%) 53 (12.00%)

Application Code Change Application functionalities change 146 (17.80%) 0 (0.00%) 42 (9.90%) 57 (13.44%)
Application startup / intents 56 (6.83%) 2 (3.38%) 15 (3.53%) 19 (4.48%)
Application data change 4 (0.49%) 1 (1.69%) 1 (0.23%) 14 (3.30%)
Application code refactoring 24 (2.93%) 3 (5.08%) 49 (11.56%) 35 (8.25%)

Execution Time Variability Sleeps add 29 (3.54%) 8 (13.56%) 33 (7.78%) 0 (0.00%)
Sleeps change 28 (3.41%) 1 (1.69%) 12 (2.83%) 0 (0.00%)
Sleeps removal 22 (2.68%) 2 (3.38%) 9 (2.12%) 1 (0.23%)

Compatibility Adaptations 8 (0.98%) 3 (5.08%) 0 (0.00%) 9 (2.12%)

GUI Interaction Change Navigation change 76 (9.27%) 12 (20.34%) 43 (10.14%) 11 (2.59%)
Changed operations performed on views 14 (1.71%) 0 (0.00%) 4 (0.94%) 2 (0.47%)
Changed keyboards / input methods 12 (1.46%) 1 (1.69%) 1 (0.23%) 0 (0.00%)
Changed checked properties 15 (1.83%) 0 (0.00%) 3 (0.71%) 2 (0.47%)
Changed way of accessing widgets 63 (7.68%) 0 (0.00%) 16 (3.77%) 0 (0.00%)

GUI Views Arrangement View Addition 14 (1.71%) 2 (3.38%) 4 (0.94%) 1 (0.23%)
View substitution 6 (0.73%) 2 (3.38%) 4 (0.94%) 5 (1.18%)
View removal 3 (0.37%) 1 (1.69%) 0 (0.00%) 0 (0.00%)
Screen orientation change 3 (0.37%) 0 (0.0%) 1 (0.23%) 0 (0.00%)
Hierarchy change 2 (0.24%) 1 (1.69%) 7 (1.65%) 0 (0.00%)

View Identification ID Change 62 (7.56%) 0 (0.0%) 2 (0.48%) 12 (2.83%)
Text Change 41 (5.00%) 9 (15.25%) 18 (4.24%) 4 (0.94%)
Changed way of identifying elements 31 (3.78%) 4 (6.78%) 15 (3.54%) 0 (0.00%)

Access to Resources Changed retrieval of text resources 35 (4.27%) 1 (1.69%) 12 (2.83%) 6 (1.41%)
Changed retrieval of other resources 10 (1.22%) 0 (0.0%) 6 (1.41%) 5 (1.18%)

Graphic Changes 14 (1.71%) 1 (1.69%) 2 (0.48%) 11 (2.59%)

8.2 Results 115

methods, suggesting a higher complexity of the test cases that would hence need
more frequent fixes. A relevant amount of the modifications were only linked to
changes in the syntax, documentation and comments of test code (more than 15%
for diff files pertaining to UI Automator test classes).

The modification in test methods that were linked to Application Code Change
had a minor frequency of occurrence than the ones related to Test Logic Change.
The most relevant causes in terms of modifications triggered were Application Func-
tionalities Change and Application Code Refactoring, while changes in Application
Startup/Intents proved to be a frequent cause for test maintenance especially for
Espresso test classes, which have a strong coupling with the activities of the tested
application. The examination of diff files was performed without executing the tests,
and taking into account only the last cause of a possible chain of different reasons
for test maintenance. This could lead to possible overlaps between modifications
associated with Application Logic Change or to Test Logic Change, in case of unclear
link between the final modification in the test logic, and preexisting modifications in
application logic.

Modifications linked to Execution Time Variability occurred rather rarely in the
modified methods examined. The use of sleep instructions also had a different
application for the considered testing tools: Espresso and Robotium wait by default
for layouts to be populated and views to appear in their final state, so in test methods
written with these tools the sleep instructions are inserted only to wait for long tasks
(e.g., waiting for the response from a Service); on the other hand, explicit sleep
instructions are needed by UI Automator to wait for the rendering of the screen.
As expectable, hence, modifications due to Execution Time Variability were more
frequent in test classes developed with UI Automator. On the other hand, Robolectric
is used for developing test classes that are run on the Java Virtual Machine, without
the need for instantiating any emulator or for connecting to a real device: this can be
considered as the reason for missing occurrence of modifications due to Execution
Time Variability for classes featuring such tool. Compatibility Adaptations were
another quite rare motivation for the maintenance in test code. This is mainly due
to the retrocompatibility that is guaranteed most of the time by new releases of the
classes of the Android Frameworks.

Among the modification causes related to the GUI of Android apps, the most
frequent were the one classified under the macro-category GUI Interaction Changes.

116 Study 4: Taxonomy of fragility causes

In particular, the most common cause among them was the one due to changes
in the navigation inside the activities, i.e. the order of the operations performed
on the widgets of the inflated layouts. Overall percentages of occurrence for the
macro-category were high for all testing tools except Robolectric. In general, test
code developed with Robolectric appeared to need way less maintenance after
modifications performed in the GUI appearance or definition of the tested apps.
Modifications in GUI Views Arrangement were less common that changes in the
interaction with GUI elements. A possible explanation of fewer modifications in test
methods in response to addition or removal of widgets can be that a new widget (or
a deleted one) may be reflected in test suites with the addition of a new test method
(or the deletion of an existing one).

ID Change was the most frequent modification causes among the ones related to
changes in the way the widgets are retrieved. The modification cause proved very
frequent, especially for Espresso test classes. On the other hand, the examined UI
Automator test methods were modified only for changes in the text they contained.
Text Change had generally a high frequency of occurrence, with the only exception
represented by test classes featuring Robolectric (less than 1%). Changes in the
Access to Resources (e.g., changes of the retrieval of a textual resource from using
plain text to leveraging String resources) were not so common as causes of main-
tenance in test methods, with a maximum frequency of 4.27% again for Espresso
test classes regarding the retrieval of text resources, and of 1.41% for Robotium test
classes regarding the retrieval of any other kind of resources.

Graphic Changes, i.e. modifications that are related only to aesthetic variations
in the graphical appearance of the app, was a rare macro-category of modifications
for all the considered testing tools, with a maximum frequency of occurrence of
2.59% (for the set of diff files of Robolectric test classes). This low occurrence was
also expected since all the considered tools work at a lower level of abstraction of
the GUI, and hence should not be affected by modifications in the final appearance
as it is shown to the user.

A higher-level statistic about the modifications triggering maintenance in test
classes is reported in table 8.2, which shows, for each set of diff files of test classes
associated with a Layout-based testing tool: the frequency of modification whose
causes are not related to the AUT (i.e., modifications that have been classified as
Test Code Change); the frequency of modifications whose causes are related to the

8.2 Results 117

Table 8.2 Frequency of occurrence of modification causes

Espresso UI Automator Robotium Robolectric Average

Causes not related to the AUT 32.80% 44.07% 53.53% 65.80% 46.36%

Causes related to the AUT 72.07% 69.49% 56.37% 39.86% 60.23%
of which GUI-related 69.07% 70.72% 46.44% 31.35% 54.32%

AUT; among the latter ones, the percentage of causes that are related to the GUI
appearance. The table also reports, in the last column, the average value for the three
fractions, weighted by the number of diff files examined for each of the considered
testing tools.

Non-AUT related changes were frequent for all the sets of projects that have
been considered, with an average 46.36% frequency of occurrence. Espresso had
the lowest value among the testing tools considered, which can be justified with an
easier development of test code with Espresso, and with an usage of the tool for
simpler test suites, that have less need for maintenance than the ones developed with
the other testing tools considered.

Causes related to the AUT had an average frequency of occurrence of 60.23%,
with higher values measured for Espresso and UI Automator. The same trend was
shown by the fraction of those modifications that were related to the GUI appearance.
The smallest frequencies were measured for Robolectric test classes (40% frequency
of occurrence for AUT-related modifications, and 31% of them concerning the GUI).
This low frequency can be explained with the multi-purpose nature of the Robolectric
framework, which can also be used solely for traditional GUI testing.

Answer to RQ4.2: A percentage of about 60% of modifications due to changes
in the AUT, and hence of fragile classes, was measured. On average upon all the
diff files examined, more than 50% of the modifications on test classes triggered
by changes in the AUT were connected to the GUI of the app or to its appearance.
However, test suites were modified often for reasons that were not connected to
changes in the AUT: 46.36% of the modified diff files that were examined featured
changes that were local to test code and that could not be backtracked to variations
in the AUT.

Chapter 9

Study 5: Layout-based vs Generated
visual test cases: An experiment with
TOGGLE

As detailed in the previous sections, the available automated GUI testing techniques
exhibit several shortcomings, especially in terms of the maintainability of test suites
and usability perceived by testers/developers. The most advanced testing techniques,
e.g. model-based ones, still fall short in being adopted widely in industrial settings,
with developers mostly sacrificing test automation due to the required effort for
creating test suites and their costly maintenance, and to the specific drawbacks of
each testing technique or generation.

More specifically, 2nd and 3rd generation GUI testing techniques provide different
benefits and drawbacks and are seldom used together because of the aforementioned
costs, despite growing academic evidence of the complementary benefits.

This section describes the design of TOGGLE, a tool for a translational approach
for GUI testing, that enables users to define and translate Layout-based to Visual
scripts and vice versa, to gain the benefits of both generations, whilst minimizing
the drawbacks. The details of the implementation of the translator from 2nd to
3rd generation test scripts are presented, along with a tentative architecture for
the backward translator (from 3rd to 2nd generation). The motivating example
and the first design of TOGGLE have been presented at the 2018 edition of the
INTUITESTBEDS workshop [18].

9.1 Motivation 119

The tool TOGGLE adopts several elements of the approach used by PESTO
[92, 63], which implements the translation-based approach for Selenium test suites
for Web Applications, translating them to Sikuli. The translation-based approach has
not yet been explored for the mobile domain. Several differences in the approach
used for testing native Android apps and web-based applications differentiate the
two tools:

• The need for properly instrumenting the Android environment and the execu-
tion of Espresso tools;

• The specific syntax of Espresso test cases;

• The different way in which Android layouts are described;

• The significantly higher amount of interactions that can be performed on
Android widgets with respect to those that can be performed on the elements
of a web application.

9.1 Motivation

Visual GUI testing (3rd generation) techniques are in general less common among
practitioners from the industry, typically for their lack of robustness when compared
to Layout-based testing (2nd generation) techniques, and for their slowness when
compared to other forms of automation techniques.

In contrast, Layout-based techniques work at a different level of abstraction of
the GUI of the SUT, and hence cannot completely emulate a real user’s interaction
with the GUI of the application, or verify the app’s appearance as shown to the
human user.

Research, thus, has highlighted that a combined/hybrid approach is required,
where both the generations are used in parallel by the researcher [9]. A hybrid
approach, however, would need the tester/developer to have knowledge about both
generations of test automation, and about the syntax used by tools pertaining to
both the approaches. The proposed TOGGLE tool leverages instead an automated
translation of test scripts, from one generation to the other, through systematic
reuse of test logic and mapping of Layout-based locators to visual locators (and

120
Study 5: Layout-based vs Generated visual test cases: An experiment with

TOGGLE

vice-versa). A translational approach would allow the tester/developer to focus on
manually developing the test suite in one methodology only, and then automatically
generate the counterpart.

The translational approach can mitigate challenges with Visual GUI test scripts
such as their fragility to visual changes (e.g., size, resolution, color, etc.), whilst also
mitigating challenges with Layout-based test scripts that are sensitive to changes in
Java code and .xml definitions of layouts (e.g., IDs, text, descriptions of widgets,
etc).

Instead, the techniques are respectively robust to changes in the definition of
layouts, and in pure visual changes. When one generation of test scripts is broken
due to specific fragility issues, test scripts of other generations – which could be still
valid – can be translated into new valid test scripts. This allows a reduction of the
overall fragility of developed test suites and by consequence a reduction of the cost
of maintenance and repair of test cases throughout different versions of the same
application, which comes particularly in handy when test cases are used to perform
regression testing. The single case in which the translational approach would not
be able to repair a fragile test case would be the simultaneous presence of changes
in the graphic appearance and in the layout properties for the same elements of the
user interface: in that case, both generations of test cases interacting with the same
elements would be unable to retrieve it through the use of changed identifiers and
graphics.

Existing literature has already explored the possibility of automatically repairing
test scripts, without however performing translations to other abstractions of the
GUIs: the works by Memon [76] and Zhang et al. [103] moved towards this direction.

In addition to the repair of fragile test scripts, a translational approach can
provide many other advantages. In the following, a summary of the benefits of such
an approach is given:

Automated creation of test scripts: Creation of Layout-based tests when only Vi-
sual tests are available for the SUT, and vice-versa. Such an automated creation
is expected to reduce development costs of testware, since the use of the tool
for the translation – even though some adjustments of the derived test scripts
may be required – is expected to require significantly less effort than writing
the same test suite with another tool.

9.1 Motivation 121

Reduced maintenance for failing locators: The automated analysis of failing lo-
cators (either for Visual or for Layout-based test scripts) can lead to repair of
parts of test scripts with locators that are invalidated by modifications in the
layout definitions and appearance.

Reduced impact of fragmentation: Visual scripts for different devices/configura-
tions can be generated from the same Layout-based tests, using the unchanged
layout properties to obtain visual properties and visual oracles that are specific
to the individual devices/configurations on which the applications will be
deployed. A single test can hence be run on a set of emulated devices to obtain
Visual GUI test scripts specific to each of them.

Enhanced testing of hybrid and web-based applications: Visual locators and or-
acles can be used in combination with Layout-based locators when the SUT
contains WebViews or hybrid components with screens loaded at runtime from
the web. The use of visual locators can be a solution to the missing native
locators for components of the loaded web pages.

9.1.1 Motivating Example: a test script for K-9 Mail

A motivating example of the possibility of repairing layout-based or visual fragilities
of an existing test suite through translation has been created with K-9 Mail (version
V5.500-Snapshot).

In the following discussion, the original version of the application – as cloned
from the GitHub repository – is called v1. A sample test case has been developed,
to exercise the authentication feature of the application with two tools pertaining
to different generations: Espresso for the generation of Layout-based testing tools,
and EyeAutomate for the generation of Visual testing tools. All the tests have been
run on an Android Virtual Device (AVD), namely a Nexus 5 with Android API 24
installed, with enabled device frame and hardware keyboard inputs.

The considered use case is the wizard that is started at the first launch of K-9 Mail.
Table 9.1 shows the steps of the use case, whilst figure 9.1 shows the four screens
that are traversed by the use case, with the respective Activity names indicated in
the captions. The use case traverses a first WelcomeMessage Activity; in the second
Activity encountered, AccountSetupBasics, the user inputs his/her e-mail address and

122
Study 5: Layout-based vs Generated visual test cases: An experiment with

TOGGLE

Table 9.1 TOGGLE motivating example: Steps for the Authentication use case of K-9 mail

Step Screen Widget Description Operation

1 s1 Next Button Click
2 s2 Email account Form Type test account email
3 s2 Password Form Type test password
4 s2 Next Button Click
5 s3 Account description Form Type test account description
6 s3 Account name Form Type test account name
7 s3 Done Button Click
8 s4 Activity Title Check that "Accounts" is shown
9 s4 Account List Item Check that test name is shown

Table 9.2 TOGGLE motivating example: Retrieved IDs for Layout-based test case

Step Object Description Object ID

1 Next Button next
2 Email account Form account_email
3 Password Form account_password
4 Next Button next
5 Account description Form account_description
6 Account name Form account_name
7 Done Button done
8 Activity Title action_bar_title_first
9 Account List Item description

9.1 Motivation 123

(a) WelcomeMessage
Activity

(b) AccountSetupBa-
sics Activity

(c) AccountSetup-
Namesb Activity

(d) Messages Activ-
ity

Fig. 9.1 TOGGLE motivating example: Screens and Activities traversed by the authentication
use case

password; after going (through the use of the Next button) to the AccountSetupName
Activity, the user inputs his/her desired account name and nickname for managing
the e-mail account in the K-9 mail client; finally, the app shows the Messages activity
(which is initially empty, if no message has not been downloaded yet by the client).

Test scripts definition for the original release

The Layout-based test script for the Authentication test script has been developed
using the Android Studio IDE, and inside the K-9 Mail application project, having
full access to the AUT production code and the .xml layout files describing its user
interface. The resource IDs used in the Layout-based test script have been collected
by launching the application and using the UI Automator Viewer tool, retrieving the
"resource-id" field for any of the widgets that had to be interacted. Table 9.2 shows
the retrieved ids for all the elements interacted throughout the execution of the test
case. The test script, when executed on v1, runs to completion.

The test script has been developed also leveraging the Visual testing technique,
with the EyeAutomate testing tool. Table 9.3 shows the retrieved images that were
used as visual locator for executing the same test case on the app. All the reference
images were gathered from a first manual execution of the use case on the emulated
application, leveraging the image capturing tool embedded in the EyeStudio suite.
The interaction points inside the visual locators were fixed to the center of the images

124
Study 5: Layout-based vs Generated visual test cases: An experiment with

TOGGLE

Table 9.3 TOGGLE motivating example: Retrieved images for the EyeAutomate test script

Layout excerpt from v1

Layout excerpt from v2a

Fig. 9.2 TOGGLE motivating example: Modification in the layout file between v1 and v2a

(the default location of the interaction for each screen taken with the image capturing
tool). Sleep instructions have been added at every screen transition to prevent the
visual testing tool to search for elements that were not yet been rendered on screen.
Executed on v1, the Visual test runs to completion.

Layout-based fragility induction

To highlight the fragility of layout-based test scripts to changes in the properties of
the interacted widgets, a simple modification on the definition of a layout of v1 of
the considered app has been performed. This way, the version that was called v2a is
obtained. In particular, the resource ID associated with the Done button is changed

9.1 Motivation 125

from ”done” to ”completed” in the layout file (namely, wizard_done.xml) where the
button is declared. The modification performed in the layout file is shown in figure
9.2.

In the considered Layout-based test scripts, the Resource IDs are inserted as
constants inside the test script. If they are changed externally by a modification of
the layout file (and no automated refactoring tools are applied to the application
project) manual effort is required to fix the changed IDs in the test script. The same
applies to any change in the textual properties of the widgets, like the contained text
or the textual description of a button.

In all transitions like the one from v1 to v2a, containing only modifications in the
widget definition and properties, all test cases leveraging Layout-based properties and
locators will fail and require maintenance from testers/developers. In the provided
example, according to the taxonomy of modifications provided in the previous
chapters, the test case fails due to an ID change fragility.

On the other hand, the Visual test runs to completion without errors, since no
graphical property has changed for any widget in the screens traversed by the tested
use case. Using the translational approach, the Visual test script, which is still valid,
can be used to retrieve the actual (changed) id of the Done button when it is clicked,
generating a valid companion layout-based test case.

Visual fragility induction

To cause fragility in the visual test script, we performed a couple of graphic modifi-
cations on the original version v1, leading to the version called v2b. In particular, the
appearance of Screen 3 was changed, modifying the background color and the text of
the "Done" button. Each of the two modifications performed would be sufficient, if
applied alone, to invalidate a visual test case. The changed appearance of the screen
between v1 and v2b is shown in figure 6.3.

Without any modification in layout and widget definitions, there is no impact in
scripted test cases, since the button to be clicked is unambiguously retrieved by its
unchanged ID. On the other hand, the visual recognition test case that we developed
experiences a failure, due to the inability to identify an element with the appearance
of the Done button, still linked in the test script to the screen capture shown in table
9.3.

126
Study 5: Layout-based vs Generated visual test cases: An experiment with

TOGGLE

(a)
Screen 3 in v1

(b)
Screen 3 in v2b

Fig. 9.3 TOGGLE motivating example: Graphic changes in Screen 3 between v1 and v2b

In the envisioned translational approach, using the coordinates of the interaction
and possibly additional information extracted from layout files (e.g., size and padding
of the interacted widget), a picture of the new appearance of the interacted widget
can be cut from the capture of the whole current screen. Hence, a new working
Visual test script can be obtained.

9.2 Layout-based to Visual Translator Architecture

Figure 9.4 shows the building blocks of the translator from 2nd to 3rd generation
translator, along with the intermediate elements that are generated by each module
and consumed as input by the following one. The translator works on Layout-based
test cases, that are fed to an Enhancer and then to an Executor. Both those modules
are testing tool-specific. The Executor runs in the Android environment, since it
requires a connection through ADB to an Android Virtual Device, and feeds the
results of the execution of the tests to a tool-agnostic Log Parser Java module. The
Log Parser outputs a sequence of abstract interactions to be replicated in the test
case, that can be fed to a tool-specific 3rd generation test case creator to encode the
test script in the desired syntax.

9.2 Layout-based to Visual Translator Architecture 127

Fig. 9.4 TOGGLE: Architecture of 2nd to 3rd generation translator

In the following, the individual building blocks of the architecture are described
in detail.

9.2.1 Enhancer

The Enhancer module receives as input a 2nd generation test script, written according
to a given syntax, and parses it in order to find the operations that are performed
inside it and add calls to the TOGGLETools Android library, to perform at execution
time the extraction of the information needed for the translation.

The Enhancer is primarily tailored to identify Espresso interactions that are
defined starting with an onView ViewInteraction, which is the primary interface –
offered by the tool – to perform interactions and assertions on individual widgets

128
Study 5: Layout-based vs Generated visual test cases: An experiment with

TOGGLE

of the GUI. The onView method receives as parameter a ViewMatcher, and each
Matcher finds views in the visual hierarchy according to a specific property that can
be defined for the view (i.e., IDs, text content, content description). After a view is
identified, Espresso allows performing operations on it with the perform method, to
which a ViewAction is passed. Each ViewAction is specific to a kind of interaction
that can be performed on the identified view (e.g., click, double click, insertion or
modification of contained text).

The inspection of Espresso test cases has been performed using the JavaParser
library1, identifying method calls corresponding to Espresso ViewMatchers, ViewAc-
tions, and ViewAssertions. Currently, the Enhancer supports most of the interactions
(each defined by a ViewAction class) that are supported by Espresso, except for the
ScrollTo and pressIMEActionButton commands. For what concerns the ViewAsser-
tions, only the isVisible assertion (that checks if a given element appears on screen)
has been taken, by now, into consideration by the Enhancer and hence by the follow-
ing translation phase.

Each time an instruction starting with onView is identified in the code of the
test script, the Espresso Enhancer adds calls to three different methods of the TOG-
GLETools library right before the execution of the operation, to capture information
about the screen hierarchy and the actual graphic appearance of the current activity.
Specifically, calls to the following methods are added:

TakeScreenCapture The method, whose prototype is

p u b l i c s t a t i c Bitmap T a k e S c r e e n C a p t u r e (Date c u r r _ t i m e ,
A c t i v i t y a c t i v i t y) ,

receives as parameters the current time, and an instance of the current activity.
It takes a capture of the current screen of the application, which is returned in
a Bitmap file and saved in the external storage of the Android Virtual Device,
named after the current timestamp of the Android device.

DumpScreen The method, whose prototype is

p u b l i c s t a t i c S t r i n g DumpScreen (Date c u r r _ t i m e ,
UiDevice d e v i c e) ,

1https://github.com/javaparser/javaparser

9.2 Layout-based to Visual Translator Architecture 129

receives as parameters the current time, and an instance of the UiDevice class
of the UIAutomator library. It takes a dump (a .xml description of the layout)
of the current activity and saves it in the external storage of the Android Virtual
Device, named after the current timestamp of the Android device.

LogInteraction The method, whose prototype is

p u b l i c s t a t i c vo id L o g I n t e r a c t i o n (Date c u r r _ t i m e ,
S t r i n g s e a r c h _ t y p e , S t r i n g sea rch_keyword ,
S t r i n g i n t e r a c t i o n _ t y p e , S t r i n g i n t e r a c t i o n _ p a r a m s) ,

uses the built-in LogCat tool to Log information about the operation that is
performed, and the way the element of the screen has been identified. The
search_type parameter identifies the type of search that has been performed
(e.g., "id", "text", "content-desc"); the search_keyword is the specific keyword
that has been searched in the layout to identify the view on which to operate;
the interaction_type identifies the operation that is performed on the view
(e.g., "click", "type-text"); the interaction_params string contains optional
parameters (divided by a ";" character if multiple) that may be needed to
describe the performed interaction (e.g., the text to type in case of "type-text"
interaction).

The information is logged using the Log.d built-in function, adding the "TOG-
GLELOG" keyword to allow subsequent filtering of the lines of interest from
the complete log that is relative to the application.

The logged arguments for the translated interaction types are reported in
table 9.4. Appendix C reports details about the operations performed by the
translated Espresso commands.

The output of the Enhancer module is an Enhanced 2nd Generation Test Script,
which can be executed as a normal test on the application run in the Android Virtual
Device, but that is now able to trigger the collection of the information to the
translation, in addition to execute all the steps of the original test case.

Figure 9.5 and 9.6 show a sample excerpt of a test file, respectively in its original
form and in the enhanced form after the use of the Enhancer module.

The Enhancer module also adds checks according to the check operations that
are present in the original test case. A check for the appearance of the whole screen

130
Study 5: Layout-based vs Generated visual test cases: An experiment with

TOGGLE

Table 9.4 TOGGLE - Enhancer: Arguments for translated interaction types

Espresso interaction Arguments

clearText() i. Text length
click() None

closeSoftKeyboard() None
doubleClick() None
longClick() None

openActionBarOverflowOrOptionsMenu(Context context) None
openContextualActionModeOverflowMenu() None

pressBack() None
pressBackUnconditionally() None

pressKey(int keyCode) i. Keycode
pressKey(EspressoKey key) i. Keycode

pressMenuKey None
replaceText(String stringToBeSet) i. Text Length; ii. stringToBeSet

swipeDown() None
swipeLeft() None

swipeRight() None
swipeUp() None

typeText (String stringToBeTyped) i. stringToBeTyped
typeTextIntoFocusedView(String stringToBeTyped) i. stringToBeTyped

Fig. 9.5 TOGGLE - Enhancer: Sample input Espresso test script

9.2 Layout-based to Visual Translator Architecture 131

Fig. 9.6 TOGGLE - Enhancer: Sample enhanced Espresso test script

132
Study 5: Layout-based vs Generated visual test cases: An experiment with

TOGGLE

Name Size (inches) Resolution (pixels) Density

Pixel XL 5,5” 1440x2560 560dpi
Pixel 2 XL 5,99” 1440x2880 560dpi

Pixel 2 5,0” 1080x1920 420dpi
Pixel 5,0” 1080x1920 xxhdpi

Nexus S 4,0” 480x800 hddpi
Nexus One 3,7” 480x800 hddpi
Nexus 6P 5,7” 1440x2560 560dpi
Nexus 6 5,96” 1440x2560 560dpi

Nexus 5X 5,2” 1080x1920 420dpi
Nexus 5 4,95” 1080x1920 xxhdpi
Nexus 4 4,7” 768x1280 xhdpi

Galaxy Nexus 4,65” 720x1080 xhdpi
Table 9.5 TOGGLE: devices supported by the Executor for test case execution

is added by default at the end of the test case. This is a design decision that has been
made in order to have a check of the final state of the GUI at the end of each translated
test execution. Visual testing tools, in fact, may perform mouse operations on wrong
elements of the screen, if the image recognition engine they use mismatches a portion
of the screen with a given screen capture. In those cases, if there are no explicit
checks after those wrong interactions, the test case is considered passing. On the
other hand, it is highly likely that interactions on wrong parts of the user screen
lead to a final state of the application that is different from the one reached after
the execution of the original 2nd-generation test script. A final check using the full
screen of the app as an oracle is hence an added layer of robustness for the generated
test case.

9.2.2 Executor

After the test scripts are enriched with calls to the TOGGLETools library with the
Enhancer module, the Executor module is in charge of executing them on the selected
Android Virtual Device. The Executor is in charge of launching an AVD, installing
the AUT on it and executing the test cases. The device does not need to be rooted,
given that the AUT is provided with the required storage permissions. Android
Debug Bridge (ADB) commands are used to perform such operations. The module
also ensures that the Android project is instrumented correctly and includes all

9.2 Layout-based to Visual Translator Architecture 133

Fig. 9.7 TOGGLE - Executor GUI: project selection

Fig. 9.8 TOGGLE - Executor GUI: AVD creation

134
Study 5: Layout-based vs Generated visual test cases: An experiment with

TOGGLE

libraries required by Toggle. Table 9.5 reports the Android Virtual Devices supported
by the Executor at the current state of development. The Executor module has been
provided with a GUI that allows to select an Android project from the file system,
identify all the test cases available inside it, and proceed to launch and translate them
individually (see figure 9.7). Another screen of the executor is used to instantiate
Android Virtual Device through the GUI, instead of defining them through ADB
commands manually (see figure 9.8).

During the execution, the TOGGLETools methods are called, and hence the
screen captures and dumps are collected inside the device external storage, along
with the collection of the information about the list of interactions inside the log of
the application. The interactions are stored in an intermediate, and tool agnostic,
script format that can be translated to any syntax required by the 3rd generation tools
currently supported by Toggle. Theoretically, this tool agnostic list of interactions
could be used, if needed, to translate the sequence of interaction to another 2nd
generation test script as well.

The Executor also checks the outcome of the original 2nd generation test: if the
test triggers any exception (failed test), the developer is notified and the translation
process is aborted. This feature is added to minimize translations of invalid tests.

Figure 9.9 shows a sample screen capture, taken for the Main Activity of the
Omni Notes Android app. In the screen, the button for opening the menu to add a
new text note in the library can be noticed (the red button with the "+" icon in the
bottom-right corner).

Figure 9.10 shows a sample dump, taken for the same activity shown in figure
9.9. In the dump provided by the UIAutomator library, each view in the visual
hierarchy is identified by a node in the .xml file, and the contained attributes allow to
identify the view among the others. For instance, in the dump excerpt, the id of the
menu button (fab_expand_menu_button) is highlighted. Each node also contains the
coordinates (top, left, bottom, right) of the rectangle that is occupied by the view on
the current visual hierarchy,

Figure 9.11 shows an excerpt of the output of the Logcat after the execution of a
test script starting from the Main Activity of Omni Notes, and after the filtering of
the Log (searching for the "TOGGLELOG" keyword).

9.2 Layout-based to Visual Translator Architecture 135

Fig. 9.9 TOGGLE - Executor: Screen Capture extracted for the Main Activity of the Omni
Notes application

Fig. 9.10 TOGGLE - Executor: Screen Dump extracted for the Main Activity of the Omni
Notes application (excerpt)

136
Study 5: Layout-based vs Generated visual test cases: An experiment with

TOGGLE

Fig. 9.11 TOGGLE - Executor: Log extracted after the execution of a test script on the Omni
Notes application

From the Log it is evident that six operations are performed on the application:
a click on a button identified with the id fab_expand_menu_button, a click on a
button identified by the contained text Text note, the insertion of the string Test in a
textbox identified by the id detail_title, two consecutive clicks on a view identified
by the content description drawer open, and a final click on a view identified by
the id settings_view. It can also be noticed that the last field of the Log format
(the interaction_params field) is empty for all interactions, except for the typetext
interaction.

9.2.3 Log Parser

The Log parser module is in charge of extracting all the information related to the
operations performed on the application. It is launched after the execution of the test
cases is finished on the Android Virtual Device.

The first operation performed by the Logcat Parser is an access to the full log of
the Android app through the Android Debug Bridge, using the command adb logcat
-d to locally save the full log. Then, the full log is filtered for rows containing the
"TOGGLELOG" keyword.

Hence, for each line in the filtered logcat, a ToggleInteraction object is created.
As shown in figure 9.12, the class is characterized by the following attributes:

packagename : A string with the packagename of the tested application. It is used
for searching ids or resources in the dump .xml files.

search_type : A string indicating the type of search that is performed to identify
the interacted element in the visual hierarchy.

search_keyword : A string indicating the keyword used to identify the interacted
element in the visual hierarchy, according to the type of attribute searched.

9.2 Layout-based to Visual Translator Architecture 137

Fig. 9.12 TOGGLE - Log Parser: ToggleInteraction Class

time : A string containing the timestamp of the moment at which the interaction
has been performed.

interaction_type : A string indicating the type of interaction performed on the
view.

interaction_args : A string containing one or multiple arguments to describe the
interaction that is performed on the view.

screen_capture : A File pointer to the Bitmap capture of the full screen, taken right
before the interaction is performed.

dump : A File pointer to the .xml file containing the full dump of the current activity,
taken right before the interaction is performed.

left, top, right, bottom : Coordinates for identifying the corners of the rectangle
occupied by the view on the screen.

cropped_image : A bitmap of the actual appearance of the view that has been
interacted, extracted from the full screen capture.

Most of the attributes of the ToggleInteraction object are populated by its con-
structor, by passing the string elements extracted from each filtered Logcat line. The

138
Study 5: Layout-based vs Generated visual test cases: An experiment with

TOGGLE

private method extractBoundsFromDump() of the ToggleInteraction class allows
obtaining the exact coordinates inside the screen of the interacted view. They are
obtained through recursive inspection of the .xml dump file, searching the innermost
attribute search_type with value search_keyword and returning the value of the
node-bounds attribute.

Once the boundaries are obtained, the manageScreenshot() method cuts the
rectangle with the given boundaries from the full screen capture of the current
activity and saves it in an image which is named timestamp_cropped.png.

Several interactions do not require movements of the mouse pointer or click
operations, and hence do not require a screenshot to be managed, cut and resized.
For instance, a TypeTextIntoFocusedView interaction will be translated in just a set of
key presses, without any click on the app GUI. In those cases, the manageScreenshot()
method is not called and a screen capture is not created for the specific interaction.

The output of the Logcat Parser module is a sequence of interaction types,
coupled with exact screen captures (when required) of the views that have to be
found by the Visual Testing Tool for the execution of the test case, and with the
required arguments by the specific interaction types.

9.2.4 3rd generation script creator

The 3rdGenerationScriptCreator module is dependent on the Visual testing tool
towards which the test case is translated. It receives as input a sequence of ToggleIn-
teractions, and translates each operation to the destination syntax, using the set of
commands that are available with the destination tool.

For instance, the click operation on a given screen capture can be translated to
the following line if the EyeAutomate Visual testing tool is used:

C l i c k " i m a g e _ f o l d e r \1540393264932 _cropped . png "

or, instead, to the following line if the Sikuli Visual testing tool is used:

c l i c k ("1540393255097 _cropped . png ") .

In general, however, a 1-to-1 mapping between 2nd-generation layout-based in-
teractions and 3rd-generation image recognition-based is not possible. Espresso, like
all 2nd-generation tools, uses platform-specific information to identify the widgets

9.2 Layout-based to Visual Translator Architecture 139

Table 9.6 Translation alternatives

Name Meaning

EA EyeStudio Text Script
S SikuliX Ide Python Script

EAJ EyeAutomate Java Method
SJ SikuliX Java Method

CES Combined Java Method, EyeAutomate First
CEJ Combined Java Method, Sikuli First

on which to perform interactions, and several atomic operations may be included
in a single Espresso interaction. Those interactions, hence, must be translated to a
series of atomic mouse and keyboard operations when they have to be translated to a
visual test script operated on an emulated device on a desktop pc.

Toggle supports translation to EyeAutomateì and Sikuli. The translated scripts
are in the native formats of the two tools that can be run by the tools’ respective
IDEs.

However, since both the tools also have Java APIs, the creation of Java code
calling the respective APIs has also been considered.

Finally, the Java APIs allow translations of the 2nd generation scripts into com-
bined test cases that use both tools, such that if one tool’s image recognition fails,
the script will try to perform the interaction, or a check, with the other. Two different
combined, Java-based, test script types can thereby be obtained, with EyeAuto-
mate interactions first (followed by Sikuli if EyeAutomate fails) and with Sikuli
interactions first (followed by EyeAutomate if Sikuli fails).

Table 9.6 summarizes the six possible translations for 2nd generation test cases
that are offered by the 3rd generation script creator, along with the acronyms that are
used in the continuation of the manuscript.

Section C.2 of appendix C reports the translated commands into the destination
EyeAutomate or Sikuli syntax (respectively, in the plain text and python format). In
the table the parameters of the commands are indicated, with img being the screen
capture attached to the log, and argN the n-th argument in the log line.

140
Study 5: Layout-based vs Generated visual test cases: An experiment with

TOGGLE

Fig. 9.13 TOGGLE: Architecture of the translator from Visual to Layout-based GUI testing
tools (Proof of Concept)

9.3 Visual to Layout-based GUI test scripts transla-
tor (Proof of Concept)

The translation process from Visual to Layout-based GUI test scripts (Figure 9.13)
starts from a single script or a suite of scripts created with a Visual GUI testing tool.

The tentative architecture for the not-yet-implemented translator can be described
with the following set of separate logic blocks, as shown in figure 9.13.

• In the first phase, an Instrumentation of the Android Project is performed. This
step is necessary for the translation from visual references to layout-based
identifiers. The instrumentation of the Android Project enables (or modifies
already existing) callbacks to any widget shown on the screen. The callbacks
contain code that logs the interactions that have been performed on the GUI of
the tested app during the execution of a visual test script. Future evaluations
of the features offered by the available tools (like UI Automator viewer) may
make the Instrumentation of the Android Project unnecessary if it is found that
sufficient information about the user interface is obtainable without the need
for adding callbacks in the app code.

• The Executor module runs the Visual GUI tests on the emulated device on
the desktop screen. At each step of the test case, as in a typical execution
of a Visual GUI test script, the position of the image on the screen and its
coordinates are identified. Together with height and width information from
the expected image, additional information can be acquired about the interacted

9.3 Visual to Layout-based GUI test scripts translator (Proof of Concept) 141

element by cross-referencing available information with either Layout-based
data or other meta-data. For instance, this can be done leveraging the debug
connection with the instrumented device, e.g. using ADB (i.e., Android Debug
Bridge) and the Android UI Automator Viewer, which allows navigation of an
XML-description of a dump of the current interface shown on the emulated
device screen. The extracted data can thereby be used to correlate an element
represented by the Visual GUI testing tool as only an image with a Layout-
based element represented by a set of properties.

Since the operation of dumping the current screen may be long and requires
the UI to remain still, the Executor may need to insert sleep instructions
between consecutive operations in the Visual GUI test scripts. Additionally, the
transition of certain UI elements might require additional steps to be inserted
into the test scripts. For instance, for drop-down lists, Layout-based tools
generally access the elements directly without expanding the lists. In contrast,
Visual GUI testing tools must first expand the list to make the elements visible
to be able to interact with them.

Due to the high abstraction of Visual GUI testing scripts, a proposed technical
solution to ease and speed up the translation to Layout-based scripts is to
store additional meta-data about existing objects from previously run test
scripts (e.g., coordinates, properties, actual appearance). This may enable the
association of images in new test scripts with already interacted objects (it is
the case, for instance, of buttons that are interacted in two different test cases).
Additionally, the meta-data must be aligned with the Layout-based test data to
ensure a 1-to-1 association between Layout-based and Visual elements used in
the test cases.

• The output of the Executor logic block is a trace of the operations that will
compose the translated test script: a log of tuples with the properties associated
with an identified Visual element, and the action performed on the element.
This information is given as output through the built-in Logcat tool of Android.
The Logcat Parser logic block of the translator is in charge of parsing such a
trace, in order to obtain a language and technology-independent sequence of
operations and widget descriptions that can be then used for the generation of
test scripts.

142
Study 5: Layout-based vs Generated visual test cases: An experiment with

TOGGLE

• Finally, the Test Case Generator, based on the output of the previous module,
creates Layout-based test script in the syntax desired by the user. The generated
test script is then merged with existing test cases to be replayed as part of the
Layout-based generation test suite counterpart.

9.4 Experimental Validation

An experiment was designed to apply TOGGLE to a set of test cases, in order to
verify the dependability and the performance of the generated test cases. In this
section, the experiment design and results are detailed. The experiment allowed
to answer the high-level research question RQ5 - What is the dependability and
performance of visual test cases generated by translation?

9.4.1 Experiment Design

To perform the evaluation, TOGGLE was applied on two test suites that were
developed on Android open-source applications, available both on GitHub and on
the PlayStore: Omni-Notes v6.0.02 and PassAndroid v2.5.03. The applications
were chosen because of the differences they exhibited in the way their GUIs were
built, and in the different operations to perform on the activities to go through their
principal usage scenarios.

Each of the test suites was made of 30 independent test cases (i.e., a failure in
one test case does not influence the result in test cases that are executed later). Test
cases were built based on the Espresso commands recognized by the Enhancer (i.e.,
all the Espresso ViewActions except for ScrollTo and PressIMEActionButton), and
were composed by a number of interactions comprised between 4 and 18, including
checks.

Each test case was translated with TOGGLE, to the six destination syntaxes
detailed in the previous section. All the generated visual test cases were executed
ten times, to evaluate their robustness. The machine on which the executions were
performed is an Intel i7-8550U 1.80GHZ clock, with 16GB RAM and Windows

2https://github.com/federicoiosue/Omni-Notes
3https://github.com/PassAndroid

https://github.com/federicoiosue/Omni-Notes
https://github.com/PassAndroid

9.4 Experimental Validation 143

10 operating system. The emulated AVD for the execution of the apps was a
Nexus 5X with API 25 installed, with enabled device frame and enabled keyboard
input. Executions of visual test scripts (or Java code embedding image recognition
API calls) were performed on a solid black background, to minimize the possible
interference of other visual elements appearing on-screen at the same time of the
AUT.

RQ5 can be split into two sub-questions, each related to a different non-functional
property measured for generated 3rd-generation test cases. First, to understand the
dependability and the robustness of generated test suites, we gathered insights about
the percentage of failing and passing executions of generated test cases. Hence,
RQ5.1 could be formulated as:

RQ5.1 : What are the differences in reliability between the six combinations of
visual test script techniques?

To answer RQ5.1, we relied on the Success Rate (SR) metric, that can be
computed for each test case as

SRt = Ns/Nex, (9.1)

being Ns the number of executions ending with success, and Nex the total number
of executions of test case t, in the experiment fixed to 10 for all the generated test
cases.

Based on the SR metric, test cases were labeled in three different classes:

• Passing, when all 10 executions of the test case ended with success (SR = 1);

• Failing, when all 10 executions of the test case ended with failure (SR = 0);

• Flaky, when some of the 10 executions of the test case ended with success,
and some other with failure (0 < SR < 1).

It is assumed that flakiness is due to imprecisions of the image recognition
algorithm, while failing test cases are considered the consequence in translation
errors or intrinsic limitations of the visual testing tools. This unpredictability was

144
Study 5: Layout-based vs Generated visual test cases: An experiment with

TOGGLE

Reason Sleep time

Long-click 600ms
Swipe 200ms
Multiple key press (e.g., Ctrl + M) 20ms
Replace text 50ms
Post-interaction sleep 1000ms
EyeAutomate failure 5000ms
Sikuli failure 5000ms

Table 9.7 TOGGLE: sleep times introduced in generated test scripts

expected, as several studies have reported the inherent uncertainty of the outcomes
of Visual GUI test executions, especially for those produced with Sikuli [6].

A Fisher’s Exact Test for success (pass or fail) of the test scripts vs. the tool used
for the 3rd generation translation was applied, to assess the difference between the
alternative tools in terms of the correctness of the execution of the generated test
cases.

In addition to the success rate of the generated test cases, the performance of the
3rd generation testing tools was measured and compared to that of Espresso. RQ5.2
can be formulated as:

RQ5.2 : What are the differences in performance between the six combinations of
the visual test scripts and the original 2nd generation test scripts?

To answer RQ5.2, the average execution time (Tx) of all the passing test ex-
ecutions was measured. The execution time was normalized by the number of
interactions performed inside the test case, in order to make the measures for differ-
ent test cases comparable. It must also be considered that, by construction of the
translated test scripts, the execution time is not comparable with that of Espresso,
because of the static sleep instructions that were introduced in the translated inter-
actions, and between each couple of interaction. Table 9.7 reports the added sleep
instructions. Sleeps between interactions were added to minimize synchronization
challenges, to avoid failures of visual test cases if the visual element on which to
interact is not displayed on screen immediately after the execution of the previous
interaction. Those sleeps are not needed by Espresso test scripts since the tool

9.4 Experimental Validation 145

automatically waits for the required widgets to be loaded on-screen by the Activity
code.

An ANOVA test was applied for the execution time (normalized by the number
of interactions). First, the effect of the generation (2nd vs. 3rd) was tested; then the
effect of the specific 3rd generation tool combined with the app was tested.

9.4.2 Threats to Validity

Threats to Conclusion Validity

To check the statistically significant difference among different target tools standard
statistical tests were applied. The results are clear cut and consistent with the
visual representations that report standard (95%) confidence intervals or complete
distributions.

Threats to External Validity

The results of this evaluation are not generalizable to any Espresso test suite. Addi-
tionally, since the objective of the evaluation is primarily to evaluate the precision of
the generated 3rd generation test cases, it did not make sense to use generic Espresso
test cases with interactions not supported by the tool.

The conclusions about the reliability and performance of 3rd generation test
suites are limited to the considered tools for the evaluation, namely Sikuli and
EyeAutomate. The same limited generalizability of the results also applies to the
AUTs that were selected. Apps with a very different graphical appearance may
induce significantly different results.

Threats to Internal Validity

The results about the performance of the generated 3rd generation test scripts are
influenced by the static sleeps added during the translation of 2nd generation test
scripts, which by converse need no explicit sleep instructions. In future versions,
sleeps may be dynamic, utilizing GUI-state information to determine that components

146
Study 5: Layout-based vs Generated visual test cases: An experiment with

TOGGLE

have loaded properly before proceeding. Dynamic sleeps are perceived to help the
performance by mitigating unnecessary waiting time between interactions.

The evaluation of the robustness of generated test cases is based on the assump-
tion that all the operations have been performed correctly if the final state of the
application is verified. This assumption does not take into account the possibility –
albeit unlikely – that multiple wrong operations on the widgets, during a single test
case, may compensate each other leading the test case to success at the final visual
check.

9.4.3 Experiment Results

This section reports the values measured to answer the two Research Questions
detailed in the previous sections.

Success Rate

Figure 9.14 reports the list of all the test cases developed for the two considered
Android apps (PassAndroid and OmniNotes) along with the success rate obtained
with each of the six different syntaxes obtained by translation. For each test case, the
success rate of the original Espresso test execution is reported. All original Espresso
test cases had 100% success rate, meaning that original test cases were not flaky and
the app was in a stable and predictable state for the execution of the entire test suites.

All the translated test cases were checked manually, in order to verify that
the Enhancer or the Log Parser failed and provided wrong screen captures to the
3rd generation testing tools. The absence of wrong screen captures leaves the
responsibility for errors in the test cases only to issues in the image recognition
libraries used or to the inapplicability of the visual paradigm because of too small
visual locators. Moreover, the addition of a final check of the whole screen at the end
of each test case reduces the possibility that, when a test is considered as passing,
some of its operations have been performed on the wrong widgets. If so, in fact, the
final state of the application would likely be different.

According to the results of the Fisher Exact Test, it has been observed that in
general there is a statistically significant correlation between the success of test
scripts and the used 3rd generation tool for the translation (p < 10−5).

9.4 Experimental Validation 147

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

0%

100%

100%

100%

100%

0%

100%

90%

100%

0%

100%

100%

100%

100%

100%

0%

100%

100%

100%

0%

0%

100%

100%

100%

100%

0%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

70%

100%

80%

100%

100%

100%

90%

100%

100%

100%

100%

100%

20%

100%

0%

50%

100%

100%

100%

100%

0%

100%

100%

100%

100%

0%

100%

100%

100%

0%

100%

100%

100%

100%

100%

0%

100%

100%

100%

0%

0%

100%

100%

100%

100%

0%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

50%

100%

0%

20%

80%

100%

100%

100%

0%

100%

100%

100%

100%

0%

100%

100%

100%

100%

100%

100%

100%

100%

100%

0%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

90%

100%

90%

100%

100%

100%

40%

100%

100%

40%

50%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

0%

100%

100%

100%

0%

100%

100%

100%

100%

100%

100%

100%

100%

0%

100%

100%

100%

100%

0%

100%

90%

100%

100%

100%

0%

100%

70%

100%

100%

100%

80%

80%

100%

30%

0%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

0%

100%

100%

100%

0%

100%

100%

100%

100%

100%

100%

100%

100%

0%

100%

100%

100%

100%

0%

100%

60%

90%

100%

100%

0%

100%

100%

60%

100%

60%

100%

70%

70%

80%

0%

100%

100%

100%

100%

100%

100%

100%

30%

100%

100%

100%

100%

100%

90%

100%

100%

100%

100%

100%

90%

90%

100%

100%

100%

100%

100%

100%

100%

100%

0%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

70%

100%

30%

90%

30%

70%

90%

0%

100%

100%

100%

100%

100%

100%

100%

30%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

om
ninotes

passandroid

E EA S EAJ SJ CES CSE

testAddReminder
testAddShortcut
testArchiveNote

testCameraIsDisplayed
testChecklistIsDisplayed

testCreateChecklist
testCreateNote
testDeleteNote

testDisableChecklist
testDiscardChanges

testDiscardOnExistingNote
testLeftMenuContent

testOrderByCreationDate
testOrderByMenu

testOrderByModificationDate
testReducedViewMenu

testRemoveCategory
testRestoreFromTrash

testSearch
testSearchButtons

testSelectAll
testSettings1
testSettings2

testSketch
testSwipeLeftRight

testTextNoteIsDisplayed
testTimestamp
testTrashUndo

testUndo
testWrongSearch

testCalendarIsShown
testCanSetAltMessage

testCanSetMessage
testCanSetToAZTEC

testCanSetToPDF417
testCanSetToQR

testColorWheelIsThere
testCreateMultiplePasses

testCreatePass
testCreatePassIsShown

testDeletePass
testDeleteWithLongClick

testDemoPassIsShown
testEditPass

testFabButtonGoesBackWithClick
testImageOptionsAreThere

testLeftMenuIsShown
testMenuIsShownUponClick

testMenuIsShownUponLongClick
testOpenFileIsShown

testScanIsShown
testSetDescriptionWorks

testSetToAnyThenGenericWorks
testSetToBoardingPassWorks

testSetToCouponWorks
testSetToEventWorks

testSetToStoreCardWorks
testSwipeBackToFirstPage

testTimePickerWorks
testWhatIsIt

Tool

C
as

e

0.00

0.25

0.50

0.75

1.00

Success
Rate

Fig. 9.14 TOGGLE: Graphical summary of individual test success rate

148
Study 5: Layout-based vs Generated visual test cases: An experiment with

TOGGLE

CSE

CES

SJ

EAJ

S

EA

E

70.0% 80.0% 90.0% 100.0%
Success Rate

To
ol

App
omninotes

passandroid

Fig. 9.15 TOGGLE: Average success rate by tool and app with 95% CI

100%

23%

3%

73%

3%
17%

80%

23%

77%

3%
10%

87%

10%

90%

17%

83%

100%

17%
7%

77%

3%
10%

87%

17%
7%

77%

3%

30%

67%

3%

97%

3%

23%

73%

om
ninotes

passandroid

E EA S EAJ SJ CES CSE

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

Tool

Pr
op

or
tio

n
of

 te
st

 c
as

es

TestCat
Failing

Flaky

Passing

Fig. 9.16 TOGGLE: Proportion of passing, flaky and failing translated test cases

9.4 Experimental Validation 149

Figure 9.15 shows the Average Success Rate for the six sets of 3rd generation
scripts obtained by applying Toggle, compared – also in this case – to the 100%
success rate of the original Espresso test suite. The average success rate is plotted
with 95% confidence interval. From the graph, it is evident that there was no
single (or combination of) 3rd generation test technique that was the best for both
OmniNotes and PassAndroid. For OmniNotes, the combination of Sikuli first and
EyeAutomate second (CSE) guaranteed the highest success rate, for PassAndroid it
was the reverse combination (CES).

Figure 9.16 shows the distributions of passing, flaky and failing test cases for
all the six generated sets of tests. From the figure is evident that most of the flaky
solutions included Sikuli. This high proportion of flaky Sikuli tests was mainly due to
the need of performing swipe operations, that were less precisely reproduced by the
Sikuli atomic mouse commands. A relevant number of tests in both OmniNotes and
PassAndroid involved such swipe operations. EyeAutomate was the least successful
visual testing tool, both when test scripts were created in the tool-specific plain-text
syntax or through calls to the EyeAutomate Java API. Most of the test failures for
EyeAutomate were caused by the inability of the visual recognition tool to find
elements with a low amount of details (as the NavigationDrawer button in figure 6.3
of chapter 6).

From both figure 9.15 and 9.16 it can be deduced that the combination of the
tools helps, by leveraging the two against each other improving overall success rate
on OmniNotes. With PassAndroid, the combined version with Sikuli First (CSE)
performed just slightly better than the Java versions of EyeAutomate and Sikuli
separately. This is justified again by the lesser robustness of Sikuli when swipe
operations are involved.

Answer to RQ5.1: None of the 3rd generation test suites achieved the same
average success rate as Espresso. The best solution overall, in terms of Success
rate, was to use EyeAutomate first, supported by Sikuli (CES). If only one image
recognition algorithm can be used, Sikuli is the most suitable solution.

150
Study 5: Layout-based vs Generated visual test cases: An experiment with

TOGGLE

om
ninotes

passandroid

E EA S EAJ SJ CES CSE

10

20

30

40

50

10

20

30

40

50

Tool

Te
st

 c
as

e
ex

ec
ut

io
n

tim
e

[s
]

Fig. 9.17 TOGGLE: Average Execution time, by tool and app

om
ninotes

passandroid

E EA S EAJ SJ CES CSE

1

2

3

4

1

2

3

4

Tool

Te
st

 c
as

e
ex

ec
ut

io
n

tim
e

[s
] p

er
 In

te
ra

ct
io

n

Fig. 9.18 TOGGLE: Average Execution time normalized by interaction, by tool and app

9.4 Experimental Validation 151

Execution Time

Figure 9.17 shows the average execution times of the passing executions of the
translated test cases. Figure 9.18 shows the average execution times normalized by
the number of interactions of test cases, hence a measure that is comparable with
test cases written for other usage scenarios and other applications. Espresso, once
more, has been added as a benchmark for the considered visual testing techniques.
The number of interactions for Espresso test cases was the same as the number of
interactions of created visual test cases, minus one (for the final full check, that is
not performed in original cases).

The permutation test ANOVA confirmed a statistically significant difference
between 2nd and 3rd generation tools (p < 10−15), as well as an effect of the interac-
tion between tool generation and application (p < 10−15). Applied to the distribution
of time per interaction measured for the six 3rd generation testing techniques and the
two apps, the ANOVA parametric test shows statistically significant difference on
measured average time per interaction depending on tool (p < 10−15), no clear effect
of the application (p = 0.1), and statistically significant effect of the interaction of
the two factors (p < 10−15).

The difference in average time per interaction between the two applications
can be explained by the nature of the interactions performed during the test scripts.
PassAndroid usage scenarios involved a higher number of swipe operations, that
require a longer execution time than simpler click and type operations.

Espresso had a better average execution time per interaction. The main reason for
this result is the tool’s support for automatic wait instructions for widgets to appear
on-screen, instead of the discussed heuristic sleep time added to created visual test
scripts. The second best tool was the Java version of Sikuli, closely followed by
the Java version of EyeAutomate. Scripts written in the native syntaxes of the two
tools had significantly worse average times per interaction than the respective Java
versions. This can be explained by the fact that those test cases were run inside a
Java environment, instantiating script runners provided by the respective APIs. This
embedding can create additional delays and explain such a higher execution time.
Finally, the combined versions of the tests had a bit worse performance than any
of the testing tools based in Java individually. The reason is TOGGLE’s approach
of generating tests that always try with one tool first and only if it fails (and hence,

152
Study 5: Layout-based vs Generated visual test cases: An experiment with

TOGGLE

after the 5s sleep delay for triggered failure) the second tool is used. This waiting
time before the transition adds considerable overhead to each test script. However,
both the combined versions had better performance than the scripts developed in
tool-specific syntax.

Answer to RQ5.2: 2nd generation approach had significantly better performance
(in terms of average execution time normalized by the number of instructions)
than any of the created 3rd generation test scripts. There is a significant difference
between average time per interaction measured for the six considered 3rd genera-
tion testing tools, with the Java versions of Sikuli test cases (SJ) performing the
faster.

Chapter 10

Revisit of Study Findings

In this section, a final revisit of the findings of the presented studies is provided,
along with a comparison with relevant related work from literature, and a summary
of the contributions that this work provides to both practitioners and researchers.

10.1 Study 1 - Survey with mobile developers from
the industry

In Study 1 of this research, insights about the perception of automated testing (and
especially GUI testing) were gathered among professional developers. The findings
of the experiments are reported in table 10.1. The seven interviews conducted with
relevant players of the Italian software industries mainly proved that a test automation
culture for mobile application is still lacking in developers. The results gathered
from the structured interviews were in line with those of the investigations performed
by Kochhar et al. [57] and Linares-Vasquez et al. [67], who highlighted a still
rooted preference for manual testing for Android applications, in industrial contexts.
The interviewed mobile and web developers generally did not perceive the ROI
guaranteed by adopting automated testing techniques; studies in the literature have
highlighted that positive ROI can be obtained with such techniques in more than
180 weeks [5], quite a long time frame for small to medium-sized companies. Many
works in the literature have underlined the developers’ perception of automated GUI
testing as a very expensive activity in terms of setup costs and required training. The

154 Revisit of Study Findings

Table 10.1 Study 1: Answers to the Research Questions

RQ1.1: Are mobile applications tested by the inter-
viewed sample of industry practitioners? How? To
what extent?

All the respondents to the survey performed manual testing on their
mobile applications. Among the automated testing tools used, the inter-
viewed developers mostly relied on Capture & Replay test, with a rare
adoption of scripted testing tools.

RQ1.2: What are the most peculiar properties to test
in mobile applications according to the interviewed
sample of industry practitioners? What aspects of mo-
bile apps discourage them from adopting automated
testing?

The respondents to the interview underlined several aspects that are pe-
culiar to mobile vs. desktop or web development. The two main charac-
teristics that required specific forms of testing – according to the inter-
viewed developers – were resource and battery saving and adaptation to
different devices and display sizes.

RQ1.3: What are the main challenges felt by develop-
ers from the industry performing automated testing,
and the directions research should take according to
them?

All the interviewed mobile developers found that the maintenance of
test cases for mobile applications is one of the most relevant challenges
that prevent the adoption of automated testing techniques. Almost all
respondents expressed the desire for better ways to manage fragilities
and to reduce the effort for making the test suites evolve. Little enthusi-
asm was instead shown towards new paradigms of testing explored by
literature, like model-based testing and visual recognition testing.

responses of the sample interviewed in this study are in line with the findings by
Rafi et al., who interviewed developers and testers of desktop applications: 88% of
their respondents agreed that automated testing requires extra effort than manual for
designing test scripts, whilst only 6% of them considered automated software testing
as capable of finding complex bugs that are instead spottable by manual testing
practices [86].

At the time of the interviews (end of 2017) the need for automated testing of
Android apps was not felt by the interviewed developers as urgent as that felt for
applications of other domains. Most papers in the literature involving interviews
with the developers agree with finding the most important deterrent from systematic
(GUI) testing of mobile applications in the difficulties in maintaining test code, and
in the scarce usability (and poor documentation) of available testing tools [59].

The needed maintenance by automated test cases was felt like one of the most
important deterrents for the adoption of such techniques. Some of the estimated
maintenance efforts reported by the respondents of the survey are in line with related
work in the literature that has investigated the effort in maintaining test cases for
desktop applications. For instance, respondent E identified the cost of maintenance
of existing test scripts as 60% of total testing effort; this result pairs with a case study
conducted at Siemens by Alegroth et al., where upward of 60% of time spent on
test automation each week was devoted to maintenance [5]. The same study reports
measures performed at Saab, with an average and maximum time for repairing
individual test scripts of respectively 23 and 110 minutes, and 7% of total project

10.2 Study 2 - Controlled experiment with Graduate students 155

Table 10.2 Study 2: Answers to the Research Questions

RQ2.1: Productivity - What is the productivity of in-
experienced developers when approaching to Layout-
based and Visual GUI testing tools?

No statistically significant difference has been found between the re-
spective productivity obtained using EyeAutomate or Espresso. It can
be deduced that the learnability of the two tools is similar, for non-
professional developers approaching them.

RQ2.2: Quality - What is the percentage of working
test scripts produced by undergraduate programmers
using Layout-based and Visual GUI testing tools?

A statistically significant difference has been found between the respec-
tive quality obtained using EyeAutomate or Espresso. In particular, test
suites developed with EyeAutomate had a higher quality than the ones
that the participants developed with Espresso.

RQ2.3: Obstacles - Which are the perceived difficul-
ties in approaching visual and layout-based GUI test-
ing techniques?

The respondents to the experiment found slightly easier the develop-
ment of test suites using the EyeAutomate library, in the context of
the EyeStudio companion IDE, with respect to developing scripted
Espresso test cases in the Android Studio IDE. The respondents iden-
tified the imprecision of the image recognition library, and the difficulty
in finding individual ids for the widgets, the most problematic aspects
of, respectively, the proposed Visual and Layout-based testing tools.

time dedicated to test maintenance: a result that relates to the estimates of two-person
day for test-fixing at each release, provided by Respondent D. The lower maintenance
effort reported by other respondents can be justified by their admittedly very low
adoption of automated testing. Several studies in the literature measured the test
maintenance effort at bigger companies: Grechanik et al. report the annual cost at
Accenture for that purpose, estimated to be between $50 to $120 million [46].

Albeit all the interviewed developers from the industry were quite skeptical
about the possibility of adopting advanced automated testing techniques for their
applications, recent works in the literature testify the adoption of different forms of
GUI testing (from model-based to visual) for large Android projects [38][4]. The
set of interviews with developers from the industry is, however, representative of
the Italian development scenario and can be seen as a valuable source of hints for
developers of automated testing tools (open-source or not) to try to meet the needs
of the industry.

10.2 Study 2 - Controlled experiment with Graduate
students

In Study 2 of this research, insights about the perception of automated GUI testing of
mobile apps were gathered among graduate students. The findings of the experiments
are reported in table 10.2, and are based on a comparison of the results obtained by
the students in developing the same test suite, for the same open-source application

156 Revisit of Study Findings

(Omni-Notes), with the aid of two tools belonging to different GUI testing genera-
tions (EyeAutomate for visual testing, and Espresso for Layout-based testing). The
analysis of the submitted test suites, along with the answers to the interviews that
were subministrated to the students at the end of the experiment session, suggest
that EyeAutomate (and hence, the Visual approach to GUI testing) is considered
slightly easier than Espresso (and hence, of the Layout-based approach), and that
test suites created with EyeAutomate were of higher quality than those generated
with Espresso.

Empirical studies with students are often used in Software Engineering research,
even though their external validity is typically questioned [24]. The main use of
studies with students is to gain insights in techniques, methods, and approaches to a
given problem. Many studies with students are designed to compare two different
techniques of solving the same problem: examples exist in the literature about the
comparison of Extreme Programming vs. traditional software construction [71],
different methods for software requirements inspection [89], domain-specific or
general purpose programming language [58].

No prior controlled experiment with students dealing with different GUI testing
techniques (and, more specifically, with GUI testing tools for Android apps) has been
found at the time of the conduction of the study. A comparison between tools of the
two generations has been performed by Min et al. in the field of mobile applications
[78]. The findings of the study are in line with the results of the experiment: tools
using 3rd generation approach are said to be more efficient in terms of implementing
test cases, but had more false positives than 2nd generation approach, and needed
more maintenance effort during the evolution of a typical mobile application. Two
other similar comparative studies, albeit not involving mobile applications, were
conducted by Leotta et al., who investigated Capture & Replay vs. Programmable
(i.e., Scripted) web testing [61] and DOM (i.e., Layout-Based) vs. Visual locators
[62]. They find that the development of test suites is more expensive in terms of
required effort (up to 30% more time needed) when the Layout-based approach is
adopted; on the contrary, the needed maintenance is higher (up to 50% more) when
the visual approach is used. The results about the required effort can be considered
as a confirmation of the results of Study 2, about the higher amount of test cases
delivered when using EyeAutomate instead of Espresso, or leveraging Espresso
TestRecorder instead of manually inspecting layout and widget properties.

10.3 Study 3 - Measures of Diffusion and Evolution of Testware in OS projects157

Table 10.3 Study 3: Answers to the Research Questions

RQ3.1: Adoption and size - What is the level of adop-
tion of a set of automated testing tools among open-
source Android projects?

The considered GUI testing tools reached a diffusion that is always
lower than 4.11% individually, and a combined adoption of about 8%
by the considered set of 15 thousand Android repositories hosted on
GitHub. The projects that are tested with the considered tools are typi-
cally rather short-lived, with an average of 15 releases, and feature on
average few very few test classes for around 10% of total production
code devoted to testing.

RQ3.2: Evolution - How much are GUI test classes
associated with the analyzed sets of tools modified
through consecutive releases of an open-source An-
droid project?

An average 5% of the testing code is modified between consecutive
tagged releases of Android repositories hosted on GitHub featuring tests
associated with the six selected testing tools. 4.54% of the whole main-
tenance effort on production code is limited to changes in classes that
are identified as tests developed with the studied testing tools. On av-
erage, one every five release required efforts of maintenance on test
classes, and one every five classes had to be modified at least once dur-
ing the lifespan of a project. On each new release, an average 15.43%
of test classes (3.83% of test methods) feature modifications.

10.3 Study 3 - Measures of Diffusion and Evolution
of Testware in OS projects

In Study 3 of this research, a data mining experiment was conducted on open-source
Android apps hosted on GitHub, to quantify the adoption of popular automated GUI
testing tools for Android, and to measure the average size and the needed amount of
maintenance of developed automated test suites. The findings of the experiment are
reported in table 10.3.

The metrics about adoption and size reflect what has been found by other studies
in the literature, pertaining to mobile applications: Linares-Vasquez et al. [68]
conducted a survey about automated mobile app testing, identifying the testing
tools of which we studied the diffusion as the most used by developers, with the
addition of UI Automation (for testing iOS apps), Ranorex, Calabash, Quantum, and
Qmetry. The latter tools were not considered in this study because they were either
closed-source or based on languages different from Java (and hence not comparable
with production code of the mined apps).

Kochhar et al. [57], in addition to their interviews with open-source developers,
performed a quantitative analysis on 600 open-source Android apps mined from
F-Droid. The authors found that 14% of mined apps contained test cases (with
9% of the apps having executable test cases) with a coverage of 40%. The most
widespread testing tools cited by the authors were JUnit, Monkeyrunner, Robotium,
and Robolectric. Those results are in line with the findings reported in this thesis

158 Revisit of Study Findings

(8% of applications having test cases with the considered testing frameworks) for
several reasons: JUnit and Monkeyrunner were not considered among the studied
frameworks (since they were not GUI-level testing frameworks), and the Espresso
framework had just been published at the time of publication of the considered study.

Cruz et al. [35] performed another mining of applications from F-Droid, to
measure the amount of test code they feature and some correlation between the
presence of test code and quality indicators (e.g., ratings and downloads from the
PlayStore, Repository Activity and popularity of the related GitHub repositories). It
is found that the presence of test code correlates with the number of contributors and
the number of commits of a given GitHub repository, but not with the ratings on the
PlayStore (and hence, the perceived quality of the app by its users). Regarding the
adoption of testing tools, they found that Appium, Espresso, and Robotium were the
most used GUI testing, hence compatible findings with those of the present study.

With respect to all the studies cited in this subsection, the study documented in
this thesis has the element of novelty of mining projects from GitHub directly, instead
of mining Android apps from F-Droid and then pairing them with the relative GitHub
projects. This way Android projects that are on GitHub only, and not on F-Droid,
are also taken into consideration. With the adoption of such a mining procedure, the
described metrics have been computed on the largest set of open-source Android
application packages documented in the literature.

Literature about software testing typically identifies the amount of Verification
and Validation for a software project as spanning between 20% and 50% of the
total effort for the project [37]. The metrics measured in this work found that on
average 10% of the total production code of analyzed open-source apps is produced
with testing tools and that 5% of the total maintenance effort on production code is
localized in test code. Those values are slightly lower than the average effort values
identified by the literature, and can be motivated by supposing a co-existence of
manual testing activities with a rather limited amount of automated scripted test code
for Android open-source projects.

The evolution metrics gathered in this study can be compared with evidence from
papers about the maintenance of various testing techniques. The considered tools
featured 15% modified test classes, on average, at each new release; 20% of test
classes had to be modified at least once during the lifespan of the project. The results
can be compared to those measured for automated test cases of web-applications:

10.4 Study 4 - Taxonomy of Fragility causes 159

Cristophe et al., analyzing the evolution of test classes developed with Selenium,
found out that up to 75% of test classes needed modifications during the lifespan of
the application [27]. This higher value can be justified by taking into consideration
the smaller sample of applications considered in their study, and by the pre-filtering
operated by the authors, who only considered projects that performed extensive test
with Selenium. Alegroth et al. measured the effort for co-evolving a Visual GUI test
suite in an industrial project as 25.8% of the total evolution effort of the project [6]:
this value is significantly higher than that measured for the average MRTL metrics
in this study. A reason for this difference may be in intrinsic lower robustness of
Visual test cases to changes in the AUT, with respect to scripted testing techniques
analyzed in Study 3.

The diffusion and size metrics defined in this study can be leveraged by practi-
tioners to know which are the most widespread testing tools for Android apps, and
are fit for further investigations by researchers, to study possible correlations with
other measurements on test code or about the perceived quality of published apps.
The evolution metrics can be used directly by developers, to understand whether they
would be able to tackle the effort required by a typical test suite written with a given
scripted GUI Automation Framework. They can also be used as a benchmark for
already developed test cases, to understand if the maintenance effort needed is in
line with the average maintenance effort needed by open-source projects mined from
GitHub.

10.4 Study 4 - Taxonomy of Fragility causes

Built upon the mining section that was already used by Study 3, Study 4 of this thesis
detailed a taxonomy of possible modification causes for testing code of Android
applications. Based on the taxonomy (and according to our definition, i.e. changes
in test code that are not isolated but are induced by changes in the logic, behaviour
or appearance of the AUT) a quantification of the average frequency of occurrence
of modifications that are related to fragility was also obtained. The findings of the
experiment are reported in table 10.4.

The goal of the work was to provide insights about the causes that make the
maintenance for GUI test cases necessary, in the domain of Android apps.

160 Revisit of Study Findings

Table 10.4 Study 4: Answers to the Research Questions

RQ4.1: Modification Causes - what are the main
causes behind the need for maintaining GUI test code
in Android open-source projects?

Examining a set of 1724 diff files related to Espresso, UI Automator,
Robotium and Robolectric, 28 different possible causes were identified
for modifications of test methods developed for Android apps with the
use of GUI Automation frameworks. Nine different macro-categories
of change reasons were identified: changes in the functions and logic of
test code, changes in the application functionalities, changes in the inter-
action with the GUI, varied arrangements of the widgets of the layout,
changed identification of views, changed retrieval of resources, pure
graphic changes, execution time variations, and adaptations to provide
compatibility with different OS versions.

RQ4.2: Fragility - how fragile are test methods and
classes to modifications in the AUT or in its appear-
ance?

A percentage of about 60% of modifications due to changes in the AUT,
and hence of fragile classes, was measured. On average upon all the
diff files examined, more than 50% of the modifications on test classes
triggered by changes in the AUT were connected to the GUI of the
app or to its appearance. However, test suites were modified often for
reasons that were not connected to changes in the AUT: 46.36% of the
modified diff files that were examined featured changes that were local
to test code and that could not be backtracked to variations in the AUT.

Among the modifications related to the GUI and its definition, the changes to
textual properties of Layout-based tests (e.g., IDs or plain string content) proved
to be relevant in terms of induced fragilities in test cases. This finding is in line
with the work by Linares-Vasquez et al. [68], where the authors highlight that
GUI automation frameworks create test scripts that are coupled to change-prone
component ids, and that as of today there is no approach for automatically evolving
test scripts written with Automation APIs.

The taxonomy of modification causes is a novel contribution to the field of mobile
application testing since no prior effort has been made in such direction specifically
for Android applications.

Hammoudi et al. derived a taxonomy of reasons for test case breakages for
Record and Replay testing of web applications [50]. Even though the categories
of the taxonomy imply the usage of specific properties of web applications, there
are several commonalities with the taxonomy discussed in this thesis. For instance,
the most common breakage reasons (50.42%) were the changes in attribute-based
locators and text; attribute-based locators can be considered equivalent to the id
locators in the layouts of Android applications. Other elements of the web-based
taxonomy, like the addition or removal of JavaScript Popup Boxes, can be considered
as similar to Widget Addition/Removal or Navigation change. On the other hand,
several elements of the web-based taxonomy, like the need for page reload or the
length of the user session, had no equivalent in the taxonomy for Android tests.
Conversely, modification causes like Screen orientation change or changed keyboard

10.4 Study 4 - Taxonomy of Fragility causes 161

or input methods are specific to Android test cases only. While the commonalities
with the work by Hammoudi et al. can be deemed as a confirmation of the findings
of the study, the exclusive elements of both taxonomies can be considered as a
demonstration of the need for building a specific test breakage taxonomy for the
Android application domain.

Other characterizations of the reasons for maintenance are available in the litera-
ture, like that provided by Yusifoglu et al. [101], that is however defined for generic
test code, and lacks the level of detail provided in the proposed taxonomy.

The inferred taxonomy of modification causes, along with the measured occur-
rences for the considered testing tools, can be used by practitioners as a source of
information for predicting the effort needed by a test case. The frequency of occur-
rence can be paired with static analysis of already developed test code, to identify
which of the used commands involve characteristics that are prone to fragility.

For developers and testers, a few guidelines can be deduced by the frequency
of occurrence of modification causes that was measured, in order to minimize the
fragility occurrence:

• Always provide unique and stable IDs for the widgets inside the layout def-
inition, since the textual content (or other properties like hints and content
descriptions) is likely to be changed often during the evolution of an app;

• Always define the names of the locators semantically, to decrease the likelihood
of IDs or text hints being changed frequently between subsequent releases of
the same app;

• Design for Testability, clearly identifying independent and mockable parts of
the AUT [21];

• Avoid small yet frequent changes on locators, that may have a high impact on
the maintenance of test suites;

• When writing test cases, if possible, avoid relying on volatile elements of the
user interface (e.g., the textual content of a TextView) as locators;

• Adopt change-resilient patterns for the definition of test cases, e.g. the Page
Object Pattern [60];

162 Revisit of Study Findings

Table 10.5 Study 5: Answers to the Research Questions

RQ5.1: What are the differences in reliability be-
tween the six combinations of visual test script tech-
niques?

None of the 3rd generation test suites achieved the same average success
rate as Espresso. The best solution overall, in terms of Success rate, was
to use EyeAutomate first, supported by Sikuli (CES). If only one image
recognition algorithm can be used, Sikuli is the most suitable solution.

RQ5.2: What are the differences in performance be-
tween the six combinations of the visual test scripts
and the original 2nd generation test scripts?

2nd generation approach had significantly better performance (in terms
of average execution time normalized by the number of instructions)
than any of the created 3rd generation test scripts. There is a significant
difference between average time per interaction measured for the six
considered 3rd generation testing tools, with the Java versions of Sikuli
test cases (SJ) performing the faster.

• Keep the test cases as independent as possible, without creating – even implicit
– sequences of tests, in order to avoid that a single fragility in one of the first
test cases invalidates many following ones;

• Reduce the number of transitions between the different app screens in indi-
vidual test cases, to avoid fragilities due to changes in the navigation between
existing activities.

10.5 Study 5 - Layout-based vs Generated visual test
cases: An experiment with TOGGLE

Study 5 of this thesis detailed a proposal of a combined approach for Automated GUI
testing, that provides the prototype of a translation from Layout-based to Visual test
cases (and backward) with an empirical comparison of the precision and performance
of written layout-based vs generated visual test cases. The findings of this empirical
experiment are reported in table 10.5.

The developed tool, and the results of the related experiment show that it is
possible to translate 2nd generation test cases, written in Espresso, to 3rd generation
test cases, written with either Sikuli or EyeAutomate. The precision of the translation
and the dependability of the generated test scripts proved to be rather high for both the
applications considered for the study, except for few test cases that were invalidated
either by the use of a particular image, or by the use of multiple swipes in the same
user scenario.

Although the 3rd to 2nd generation translator is still not implemented, and the
2nd to 3rd generation translator still lacks support for some Espresso commands,

10.5 Study 5 - Layout-based vs Generated visual test cases: An experiment with
TOGGLE 163

the results demonstrate that the users of the tool can get benefits from combined
usage of the two testing approaches with the proposed translational approach. Little
effort is in fact needed for generating 3rd generation test suites from 2nd generation
ones, and hence the users can get the benefits of Visual testing without the costs of
developing or maintaining multiple GUI-based test suites.

The proposed approach adds to studies, available in the literature, that concep-
tualized the possible benefits of a combined approach of 2nd and 3rd generation
testing tools [9]. A similar translational approach has been already proposed in
the field of Web-Application testing, where DOM-based 2nd generation test cases
(developed with Selenium WebDriver) were translated to 3rd generation test cases
(written with Sikuli) [92][63]. The authors of this tool also highlighted the enhanced
maintainability and ease of re-creation of 3rd generation test cases, with respect to
the original 2nd generation ones from which the first translation is obtained.

Chapter 11

Conclusion and Future Work

The present dissertation investigated the principal tools and techniques for testing
Android applications, their main advantages and drawbacks, and the issue of fragility,
i.e. higher need for maintenance of test scripts when the Application Under Test
evolves.

The main contribution of the thesis revolved around four principal research
goals, each related to specific characteristics of the considered tools or techniques:
Perception and Usability; Adoption and Size; Evolution and Fragility; General
Android testing issues.

For what concerns the Perception and Usability of testing frameworks for An-
droid apps, evidence collected from interviews with practitioners from the Italian
industrial landscape (as detailed in Chapter 5) proved that GUI testing is not an
established practice for Android developers. Many of the interviewed developers, on
the other hand, relied only on manual executions of test cases on finished applica-
tions. From a controlled experiment with graduate students (detailed in Chapter 6),
that had as subjects representative of junior developers that are frequently assigned
to software testing in IT companies, it was deduced that GUI testing frameworks
for Android applications are seen as somehow imprecise and characterized by a
steep learning curve. The respondents from the interviewed sample of students,
however, expressed a moderate preference towards 3rd generation (or Visual) testing
frameworks, with which the development of test cases was considered much easier,
at the price of lesser precision of generated test scripts. The respondents from the
industry pointed out several challenges that, albeit generalizable to many testing

165

domains, are exacerbated by the rapidly varying nature of Android applications, and
by the emphasis that is posed in the interaction through their pictorial User Interface.

Regarding the Adoption and Size of GUI automation frameworks, the mining
study performed on open-source Android apps (detailed in Chapter 7) proved that the
most commonly adopted frameworks in open-source projects were Robolectric and
Espresso, with about 8% of all Android applications available on GitHub featuring
code attributable to GUI Automation frameworks. When apps are tested, test code
constitutes a relevant portion (almost 10% of LOCs) of the total project code.

At the same time, test classes associated to the examined GUI automation frame-
works proved to need relevant and continued maintenance effort by developers, that
was quantified as occurring, on average, every 5 releases of the open-source projects
examined, and amounting at 5% of the total development effort of the projects. An
investigation about the main reasons for maintenance of test code, conducted as a
Grounded Theory study for the construction of a taxonomy of modification reasons
(detailed in Chapter 8), proved that the interventions on Android app’s testware are
caused by both changes on the test logic (and hence, unrelated to the Application
Under Test) but also – with a frequency of near 60% of all modifications to test
code – due to changes in the Application Under Test. This issue, that was defined
throughout this study as Fragility of test code, is considered one of the principal
deterrent for a systematic adoption of automated GUI testing of Android apps, since
rapidly changing applications (like most Android apps are) may trigger the need for
frequent and costly maintenance on related test code.

From interviews, investigations on open-source projects and reviews from lit-
erature, it was evident that several issues and challenges can be considered as
characteristic of a given GUI test generation. More specifically, 2nd generation tests
suffer from changes in the description of the user interface, and 3rd generation tests
suffer from changes in the pictorial GUI of the apps. A prototype tool, based on
the creation of 3rd generation test scripts via translation of existing 2nd generation
ones, has been designed and implemented, with an experimental validation that
proved that generated Visual tests can be considered of quality comparable to that of
Layout-based ones. Such translational approach can enhance the bug-finding power
of available test suites, since 2nd generation test scripts are not sensitive to errors in
the actual rendering of the user interface, while 3rd generation test scripts cannot
detect code-level bugs in the arrangement and definition of layouts. At the same

166 Conclusion and Future Work

time, being the two generations of scripts fragile to complementary changes applied
to the AUT GUI, having two parallel test suites can enable repairing a fragile test
suite by leveraging the other one. To sum up, a combined approach can relieve the
testers/developers from (part of) the effort in maintaining test suites, and in general,
mitigate the drawbacks of the two considered GUI test generations by leveraging the
respective benefits.

The natural prosecution of the work detailed in this thesis will be the implemen-
tation of the second part of the TOGGLE tool, the 3rd to 2nd generation translator of
which by now just a proof of concept is provided. After that, a thorough validation of
the tool, possibly by applying it in industrial contexts, is forecasted. The frequency
of occurrence of fragility causes, and the analysis on diff files of open-source projects
can be used together for the definition of a maintenance cost predictor for test code.
Finally, the taxonomy of modification reasons can be the basis for guidelines to
testers/developers for writing more robust test scripts, and for tools (possibly as
plug-ins for popular IDEs) for automated repair of fragilities, still not available to
the community as highlighted by several research papers.

References

[1] Ahmad, A., Li, K., Feng, C., Asim, S. M., Yousif, A., and Ge, S. (2018). An
empirical study of investigating mobile applications development challenges.
IEEE Access, 6:17711–17728.

[2] Alamri, H. S. and Mustafa, B. A. (2014). Software engineering challenges
in multi platform mobile application development. Advanced Science Letters,
20(10-11):2115–2118.

[3] Alégroth, E. (2013). On the industrial applicability of visual gui testing. PhD
thesis, Chalmers University of Technology.

[4] Alégroth, E. and Feldt, R. (2017). On the long-term use of visual gui testing in
industrial practice: a case study. Empirical Software Engineering, 22(6):2937–
2971.

[5] Alégroth, E., Feldt, R., and Kolström, P. (2016). Maintenance of automated
test suites in industry: An empirical study on visual gui testing. Information and
Software Technology, 73:66–80.

[6] Alegroth, E., Feldt, R., and Olsson, H. H. (2013). Transitioning manual system
test suites to automated testing: An industrial case study. In 2013 IEEE Sixth
International Conference on Software Testing, Verification and Validation, pages
56–65. IEEE.

[7] Alégroth, E., Feldt, R., and Ryrholm, L. (2015). Visual gui testing in practice:
challenges, problems and limitations. Empirical Software Engineering, 20(3):694–
744.

[8] Alegroth, E., Gao, Z., Oliveira, R., and Memon, A. (2015). Conceptualization
and evaluation of component-based testing unified with visual gui testing: An
empirical study. In 2015 IEEE 8th International Conference on Software Testing,
Verification and Validation (ICST), pages 1–10.

[9] Alégroth, E., Gao, Z., Oliveira, R., and Memon, A. (2015). Conceptualization
and evaluation of component-based testing unified with visual gui testing: an
empirical study. In Software Testing, Verification and Validation (ICST), 2015
IEEE 8th International Conference on, pages 1–10. IEEE.

168 References

[10] Alégroth, E., Karlsson, A., and Radway, A. (2018). Continuous integration and
visual gui testing: Benefits and drawbacks in industrial practice. In Software Test-
ing, Verification and Validation (ICST), 2018 IEEE 11th International Conference
on, pages 172–181. IEEE.

[11] Amalfitano, D., Fasolino, A. R., and Tramontana, P. (2011). A gui crawling-
based technique for android mobile application testing. In Software testing,
verification and validation workshops (icstw), 2011 ieee fourth international
conference on, pages 252–261. IEEE.

[12] Amalfitano, D., Fasolino, A. R., Tramontana, P., De Carmine, S., and Imparato,
G. (2012a). A toolset for gui testing of android applications. In Software Main-
tenance (ICSM), 2012 28th IEEE International Conference on, pages 650–653.
IEEE.

[13] Amalfitano, D., Fasolino, A. R., Tramontana, P., De Carmine, S., and Memon,
A. M. (2012b). Using gui ripping for automated testing of android applications.
In Proceedings of the 27th IEEE/ACM International Conference on Automated
Software Engineering, pages 258–261. ACM.

[14] Amalfitano, D., Fasolino, A. R., Tramontana, P., Ta, B. D., and Memon, A. M.
(2015). Mobiguitar: Automated model-based testing of mobile apps. IEEE
software, 32(5):53–59.

[15] Andrews, A. A., Offutt, J., and Alexander, R. T. (2005). Testing web applica-
tions by modeling with fsms. Software & Systems Modeling, 4(3):326–345.

[16] Anureet, K. (2015). Review of mobile applications testing with automated
techniques. interface, 4.

[17] Ardito, L., Coppola, R., Morisio, M., and Torchiano, M. (2019). Espresso
vs. eyeautomate: An experiment for the comparison of two generations of an-
droid gui testing. In Proceedings of the Evaluation and Assessment on Software
Engineering, pages 13–22. ACM.

[18] Ardito, L., Coppola, R., Torchiano, M., and Alegroth, E. (2018). Towards
automated translation between generations of gui-based tests for mobile devices.
In Proceedings of INTUITESTBEDS 2018, joint Workshop of the 4th International
Workshop on User Interface Test Automation, and 8th Workshop on TESting
Techniques for event BasED Software. ACM.

[19] Banerjee, I., Nguyen, B., Garousi, V., and Memon, A. (2013). Graphical user
interface (gui) testing: Systematic mapping and repository. Information and
Software Technology, 55(10):1679–1694.

[20] Barmi, Z. A., Ebrahimi, A. H., and Feldt, R. (2011). Alignment of requirements
specification and testing: A systematic mapping study. In 2011 IEEE Fourth Inter-
national Conference on Software Testing, Verification and Validation Workshops,
pages 476–485. IEEE.

References 169

[21] Berner, S., Weber, R., and Keller, R. K. (2005a). Observations and lessons
learned from automated testing. In Proceedings of the 27th international confer-
ence on Software engineering, pages 571–579. ACM.

[22] Berner, S., Weber, R., and Keller, R. K. (2005b). Observations and lessons
learned from automated testing. In Proceedings of the 27th international confer-
ence on Software engineering, pages 571–579. ACM.

[23] Borjesson, E. and Feldt, R. (2012). Automated system testing using visual gui
testing tools: A comparative study in industry. In 2012 IEEE Fifth International
Conference on Software Testing, Verification and Validation, pages 350–359.
IEEE.

[24] Carver, J. C., Jaccheri, L., Morasca, S., and Shull, F. (2010). A checklist for
integrating student empirical studies with research and teaching goals. Empirical
Software Engineering, 15(1):35–59.

[25] Choi, W., Necula, G., and Sen, K. (2013). Guided gui testing of android
apps with minimal restart and approximate learning. In Acm Sigplan Notices,
volume 48, pages 623–640. ACM.

[26] Choudhary, S. R., Gorla, A., and Orso, A. (2015). Automated test input
generation for android: Are we there yet? arXiv preprint arXiv:1503.07217.

[27] Christophe, L., Stevens, R., De Roover, C., and De Meuter, W. (2014). Preva-
lence and maintenance of automated functional tests for web applications. In
2014 IEEE International Conference on Software Maintenance and Evolution,
pages 141–150. IEEE.

[28] Coppola, R. (2017). Fragility and evolution of android test suites. In Soft-
ware Engineering Companion (ICSE-C), 2017 IEEE/ACM 39th International
Conference on, pages 405–408. IEEE.

[29] Coppola, R., Morisio, M., and Torchiano, M. (2017a). Evolution and fragilities
in scripted gui testing of android applications. In Proceedings of the 3rd Interna-
tional Workshop on User Interface Test Automation, pages 83–104. Springer.

[30] Coppola, R., Morisio, M., and Torchiano, M. (2017b). Scripted gui testing of
android apps: A study on diffusion, evolution and fragility. In Proceedings of
the 13th International Conference on Predictive Models and Data Analytics in
Software Engineering, pages 22–32. ACM.

[31] Coppola, R., Morisio, M., and Torchiano, M. (2018a). Maintenance of android
widget-based gui testing: A taxonomy of test case modification causes. In 2018
IEEE International Conference on Software Testing, Verification and Validation
Workshops (ICSTW), pages 151–158.

[32] Coppola, R., Morisio, M., and Torchiano, M. (2018b). Mobile gui testing
fragility: A study on open-source android applications. IEEE Transactions on
Reliability, pages 1–24.

170 References

[33] Coppola, R., Morisio, M., Torchiano, M., and Ardito, L. (2019). Scripted gui
testing of android open-source apps: evolution of test code and fragility causes.
Empirical Software Engineering, pages 1–44.

[34] Coppola, R., Raffero, E., and Torchiano, M. (2016). Automated mobile ui test
fragility: an exploratory assessment study on android. In Proceedings of the 2nd
International Workshop on User Interface Test Automation, pages 11–20. ACM.

[35] Cruz, L. and Abreu, R. (2019). To the attention of mobile software developers:
Guess what, test your app! arXiv preprint arXiv:1902.02610.

[36] Das, T., Di Penta, M., and Malavolta, I. (2016). A quantitative and qualitative
investigation of performance-related commits in android apps. In Software Main-
tenance and Evolution (ICSME), 2016 IEEE International Conference on, pages
443–447. IEEE.

[37] Ellims, M., Bridges, J., and Ince, D. C. (2006). The economics of unit testing.
Empirical Software Engineering, 11(1):5–31.

[38] Espada, A. R., Gallardo, M. d. M., Salmerón, A., and Merino, P. (2017).
Performance analysis of spotify® for android with model-based testing. Mobile
Information Systems, 2017.

[39] Fazzini, M., Freitas, E. N. D. A., Choudhary, S. R., and Orso, A. (2017).
Barista: A technique for recording, encoding, and running platform independent
android tests. In Software Testing, Verification and Validation (ICST), 2017 IEEE
International Conference on, pages 149–160. IEEE.

[40] Fewster, M. et al. (2001). Common mistakes in test automation. In Proceedings
of Fall Test Automation Conference.

[41] Gao, J., Bai, X., Tsai, W.-T., and Uehara, T. (2014). Mobile application testing:
a tutorial. Computer, (2):46–55.

[42] Gao, Z., Chen, Z., Zou, Y., and Memon, A. M. (2016). Sitar: Gui test script
repair. Ieee transactions on software engineering, (2):170–186.

[43] Garousi, V. and Felderer, M. (2016). Developing, verifying, and maintaining
high-quality automated test scripts. IEEE Software, (3):68–75.

[44] Glaser, B. G., Strauss, A. L., and Strutzel, E. (1968). The discovery of grounded
theory; strategies for qualitative research. Nursing research, 17(4):364.

[45] Gomez, L., Neamtiu, I., Azim, T., and Millstein, T. (2013). Reran: Timing-
and touch-sensitive record and replay for android. In Proceedings of the 2013
International Conference on Software Engineering, pages 72–81. IEEE Press.

[46] Grechanik, M., Xie, Q., and Fu, C. (2009a). Experimental assessment of
manual versus tool-based maintenance of gui-directed test scripts. In 2009 IEEE
International Conference on Software Maintenance, pages 9–18. IEEE.

References 171

[47] Grechanik, M., Xie, Q., and Fu, C. (2009b). Maintaining and evolving gui-
directed test scripts. In Proceedings of the 31st international conference on
software engineering, pages 408–418. IEEE Computer Society.

[48] Halpern, M., Zhu, Y., Peri, R., and Reddi, V. J. (2015). Mosaic: cross-platform
user-interaction record and replay for the fragmented android ecosystem. In
Performance Analysis of Systems and Software (ISPASS), 2015 IEEE International
Symposium on, pages 215–224. IEEE.

[49] Ham, H. K. and Park, Y. B. (2011). Mobile application compatibility test system
design for android fragmentation. In International Conference on Advanced
Software Engineering and Its Applications, pages 314–320. Springer.

[50] Hammoudi, M., Rothermel, G., and Tonella, P. (2016). Why do record/replay
tests of web applications break? In 2016 IEEE International Conference on
Software Testing, Verification and Validation (ICST), pages 180–190. IEEE.

[51] Han, D., Zhang, C., Fan, X., Hindle, A., Wong, K., and Stroulia, E. (2012).
Understanding android fragmentation with topic analysis of vendor-specific bugs.
In Reverse Engineering (WCRE), 2012 19th Working Conference on, pages 83–92.
IEEE.

[52] Hesenius, M., Griebe, T., Gries, S., and Gruhn, V. (2014). Automating ui
tests for mobile applications with formal gesture descriptions. In Proceedings of
the 16th international conference on Human-computer interaction with mobile
devices & services, pages 213–222. ACM.

[53] Hu, Y., Azim, T., and Neamtiu, I. (2015). Versatile yet lightweight record-
and-replay for android. In ACM SIGPLAN Notices, volume 50, pages 349–366.
ACM.

[54] Jabbarvand, R., Sadeghi, A., Bagheri, H., and Malek, S. (2016). Energy-aware
test-suite minimization for android apps. In Proceedings of the 25th International
Symposium on Software Testing and Analysis, pages 425–436. ACM.

[55] Joorabchi, M. E., Mesbah, A., and Kruchten, P. (2013). Real challenges in
mobile app development. In Empirical Software Engineering and Measurement,
2013 ACM/IEEE International Symposium on, pages 15–24. IEEE.

[56] Kirubakaran, B. and Karthikeyani, V. (2013). Mobile application test-
ing—challenges and solution approach through automation. In Pattern Recogni-
tion, Informatics and Mobile Engineering (PRIME), 2013 International Confer-
ence on, pages 79–84. IEEE.

[57] Kochhar, P. S., Thung, F., Nagappan, N., Zimmermann, T., and Lo, D. (2015).
Understanding the test automation culture of app developers.

[58] Kosar, T., Mernik, M., and Carver, J. C. (2012). Program comprehension of
domain-specific and general-purpose languages: comparison using a family of
experiments. Empirical software engineering, 17(3):276–304.

172 References

[59] Kropp, M. and Morales, P. (2010). Automated gui testing on the android
platform. on Testing Software and Systems: Short Papers, page 67.

[60] Leotta, M., Clerissi, D., Ricca, F., and Spadaro, C. (2013a). Improving test
suites maintainability with the page object pattern: An industrial case study. In
2013 IEEE Sixth International Conference on Software Testing, Verification and
Validation Workshops, pages 108–113. IEEE.

[61] Leotta, M., Clerissi, D., Ricca, F., and Tonella, P. (2013b). Capture-replay vs.
programmable web testing: An empirical assessment during test case evolution. In
Reverse Engineering (WCRE), 2013 20th Working Conference on, pages 272–281.
IEEE.

[62] Leotta, M., Clerissi, D., Ricca, F., and Tonella, P. (2014). Visual vs. dom-
based web locators: An empirical study. In International Conference on Web
Engineering, pages 322–340. Springer.

[63] Leotta, M., Stocco, A., Ricca, F., and Tonella, P. (2018). Pesto: Automated
migration of dom-based web tests towards the visual approach. Software Testing,
Verification And Reliability, 28(4):e1665.

[64] Lin, Y.-D., Rojas, J. F., Chu, E. T.-H., and Lai, Y.-C. (2014). On the accuracy,
efficiency, and reusability of automated test oracles for android devices. IEEE
Transactions on Software Engineering, 40(10):957–970.

[65] Linares-Vásquez, M. (2015a). Enabling testing of android apps. In Software
Engineering (ICSE), 2015 IEEE/ACM 37th IEEE International Conference on,
volume 2, pages 763–765. IEEE.

[66] Linares-Vásquez, M. (2015b). Enabling testing of android apps. In Software
Engineering (ICSE), 2015 IEEE/ACM 37th IEEE International Conference on,
volume 2, pages 763–765. IEEE.

[67] Linares-Vásquez, M., Bernal-Cárdenas, C., Moran, K., and Poshyvanyk, D.
(2017a). How do developers test android applications? In Software Maintenance
and Evolution (ICSME), 2017 IEEE International Conference on, pages 613–622.
IEEE.

[68] Linares-Vásquez, M., Moran, K., and Poshyvanyk, D. (2017b). Continuous,
evolutionary and large-scale: A new perspective for automated mobile app test-
ing. In Software Maintenance and Evolution (ICSME), 2017 IEEE International
Conference on, pages 399–410. IEEE.

[69] Liu, C. (2000). Platform-independent and tool-neutral test descriptions for
automated software testing. In Proceedings of the 22nd international conference
on Software engineering, pages 713–715. ACM.

[70] Machiry, A., Tahiliani, R., and Naik, M. (2013). Dynodroid: An input genera-
tion system for android apps. In Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering, pages 224–234. ACM.

References 173

[71] Macias, F., Holcombe, M., and Gheorghe, M. (2003). A formal experiment
comparing extreme programming with traditional software construction. In Pro-
ceedings of the Fourth Mexican International Conference on Computer Science,
2003. ENC 2003., pages 73–80. IEEE.

[72] Mahmood, R., Mirzaei, N., and Malek, S. (2014). Evodroid: Segmented
evolutionary testing of android apps. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pages 599–
609. ACM.

[73] Mao, K., Harman, M., and Jia, Y. (2016). Sapienz: Multi-objective auto-
mated testing for android applications. In Proceedings of the 25th International
Symposium on Software Testing and Analysis, pages 94–105. ACM.

[74] McMaster, S. and Memon, A. M. (2009). An extensible heuristic-based frame-
work for gui test case maintenance. In 2009 International Conference on Software
Testing, Verification, and Validation Workshops, pages 251–254. IEEE.

[75] McMinn, P. (2011). Search-based software testing: Past, present and future. In
2011 IEEE Fourth International Conference on Software Testing, Verification and
Validation Workshops, pages 153–163.

[76] Memon, A. M. (2008). Automatically repairing event sequence-based gui test
suites for regression testing. ACM Transactions on Software Engineering and
Methodology (TOSEM), 18(2):4.

[77] Memon, A. M. and Soffa, M. L. (2003). Regression testing of guis. ACM
SIGSOFT Software Engineering Notes, 28(5):118–127.

[78] Min, Y. and Cai, S. (2018). Comparing different approaches of gui testing for
mobile applications on android platform.

[79] Moran, K., Bonett, R., Bernal-Cárdenas, C., Otten, B., Park, D., and Poshy-
vanyk, D. (2017a). On-device bug reporting for android applications. In Mobile
Software Engineering and Systems (MOBILESoft), 2017 IEEE/ACM 4th Interna-
tional Conference on, pages 215–216. IEEE.

[80] Moran, K., Linares-Vásquez, M., Bernal-Cárdenas, C., and Poshyvanyk, D.
(2015). Auto-completing bug reports for android applications. In Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering, pages
673–686. ACM.

[81] Moran, K., Linares-Vásquez, M., Bernal-Cárdenas, C., and Poshyvanyk, D.
(2016). Fusion: A tool for facilitating and augmenting android bug reporting. In
Software Engineering Companion (ICSE-C), IEEE/ACM International Conference
on, pages 609–612. IEEE.

[82] Moran, K., Linares-Vásquez, M., Bernal-Cárdenas, C., Vendome, C., and
Poshyvanyk, D. (2017b). Crashscope: A practical tool for automated testing
of android applications. In Software Engineering Companion (ICSE-C), 2017
IEEE/ACM 39th International Conference on, pages 15–18. IEEE.

174 References

[83] Muccini, H., Di Francesco, A., and Esposito, P. (2012). Software testing of
mobile applications: Challenges and future research directions. In Proceedings
of the 7th International Workshop on Automation of Software Test, pages 29–35.
IEEE Press.

[84] Neto, N. M. L., Vilain, P., and Mello, R. d. S. (2016). Segen: generation of
test cases for selenium and selendroid. In Proceedings of the 18th International
Conference on Information Integration and Web-based Applications and Services,
pages 433–442. ACM.

[85] Nguyen, B. N., Robbins, B., Banerjee, I., and Memon, A. (2014). Guitar: an
innovative tool for automated testing of gui-driven software. Automated Software
Engineering, 21(1):65–105.

[86] Rafi, D. M., Moses, K. R. K., Petersen, K., and Mäntylä, M. V. (2012). Bene-
fits and limitations of automated software testing: Systematic literature review
and practitioner survey. In Proceedings of the 7th International Workshop on
Automation of Software Test, pages 36–42. IEEE Press.

[87] Ralph, P. (2018). Toward methodological guidelines for process theories and
taxonomies in software engineering. IEEE Transactions on Software Engineering.

[88] Sadeh, B., Ørbekk, K., Eide, M. M., Gjerde, N. C., Tønnesland, T. A., and
Gopalakrishnan, S. (2011). Towards unit testing of user interface code for android
mobile applications. In International Conference on Software Engineering and
Computer Systems, pages 163–175. Springer.

[89] Sandahl, K., Blomkvist, O., Karlsson, J., Krysander, C., Lindvall, M., and
Ohlsson, N. (1998). An extended replication of an experiment for assessing
methods for software requirements inspections. Empirical Software Engineering,
3(4):327–354.

[90] Sjösten-Andersson, E. and Pareto, L. (2006). Costs and benefits of structure-
aware capture/replay tools. SERPS’06, page 3.

[91] Skoglund, M. and Runeson, P. (2004). A case study on regression test suite
maintenance in system evolution. In 20th IEEE International Conference on
Software Maintenance, 2004. Proceedings., pages 438–442. IEEE.

[92] Stocco, A., Leotta, M., Ricca, F., and Tonella, P. (2014). Pesto: A tool for
migrating dom-based to visual web tests. In 2014 IEEE 14th International
Working Conference on Source Code Analysis and Manipulation, pages 65–70.
IEEE.

[93] Stol, K.-J., Ralph, P., and Fitzgerald, B. (2016). Grounded theory in software
engineering research: a critical review and guidelines. In Software Engineering
(ICSE), 2016 IEEE/ACM 38th International Conference on, pages 120–131. IEEE.

[94] Strauss, A. (8). Corbin, j.(1998) basics of qualitative research. techniques and
procedures for developing grounded theory. Thousand Oaks, CA: Sage.

References 175

[95] Tang, H., Wu, G., Wei, J., and Zhong, H. (2016). Generating test cases to
expose concurrency bugs in android applications. In Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineering, pages
648–653. ACM.

[96] Tang, X., Wang, S., and Mao, K. (2015). Will this bug-fixing change break
regression testing? In Empirical Software Engineering and Measurement (ESEM),
2015 ACM/IEEE International Symposium on, pages 1–10. IEEE.

[97] Tramontana, P., Amalfitano, D., Amatucci, N., and Fasolino, A. R. (2018).
Automated functional testing of mobile applications: a systematic mapping study.
Software Quality Journal, pages 1–53.

[98] Utting, M., Pretschner, A., and Legeard, B. (2012). A taxonomy of model-based
testing approaches. Software Testing, Verification and Reliability, 22(5):297–312.

[99] Wei, L., Liu, Y., and Cheung, S.-C. (2016). Taming android fragmentation:
Characterizing and detecting compatibility issues for android apps. In Proceed-
ings of the 31st IEEE/ACM International Conference on Automated Software
Engineering, pages 226–237. ACM.

[100] Yeh, T., Chang, T.-H., and Miller, R. C. (2009). Sikuli: using gui screenshots
for search and automation. In Proceedings of the 22nd annual ACM symposium
on User interface software and technology, pages 183–192. ACM.

[101] Yusifoğlu, V. G., Amannejad, Y., and Can, A. B. (2015). Software test-
code engineering: A systematic mapping. Information and Software Technology,
58:123–147.

[102] Zadgaonkar, H. (2013). Robotium Automated Testing for Android. Packt
Publishing Ltd.

[103] Zhang, S., Lü, H., and Ernst, M. D. (2013). Automatically repairing broken
workflows for evolving gui applications. In Proceedings of the 2013 International
Symposium on Software Testing and Analysis, pages 45–55. ACM.

[104] Zhou, X., Lee, Y., Zhang, N., Naveed, M., and Wang, X. (2014). The peril
of fragmentation: Security hazards in android device driver customizations. In
Security and Privacy (SP), 2014 IEEE Symposium on, pages 409–423. IEEE.

Appendix A

Summary of all Research Questions
and Sub-questions

Table A.1 Summary of Research Questions and sub-questions

Question Subquestion Description Goal(s)

RQ1 RQ1.1 Are mobile applications tested by the interviewed
sample of industry practitioners? How? To what
extent?

G1

RQ1.2 What are the most peculiar properties to test in
mobile applications according to the interviewed
sample of industry practitioners? What aspects
of mobile apps discourage them from adopting
automated testing?

G3, G4

RQ1.3 What are the main challenges felt by developers
from the industry performing automated testing,
and the directions research should take according
to them?

G4

RQ2 RQ2.1 What is the productivity of inexperienced devel-
opers when approaching to Layout-based and
Visual GUI testing tools?

G1

Continued on next page

177

Table A.1 – continued from previous page

Question Subquestion Description Goal(s)

RQ2.2 What is the percentage of working test scripts
produced by undergraduate programmers using
Layout-based and Visual GUI testing tools?

G1, G4

RQ2.3 What are the perceived difficulties in approaching
visual and layout-based GUI testing techniques?

G1, G4

RQ3 RQ3.1 What is the level of adoption of a set of auto-
mated testing tools among open-source Android
projects?

G2

RQ3.2 How much are GUI test classes associated with
the analyzed sets of tools modified through con-
secutive releases of an open-source Android
project?

G3

RQ4 RQ4.1 What are the main causes behind the need for
maintaining GUI test code in Android open-
source projects?

G3

RQ4.2 How fragile are test methods and classes to mod-
ifications in the AUT or in its appearance?

G3

RQ5 RQ5.1 How do translations of layout-based test cases to
visual testing frameworks compare in terms of
dependability?

G3, G4

RQ5.2 How do translations of layout-based test cases to
visual testing frameworks compare in terms of
performance?

G4

Appendix B

Running Sample of Metrics
Computation

To provide samples of metric computations, we resort to reporting all the intermediate
and final measures for a small project of the sample that we considered, namely
WheresMyBus/android1. The project features test classes that are attributable to the
Espresso GUI Automation Framework. During the lifespan of the app, four different
test classes are identified. The GitHub repository has a history of six distinct tagged
releases, including the Master.

Table B.1 shows all the measures computed for the six distinct releases of the
project. As detailed in the later Procedure section, all those metrics are obtained
through (i) searches in the .java source files that are associated to the considered
GUI Automation Framework (in this case, all .java files containing the keyword
”Espresso”); (2) examinations of the differences between the same files in consecutive
releases of the project; (3) examination of the methods that are featured by each test
class in all releases of the project. In the table, when a metric is not defined for a
given release, the symbol ”-” is used. This happens, for instance, in the transition
between release 1.4.0 and master, where no modifications are performed in the whole
project (hence, Pdi f f = 0). In this case, the MRT L metric is not defined. All the
derived metrics which require a comparison with the amount of code, classes or
methods of the previous release are not defined for the first tagged release of the
project.

1http://github.com/WheresMyBus/android

179

Table B.1 Intermediate measures for project WheresMyBus/android

Metric 1.0.0 1.1.0 1.2.0 1.3.0 1.4.0 master

Plocs 981 4254 8417 8516 9031 9031
Tlocs 0 0 485 647 699 699
T LR 0 0 0.58 0.76 0.78 0.78

Pdi f f - 3599 5907 1531 733 0
Tdi f f - 0 0 224 74 0
MT LR - - - 0.46 0.11 0
MRT L - - 0 0.15 0.10 -

NTC 0 0 4 4 4 4
AC - 0 4 0 0 0
DC - 0 0 0 0 0
MC - 0 0 3 3 0

NT M 0 0 19 25 25 25
AM - 0 19 7 0 0
DM - 0 0 1 0 0
MM - 0 0 4 10 0
MCMM - 0 0 3 3 0
MCR - - - 0.75 0.75 0
MMR - - - 0.21 0.4 0
MCMMR - - - 1.0 1.0 -

Table B.2 Test class statistics for project WheresMyBus/android

1.2.0 app/src/androidTest/java/UITests/TestAlertForumActivity.java 80 - 3 - - -
1.2.0 app/src/androidTest/java/UITests/TestCatalogPage.java 272 - 8 - - -
1.2.0 app/src/androidTest/java/UITests/TestHomePage.java 68 - 5 - - -
1.2.0 app/src/androidTest/java/UITests/TestSubmitAlert.java 65 - 3 - - -
1.3.0 app/src/androidTest/java/UITests/TestAlertForumActivity.java 80 0 3 0 0 0
1.3.0 app/src/androidTest/java/UITests/TestCatalogPage.java 273 31 8 0 0 2
1.3.0 app/src/androidTest/java/UITests/TestHomePage.java 67 3 5 0 0 1
1.3.0 app/src/androidTest/java/UITests/TestSubmitAlert.java 227 190 9 7 1 1
1.4.0 app/src/androidTest/java/UITests/TestAlertForumActivity.java 85 7 3 0 0 1
1.4.0 app/src/androidTest/java/UITests/TestCatalogPage.java 274 5 8 0 0 3
1.4.0 app/src/androidTest/java/UITests/TestHomePage.java 67 0 5 0 0 0
1.4.0 app/src/androidTest/java/UITests/TestSubmitAlert.java 273 62 9 0 0 6
master app/src/androidTest/java/UITests/TestAlertForumActivity.java 85 0 3 0 0 0
master app/src/androidTest/java/UITests/TestCatalogPage.java 274 0 8 0 0 0
master app/src/androidTest/java/UITests/TestHomePage.java 67 0 5 0 0 0
master app/src/androidTest/java/UITests/TestSubmitAlert.java 273 0 9 0 0 0

Table B.2, shows statistics about the test classes that are featured by the examined
project, during its lifespan. The table columns show, for each class, the absolute
paths, the versions in which the class is present, the contained methods, and the total
and modified LOCs, and the total, added, modified and deleted methods. The project
features four distinct test classes during its lifespan. The statistics collected for the
classes are finally used to compute the Test Suite Volatility, i.e., the percentage of

180 Running Sample of Metrics Computation

@@ −18 ,6 +18 ,7 @@ i m p o r t com . wheresmybus . S u b m i t A l e r t A c t i v i t y ;
i m p o r t j a v a . i o . IOExcep t ion ;

i m p o r t c o n t r o l l e r s . WMBController ;
+ i m p o r t modules . Route ;

i m p o r t o k h t t p 3 . mockwebserver . MockResponse ;
i m p o r t o k h t t p 3 . mockwebserver . MockWebServer ;

@@ −46 ,7 +47 ,7 @@ p u b l i c c l a s s T e s t A l e r t F o r u m A c t i v i t y {

@Rule
p u b l i c A c t i v i t y T e s t R u l e < A l e r t F o r u m A c t i v i t y > r u l e =

− new A c t i v i t y T e s t R u l e < >(A l e r t F o r u m A c t i v i t y . c l a s s) ;
+ new A c t i v i t y T e s t R u l e < >(A l e r t F o r u m A c t i v i t y . c l a s s , t r u e , f a l s

@Test
p u b l i c vo id t e s t A l e r t D i s p l a y () t h r ow s IOExcep t ion {

@@ −68 ,6 +69 ,10 @@ p u b l i c c l a s s T e s t A l e r t F o r u m A c t i v i t y {
s e r v e r . s t a r t () ;
c o n t r o l l e r . useMockURL (s e r v e r . u r l (" / ") . t o S t r i n g ()) ;
I n t e n t s t a r t I n t e n t = new I n t e n t () ;

+ s t a r t I n t e n t . p u t E x t r a (" IS_ROUTE " , t r u e) ;
+ Route r o u t e = new Route (" 1 2 3 " , " some r o u t e " , "1 _100224 ") ;
+ s t a r t I n t e n t . p u t E x t r a ("ROUTE" , r o u t e) ;
+ s t a r t I n t e n t . p u t E x t r a (" ROUTE_ID " , "1 _100224 ") ;

s t a r t I n t e n t . p u t E x t r a (" TAB_INDEX" , 1) ;
r u l e . l a u n c h A c t i v i t y (s t a r t I n t e n t) ;

}

Fig. B.1 Diff file for test class TestAlertForumActivity.java of WheresMyBus/android, be-
tween releases 1.3.0 and 1.4.0.

classes with at least a modification during their lifespan upon the total number of
classes (in the case of this project, the 100%).

The metrics NTC, AC, DC, and MC, respectively the total, added, deleted and
modified test classes, are computed by a raw count of the number of .java files that
are associated with the testing tool under examination. The metrics NTM, AM,
DM, and MM, respectively the total, added, deleted and modified test methods, are
computed (i) in the case of AM and DM only, by counting the methods in added or
deleted test classes; (ii) by applying the JavaParser tool on the individual test classes
before and after the release transition, and examining the differences in the lists of
methods. Diff files are also examined to identify the position of modified lines in
test classes, in order to compute MCMM (i.e., the number of Modified Classes with
Modified Methods). As an example, we report in figure B.1 the modifications in
the test class TestAlertForumActivity.java between release 1.3.0 and release 1.4.0.
It is evident from the diff file that a single test method is modified in the release
transition, and that of the 7 modified test LOCs are outside test methods. Having a
method modified, the class counts for the computation of the MCMM metric (i.e.,
the number of modified test classes with modified methods).

Appendix C

Translated Espresso Commands

C.1 Espresso Commands

Operations over the identified Widgets are performed in Espresso combining ViewAc-
tion objects, that are passed to the ViewInteraction.perform() method.

This section reports details about the operations performed by each ViewAction
that is currently translated by TOGGLE.

C.1.1 Click actions

Simple actions that perform clicks or taps on the identified views in the current
hierarchy.

click(int inputDevice, int buttonState) : Returns an action that clicks the view for
a specific input device and button state. The default values for inputDevice is
SOURCE_UNKNOWN and the default inputState is BUTTON_PRIMARY.

doubleClick() : Returns an action that double clicks the view.

longClick() : Returns an action that long clicks the view.

182 Translated Espresso Commands

C.1.2 Keyboard actions

Actions that perform operations on the TextViews or EditTextViews of the current
layout hierarchy.

clearText() : Returns an action that clears text on the view.

replaceText(String stringToBeSet) : Returns an action that updates the text at-
tribute of a view.

typeText(String stringToBeTyped) : Returns an action that selects the view (by
clicking on it) and types the provided string into the view.

typeTextIntoFocusedView(String stringToBeTyped) : Returns an action that types
the provided string into the view. The view must be clicked before.

pressKey(int keyCode) : Returns an action that presses the key specified by the
keyCode (eg. Keyevent.KEYCODE_BACK).

pressKey(EspressoKey key) : Returns an action that presses the specified key with
the specified modifiers.

C.1.3 Swipe actions

The Swipe actions are applied to any kind of view, and perform a swipe operation on
the entirety of a specific axis of the view.

swipeDown() : Returns an action that performs a swipe top-to-bottom across the
horizontal center of the view. The swipe doesn’t start at the very edge of the
view, but has a bit of offset.

swipeUp() : Returns an action that performs a swipe bottom-to-top across the
horizontal center of the view. The swipe doesn’t start at the very edge of the
view, but has a bit of offset.

swipeLeft() : Returns an action that performs a swipe right-to-left across the vertical
center of the view. The swipe doesn’t start at the very edge of the view, but is
a bit offset.

C.2 Translation to 3rd-generation specific syntax 183

swipeRight() : Returns an action that performs a swipe left-to-right across the
vertical center of the view. The swipe doesn’t start at the very edge of the view,
but is a bit offset.

C.1.4 Special actions

Actions that are specific to the Android GUI, and that perform operations on elements
that are proper of Android applications.

closeSoftKeyboard() : Returns an action that closes soft keyboard.

pressBack() : Returns an action that clicks the back button.

pressBackUnconditionally() : Similar to pressBack() but will not throw an ex-
ception when Espresso navigates outside the application or process under
test.

pressMenuKey() : Returns an action that presses the hardware menu key (depre-
cated since Android 3.0 Honeycomb).

C.2 Translation to 3rd-generation specific syntax

Table C.1 TOGGLE - 3rd generation test script creator: Translation from Tool-agnostic
instructions to Tool-specific commands

Logged interaction EyeAutomate commands Sikuli commands

clearText i. Click img i. click(img)
ii. Type [BACKSPACE] (arg1 times) ii. type(Key.BACKSPACE) (arg1 times)

click i. Click img i. click(img)

closesoftkeyboard i. Type [CTRL_PRESS] i. keyDown(Key.CTRL)
ii. Sleep 10 ii. sleep(0.01)
iii. Type [BACKSPACE] iii. type(Key.BACKSPACE)
iv. Sleep 10 iv. sleep(0.01)
v. Type [CTRL_RELEASE] v. keyUp(Key.CTRL)

doubleclick i. MouseDoubleClick img i. hover(img)
i. Click img ii. mouseDown(Button.LEFT)
ii. Type arg1 iii. sleep(0.001)

iv. mouseUp(Button.LEFT)

Continued on next page

184 Translated Espresso Commands

Table C.1 – continued from previous page

Logged interaction EyeAutomate commands Sikuli commands

v. sleep(0.001)
vi. mouseDown(Button.LEFT)
vii. sleep(0.001)
viii. mouseUp(Button.LEFT)

longclick i. Move img i. hover(img)
ii. MouseLeftPress ii. mouseDown(Button.LEFT)
iii. Sleep 500 iii. sleep(0.5)
iv. MouseLeftRelease iv. mouseUp(Button.LEFT)

typetext i. Click img i. click(img)
ii. Type arg1 ii. type(arg2)

openactionbarmenu i. Type [CTRL_PRESS] i. keyDown(Key.CTRL)
ii. Sleep 10 ii. sleep(0.01)
iii. Type m iii. type(m)
iv. Sleep 10 iv. sleep(0.01)
v. Type [CTRL_RELEASE] v. keyUp(Key.CTRL)

pressback i. Type [CTRL_PRESS] i. keyDown(Key.CTRL)
ii. Sleep 10 ii. sleep(0.01)
iii. Type [BACKSPACE] iii. type(Key.BACKSPACE)
iv. Sleep 10 iv. sleep(0.01)
v. Type [CTRL_RELEASE] v. keyUp(Key.CTRL)

presskey i. Type arg1 i. type(arg1)

pressmenukey i. Type [CTRL_PRESS] i. keyDown(Key.CTRL)
ii. Sleep 10 ii. sleep(0.01)
iii. Type h iii. type(h)
iv. Sleep 10 iv. sleep(0.01)
v. Type [CTRL_RELEASE] v. keyUp(Key.CTRL)

replacetext i. Click img i. click(img)
ii. Type [BACKSPACE] (arg1 times) ii. type(Key.BACKSPACE) (arg1 times)
iii. Type arg2 iii. type(arg2)

swipedown i. Move img i. r = find(img)
ii. Sleep 10 ii. start = r.getCenter()
iii. MouseLeftPress iii. stepY = 250
iv. MoveRelative "0" "250" iv. run = start
v. MouseLeftRelease v. mouseMove(start); wait(0.2)

vi. mouseDown(Button.LEFT); wait (0.2)
vii. run = run.below(stepY)
viii. mouseMove(run)
ix. mouseUp()
xi. wait(0.2)

swipeleft i. Move img i. r = find(img)
ii. Sleep 10 ii. start = r.getCenter()
iii. MouseLeftPress iii. stepX = 250
iv. MoveRelative "-250" "0" iv. run = start
v. MouseLeftRelease v. mouseMove(start); wait(0.2)

vi. mouseDown(Button.LEFT); wait (0.2)

Continued on next page

C.2 Translation to 3rd-generation specific syntax 185

Table C.1 – continued from previous page

Logged interaction EyeAutomate commands Sikuli commands

vii. run = run.left(stepX)
viii. mouseMove(run)
ix. mouseUp()
xi. wait(0.2)

swiperight i. Move img i. r = find(img)
ii. Sleep 10 ii. start = r.getCenter()
iii. MouseLeftPress iii. stepX = 250
iv. MoveRelative "250" "0" iv. run = start
v. MouseLeftRelease v. mouseMove(start); wait(0.2)

vi. mouseDown(Button.LEFT); wait (0.2)
vii. run = run.right(stepX)
viii. mouseMove(run)
ix. mouseUp()
xi. wait(0.2)

swipeup i. Move img i. r = find(img)
ii. Sleep 10 ii. start = r.getCenter()
iii. MouseLeftPress iii. stepY = 250
iv. MoveRelative "0" "-250" iv. run = start
v. MouseLeftRelease v. mouseMove(start); wait(0.2)

vi. mouseDown(Button.LEFT); wait (0.2)
vii. run = run.up(stepX)
viii. mouseMove(run)
ix. mouseUp()
xi. wait(0.2)

Appendix D

Publication List

The works presented in this thesis have been published in the following conference
and journal conference proceedings, in which I have either been an author or a
co-author.

Conference and Workshop Proceedings

• Coppola, Riccardo, Emanuele Raffero, and Marco Torchiano. "Automated
mobile UI test fragility: an exploratory assessment study on Android." Pro-
ceedings of the 2nd International Workshop on User Interface Test Automation
(INTUITEST). ACM, 2016 [34].

• Coppola, Riccardo. "Fragility and evolution of android test suites." Soft-
ware Engineering Companion (ICSE-C), 2017 IEEE/ACM 39th International
Conference on. IEEE, 2017 [28].

• Coppola, Riccardo, Maurizio Morisio, and Marco Torchiano. "Evolution
and Fragilities in Scripted GUI Testing of Android applications." Proceed-
ings of the 3rd International Workshop on User Interface Test Automation
(INTUITEST). Springer, 2017 [29].

• Coppola, Riccardo, Maurizio Morisio, and Marco Torchiano. "Scripted GUI
Testing of Android Apps: A Study on Diffusion, Evolution and Fragility."
Proceedings of the 13th International Conference on Predictive Models and
Data Analytics in Software Engineering (PROMISE). ACM, 2017 [30].

187

• Coppola, Riccardo, Maurizio Morisio, and Marco Torchiano. "Maintenance of
Android Widget-based GUI Testing: A Taxonomy of test case modification
causes." 2018 IEEE International Conference on Software Testing, Verification
and Validation Workshops (ICSTW). IEEE, 2018 [31]

• Ardito, Luca, Emil Alégroth, Riccardo Coppola, and Marco Torchiano. "To-
wards Automated Translation between Generations of GUI-based Tests for
Mobile Devices." Proceedings of INTUITESTBEDS 2018, joint Workshop
of the 4th International Workshop on User Interface Test Automation, and
8th Workshop on TESting Techniques for event BasED Software (INTU-
ITESTBEDS). ACM, 2018 [18]

• Ardito, Luca, Riccardo Coppola, Maurizio Morisio and Marco Torchiano.
"Espresso vs. EyeAutomate: An Experiment for the Comparison of Two
Generations of Android GUI Testing." Proceedings of 23rd International
Conference on Evaluation and Assessment in Software Engineering (EASE
2019). ACM, 2019. [17]

Journal articles

• Coppola, Riccardo, Maurizio Morisio, and Marco Torchiano. "Mobile GUI
Testing Fragility: A Study on Open-Source Android Applications." IEEE
Transactions on Reliability (2018). [32]

• Coppola, Riccardo, Luca Ardito, Maurizio Morisio, and Marco Torchiano.
"Scripted GUI Testing of Android Open-Source Apps: Evolution of Test Code
and Fragility Causes.", Empirical Software Engineering Journal (2019). [33]

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Research Goals and Questions
	1.2 Dissertation Structure

	2 Background
	2.1 System and GUI Testing
	2.2 Classification of Automated GUI testing techniques
	2.2.1 Evolution of GUI testing tools

	2.3 The Android application framework
	2.3.1 Android Apps

	2.4 Mobile and Android App testing
	2.4.1 Peculiarities of Mobile testing tools
	2.4.2 Categories of Mobile testing tools and services

	2.5 Challenges in Mobile app testing
	2.5.1 Fragmentation
	2.5.2 Testing Hybrid and Web-Based applications

	2.6 Maintenance of Automated tests
	2.6.1 Definition of Fragile GUI Tests

	3 Research Design and Approach
	3.1 Overall study design
	3.2 Selected testing tools for the studies
	3.2.1 Selected Layout-based testing tools
	3.2.2 Selected Visual GUI testing tools

	3.3 Mining of Android repositories from GitHub
	3.3.1 Search for Android projects
	3.3.2 Search for Testing Tools code

	4 Study 0: Case study with K-9 Mail
	4.1 Study Design
	4.2 Results
	4.2.1 Implementation of test cases in different releases
	4.2.2 Changes in Test Suite

	5 Study 1: Survey with mobile developers from the industry
	5.1 Study design
	5.1.1 Threats to Validity

	5.2 Results
	5.2.1 Adoption of mobile testing techniques and tools
	5.2.2 Peculiarities of mobile application testing
	5.2.3 Challenges and desires of mobile app testers

	6 Study 2: Controlled experiment with Graduate Students
	6.1 Study design
	6.1.1 Experimental procedure
	6.1.2 Threats to Validity

	6.2 Results
	6.2.1 Demographic characteristics of the sample
	6.2.2 Productivity and Quality of developed test suites
	6.2.3 Errors performed in test scripts
	6.2.4 Usability of testing tools
	6.2.5 Preference towards Layout-based or Visual GUI testing tools

	7 Study 3: Measures of Diffusion and Evolution of Testware in OS projects
	7.1 Study design
	7.1.1 Adoption and size metrics
	7.1.2 Test Evolution metrics
	7.1.3 Metrics computation
	7.1.4 Threats to Validity

	7.2 Results
	7.2.1 Diffusion and Size measures
	7.2.2 Evolution measures

	8 Study 4: Taxonomy of fragility causes
	8.1 Study Design
	8.1.1 Grounded Theory and Taxonomies
	8.1.2 Diff Files Analysis
	8.1.3 Threats to Validity

	8.2 Results
	8.2.1 Modification Causes
	8.2.2 Diffusion of Modification Causes and Fragility Occurrences

	9 Study 5: Layout-based vs Generated visual test cases: An experiment with TOGGLE
	9.1 Motivation
	9.1.1 Motivating Example: a test script for K-9 Mail

	9.2 Layout-based to Visual Translator Architecture
	9.2.1 Enhancer
	9.2.2 Executor
	9.2.3 Log Parser
	9.2.4 3rd generation script creator

	9.3 Visual to Layout-based GUI test scripts translator (Proof of Concept)
	9.4 Experimental Validation
	9.4.1 Experiment Design
	9.4.2 Threats to Validity
	9.4.3 Experiment Results

	10 Revisit of Study Findings
	10.1 Study 1 - Survey with mobile developers from the industry
	10.2 Study 2 - Controlled experiment with Graduate students
	10.3 Study 3 - Measures of Diffusion and Evolution of Testware in OS projects
	10.4 Study 4 - Taxonomy of Fragility causes
	10.5 Study 5 - Layout-based vs Generated visual test cases: An experiment with TOGGLE

	11 Conclusion and Future Work
	References
	Appendix A Summary of all Research Questions and Sub-questions
	Appendix B Running Sample of Metrics Computation
	Appendix C Translated Espresso Commands
	C.1 Espresso Commands
	C.1.1 Click actions
	C.1.2 Keyboard actions
	C.1.3 Swipe actions
	C.1.4 Special actions

	C.2 Translation to 3rd-generation specific syntax

	Appendix D Publication List

