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Abstract 

The conventional procedures for the design of antenna systems often yield a solu-

tion that is sub-optimal: this occurs especially when the configuration to be de-

signed is complex, as could be a multi-beam antenna, since many parameters have 

to be managed and several goals, sometimes competing each other, have to be 

achieved or when the antenna constraints are not known “a priori” but could be 

just estimated during the optimization process itself.  A possible solution to over-

come these limitations consists in using a global optimizer. Here, several different 

approaches are considered and compared in terms of their performances when ap-

plied to different classes of problems.  

1 Introduction  
 

Optimization is a key aspect in the engineering system design. It can be faced with 

different methods: one of most basic and widely used method is the so-called trial 

and error. a typical approach to problem solving based on testing several system 

configurations until a reasonable solution is reached [1]. This method can be hard-

ly applied to very complex problems because the solution space is too large. 

Evolutionary Optimization Algorithms (EAs) are a very valid alternative because 

they do not require any special knowledge about the shape of the cost function, i.e. 

the function that mathematically models the problem to be solved, (on the other 

hand, this is required for linear and quadratic programming [2]), they do not need 

any initial guess close to the desired minimum (as is required by traditional non-

linear optimizer like the simplex method [3]). Moreover, Evolutionary Algorithms 

do not require nor continuity nor derivability of the cost function [4]. 
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Several evolutionary optimization algorithms are available in literature. The first 

one that was introduced is the Genetic Algorithm (GA) [5]. It was firstly imple-

mented for binary problems, and then it has been also adapted successfully to real-

valued problems. Another important EA is the Particle Swarm Optimization 

(PSO), an algorithm native for real-valued problems [6].  

These two algorithms are the most established ones, but many others have been 

implemented and have shown very good optimization capabilities, finding a prop-

er tradeoff between exploration and exploitation [4]. Some of them are the Differ-

ential Evolutionary (DE) [7], the Biogeography Based Optimization (BBO) [8], 

the Fireworks Algorithm (FA) [9]. 

Antenna optimization problems often involves many degrees of freedom, whose 

management becomes difficult when a deterministic procedure is adopted for its 

design and therefore the resulting configuration could be a sub-optimal solution. 

For this reason, EAs have been widely adopted to problems involving the design 

of an antenna, either of a single radiating element either of the entire system. The 

most widely EAs used for the optimization of antenna systems are undoubtedly 

the GA and the PSO. However, the increasing complexity of the problems to be 

optimized pushes the researchers to investigate and to develop new approaches 

with improved features, in terms of convergence, computational cost and reliabil-

ity. In Section 2, the capabilities of two innovative algorithms, the Social Network 

Optimization (SNO) [10], [11] and the MQC10-BBO, that is an enhanced version 

of the BBO, [12], [13] are studied when applied to a complex antenna problem as 

the design of a scanning beam Reflectarray. 

If global optimizers as the evolutionary algorithms are efficient tools for the de-

sign of a system that has to satisfy requirements that are known “a priori” and that 

are used to mathematically model the optimization problem itself, in some other 

case it occurs that not all the problem constraints are defined.  This is for instance 

what happens in modern wireless communication systems such as fifth-generation 

(5G) mobile communication systems, that utilize massive MIMO (multiple input 

multiple output) configurations [14]. MIMOs consist in two sets of antennas, one 

placed at the base station and the other assembled in a small device, such as a mo-

bile phone, where design space is very limited. Between these two sets of antennas 

there is a rich scattering multipath fading environment that can be modeled in the 

most accurate way, since it affects the system performance and in particular the 

definition of 

the beamforming algorithm used by the antennas to generate the multibeams: as 

better as it can predict the behavior of the channel as higher is the performance of 

the entire system. However, the structure of the propagation environment is not 

known “a priori”, but could only be communicated to the transmitter by the re-

ceiver, after its estimation, and this operation drastically increase the complexity 

of the algorithm; therefore, it becomes necessary to adopt an optimization process 

able to estimate in a sufficiently accurate way the propagation environment, trying 

at the same time to reduce its computational cost [15]. In section 3 some examples 
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of the most commonly optimization techniques adopted in this contest are present-

ed. 

 

 

 

 

 

 

2 Evolutionary Optimization – based design of a scanning 

beam antenna 
 

Optimizing the design of a system means select a proper set of physical variables 

(called design variables and represented by the vector 𝒅) that can modify the per-

formances of the system itself. 

The design variables are represented in the EA by means of a set of optimization 

variables (vector 𝒙) that can be mapped in a biunivocal manner to the design vari-

ables themselves. 

The performances of the system should be mapped in a numerical value (the cost 

𝐶) that should be minimized; this mapping procedure is performed by the cost 

function. The entire relation that occurs between the cost 𝐶 and the optimization 

variables is called objective function. 

The optimal set of parameters obtained after the optimization process is indicated 

with the symbol 𝒃. 

In the specific case of the antenna optimization, the objective function consists in 

most of the cases by the calculation of the antenna radiation pattern and the cost 

represents how far it is from the constraints it is asked to satisfy. At each iteration, 

the algorithm computes the cost relative to the different set of optimization varia-

ble that represents the EA population. This means that the objective function is 

computed, throughout the optimization process, thousands of times, and therefore 

it is necessary to describe the problem with a model sufficiently accurate but also 

not too much computationally expensive. In case of an antenna, this means that 

the use of a full-wave approach for its characterization is not feasible, since it 

would result in an unaffordable increase of the computational time. Therefore, 

other techniques, as the representation of the radiating elements with their equiva-

lent circuital model or the use of approximated methods for the computation of the 

antenna radiating features are generally adopted.  

Once the optimal solution is determined, at the end of the EA process, it is finally 

analyzed with a full-wave approach, to check that effective correctness of the op-

timization. In Figure 1 the entire optimization process is sketched. It is a general 

scheme, independent from the type of used algorithm and the type of antenna 

problem to be solved. 

 

2.1 SNO 
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The Social Network Optimization (SNO) is an evolutionary algorithm based on 

the interaction and influence process that takes place in online social networks 

[10]. 

The algorithm is based on a population of individuals (users of the social network) 

and on the posts available online. These two data structures are the basis of the al-

gorithm and they drive the information exchange process: users write posts with 

their opinions, these posts are read by other individuals and they are influenced 

and, thus, they change their opinions [11]. 

 

 

 
Figure 25: Summary of the optimization procedure adopted in the an-

tenna optimization 

Each user is characterized by a set of opinions. This is an array with the same size 

of the optimization variables vector. The interaction among users is driven by two 

kinds of networks: a friend network and a trust network. For defining these net-

works, a friend list and a reputation list are associated to each user. The friend list 

is the set of user ID of all the friends of the user, while the reputation list contains 

a reputation value for all the other users. All these user’s information evolves dur-

ing time thanks to the algorithm operators. 

The interaction in network is a key aspect of this algorithm because it drives the 

tradeoff between exploration and exploitation. The two interaction networks are 

deeply different: the friend network is symmetric, the connections are particularly 

strong, and its evolution depends on events in the real word. On the other hand, 

the trust network is not symmetric, i.e. trust is not reciprocal, the connections are 

weaker, and its evolution depends only on online relations [16]. 

Also the posts are complex data structures: their main content is the status, i.e. the 

transposition of the opinion of the user. Other metadata are added to this content: 

the ID of the user that posted it, the posting time, and a visibility value. This is 

Calculation of the 
antenna features 
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very important because posts with high visibility can be read more often, and, 

thus, their impact on the other users is greater. 

The post is the structure that interacts with the objective function: in fact, the sta-

tus is the candidate solution (the vector of the optimization variables x), while the 

visibility value is the cost value C assigned by the objective function to the candi-

date solution. Figure 26 shows a summary of the data structures of SNO. 

The evolution of these data structures is obtained by means of several algorithm 

operators. The main ones are the linguistic transposition, the reputation update, the 

trust network creation, the friend network evolution, the influencer selection, the 

crossover, and the idea contagion function.  

 
Figure 26: SNO data structures 

Figure 27 shows all the operators in the loop of the algorithm. The red squares are 

the operators, while the blue and green rectangles represent respectively posts data 

structures and users’ ones. The orange box is the optimization problem, and its in-

teraction with the algorithm is underlined by the dashed lines. 
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Figure 27: SNO evolution of data structures by means of the algorithm 

operators. 

 

2.2 MQC10-BBO 

 
The MQC10-BBO is a modified version of the BBO, aimed to improve its perfor-

mance [12], [13]. As the original BBO, it takes inspiration from the migration pro-

cess of the species among islands, also named habitats. Each of them represents a 

possible solution, while the species are the optimization variables and the habitat 

suitability index (HIS) represents the goodness of a solution, i.e. its fitness score. 

The moving of species among islands is regulated by how good the habitat itself 

is, i.e. by its HIS, through the emigration and the immigration rates, that in the 

standard BBO depend linearly on the number of species present in an island. A 

high HIS characterized a crowded habitat and therefore the less performing spe-

cies are pushed to migrate more favorable islands, i.e. where the number of spe-

cies already present is small. On the other hand, a low performing habitat has a 
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low emigration rate and high immigration rate and therefore it receives species 

from better islands. The consequence of this mechanism is that the best habitats 

have low probability to share information with other high performing solutions 

and to converge to the optimum. 

Despite of this consideration, the algorithm has been shown to perform well for 

some specific problems, like power distribution [13], while for antenna optimiza-

tion it stagnates in local minima [14]. For this reason, some improvements have 

been introduced in BBO [12].  

The first one is relative to the model that describes the relation between the num-

ber of species in a habitat and the emigration and immigration rates, not yet as-

sumed to be linear but quadratic. 

Moreover, it has been observed that the BBO is too much “deterministic” and 

therefore a novel implicit restart procedure, named “cataclysm” has been intro-

duced: when the best among all the solutions did not improve in the last N itera-

tions, all the solutions are destroyed (cataclysm) and new ones are randomly gen-

erated. In order to preserve the best solution, elitism applies and no cataclysm 

occurs again before at least N generations have passed.  
The information about the use of the quadratic model as well as of the cataclysm 
and the number of iterations between two following events is codified in the name 
of the algorithm: “MQ” indicates that the migration model is the quadratic one, “C” 
informs about the presence of the cataclysm while its numeric subscript n is related 
to the minimum   number N of iterations between two cataclysms, being N=5n. 
Several tests have been done to fix the value of n: if it is too small the cataclysms 
are too close each other and the algorithm becomes a random search, while if too 
many iterations occur it falls back into the BBO. At the end, it was concluded that a 
reasonable value is n=10. 

 

 

2.3 Application of SNO and MQC10-BBO to the design of a scanning beam 

Reflectarray 

 

The SNO and the MQC10-BBO have been applied to the design of a planar beam-

scanning Reflectarray (RA) [17], [18]. RAs represent a good compromise between 

reflector antennas and arrays, and therefore they are suitable for high gain applica-

tions.  

The antenna system is composed by a feed (usually a horn antenna) and a planar 

reflector. In order to compensate the absence of curvature present in a convention-

al reflector, the surface of the RA is divided in a proper number of square unit cell 

(with size lower than or equal to 0/2, being 0 the wavelength computed at the de-

sign frequency f0).  Each unit cell includes one or more re-radiating elements, 

whose selected geometrical parameters are varied to compensate the phase of the 

incident field and to obtain the desired radiation pattern.  
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The RA design procedure consists in a first step in which the unit cell behavior is 

analyzed and the curves representing the variation of the phase of the reflected 

field in correspondence of the unit cell, assumed embedded in a period structure, 

as a function of the selected geometrical parameters are obtained. Then the reflec-

tarray is designed, considering the feed characteristics, the feed position and the 

desired features of the entire antenna: the proper value of the geometrical parame-

ters of each cell is selected in such a way they provide the phase necessary to ob-

tain the desired radiation pattern for a fixed position of the feed. 

 
Figure 28: Side view of a scanning beam reflectarray: the feed moves 

along a circular arc, and changing its position also the direction of 

maximum radiation varies. 

Things are different when a scanning beam antenna, based on the use of a passive 

RA, must be designed. In fact, in this case, the degrees of freedom of the unit cells 

are not enough to provide the proper value of the phase for each direction of max-

imum radiation, that is obtained for instance rotating the feed along a circular arc 

as sketched in Figure 4. It is therefore necessary to find the values that give the 

best trade off among the radiation patterns for all the considered pointing direc-

tions. 

In view of the large number of unknowns whose values must be determined, this 

is a typical problem that could be conveniently solved with the aid of an evolu-

tionary algorithm. 

Here, a microstrip reflectarray is considered, made of a dielectric substrate with 

relative dielectric constant r= 2.55 and height h=0.8 mm. The RA surface is dis-

cretized with 24x24 unit cells with size 0/2. The feed is a standard horn, located 

at a distance F=10.80 from the center of the reflectarray, and it can move along 
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an arc, covering the angular range that corresponds to have a beam scanning be-

tween -40º and +40º. 

Each unit cell includes a square patch (see inset in Figure 5), whose size d is used 

to control the phase and the amplitude of the reflection coefficient S11 provided by 

the cell itself. Their variation with d is plotted in Figure 5. S11 is computed with 

CST MWS
®
, carrying on a full-wave simulation of the unit-cell embedded in a pe-

riodic structure and for normal incidence. 

 
Figure 5: Variation of the phase (top) and amplitude (bottom) of the 

reflection coefficient provide by each unit cell, as a function of the size 

d of the square patch. Inset: sketch of the unit cell. 

The total number of variables, i.e. the size d of the 24x24 square patches, thanks to 

the double symmetry, reduces to 148. 

The estimation of the radiation pattern has been performed with the aperture field 

method [19], discretizing the space with 91 samples along the 𝜃 coordinate and 35 

along 𝜙. This choice is a very good tradeoff between the accuracy of the model 

and the computational time required by the optimization. 

The aim of the optimization is to achieve the most constant gain for all the scan 

angles, controlling at the mean tine the Side Lobe Level (SLL). This has been cod-

ified imposing that in correspondence of four different directions of maximum ra-

diation the antenna radiation pattern stays below a different mask, in which the 

SLL and the half beam width are limited. The values of the constraints have been 

selected for achieving a good behavior of the gain. It is important to notice that the 

numerical code used for the optimization is not able to calculate the gain, that can 
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be assessed only after the entire optimization process with the full wave simula-

tion of the antenna itself. 

The optimization process has been stopped after 50,000 objective function calls 

for both the algorithms. Moreover, since the EAs are stochastic techniques, 12 in-

dependent trials have been done to check their reliability. 

Figure 6 shows the curves of convergences of the two algorithms. The thin lines 

represent the convergence of each independent trial, while the darker thick line is 

the average convergence. It is possible to show that the MQC10-BBO has a faster 

convergence in the first third of the optimization process, while SNO can keep a 

god convergence rate for all the time. Both the algorithms have a good reliability, 

as proved by the low dispersion of the curves corresponding to the single trials. 

 
Figure 6: Curves of convergence of the two algorithms. 

Figure 7 shows the optimal RA geometries obtained with the MQC10-BBO and the 

SNO. 

 

To verify the effectiveness of the optimization process, these two configurations  

have been finally analyzed with the full wave method implemented in CST MWS
®
 

and their radiation patterns are computed for the feed four different positions that 

correspond to the values of the scanning angle equal to 10º, 20º, 30º and 40º.  The 

radiation patterns relatively to the RA optimized with the MQC10-BBO are plotted 

in Figures 8 and 9, while in Figures 10 and 11 that for the SNO configuration are 

shown. In all the figures the masks used for the optimization are also represented. 
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(a) (b) 

Figure 7: Optimal geometries obtained by (a) MQC10-BBO and (b) 

SNO. 
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It is possible to see that in all cases the radiation patterns well satisfy the con-

straints, since they are almost everywhere below the masks.  

Figure 8: Radiation patterns for the MQC10-BBO solution, E-

plane. 
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Figure 9: Radiation patterns for the MQC10-BBO solution, H-plane. 
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Figure 10: Radiation patterns for the SNO solution, E-plane. 
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Figure 11: Radiation patterns for the SNO solution, H-plane. 

Finally, in Figure 12 it is represented the gain as a function of the scan angle for 

the two antennas designed with the two algorithms. From this plot clearly emerges 

that both the RAs present a variation of the gain lower than 2 dB in the entire 

scanning range, and this definitively proves the effectiveness of the adopted opti-

mization procedure, and of the two algorithms. 
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Figure 12: Gain as a function of the scan angle. 

 

3 Optimization for MIMO antenna  
 

Antennas for modern wireless communication systems such as 5G systems 

make use of the shorter element sizes at high frequencies to incorporate a larger 

count of radiating elements. The number of antenna elements in massive MIMO 

configurations is defined to be larger than 100 elements. These antenna arrays are 

essential for beamforming operations that play a vital role in modern wireless 

communication systems. 

The beamforming system consists of an array processor and a linear or planar 

array of radiating elements. It is basically a spatial filter that is used to radiate or 

receive the maximum power in/from a predefined direction. Recently, two possi-

ble types of beamforming systems have been studied as candidates for next gener-

ation wireless networks: they are the digital beamformer and the hybrid analog-

digital beamformer whose block diagrams are shown on the topo and the bottom 

of Figure 13 [20].  

Digital beamforming allows multiple stream transmission and serves multiple 

users simultaneously. However, it may not always be ideally suited for practical 

implementations regarding 5G applications. The very high hardware complexity 

may significantly increase size, cost, energy consumption and complicated inte-

gration in mobile devices. On the other hand, it is well-suited for use in base sta-

tions. Hybrid beamforming has been proposed as a solution able to combine the 

advantages of both analog and digital beamforming architectures [20-22]. 
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The criteria used to optimize beamforming systems include maximization of 

SNR, Minimum Mean Squared Error (MMSE), Linearly Constrained Minimum 

Variance (LCMV) and robust optimization by Min-max criteria [23]. 

Consider a beamforming system with M antenna elements. Denoting 𝑠(𝑡)  the 

transmitted signal, the direction of arrival (DOA) angle of the wavefront plane as-

sociated with 𝑠(𝑡) is 𝜃; therefore, the vector of array observation from M elements 

at time instant t is expressed as: 

 

𝐱(𝑡) = 𝒂(𝜃, 𝜔)𝑠(𝑡) + 𝐢(𝑡) + 𝐧(𝑡)    (1) 

 

where 𝒂(𝜃, 𝜔) is the steering vector, i(t) is the interference and n(t) is a Gaussian 

noise vector. 

𝒂(𝜃, 𝜔) = [1  𝑒𝑗𝜔𝑑𝑠𝑖𝑛(𝜃)/𝑐𝑒𝑗𝜔2𝑑𝑠𝑖𝑛(𝜃)/𝑐 …  𝑒𝑗𝜔(𝑀−1)𝑑𝑠𝑖𝑛(𝜃)/𝑐]
𝐻

        (2) 

 

representing d the distance between the two elements, 𝜔 is the carrier frequency 

and c the speed of light. The steering vector depends on the direction of arrival 

and the frequency. For simplicity, we denote 𝒂(𝜃, 𝜔) with 𝒂. The beamforming 

model is expressed as 

 𝐱(𝑡) = 𝒂𝑠(𝑡) + 𝐢(𝑡) + 𝐧(𝑡)                                       (3) 
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Figure 13: Digital (a) and hybrid (b) beamforming architecture at re-

ceiver. 

 

There are two general beamforming systems, including narrowband beamforming 

and broadband beamforming. In the narrowband beamforming model, the output 

signal of beamformer at time instant t is 𝑦(𝑡) obtained by linear combination of 

signals of M elements as: 

𝑦(𝑡) = ∑ 𝑤𝑖
∗𝑀

𝑖=1 𝑥𝑖(𝑡)                       (4) 

 

For broadband model, the output signal is expressed as: 

 

𝑦(𝑡) = ∑ ∑ 𝑤𝑖,𝑝
∗𝐾−1

𝑝=0
𝑀
𝑖=1 𝑥𝑖(𝑡 − 𝑝)        (5) 

 

where 𝐾 − 1 is the number of delay stages at each channel of i
th

 element of the ar-

ray. The output signal is expressed as: 

 

𝑦(𝑡) = 𝒘𝐻𝐱(𝑡)       (6) 

 

where 𝐱 is the received signal vector. The vector 𝐰 of length M represents the 

weights as:  

𝐰𝐻 = [𝑤0
∗, 𝑤1

∗, … , 𝑤𝐾−1
∗ ] = [𝐰𝑇]∗      (7) 

 

The response of a single beamformer is therefore: 

 

𝑟(𝜃, 𝜔) = 𝐰𝑯𝐚             (8) 

 

The beampattern is defined as the squared magnitude of 𝑟(𝜃, 𝜔). Note that each of 

the weights in the vector w impacts to the response of the beamformer in terms of 

time and space. Output power or variance of estimated signal is determined as: 
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𝐸{|𝑦|2} = 𝐰𝐻𝐸{𝐱 𝐱𝐻}𝐰                    (9) 

 

where 𝐸{. } denotes the mean value. 

If the signal is wide sense stationary, the covariance matrix 𝑹𝑥 = 𝐸{𝐱 𝐱𝐻} is sta-

tistically independent over time. Although the signal statistic is not often station-

ary, the performance of the optimized beamforming is computed under the hy-

pothesis that it is wide sense stationary. 

The covariance matrix of the narrow band signal s(t) at frequency 𝜔0 is: 

 

𝐑𝑥 = 𝜎𝑠
2𝒂(𝜃, 𝜔0)𝒂𝑯(𝜃, 𝜔0) = 𝜎𝑠

2𝒂𝒂𝑯                         (10) 

 

where 𝜎𝑠
2 is the average signal power. 

Beamforming is an important technique in array processing in order to optimize 

desired signal while minimizing interferences. The design of the beamformer un-

der statistically optimal method requires statistical properties of the source and the 

statistical characteristics of the channel. 

 

3.1 Maximization of SNR 

 
The weight vector is the solution of the maximization of the SNR (Signal to 

Noise Ratio) problem:  

 

𝐰MaxSNR = argmax
𝐰

𝐰𝐻𝐑𝑠𝐰

𝐰𝐻𝐑𝑛𝐰
        (11) 

 

General solution 𝐰MaxSNR requires both 𝐑𝑠 = 𝐸{𝐬𝐬𝐻} and 𝐑𝑛 = 𝐸{𝐧𝐧𝐻} are co-

variance matrices of signal and noise. Depending on applications, the calculation 

of 𝐑𝑠 and 𝐑𝑛 are different. For example, 𝐑𝐧 can be estimated during the absence 

of signal, while 𝐑𝐬 is estimated from signal and known DOA by equation (10). 

Note that the SNR does not change if the weight vector is multiplied by a scaling 

factor. Since the steering vector 𝒂(𝜃, 𝜔) is fixed for a given signal, it is possible to 

choose a weight vector to satisfy 𝐰𝐻𝒂(𝜃, 𝜔) = 𝑐, where c is a constant. The prob-

lem of the SNR maximization can be rephrased in terms of minimizing the inter-

ference:  

 

𝐰MaxSNR = argmax
𝐰

{𝑆𝑁𝑅} = argmin 
𝐰

(𝐰𝐻𝐑𝑛𝐰), s.t.𝐰𝐻𝒂 = 𝑐        (12) 

 

Using the method of Lagrange multipliers, the solution of the equation [8] is there-

fore: 

 

𝐰 = 𝑐
𝐑𝑛

−1𝒂

𝒂𝐻𝐑𝑛
−1𝒂

    (13) 
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3.2 Minimum Mean Squared Error 

 

MMSE method minimizes the error signal between the transmitted signal and a 

reference signal 𝑑(𝑡). In this model, desired user assumes to transmit this refer-

ence signal, i.e. 𝑠(𝑡) = α𝑑(𝑡) where α is the amplitude of the reference signal 

𝑑(𝑡) and 𝑑(𝑡) is known at the receiver. The output signal of the beamformer is to 

track reference signal. MMSE method seeks the weight to minimize the average 

error signal power:  

 

𝐰𝑀𝑀𝑆𝐸 = argmin
𝐰

𝐸{|𝑒(𝑡)|2}                (14) 

 

The average error signal power: 

 

        𝐸{|𝑒(𝑡)|2} = 𝐸{|𝐰𝐻𝐱(𝑡) − 𝑑(𝑡)|2} = 

                          = 𝐸{|𝐰𝐻𝐱𝐱𝐻𝐰 − 𝐰𝐻𝐱𝑑∗ − 𝐱𝐻𝐰𝑑 + 𝑑𝑑∗|2} 

                     = 𝐰𝐻𝐑𝐰 − 𝐱𝐻𝐫𝑥𝑑 − 𝐫𝑥𝑑
𝐻 𝐰 + 𝑑𝑑∗                            (15) 

 

where 𝐫𝑥𝑑 =  𝐸{𝐱𝑑∗}. 

Computing the derivative of (15) with respect to 𝐰𝐻 and setting it  to zero it is 

possible to obtain: 

 
𝜕𝐸{|𝑒(𝑡)|2}

𝜕𝐰𝐻 = 𝐑𝐰 − 𝐫𝑥𝑑 = 0         (16) 

 

whose solution is:  

 

𝐰𝑀𝑀𝑆𝐸 = 𝐑−1𝐫𝑥𝑑                 (17) 

 

 

known as optimal Wiener filter. This method requires reference signal to train the 

beamformer. 

 

 

3.3 Linearly Constrained Minimum Variance  

 
LCMV method consists in minimizing the output power of the beamformer 

methods. It keeps the response according to the direction of arrival of the desired 

signal fixed in order to preserve the desired signal while minimizing the impact of 

the undesired components, including noise and interference that come from other 

directions other than desired direction. 

The output response of the signal source with direction of arrival 𝜃 and fre-

quency 𝜔 is determined by 𝐰𝑯𝒂(𝜃, 𝜔). Linear constraint for the weights satisfies 

the constraint 𝐰𝑯𝒂(𝜃, 𝜔) = 𝑐, where c is a constant to ensure that all the signals 

with frequency 𝜔 come from the direction of arrival 𝜃 are passed with response c. 



214  

The minimization of output due to interferences is equivalent to minimizing the 

output power (minimum output power): 

 

𝐰𝑀𝑜𝑃 = arg min
𝐰

𝐸{|𝑦|𝟐} = arg min
𝐰

{𝐰𝑯𝐑𝐱𝐰}, s.t. 𝐰𝑯𝒂(𝜃, 𝜔) = 𝑐    (18) 

 

Using the method of Lagrange multipliers, find min
𝐰

[𝓛(𝐰; λ)], where: 

 

𝓛(𝐰; λ) = 𝐸{|𝐰𝑯𝐱|𝟐} + λ(𝐰𝑯𝒂 − 𝑐) = 𝐰𝑯𝐑𝐱𝐰 + λ(𝐰𝑯𝒂 − 𝑐) (19) 

 
𝜕𝓛

𝜕𝐰𝐻 = 𝐑𝐱𝐰 + λ𝒂          (20) 

 

The solution of the equation is: 

𝐰𝐿𝐶𝑀𝑉 = −λ𝐑𝑥
−1𝒂 = 𝑐

𝐑𝑥
−1𝒂

𝒂𝐻𝐑𝑥
−1𝒂

                (21) 

 

In practice, the uncorrelated noise component ensures 𝑹𝒙 is invertible. If c = 1, 

the beamformer is called Minimum Variance Distortionless Response (MVDR) 

beamformer. The solution of the MVDR beamformer is equivalent to maximizing 

the SNR solution by replacing 𝜎2𝒂(𝜃, 𝜔)𝒂𝐻(𝜃, 𝜔) + 𝐑𝒏 by 𝑹𝒙 and applying the 

inverse matrix lemma [𝐀 + 𝐁𝐂𝐃]−1 = 𝐀−1 − 𝐀−1𝐁[𝐃𝐀−1𝐁 + 𝐂−1]−1𝐃𝐀−1, we 

have: 

 

𝐑𝑥
−1 = [𝐑𝑛 + 𝜎𝑠

2𝒂𝒂𝑯]−1 = 𝐑𝑛
−1 −

𝐑𝑛
−1𝒂𝒂𝑯𝐑𝑛

−1

𝒂𝑯𝐑𝑛
−1𝒂+𝜎𝑠

−2  (22) 

⇒ 𝐑𝑥
−1𝒂 = 𝐑𝑛

−1𝒂 −
𝐑𝑛

−1𝒂𝒂𝑯𝐑𝑛
−1𝒂

𝒂𝑯𝐑𝑛
−1𝒂 + 𝜎𝑠

−2
 

 

= 𝐑𝑛
−1𝒂 −

(𝒂𝑯𝐑𝑛
−1𝒂)𝐑𝑛

−1𝒂

𝒂𝑯𝐑𝑛
−1𝒂+𝜎𝑠

−2 = (
𝜎𝑠

−2

𝒂𝑯𝐑𝑛
−1𝒂+𝜎𝑠

−2) 𝐑𝑛
−1𝒂  

 

= 𝑐𝐑𝑛
−1𝒂    (23) 

 

3.4 Robust optimization by Min-max criteria 

A robust optimization algorithm finds the beamforming weight solution that 

minimizes the worst case (the best of the worst conditions) on a set of signals 𝐫𝑓 

(in time domain or frequency domain for frequency beamformers) and by 

𝑀𝑆𝐸(𝐫𝑓 , �̂�𝑓) criteria, with a constant 𝑞 > 0 and a positive define matrix Q [24]. 

The problem is stated in min-max optimization as: 

 

𝐰𝑀𝑁𝑀 = 𝑎𝑟𝑔 min
𝐰𝒓

max
𝐫𝑓: 𝐫𝑓

𝐻𝐐𝐫𝑓≤𝑞2
𝑀𝑆𝐸(𝐫𝑓 , �̂�𝑓) 

= 𝑎𝑟𝑔 min
𝐰𝒓

max
𝐫𝑓: 𝐫𝑓

𝐻𝐐𝐫𝑓≤𝑞2
𝐸 {|�̂�𝑓 − 𝐫𝑓|

2
} 
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= 𝑎𝑟𝑔 min𝐰𝒓
max𝐫𝑓: 𝐫𝑓

𝐻𝐐𝐫𝑓≤𝑞2 {𝐰𝑟
𝐻�̅�𝑥𝐰𝒓 + |𝐫𝑓|

2
|1 − 𝐰𝑟

𝐻𝐀𝑟|2}      (24) 

 

where the covariance matrix of observation vector �̅�𝑥 = 𝐸{(𝐫𝑓𝐫𝑓
𝐻)}.  

 

�̅�𝑀𝑁𝑀 = 𝑎𝑟𝑔 min𝐰𝒓
max 𝐫𝑓: 𝐫𝑓

𝐻𝐐𝐫𝑓≤𝑞2

�̅�𝑥:∑ max {𝑡𝑟(�̅�𝑥�̅�𝑥
𝐻)}

𝑀𝑆𝐸(𝐫𝑓 , �̂�𝑓)                (25) 

 

The problem solution is determined by the method of Lagrange multipliers: 

 

�̅�𝑀𝑁𝑀 = 𝑞2 �̅�𝑥
−1𝐀𝑟

1+𝑞2𝐀𝑟
𝐻�̅�𝑥

−1𝐀𝑟
              (26) 

 

Approximate solution and weight vector can be found by adaptive methods such 

as steepest descent, conjugate direction, gradient, conjugate LMS (Least Mean 

Squares) and interactive LMS [25]. 

The performance of the beamforming systems under various optimization crite-

ria is analyzed by means of the Monte-Carlo simulations.  The simulations esti-

mate the influence of some parameters on the performance of the system including 

SNR (Signal to Noise Ratio) and SIR (Signal to Interference Ratio). Array config-

uration is ULA, number of antennas M = 64, difference DOA angle between 

transmitted signal and interference Δθ = 10
o
. 

The system performance is evaluated with the Normalized Root Mean Square 

Error (NRMSE) and the final value is the average value of all Q values after each 

simulation: 

 

𝑁𝑅𝑀𝑆𝐸 = mean1≤𝑞≤𝑄 {
√ 1

𝑁
∑ |𝑥𝑞(𝑘)−𝑥𝑞(𝑘)|

2𝑁
𝑘=1

|max(𝑥𝑞(𝑘))−min (𝑥𝑞(𝑘))|
}                             (27) 
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Figure 14. NRMSE according to SNR and SIR. 

The simulation results are presented in Figure 14 according to the SNR ranges. It 

is possible to see that when SNR assumes a low level, in weak signal range, the 

beamforming based on min-max optimization yields significant result. That is, the 

system is more robust. But, when the signal level is stronger, MVDR provides a 

better result against interference. For signal estimation when SIR varies, we see 

that the performance of the system according to MVDR and LCMV method give 

best result, meanwhile the min-max optimization yields bad result when SIR 

changes. 

Figure 15 shows the beampattern of the hybrid beamformer with four RF chains 

and a number of the antennas of 64 (a) and 100 (b). We can see that the optimized 

beamformer has about four dominant beams. This beampattern means that the data 

streams can be successfully transmitted through those beams.  
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Figure 15. Beampattern of the hybrid beamformer with the number of 

the antenna elements is 64 (a), 100 (b) 
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