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Abstract 

Passive vibration absorbers are widely used in structural control. They usually consist in a 
single-degree-of-freedom appendage of the main structure, tuned to a selected structural tar-
get mode by means of frequency and damping optimization. A classical configuration is the 
pendulum type, whose mass is bilaterally constrained along a curved trajectory and is typi-
cally connected to the structure through viscous dashpots. Although the principle is well 
known, the search for improved arrangements is still under way. In recent years this investi-
gation has inspired a new type of bidirectional pendulum absorber (BPA), consisting of a 
mass moving along an optimal three-dimensional (3D) concave-up surface. For the BPA, the 
surface principal curvatures are conceived to ensure a bidirectional tuning to both principal 
modes of the structure, while damping is provided either by horizontal viscous dashpots or by 
vertical friction dampers between the BPA and the structure. In this paper, a BPA variant is 
proposed, in which damping is produced by the variable tangential friction force developing 
between the pendulum mass and the 3D surface, because of a spatially-varying friction coeffi-
cient. In fact, a friction coefficient pattern is proposed that varies along the pendulum surface 
proportionally to the modulus of the surface gradient. With this assumption, the absorber dis-
sipative model proves nonlinear homogeneous at low response amplitudes. The resulting ho-
mogeneous BPA (HBPA) has a fundamental advantage over conventional friction-type 
absorbers, in that its equivalent damping ratio is independent of the amplitude of oscillations, 
i.e. its optimal performance is independent of the excitation level. At the same time, the HBPA 
is more compact and simpler than viscously damped BPAs, not requiring the installation of 
dampers. This paper presents the analytical modelling framework of the HBPA and a method 
for its optimal design. Numerical simulations under wind and earthquake loads are reported 
to compare the HBPA with classical viscously damped BPAs. Finally, the HBPA proves a 
promising alternative to existing pendulum absorbers, and the homogeneous tangential fric-
tion proves an effective way to realize amplitude-independent damping in structural systems. 
 
Keywords: Amplitude-independent Damping, Homogeneous Friction, Pendulum Nonlinear 
Dynamics, Structural Control, Vibration Resonant Absorbers. 
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1 INTRODUCTION 

Passive vibration absorbers are widely used in controlling civil engineering structures. Cur-
rently, they consist of single-degree-of-freedom (SDOF) appendages, tuned to the target struc-
tural mode through frequency and damping optimization [1-5]. One classical scheme is the 
pendulum absorber (PA), that exploits gravity to produce the restoring force, and consists of a 
damped mass moving along an arched trajectory. A PA can be conceived either as a hanging 
pendulum, suspended through cables or bars, or a supported pendulum, rolling or sliding on a 
physical track. In recent years, supported PAs have found several applications, because of 
their compactness, durability and versatility. Classical examples are the ball pendulum [6], the 
rolling and sliding pendulums [7], and the rocking pendulum.  

Despite the numerous implementations reported in the literature and realized in practice, the 
research for novel arrangements is still ongoing, resulting in several new configurations, in-
cluding the unbalanced rolling PA [8], the multiple-ball PA [9], and several types of track 
nonlinear energy sinks [10]. Among the others, this research has recently inspired the pro-
posal of the so-called bidirectional pendulum absorber (BPA), made of a mass moving along 
an optimal three-dimensional (3D) concave surface, whose principal curvatures are chosen to 
ensure a bidirectional tuning to both principal modes of the main structure. The BPA has been 
proposed in two variants, respectively belonging to the supported pendulum and to the hang-
ing pendulum types. The first variant is represented  by the rolling-pendulum absorber pro-
posed in [11]. Its 3D surface is manufactured as a double 3D rolling-pendulum bearing, 
comprising two equal concavities between which a rolling ball is interposed. Modifying the 
shape of the two concavities and the ball radius generates any possible 3D surface. The sec-
ond variant is represented by the hanging-pendulum absorber proposed in [12]. Its 3D surface 
is realized through a Y-shaped configuration of the suspending cables. Modifying the length 
of the cables realizes any possible toroidal surface. In the first variant, energy dissipation is 
provided by horizontal viscous dampers, in the second variant it is provided by a vertical fric-
tion damper. In this latter case, the orthogonality between the damper and the 3D surface en-
sures an amplitude-independent equivalent damping, which should make the two variants 
approximately equivalent in terms of vibration suppression capability. 

In this work, a further alternative of BPA is presented, in which damping is produced  by 
the variable tangential friction developing between the pendulum mass and the 3D surface, as 
a result of a spatially-varying friction coefficient law [13, 14]. Namely, the friction coefficient 
is assumed to vary along the surface in proportion to the modulus of the surface gradient. This 
ensures a dissipative model which is nonlinear homogeneous at low response amplitudes [15]. 
Such a homogeneous BPA (HBPA) demonstrates superior to conventional friction ball ab-
sorbers (characterized by a constant friction coefficient), since its equivalent damping ratio 
proves amplitude independent, so that its performance does not vary with the excitation level. 
On the other hand, compared with the said existing BPAs ([11] and [12]), the HBPA is more 
compact, because it does not require the installation of additional dashpots. In the HBPA, fric-
tion is generated either by rolling [16] or by sliding, depending on the chosen type of pendu-
lum. Friction can be spatially varied by changing the surface roughness or the material or the 
thickness of the surface coating, either continuously or discretely.  

This paper describes the analytical model of the HBPA and presents an optimal methodolo-
gy for its design. Simulations of single- and multi-story buildings under wind and seismic 
loads are reported, showing the pros and cons of the HBPA with respect to conventional vis-
cously damped BPAs (VBPA) [17]. The results reveal that the HBPA is a promising alterna-
tive to conventional VBPAs, and that the homogeneous tangential friction is an effective 
solution to design mechanical systems having amplitude-independent damping. 
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2 GENERAL DESCRIPTION AND MODELING OF THE HBPA 

2.1 Problem description  

A BPA incorporating both viscous damping and tangential friction is shown in Fig. 1. 
 

 
Figure 1: Schematic drawing of the BPA model. 

Its model comprises a point mass m subject to gravity g and constrained to move along a 
3D surface, connected to the structure at its minimum in O. The motion of m along the surface 
is opposed by: (i) the viscous damper linking m to the structure in A; (ii) the friction force act-
ing on the surface; and (iii) the restrainer linking m to the structure in B. If structural rotations 
are negligible, the surface and the structural supports in A and B merely translate as the sup-
port in O. Denoting with u, v and w the coordinates of m w.r.t. the local reference system xyz 
fixed in O, and with w = w(u,v) = w(q) the pendulum surface equation, the relative displace-
ment of the HBPA w.r.t. the structure is r = [u,v,w]T = [qT,w(q)]T, where u and v are the two 
independent coordinates, w is the dependent coordinate, and q = [u,v]T is the HBPA degree-
of-freedom vector. The structural support acceleration vector is T

z
T

h
T

zyx aaaa ],[],,[ aa  , and 

the BPA relative velocity vector is derived as qJqqrr   )/( , where Tw],[/  IqrJ  is the 
Jacobian matrix of the kinematic transformation and q /ww  is the surface gradient. 

2.2 The dissipative model  

The model in Fig. 1 accounts for three different dissipative mechanisms: (i) one or more 
viscous dashpot; (ii) the tangential friction; and (iii) the fail-safe restrainer.  

Assuming for brevity a single viscous dashpot with damping coefficient c, undeformed 
length lc0, deformed length lc, and undeformed and deformed coaxial versors 0ĉ  and ĉ , and 
denoting by sc = lc – lc0 its axial elongation, the corresponding viscous force vector acting on 
m is cf ˆ

cc f , where cc scf   and qJcrc  TT
cs ˆˆ  . 

Assuming a dry friction coefficient varying along the pendulum surface according to an as-
signed law μ = μ(u,v) = μ(q), and denoting by N the modulus of the normal contact reaction 

force N, the friction force can be expressed as tf ˆ
 f , where qJJqqJrrt  TT//ˆ   is the 

tangent versor, and  

 Nf )(q   (1) 
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In particular, the focus is here on a special friction pattern, where the friction coefficient 
varies along the pendulum surface proportionally to the surface gradient vector, according to: 

 w 0)(  q  (2) 

where μ0 is a proportionality factor, called the friction ratio. As shown later, Eq. (2) ensures a 
homogeneous first-order model. 

Assuming a restrainer with stiffness kr, damping coefficient cr and initial clearance wr, the 
restrainer force vector is kf ˆ

rr f , where 0rf  if w ≤ wr and wcwwkf rrrr  )(  if w > wr, 

with q Tww  . 
The total dissipative force applied to m by the three mechanisms is therefore rcd ffff   . 

Denoting by kw ˆmg  the weight of m, and by )( raλ md  the dynamic interaction force be-
tween the BPA and its support, the dynamic equilibrium of m reads dd λfNw  , which fi-
nally provides N in Eq. (1) as the modulus of the vector dd fwλN  . 

2.3 The nonlinear three-dimensional model of the BPA  

The BPA dynamic equation can be obtained by applying the Euler-Lagrange equation to the 
mass m: 

 0QQ
qqq





















ei
gVTT

dt

d


 (3) 

where 2/rr TmT   is the kinetic energy of m; Vg=mgw is its gravitational potential energy; Qi = 
–JTfd is the generalized internal force due to the total dissipative force fd; and Qe = mJTa is the 
generalized external force due to the support acceleration. Deriving the first three terms of Eq. 
(3), and denoting by Mq = mJTJ the BPA generalized mass matrix, the BPA fully nonlinear 
3D model is finally obtained as 

 











q

qMaJQqM
T

mwmg qT
i

q   (4) 

In Eq. (4), the dissipative term on the left-hand side can be expressed as 

 kJtJcJfJQ ˆˆˆ T
r

TT
cd

T
i fff    (5) 

where  

  qJccJcJ TTT
c cf ˆˆˆ   (6) 

 qJJqqJJqtJ  TTTT Nf /)(ˆ    (7) 

 wff r
T

r kJ ˆ  (8) 

are the generalized viscous, friction and restrainer force vectors, respectively.   

2.4 The nonlinear three-dimensional model of the BPA-MDOF system 

The dynamic equation of a linear multi-degree-of-freedom (MDOF) structure coupled with 
the BPA and subjected to external forces and ground accelerations is 

 gsssd
T

ssssss rRMfλLqKqCqM    (9) 



Emiliano Matta 

where qs is the vector of structural DOFs; Ms, Cs and Ks are the structural matrices of mass, 
damping and stiffness; fs is the vector of external forces; gr  is the vector of ground accelera-

tions; L and Rs are kinematic and topological matrices. Combining Eqs. (4) and (9), the fully 
nonlinear coupled dynamic equation can be finally expressed as 
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2.5 The first-order approximated model 

Some fundamental properties of the BPA can be demonstrated by considering its response 
at low amplitudes. By developing in Taylor series Eqs. (4) to (8), and by truncating higher-
order terms, the first-order 3D model of the BPA is obtained as 

 hww mNNm aqqqKqKqCq   /000   (11) 

where: C is the BPA viscous damping matrix, given by  
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if the viscous damper is set parallel to the xy plane; N0 = N/(mg) = 1+az/g is the normalized 
normal component of the reaction force; ah = [ax, ay]T is the vector of horizontal accelerations 
at the support; and Kw is the equivalent pendular stiffness matrix, given by: 
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where Hw is the Hessian matrix of w(q) in 0, and Lx and Ly are the pendulum lengths along x 
and y.  

Accordingly, the first-order 3D model of the BPA-structure coupled system is  
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where Lh is the vector containing the first two columns of L. 
Based on Eq. (11), the following observations can be formulated: 

1) the inertia force qm  and the restoring force N0Kwq are linear and uncoupled along x and y; 

this holds for the viscous force qC  , provided that all viscous dampers are aligned with the 

coordinate axes; 
2) the friction force has modulus qK wN00  and has direction and sign of the tangent versor 

qq  / ; because its modulus, direction and sign are nonlinear and coupled, the friction force 

is a nonlinear coupled function of q and q ; 

3) because its modulus increases proportionally with q and does not depend on q , the fric-

tion force is a homogeneous function of q and q ; Eq. (11) is therefore homogeneous and 
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its solution is proportional to ah, which definitely makes the HBPA a first-order nonlinear 
but homogeneous system. 

2.6 The simplified two-dimensional model 

The 3D first-order models in Eqs. (11) and (14) can be further simplified for design purpos-
es, assuming that: (i) the motion occurs in a vertical coordinate plane, e.g. the xz plane, so the 
model becomes two-dimensional (2D); (ii) in the xz plane the structural target frequency is far 
from the other ones, so the MDOF structure can be reduced to a 1DOF mode-generalized sys-
tem; (iii) the vertical acceleration input az is negligible, so N0 = 1. Under these conditions, Eqs. 
(11) and (14) become respectively 

 xwxx mauuukucum  )](sign1[ 0    (15) 
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where us is the horizontal displacement of the structure w.r.t. the ground; msx, csx and ksx are 
the generalized mass, damping and stiffness of the structure along x; and cx is the BPA vis-
cous damping coefficient along x. 

Eqs. (15) and (16) can be finally recast in modal form as 

 xxxx auuuuu  )](sign1[2 0
2    (17) 
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where mRx = m/msx is the BPA mass ratio along x; ssxsx mk /  and xx Lg /  are the struc-

ture and BPA circular frequencies along x; ωRx = ωx/ωsx is the BPA frequency ratio along x; 
and ςsx = csx/(2ωsxmsx) and ςx = cx/(2ωxm) are the structure and BPA viscous damping ratios 
along x. 

3 THE DESIGN PROCEDURE 

A design methodology is here presented for a BPA of either viscous type (VBPA) or ho-
mogeneous friction type (HBPA). Their models can be obtained from those derived in Section 
II, by respectively annulling the friction or the viscous terms. The methodology comprises 
two steps: (1) a 2D first-order optimization; and (2) a 3D second-order completion. 

3.1 The two-dimensional first-order optimization  

According to the simplified 2D model in Eq. (18), which admits an uncoupled motion along 
x and y, and assuming the structure known, both the VBPA and the HBPA are completely de-
termined, in each direction, by three dimensionless design parameters: mRx, ωRx and ςx for the 
VBPA, and mRx, ωRx and μ0 for the HBPA. If the mass ratio mRx is fixed based on cost-benefit 
expectations, the two remaining free parameters can be obtained by solving an H∞ design 
problem [18], i.e. by minimizing the H∞ norm of a significant input-output transfer function 
(TF) of the structure-BPA system. Denoting by ω the circular frequency of the excitation in-
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put, two possible TFs are here considered for each BPA type: the force-to-displacement trans-
fer function Tf(ω) (significant for wind load applications), and the ground acceleration-to-
displacement transfer function Tg(ω) (significant for seismic load applications). Denoting as 
the response ratio Rx the ratio between the controlled and the uncontrolled H∞ norm of those 
TFs, optimization can be formalized as follows, respectively for a wind-oriented VBPA: 

 
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for a seismic-oriented VBPA: 
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for a wind-oriented HBPA: 
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and for a seismic-oriented HBPA: 
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Eqs. (19) and (20) give the optimal VBPA parameters ωRxopt and ςxopt, respectively for wind 
and seismic control. Eqs. (21) and (22) give the optimal HBPA parameters ωRxopt and μ0opt, 
respectively for wind and seismic control.  

The min.max. problems in Eqs. (19) to (22) are here numerically solved using a branch & 
bound search algorithm analogue to the one used in [5], followed by a nonlinear least-square 
solver for improved local convergence. The computation of the VBPA TF in Eqs. (19) and 
(20) is straightforward, based on classical closed-form expressions available for linear me-
chanical models, whereas the computation of the HBPA TF in Eqs. (21) and (22) needs simu-
lating the system response time-history at each input frequency until stabilization of the 
response amplitude. 

Assuming a structural damping ratio ζsx = 2%, the optimization results are reported in Fig. 2 
for the VBPA (dashed lines) and the HBPA (continuous lines), as a function of the mass ratio 
mRx. The wind-oriented optimization is reported on the left (subfigures a, c and e), while the 
seismic-oriented optimization is reported on the right (subfigures b, d and f). Subfigures a and 
b show the optimal frequency ratio; subfigures c and d show the optimal damping ratio (for 
the VBPA) and the optimal friction ratio (for the HBPA), this latter normalized to π; and sub-
figures e and f show the optimal response ratios. Whereas the results obtained for the VBPA 
are well known (see for instance [19]) and do not deserve specific comments, the results ob-
tained for the HBPA reveal that the optimal HBPA slightly improves the VBPA performance, 
especially for large values of mRx. To achieve this, ωRxopt is always larger for the HBPA than 
for the VBPA, except for very small mass ratios, when the optimal frequency ratio converges 
to unity for both types. On the other hand, μ0opt converges to π∙ςxopt for small mass ratios, but 
tends to be increasingly smaller than π∙ςxopt as the mass ratio increases. The same trends are 
appreciated for the wind-oriented and the seismic-oriented design types.  

Assuming that the structural target modes have the same damping ratio and the same gener-
alized mass in the two horizontal directions, the results obtained above hold along x and y, 
and the x subscript can be dropped for brevity. Together with the mass ratio mR and with the 
structural parameters, the resulting optimal dimensionless parameters ωRopt, ςopt and μ0opt al-
low the computation of all BPA dimensional parameters involved in the low amplitude do-
main, i.e. the BPA mass m, the BPA circular frequencies ωx and ωy, the BPA pendulum 
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lengths Lx and Ly, the VBPA damping coefficients cx and cy, and the HBPA friction pattern 
around the origin, this latter given around by 

 2222
00 //)( yxoptopt LvLuw   q  (23) 
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Figure 2: H∞ optimal design of a VBPA (dotted lines) and a HBPA (continuous lines), as a function of mRx, for 
ζsx = 2%. Left: wind-oriented design. Right: seismic-oriented design. First row: optimal frequency ratios. Second 

row: optimal viscous/friction damping ratios. Third row: optimal response ratios. 

3.2 The three-dimensional second-order completion  

The subsequent completion step provides the BPA parameters which, involved only in the 
large-displacement domain, are excluded from the previous optimization step. These parame-
ters include the pendulum shape (and consequently the friction pattern) far from the origin, 
the length and number of viscous dashpots, and the restrainer properties.  

By providing Lx and Ly, the optimization step determines the pendulum shape around the 
origin. Far from it, however, different shapes correspond to the same pair of Lx and Ly. 
Among the possible choices are, for example, the ellipsoid, the torus or the elliptic paraboloid. 
If the ellipsoid is chosen, infinite ways of assigning its semi-axes bx, by and bz exist, all 
providing the desired Lx and Ly pair. Then, by imposing that yxz bbb  , only one admissible 

(a) (b) 

(c) 

(e) (f) 

(d) 
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ellipsoid exists, of semi-axes 4 3
yxx LLb  , 4 3

yxy LLb   and yxz LLb  . This choice is systemat-

ically assumed in the sequel. 
With this assumption, the friction pattern defined by Eq. (2) becomes: 
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where μ(q) tends to zero around the origin, tends to infinite at the ellipsoid equator, and de-
scribes iso-friction curves intersecting the level curves, as shown in Fig. 3 for an ellipsoid 
having Ly/Lx = 2, truncated at wr = bz/2. Both Figs. 3 (a) and (b) represent nine level curves, 
uniformly spaced between 0 and wr, and nine iso-friction curves, uniformly spaced between 0 
and 2 μ0opt. 
 

 

 

 

 

Figure 3: Level curves (continuous) and iso-friction curves (dashed) if Ly⁄Lx = 2: (a) planar view; (b) axonomet-
ric view (with the z dimension doubled for clarity). 

Regarding the design of the viscous dampers, the optimization step provides the optimal 
values of cx and cy, in the assumption of a single damper for every direction. If more dampers 
are used in the same direction, the optimal damping coefficient must be subdivided among 
them. The length of the viscous dampers does not enter the optimization step. In the sequel, 
two dampers will be systematically assumed in each direction, each having length 

yxzc LLbl 0 .  

Finally, the restrainer too does not enter the optimization step. Its mechanical properties 
can be assigned to simulate a dissipative impact. In the remaining of this paper, its stiffness is 
systematically chosen as 2

rr mk  , where yxr  20 ; its damping is assigned as 

mc rrr 2 , where rrr ee 22 lnln    and er = 0.5 (elastic restitution coefficient); its clear-

ance is assigned as wr = bz/2. 

4 TWO-DIMENSIONAL SIMULATIONS OF THE FIRST-ORDER MODEL 

The optimal VBPA and the optimal HBPA are here compared at low amplitudes, by assum-
ing the first-order 2D models expressed by Eqs. (16) or (18). The structure is a 2% damped 
SDOF system. 

4.1 White noise force excitation 

Optimized according to the wind-oriented design procedure described in Section 3, the 
VBPA and the HBPA are compared by subjecting the SDOF structure to a stationary Gaussi-

(a) 

(b) 
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an zero-mean white-noise force sxf . For the uncontrolled and for the VBPA-controlled struc-
ture (linear cases), the system stationary root-mean-square (rms) response is computed solv-
ing the Lyapunov equation [18]. For the HBPA-controlled structure, the rms response is 
computed through Monte Carlo simulations, using 100 realizations of the input process. Each 
realization has lasts 3600Tsx, with a sampling time of 0.01Tsx, Tsx being the structural period. 

The BPA performance is evaluated in terms of the rms structural displacement, rms(us), and 
the rms BPA relative displacement (stroke), rms(u). Two performance indices are considered, 
computed dividing the controlled value of the rms responses by the uncontrolled value of the 
rms structural displacement: the displacement response ratios Rdx = rms(us)con/ rms(us)unc, and 
the stroke response ratio Rsx = rms(u)con/ rms(us)unc. 

The two response ratios are shown in Fig. 4, where they appear nearly identical for the two 
BPA types. The substantial equivalence already observed under a harmonic force input in Fig. 
2 (e) is therefore confirmed under a white-noise force input. Expectedly, the absorber results 
more effective in H∞ terms than against a white-noise input (i.e. in H2 terms).  

 

           
Figure 4: 2D first-order model. VBPA and HBPA response ratios under a unidirectional white-noise force input. 

4.2 Natural seismic records 

Optimized according to the seismic-oriented design procedure, the evaluation of the VBPA 
and the HBPA under a white-noise ground acceleration gu  leads to very similar results to 

those presented in Fig. 4, which are therefore neglected here for brevity. 
More interestingly, the structure (with or without BPA) is here subjected to an ensemble of 

338 near-field real seismic records, and its period Tsx is varied from 0.1 s to 6.0 s, to obtain 
uncontrolled and controlled spectra. For each interesting response quantity, i.e. the maximum 
structural displacement us,max and the maximum BPA stroke umax, the 338 spectra are con-
densed into their rms spectrum. Dividing, at each period, the controlled rms response spectra 
by the uncontrolled structural displacement response spectrum, two rms response ratio spectra 
are obtained, respectively expressed in terms of structural displacement (Rdx = rms(us,max)con/ 
rms(us,max)unc), and of BPA stroke (Rsx = rms(umax)con/ rms(us,max)unc). Results are presented in 
Fig. 5 for three mass ratios (mRx = 1%, 3% and 10%). Again, the VBPA and the HBPA exhibit 
very similar performances, both in terms of structural displacement and absorber strokes. 

5 THREE-DIMENSIONAL SIMULATIONS OF THE FIRST-ORDER MODEL 

This section broadens the analysis to 3D models, still operating at low amplitudes, accord-
ing to (14). The equations of motion are still linear and uncoupled for the VBPA but nonlinear 
and coupled for the HBPA. The structure is a 2%-damped system having 1 DOF in each di-
rection. 

 

(a) (b) 
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Figure 5: 2D first-order model. VBPA and HBPA response ratio spectra under a unidirectional seismic input, for 
mRx = 1%, 3%, 10%. 

5.1 White noise force excitation 

The structure, with Tsx = 1 s and Tsy/Tsx varying from 1 (axial-symmetry) to 2, is excited by 
two independent white-noise force input components fsx and fsy, having the same rms value fsx0 
= fsy0. The mass ratio mR = mRx = mRy is alternatively 1%, 3%, or 10%. The BPA performance 
is evaluated by considering the average response to 100 realizations of the input process, each 
one lasting 600 s with a sampling time of 0.01 s. The performance is expressed by the follow-
ing two bidirectional response ratios: dydxd RRR   and sysxs RRR  , which extend to 3D the 

2D response ratios introduced in Section 4.1. 
Results are shown in Fig. 6, where Rd and Rs are plotted as a function of Tsy/Tsx. The VBPA 

performance appears constant with Tsy/Tsx. The HBPA performance appears approximately 
constant with Tsy/Tsx, and quite similar to the VBPA performance, with only slightly larger 
structural displacements and moderately smaller BPA strokes.  

 

           
Figure 6: 3D first-order model under a bidirectional white-noise force input. VBPA and HBPA response ratios as 

a function of Tsy/Tsx, for mRx = 1%, 3%, 10%. 

5.2 Natural seismic records 

The bidirectional performance of the VBPA and of the HBPA is here assessed adopting the 
same ensemble of seismic records used in Section 4.2. Spectra are computed in terms of 3D 
rms response ratios, obtained by averaging the corresponding 2D rms response ratios along x 
and y, according to: dydxd RRR   and sysxs RRR  . Fig. 7 shows Rd and Rs evaluated under the 

assumption that Tsy/Tsx = 1, for Tsx = Tsy ranging from 0.5 to 4.0 s, and for mR alternatively 1%, 
3%, or 10%. As in Fig. 6, it appears that under bidirectional excitation, because of friction 
coupling, the nearly perfect coincidence between the VBPA and the HBPA response is lost. 
Friction damping implies a slightly larger structural response, and a slightly smaller stroke. 
The extent of this reduction is however quite limited.  

mRx
  

mRx
  

(a) (b) 

(a) (b) 

mRx
  mRx
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Figure 7: 3D first-order model. VBPA and HBPA response ratio spectra under a bidirectional seismic input, for 

Tsy/Tsx = 1 and mRx = 1%, 3%, 10%. 

6 TWO-DIMENSIONAL SIMULATIONS OF THE FULLY NONLINEAR MODEL 

To show the influence of the excitation intensity on the BPA performance, the optimal 
VBPA and the optimal HBPA are here compared in the large-displacement domain, by as-
suming fully nonlinear 2D models. The structure is once again a 2% damped SDOF system.  

6.1  White noise force excitation 

A structure controlled through a wind-optimal BPA having mRx = 3% is simulated under a 
unidirectional white-noise force input of rms amplitude 0sxf , duration 600 s and sampling 
time 0.01 s. The response ratios Rdx and Rsx are shown in Fig. 8 for the two types of BPA as a 
function of 0sxf  ranging from 0 to 5 N/kg. 

For 0sxf  = 0, the results are those already obtained in Fig. 4 for first-order models. As 0sxf  
increases, the effectiveness in mitigating the structural displacement diminishes, as typical of 
pendulum devices, and the absorber stroke decreases, as a result of bumping and loss of tun-
ing. The effectiveness reduction appears delayed for the HBPA with respect to the VBPA, 
because of its amplitude-increasing dissipation capabilities. 
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Figure 8: 2D fully nonlinear model. VBPA and HBPA response ratios under a unidirectional white-noise force 

input, as a function of the input level and for mRx = 3%. 

6.2 Natural seismic records 

A structure controlled through a seismic-optimal BPA having mRx = 3% is simulated under 
the ensemble of real records already used in previous sections, for increasing seismic intensi-
ties. Denoting by I the intensity ratio, i.e. the dimensionless factor adopted to scale the entire 
ensemble of records, Fig. 9 reports Rdx and Rsx as a function of I, for the two BPA types and 

mRx
  mRx
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for two possible periods of the structure, namely Tsx = 0.5 s (top subfigures) and Tsx = 4.0 s 
(bottom subfigures). 

For I = 0, the results are those already obtained in Fig. 5 for first-order models. As I in-
creases, both Rdx and Rsx decrease, as already observed in Section 6.1 under force excitation. 
However, significant variations are solely observed for Tsx = 0.5 s, because of the limited 
stroke capacity of small-period pendulums. In this case, the HBPA appears again superior to 
the VBPA, because of the increasing damping provided by the proposed friction pattern.  

 

           

           
Figure 9: 2D fully nonlinear model. VBPA and HBPA response ratio spectra under a unidirectional seismic input, 

as a function of I and for mRx = 3%. Top figures: Tsx = 0.5 s; bottom figures: Tsx = 4.0 s. 

7 THREE-DIMENSIONAL SIMULATIONS OF THE FULLY NONLINEAR 
MODEL 

7.1 White noise force excitation 

The optimal BPAs are mounted on a 2%-damped structure having 1 DOF in each direction, 
with Tsx = Tsy = 1 s. The structure is excited by a bidirectional white-noise force input, having 
identical rms amplitude in the two directions, 0sxf = 0syf , duration of 600 s, and sampling time 

of 0.01 s. Simulations are conducted for 0sxf = 0syf  ranging from 0 to 5 N/kg, and results are 

shown in Fig. 10. The performance loss trends already observed for a unidirectional input in 
Fig. 8 are confirmed. Again, the HBPA performance is similar to the VBPA performance at 
low intensities, and better for large ones. 

7.2 Natural seismic records 

Table 1 reports the response ratios obtained by subjecting the controlled structure to the bi-
directional seismic records included in the selected ensemble, for mR = 3% and for the intensi-
ty ratio increasing from 0 to 0.5 to 1.0. Two cases are considered, with the first structural 
period Tsx being fixed at 1.0 s and the second structural period Tsy equaling either 1.0 s or 1.5 s. 
Table 1 confirms that under a bidirectional shaking the VBPA is preferable if second-order 
effects are negligible (I = 0), and the HBPA is preferable if they are not.  

(a) (b) 
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Figure 10: 3D fully nonlinear model. VBPA and HBPA response ratios under a bidirectional white-noise force 

input, as a function of the input level and for mRx = 3%. Tsx = Tsy = 1.0 s. 

 

  Rd Rs 
 I VBPA HBPA VBPA HBPA 

Tsx = 1.0 s 
Tsy = 1.0 s 

0.0 0.83 0.84 2.60 2.47 
0.5 0.90 0.88 1.81 1.52 
1.0 0.95 0.92 1.16 1.00 

Tsx = 1.0 s 
Tsy = 1.5 s 

0.0 0.84 0.85 2.58 2.35 
0.5 0.88 0.87 2.00 1.64 
1.0 0.94 0.91 1.38 1.15 

 

Table 1: 3D fully nonlinear model under seismic input. RMS response ratios for different periods and intensities 
(mR = 3%). 

8 CASE STUDY: MDOF BUILDING UNDER WIND LOAD 

An MDOF high-rise building structure subjected to wind loads is here simulated with or 
without a BPA atop, using the fully nonlinear model expressed by Eq. (10). The BPA is either 
of the VBPA or of the HBPA type, in both cases optimized according to the wind-oriented 
design procedure exposed in Section 3.  

The structure is 168 m tall, with a 25 m x 25 m square section. Its shape, mass and stiffness 
are drawn from [20], but scaled to augment the building sensitivity to the across-wind com-
ponent. Modelled as a 10-elements cantilever beam, the structure has a flexural stiffness 
which in the y direction is 1.21 times smaller than in the x direction. The natural periods along 
y are thus 1.10 times larger than along x. Along x, the first three periods are 4.00 s, 1.23 s, and 
0.52 s, with participating modal masses of 45.3%, 21.8%, and 11.1%. Damping is 2% in eve-
ry mode. 

The BPA mass is 1% the total building mass, corresponding to an effective mass ratio of 
6.45% according to Warburton [1]. By applying the design procedure presented in Section 3, 
the VBPA and the HBPA parameters are exposed in Table 2.  

 
 

ωR 

(-) 
ς 

(-) 
μ0 

(-) 
Lx 

(m) 
Ly 

(m) 
bx  

(m) 
by  

(m) 
bz  

(m) 
lc0 

(m) 
wr 

(m) 
VBPA 0.93 0.15 - 4.57 5.53 4.79 5.27 5.03 5.03 2.51 
HBPA 0.98 - 0.45 4.12 4.99 4.32 4.76 4.53 - 2.27 

 

Table 2: BPA design parameters on the tall building. 

(a) (b) 
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Simulations are conducted under a moderate-to-high wind flow, blowing for 1 hour either 
along x or along y. Deterministic wind load time-histories are determined as the realization of 
a stationary, spatially nonhomogeneous, stochastic process, comprising both along-wind and 
across-wind components, acting simultaneously on the structure. Along- and across-wind 
components are derived according to classical wind load spectra ([21], [22]). 

Results are presented in Table 3 only for the wind blowing in the x direction. Four cases are 
compared, corresponding to: (1) the uncontrolled structure; (2) the linear VBPA; (3) the (ge-
ometrically nonlinear) VBPA; and (4) the HBPA. For each case, several response quantities 
are investigated, including: (i) the maximum modulus of the top story displacement, rN,max; (ii) 
the maximum modulus of the BPA stroke, rmax; (iii) the maximum friction damping ratio acti-
vated by the HBPA, μmax; (iv) the rms of the modulus of the top story displacement, rN,rms; (v) 
the rms of the modulus of the BPA stroke, rrms; and the mean value of the instantaneous pow-
er dissipated by the structure, Ws,mean. 

 

Case 
rN,max 
(cm) 

rmax 
(cm) 

μmax 
(-) 

rN,rms 
(cm) 

rrms 
(cm) 

Ws,mean 
(kW) 

Uncontrolled 79.4 0.0 - 27.3 0.0 31.1 
Linear VBPA 39.6 110 - 13.7 37.5 8.12 

VBPA 39.7 109 - 13.8 37.4 8.17 
HBPA 38.4 107 0.10 13.7 37.8 8.63 

 

Table 3: Building responses for wind blowing along x. 

Table 3 reveals that: 
1) With respect to the uncontrolled structure, the linear VBPA achieves a significant re-

sponse reduction: 50% in rN,max and in rN,rms, and 74% in Ws,mean. 
2) The VBPA, accounting for geometrical nonlinearities, gives nearly identical results. The 

absorber strokes are relatively small and the restrainer is far from being activated, which 
makes the first-order model accurate enough. 

3) The HBPA performance is also very similar to the VBPA performance. The greatest dif-
ferences are in Ws,mean, which is 6% larger for the HBPA, and in rN,max, which is 3% larger 
for the VBPA. The maximum friction coefficient met by the HBPA during motion is 0.10. 

It can be concluded that the three controlled cases are substantially equivalent. 

9 CONCLUSION 

Main conclusions of this study can be formulated as follows: 
1) The HBPA is shown to be roughly equivalent to the VBPA, especially when responding 

to a unidirectional excitation at low response amplitudes.  
2) Both BPA types undergo a performance loss if the stroke demand exceeds their stroke ca-

pacity, as it often occurs in rigid structures under large input intensities. This drawback is 
partially compensated for the HBPA by its larger dissipation capacity at large displace-
ments. Despite such loss, in all examined simulations both types still ensure a significant 
vibration mitigation effect.  
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