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Abstract 

The conventional procedures for the design of antenna systems often yield a solu-

tion that is sub-optimal: this occurs especially when the configuration to be de-

signed is complex, as could be a multi-beam antenna, since many parameters have 

to be managed and several goals, sometimes competing each other, have to be 

achieved or when the antenna constraints are not known “a priori” but could be 
just estimated during the optimization process itself.  A possible solution to over-

come these limitations consists in using a global optimizer. Here, several different 

approaches are considered and compared in terms of their performances when ap-

plied to different classes of problems.  

1 Introduction  
 

Optimization is a key aspect in the engineering system design. It can be faced with 

different methods: one of most basic and widely used method is the so-called trial 

and error. a typical approach to problem solving based on testing several system 

configurations until a reasonable solution is reached [1]. This method can be hard-

ly applied to very complex problems because the solution space is too large. 

Evolutionary Optimization Algorithms (EAs) are a very valid alternative because 

they do not require any special knowledge about the shape of the cost function, i.e. 

the function that mathematically models the problem to be solved, (on the other 

hand, this is required for linear and quadratic programming [2]), they do not need 

any initial guess close to the desired minimum (as is required by traditional non-

linear optimizer like the simplex method [3]). Moreover, Evolutionary Algorithms 

do not require nor continuity nor derivability of the cost function [4]. 
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Several evolutionary optimization algorithms are available in literature. The first 

one that was introduced is the Genetic Algorithm (GA) [5]. It was firstly imple-

mented for binary problems, and then it has been also adapted successfully to real-

valued problems. Another important EA is the Particle Swarm Optimization 

(PSO), an algorithm native for real-valued problems [6].  

These two algorithms are the most established ones, but many others have been 

implemented and have shown very good optimization capabilities, finding a prop-

er tradeoff between exploration and exploitation [4]. Some of them are the Differ-

ential Evolutionary (DE) [7], the Biogeography Based Optimization (BBO) [8], 

the Fireworks Algorithm (FA) [9]. 

Antenna optimization problems often involves many degrees of freedom, whose 

management becomes difficult when a deterministic procedure is adopted for its 

design and therefore the resulting configuration could be a sub-optimal solution. 

For this reason, EAs have been widely adopted to problems involving the design 

of an antenna, either of a single radiating element either of the entire system. The 

most widely EAs used for the optimization of antenna systems are undoubtedly 

the GA and the PSO. However, the increasing complexity of the problems to be 

optimized pushes the researchers to investigate and to develop new approaches 

with improved features, in terms of convergence, computational cost and reliabil-

ity. In Section 2, the capabilities of two innovative algorithms, the Social Network 

Optimization (SNO) [10], [11] and the MQC10-BBO, that is an enhanced version 

of the BBO, [12], [13] are studied when applied to a complex antenna problem as 

the design of a scanning beam Reflectarray. 

If global optimizers as the evolutionary algorithms are efficient tools for the de-

sign of a system that has to satisfy requirements that are known “a priori” and that 
are used to mathematically model the optimization problem itself, in some other 

case it occurs that not all the problem constraints are defined.  This is for instance 

what happens in modern wireless communication systems such as fifth-generation 

(5G) mobile communication systems, that utilize massive MIMO (multiple input 

multiple output) configurations [14]. MIMOs consist in two sets of antennas, one 

placed at the base station and the other assembled in a small device, such as a mo-

bile phone, where design space is very limited. Between these two sets of antennas 

there is a rich scattering multipath fading environment that can be modeled in the 

most accurate way, since it affects the system performance and in particular the 

definition of 

the beamforming algorithm used by the antennas to generate the multibeams: as 

better as it can predict the behavior of the channel as higher is the performance of 

the entire system. However, the structure of the propagation environment is not 

known “a priori”, but could only be communicated to the transmitter by the re-

ceiver, after its estimation, and this operation drastically increase the complexity 

of the algorithm; therefore, it becomes necessary to adopt an optimization process 

able to estimate in a sufficiently accurate way the propagation environment, trying 

at the same time to reduce its computational cost [15]. In section 3 some examples 
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The Social Network Optimization (SNO) is an evolutionary algorithm based on 

the interaction and influence process that takes place in online social networks 

[10]. 

The algorithm is based on a population of individuals (users of the social network) 

and on the posts available online. These two data structures are the basis of the al-

gorithm and they drive the information exchange process: users write posts with 

their opinions, these posts are read by other individuals and they are influenced 

and, thus, they change their opinions [11]. 

 

 

 
Figure 25: Summary of the optimization procedure adopted in the an-

tenna optimization 

Each user is characterized by a set of opinions. This is an array with the same size 

of the optimization variables vector. The interaction among users is driven by two 

kinds of networks: a friend network and a trust network. For defining these net-

works, a friend list and a reputation list are associated to each user. The friend list 

is the set of user ID of all the friends of the user, while the reputation list contains 

a reputation value for all the other users. All these user’s information evolves dur-

ing time thanks to the algorithm operators. 

The interaction in network is a key aspect of this algorithm because it drives the 

tradeoff between exploration and exploitation. The two interaction networks are 

deeply different: the friend network is symmetric, the connections are particularly 

strong, and its evolution depends on events in the real word. On the other hand, 

the trust network is not symmetric, i.e. trust is not reciprocal, the connections are 

weaker, and its evolution depends only on online relations [16]. 

Also the posts are complex data structures: their main content is the status, i.e. the 

transposition of the opinion of the user. Other metadata are added to this content: 

the ID of the user that posted it, the posting time, and a visibility value. This is 

Calculation of the 
antenna features 
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very important because posts with high visibility can be read more often, and, 

thus, their impact on the other users is greater. 

The post is the structure that interacts with the objective function: in fact, the sta-

tus is the candidate solution (the vector of the optimization variables x), while the 

visibility value is the cost value C assigned by the objective function to the candi-

date solution. Figure 26 shows a summary of the data structures of SNO. 

The evolution of these data structures is obtained by means of several algorithm 

operators. The main ones are the linguistic transposition, the reputation update, the 

trust network creation, the friend network evolution, the influencer selection, the 

crossover, and the idea contagion function.  

 
Figure 26: SNO data structures 

Figure 27 shows all the operators in the loop of the algorithm. The red squares are 

the operators, while the blue and green rectangles represent respectively posts data 

structures and users’ ones. The orange box is the optimization problem, and its in-

teraction with the algorithm is underlined by the dashed lines. 
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Figure 27: SNO evolution of data structures by means of the algorithm 

operators. 

 

2.2 MQC10-BBO 

 
The MQC10-BBO is a modified version of the BBO, aimed to improve its perfor-

mance [12], [13]. As the original BBO, it takes inspiration from the migration pro-

cess of the species among islands, also named habitats. Each of them represents a 

possible solution, while the species are the optimization variables and the habitat 

suitability index (HIS) represents the goodness of a solution, i.e. its fitness score. 

The moving of species among islands is regulated by how good the habitat itself 

is, i.e. by its HIS, through the emigration and the immigration rates, that in the 

standard BBO depend linearly on the number of species present in an island. A 

high HIS characterized a crowded habitat and therefore the less performing spe-

cies are pushed to migrate more favorable islands, i.e. where the number of spe-

cies already present is small. On the other hand, a low performing habitat has a 
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be assessed only after the entire optimization process with the full wave simula-

tion of the antenna itself. 

The optimization process has been stopped after 50,000 objective function calls 

for both the algorithms. Moreover, since the EAs are stochastic techniques, 12 in-

dependent trials have been done to check their reliability. 

Figure 6 shows the curves of convergences of the two algorithms. The thin lines 

represent the convergence of each independent trial, while the darker thick line is 

the average convergence. It is possible to show that the MQC10-BBO has a faster 

convergence in the first third of the optimization process, while SNO can keep a 

god convergence rate for all the time. Both the algorithms have a good reliability, 

as proved by the low dispersion of the curves corresponding to the single trials. 

 
Figure 6: Curves of convergence of the two algorithms. 

Figure 7 shows the optimal RA geometries obtained with the MQC10-BBO and the 

SNO. 

 

To verify the effectiveness of the optimization process, these two configurations  

have been finally analyzed with the full wave method implemented in CST MWS
®
 

and their radiation patterns are computed for the feed four different positions that 

correspond to the values of the scanning angle equal to 10º, 20º, 30º and 40º.  The 

radiation patterns relatively to the RA optimized with the MQC10-BBO are plotted 

in Figures 8 and 9, while in Figures 10 and 11 that for the SNO configuration are 

shown. In all the figures the masks used for the optimization are also represented. 
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(a) (b) 

Figure 7: Optimal geometries obtained by (a) MQC10-BBO and (b) 
SNO. 
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It is possible to see that in all cases the radiation patterns well satisfy the con-

straints, since they are almost everywhere below the masks.  

Figure 8: Radiation patterns for the MQC10-BBO solution, E-
plane. 
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Figure 9: Radiation patterns for the MQC10-BBO solution, H-plane. 
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Figure 10: Radiation patterns for the SNO solution, E-plane. 
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Figure 11: Radiation patterns for the SNO solution, H-plane. 

Finally, in Figure 12 it is represented the gain as a function of the scan angle for 

the two antennas designed with the two algorithms. From this plot clearly emerges 

that both the RAs present a variation of the gain lower than 2 dB in the entire 

scanning range, and this definitively proves the effectiveness of the adopted opti-

mization procedure, and of the two algorithms. 
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Figure 12: Gain as a function of the scan angle. 

 

3 Optimization for MIMO antenna  
 

Antennas for modern wireless communication systems such as 5G systems 

make use of the shorter element sizes at high frequencies to incorporate a larger 

count of radiating elements. The number of antenna elements in massive MIMO 

configurations is defined to be larger than 100 elements. These antenna arrays are 

essential for beamforming operations that play a vital role in modern wireless 

communication systems. 

The beamforming system consists of an array processor and a linear or planar 

array of radiating elements. It is basically a spatial filter that is used to radiate or 

receive the maximum power in/from a predefined direction. Recently, two possi-

ble types of beamforming systems have been studied as candidates for next gener-

ation wireless networks: they are the digital beamformer and the hybrid analog-

digital beamformer whose block diagrams are shown on the topo and the bottom 

of Figure 13 [20].  

Digital beamforming allows multiple stream transmission and serves multiple 

users simultaneously. However, it may not always be ideally suited for practical 

implementations regarding 5G applications. The very high hardware complexity 

may significantly increase size, cost, energy consumption and complicated inte-

gration in mobile devices. On the other hand, it is well-suited for use in base sta-

tions. Hybrid beamforming has been proposed as a solution able to combine the 

advantages of both analog and digital beamforming architectures [20-22]. 
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Figure 14. NRMSE according to SNR and SIR. 

The simulation results are presented in Figure 14 according to the SNR ranges. It 
is possible to see that when SNR assumes a low level, in weak signal range, the 
beamforming based on min-max optimization yields significant result. That is, the 
system is more robust. But, when the signal level is stronger, MVDR provides a 
better result against interference. For signal estimation when SIR varies, we see 
that the performance of the system according to MVDR and LCMV method give 
best result, meanwhile the min-max optimization yields bad result when SIR 
changes. 
Figure 15 shows the beampattern of the hybrid beamformer with four RF chains 
and a number of the antennas of 64 (a) and 100 (b). We can see that the optimized 
beamformer has about four dominant beams. This beampattern means that the data 
streams can be successfully transmitted through those beams.  
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Figure 15. Beampattern of the hybrid beamformer with the number of 
the antenna elements is 64 (a), 100 (b) 
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