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Deterministic optimality of the steady-state behavior
of the Kalman-Bucy filter

Corrado Possieri and Mario Sassano

Abstract—In this paper, we provide a deterministic character-
ization of optimality of the steady-state behavior of the Kalman-
Bucy filter, via an inverse optimal control argument. The result
is achieved in two steps, both interesting per se. First, a singular
linear-quadratic (LQ) optimal control problem is formulated and
solved with respect to the innovation term of a classic Luenberger
observer, hence yielding a LQ optimal observer. Then, such a
construction is employed to interpret the optimality of the steady-
state behavior of the celebrated Kalman-Bucy filter in a purely
deterministic sense.

Index Terms—Observers for linear systems, optimal control,
Kalman filtering.

I. INTRODUCTION

S INCE its seminal formalizations [1], [2], [3], the prob-
lem of reconstructing (part of) the state of a dynamical

system that is not directly measurable has acquired a role
of paramount importance in systems and control theory [4],
[5], [6], [7], [8], [9], [10], [11]. Two, somewhat alternative,
approaches to the observer design task have immediately
emerged. On one hand, those based on a perfect knowledge
of the dynamics of a completely deterministic plant with
the aim of designing an auxiliary systems (the observer) -
formally belonging to the same class of the original plant -
whose state trajectories converge asymptotically to the state
trajectories of the observed system. On the other hand, those
based on the premise that the observed plant and measure-
ments are corrupted by random processeses (noise), with
certain (typically known) stochastic properties with the aim
of designing an auxiliary system (usually referred to as a
filter) such that the expected squared error is minimized. To
further substantiate the above dichotomy, the most celebrated
candidates of each class are the so-called Luenberger observer
[2] and the Kalman-Bucy filter [3], respectively.

An additional difference between the alternative strategies
consists in the fact that, typically, the design of the former
object (Luenberger observer) is not driven by any optimality
considerations as long as the correction term of the auxiliary
system is such that the trajectories converge to the original
ones, while the latter (Kalman-Bucy filter) are motivated
by stochastic optimality considerations, provided the noise
belong to specially structured classes of random processes.
Nonetheless, it is interesting to point out that, despite such
seemingly opposite philosophies behind their construction,
the two underlying auxiliary systems possess rather similar
structures. Moreover, in order to put the contribution of this
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paper into the correct perspective, it is worth stressing that,
despite the fact that the latter results have been explored
also in a deterministic setting via the comprehensive duality
theory [12], [13] or deterministic optimal filtering [14], these
interpretations are still fundamentally different from the ones
discussed here. In fact, the aim of, e.g., [14] consists in
formulating the filtering problem as a virtual optimal control
problem in which one is essentially allowed to select the deter-
ministic disturbances in such a way that the resulting trajectory
is consistent with the measured output and the L2-norm of
the disturbances is (virtually) minimized. Here, instead, the
focus is on minimizing the innovation term together with the
transient response of the observer in the absence of (stochastic)
noise or (deterministic) disturbances. Such considerations on
the magnitude of the innovation term may be particularly ben-
eficial in practical applications with the objective of avoiding
excessively demanding control actions in a physical plant in
closed loop with a (digital) observer. Indeed, the state of the
observer is typically fed back to the system via a stabilizing
gain, hence diminishing the magnitude of the innovation term
may be beneficial for reducing the energy of the control input
applied in the closed loop. Alternatively, one may envision
using saturation functions in the overall control scheme to
compensate for the transient behavior of the observer, with
the detrimental effect, however, of introducing unnecessary
nonlinearities in the closed-loop system. This aspect has not
been pursued hitherto in the literature, to the best of our
knowledge, due to the arising challenge in the design process
to tackle the feasibility requirements of expressing the optimal
solution only in terms of available information on the state.

The main objective of this note consists in addressing
simultaneously the two aspects identified in the above discus-
sion. First, we state necessary and sufficient conditions that
allow to design a classic Luenberger observer according to a
given quadratic cost functional. Then, we exploit this result to
provide a deterministic characterization of the optimality of
the steady-state behavior of the Kalman-Bucy filter.

Notation. Given M ∈ Rn×n, M† denotes the Moore-
Penrose pseudoinverse of M , whereas im(M) and ker(M)
denote the image and the kernel of M , respectively. Provided
M is symmetric, the notation M � 0 (M � 0) specifies that
M is positive definite (positive semi-definite). The symbol
vec(M) denotes the vectorization of M , whereas A ⊗ B
denotes the Kronecker product within A and B.

II. PROBLEM STATEMENT

Consider continuous-time linear systems described by

ẋ = Ax+Bu, y = Cx, (1)
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where x(t) ∈ Rn denotes the state, u(t) ∈ Rm the input, and
y(t) ∈ Rp the measured output. Assuming that the matrices
A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rp×n are precisely known
and that the input signal u can be measured, an observer for (1)
consists of a dynamical system of the form

˙̂x = Ax̂+Bu+ v, (2)

where x̂(t) ∈ Rn yields an estimate of the state x(t) of
system (1) and v ∈ Rn is the correction input that, on the
basis of measurements of the output y, is used to steer the state
x̂ of system (2) to the state x of system (1). Since the choice
of the correction term v is not unique, it may be reasonable
to introduce an optimality criterion to induce an ordering of
such viable correction inputs. To this end, define the error
e := x̂− x, whose dynamics are governed by

ė = Ae+ v, (3)

and consider the cost functional

J(e0, v) =

∫ ∞
0

(
e>(t)Qe(t) + v>(t)Rv(t)

)
dt, (4)

with Q = Q> ∈ Rn×n, Q � 0, R = R> ∈ Rn×n, R � 0,
and e0 := e(0). Note that, since R is required to be positive
semi-definite, singular problems are potentially allowed (see
[15]): the rationale behind this choice will become evident
in the following sections while establishing the connections
with deterministic optimality of the Kalman-Bucy filter. Note
that the cost functional (4) can be envisioned as a generic
integral quadratic form in e and ė. Within the framework
defined above, the main objective of this paper is twofold.
First, a continuous correction input v?(t) that depends only on
the output mismatch ŷ−y = C(x̂−x) = Ce is determined to
minimize the cost functional J(e0, v) given in (4) subject to
the dynamics given in (3) for each initial error e0 ∈ Rn. Then,
it is shown that such result is instrumental for establishing a
deterministic characterization - via an inverse optimal control
argument - of optimality of the celebrated Kalman-Bucy filter.
Note that establishing such a relation is different from the
results derived in the celebrated duality theory, since (1) is
not affected by any (stochastic or deterministic) disturbance.

III. LINEAR QUADRATIC OPTIMAL OBSERVERS

The objective of this section is to characterize the optimal
correction input v? mentioned in the previous section. In
particular, considering a general singular Linear Quadratic
(LQ) control problem and provided Q is positive semidefinite,
it can be claimed, by relying on [15, Lem. 2] and on [16,
Thm. 2], that if there exists an optimal solution to the singular
LQ problem described by (3) and (4) for any initial condition
e0 ∈ Rn, then such an optimal solution can be written in the
form of linear state feedback as

v∗ = K̃∗e, (5)

for some K̃∗ ∈ Rn×n. However, in addition to the con-
straints induced by the singular formulation of the LQ control
problem, as in [15], [16], herein the further requirement
of designing an optimal correction input that depends only

on the measurable output mismatch Ce must be considered.
Therefore, the following statement formalizes the concept
of admissible linear, feedback correction input v, which, by
the reasoning given above, must be in the form of a linear
feedback of the error mismatch.

Definition 1 (Admissible correction input). A correction input
v(t) is admissible if there exists K ∈ Rn×p such that

v(t) = KCe(t) , (6)

for any t > 0. ◦

It is worth pointing out that, by Definition 1, each admissible
correction input v is such that the corresponding dynamics (2)
indeed constitutes a Luenberger observer [1], [2] for sys-
tem (1), provided that the matrix A + KC is Hurwitz. The
following theorem, the proof of which is postponted to the
Appendix A, provides necessary and sufficient conditions for
the existence of an optimal admissible correction input.

Theorem 1. Consider the error dynamics (3) and the cost
functional (4). There exists an admissible optimal correction
input v? if and only if there is P = P> ∈ Rn×n, P � 0, that
solves the generalized Riccati equality

PA+A>P +Q− PR†P = 0 (7a)

with the additional constraint

vec(P ) ∈ im
(
C> ⊗R

)
. (7b)

In such a case, letting P ? be the smallest of such solutions1,
an optimal K? can be obtained by solving

RK?C = −P ?, (8)

and the corresponding value of the cost functional is

J?(e0) = min
v
J(e0, v) = e>0 P

?e0. �

The following remarks provide further insights on the
conditions given in (7) under some additional assumptions.
Remark 1. The equations (7) resemble the constrained gen-
eralized continuous algebraic Riccati equation (briefly, CG-
CARE), which arise when dealing with singular optimal con-
trol problems [15]. As anticipated above, the crucial difference
between (7) herein and equations (6), (7) of [15] consists in
the fact that here the control input v? is synthesized only on
the basis of the output mismatch Ce rather than relying on
the availablity of the entire state variable e of system (3),
which would not, in fact, lead to a feasible Luenberger’s
observer for (2). Nonetheless, if C = I , i.e., the whole state
of system (1) is measured, then (7) straightforwardly reduce
to the CGCARE given in [15]. In fact, if C = I , then (7b)
reduces to vec(P ) ∈ im

(
I> ⊗R

)
, which holds if and only if

there exists a matrix L such that (I> ⊗ R) vec(L) = P , i.e.,
if and only if

RL = P. (9)

Note that, by [17], there exists L such that (9) holds if and only
if rank(R) = rank([R, P ]), where [R, P ] denotes the matrix

1By [15], there exists a positive semidefinite solution P ? to (7a) such that
P − P ? � 0 for all solutions P � 0 to (7a).
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obtained by considering the union of the columns of R and
those of P , i.e., if and only if ker(R) ⊆ ker(P ). Therefore,
if C = I , then (7b) yields precisely the constraint given in
equation (7) of [15], and overall (7) reduce to equations (6)
and (7) in [15]. 4
Remark 2. The constrain given in (7b) can be simplified in
the case that R � 0. As a matter of fact, by further extending
the reasoning employed in Remark 1, if R � 0 (and hence it
is nonsingular), then (7b) holds if and only if there exists a
matrix L such that LC = R−1P , i.e., equivalently,

C>L> = PR−1. (10)

By the same arguments used in Remark 1, there exists L such
that (10) holds if and only if rank(C>) = rank([C>, PR−1]).
Therefore, provided R is positive definite and by considering
that im(PR−1) = im(P ), the requirement (10) can be
equivalently replaced by

im(P ) ⊆ im(C>). 4

Remark 3. By combining the results given in Remarks 1
and 2, it can be easily derived that if R � 0 and C = I ,
then (7b) is always satisfied. In such a case, a solution to
the optimal observation problem (3), (4) is given by (5), with
K̃∗ = −R−1P̃ ?, where P̃ ? is the smallest positive semi-
definite solution to the classical algebraic Riccati equation

PA+A>P +Q− PR−1P = 0,

which, by classical optimal control arguments [18], always
exists due to the fact that the pair (A, I) is stabilizable. Fur-
thermore, if the pair (A,Q) is detectable, then the observer (2)
obtained by substituting v with v∗ in (5) is a Luenberger
observer for system (1). 4

Finally, in the following remark, we show how to select the
gain matrix K? so that the corresponding system (2), (6) is a
state observer for system (1).
Remark 4. If there exists a positive semidefinite solution to (7),
letting P ? be defined as in Theorem 1, the gain K? can be
selected by solving the quadratic matrix inequality

RKC = −P ? (11a)

WA> +AW +KW +WK> ≺ 0, (11b)
W � 0. (11c)

Indeed, if there is a solution to (11), then e>We is a Lyapunov
function for the closed-loop error system. On the other hand,
if (11) does not admit any solution, then there does not exist an
admissible optimal correction input that makes the closed-loop
error system asymptotically stable. 4

The section is concluded by showing that the Riccati equa-
tion above can be employed also for policy evaluation, namely
to assess the performance of an admissible correction input
v = K̄Ce, not necessarily optimal, such that the corresponding
system (3) is asymptotically stable (i.e., equivalently, the
matrix A+K̄C is Hurwitz). Namely, by [19], given a feedback
gain K such that A+K̄C is Hurwitz, letting P̄ be the solution
to the following Sylvester equation

(A+ K̄C)>P̄ + P̄ (A+ K̄C) +Q+C>K̄>RK̄C = 0, (12)

then the corresponding value of the cost given in (4) is

J̄(e0) = e>0 P̄ e0.

Note that since A+K̄C is Hurwitz by assumption, by [20],
there always exist a unique solution P̄ to (12).

IV. A DETERMINISTIC INTERPRETATION OF
THE KALMAN-BUCY FILTER

The (stationary) Kalman-Bucy filter [3] is a dynamical
observer of the form (2), in which the correction input v is

v� = −Π�C>W−1Ce, (13)

where Π� = Π�>, Π� � 0, is the smallest solution to the dual
algebraic Riccati equation (briefly, ARE)

AΠ + ΠA> + V −ΠC>W−1CΠ = 0, (14)

where V = V > ∈ Rn×n, V � 0, and W = W> ∈ Rp×p,
W � 0. The following remarks recall, for completeness, the
optimality of the Kalman-Bucy filter in the stochastic and in
the deterministic settings.
Remark 5. Consider the linear system (which is essentially
derived from system (1) assuming that both the dynamics and
the output are affected by stochastic noises)

ẋ = Ax+Bu+ η, y = Cx+ w, (15)

where η(t) ∈ Rn and w(t) ∈ Rp are Gaussian, zero-mean,
white-noise processes, with

E[η(t)] = 0, E[η(t)η>(s)] = V δ(t− s),
E[w(t)] = 0, E[w(t)w>(s)] = Wδ(t− s),

where δ(·) denotes the Dirac delta and E[·] is the expected
value operator. Assume that the initial condition x(t0) of
system (15) has Gaussian distribution with mean x̄0 and
covariance matrix Π0 and that w, η and x(t0) are uncorrelated
with each other. By [21], assuming that the pair (A,C) is
detectable and letting Π0 = 0 and t0 → −∞, one has that
the Kalman-Bucy filter given by (2), (13) and initialized at
x̂(t0) = x̄(t0) minimizes

E[(x̂(t)− x(t))>(x̂(t)− x(t))],

and the error covariance is given by

E[(x̂(t)− x(t))(x̂(t)− x(t))>] = Π�. 4

Remark 6. The steady-state behavior of the Kalman-Bucy
filter can be interpreted also in a purely deterministic setting
using the principle of least square estimation [12], [14].
Indeed, consider the problem (referred to as minimum-energy
estimation) of finding a trajectory for system (15) that is
consistent with the input u(τ) and the output y(τ) (namely,
such that the output generated by the model coincides with
the measured one) for τ ∈ (−∞, t], and such that

JMEE =

∫ t

−∞

(
η>(τ)W̃η(τ) + w>(τ)Ṽ w(τ)

)
dτ

is minimized. In [12], [14], such a problem is solved using
the dual ARE (14) with W = W̃−1 and V = Ṽ −1. 4



4

It is worth noticing that the setting of Section III is
rather different from the one reviewed in Remarks 5 and 6.
Indeed, the main objective of Section III is to determine an
innovation term v? that minimizes the cost functional J(e0, v)
given in (4), which weights both the transient error and the
innovation effort, in a deterministic and noiseless setting. This
motivates the fact that, in order to solve such a problem, one
has to solve the CGCARE (7) rather than the dual ARE (14),
to which lead both the classic (stochastic) interpretation of
the Kalman-Bucy filter as well as the one suggested by the
duality theory. Moreover, it is worth noticing that the dual
ARE (14) and the CGCARE (7) are not equivalent under the
duality relations given in [3, (16)] even in the singular case
W � 0 [13, Sec. 4.3.4]. Indeed, as highlighted in Remark 1,
the CGCARE (7) generalizes the one obtained for classical
singular optimal control problems when taking into account
the admissibility constrain (6).

The main objective of this section is to provide a determin-
istic interpretation of the Kalman-Bucy filter (2), (13). Thus,
consider the next result, whose proof is given in Appendix B.

Theorem 2. Consider the system (15) and let V and W be
given. Moreover, let Π� = Π�>, Π� � 0, be the smallest
solution to (14). Defining S , C>W−1C, if there exist
symmetric matrcies Q and R such that

Q � 0, (16a)
R � 0, (16b)

RΠ�S + SΠ�R � 0, (16c)
RΠ�S − SΠ�R = 0, (16d)

RΠ�SA+A>SΠ�R+Q− SΠ�RΠ�S = 0, (16e)

then the Kalman-Bucy filter (2), (13) solves the optimal
observation problem (3), (4) corresponding to such matrices.
On the other hand, if (16) does not admit a (nontrivial)
solution, then there does not exist a (nontrivial) cost functional
of the form (4) such that the Kalman-Bucy filter is optimal. �

By Theorem 2, if (16) does not admit a nontrivial solution,
then the corresponding Kalman-Bucy filter is not optimal with
respect to whatsoever integral quadratic cost functional con-
sidering the deterministic noiseless setting of this paper. The
next corollary is a straightforward consequence of Theorem 1
and Theorem 2 and of the fact that the matrix S = C>W−1C
is symmetric and positive semi-definite.

Corollary 1. Consider the system (15) and let V and W be
given. Moreover, let Π� = Π�>, Π� � 0, be the smallest
solution to (14), and let S = C>W−1C. If

SΠ�SΠ�S − SΠ�SA−A>SΠ�S � 0, (17)

then the Kalman-Bucy filter (2), (13) solves the deterministic
optimal observation problem (3), (4), with Q = SΠ�SΠ�S −
SΠ�SA − A>SΠ�S and R = S. Furthermore, the value of
the cost functional (4) is given by

J�(e0) = e>0 SΠ�Se0. �

Corollary 1 motivates our interest in characterizing, in
Section III, correction gains that are optimal with respect

to singular optimization problems. As a matter of fact, if
p < n, then the matrix S = C>W−1C is singular (although
positive semidefinite) and hence the choice R = S leads to
a singular optimization problem. Furthermore, although the
condition given in Corollary 1 is just sufficient, it is simpler
to verify than checking the existence of a solution to (16).

V. EXAMPLE

Consider a double integrator described by

ẋ =

[
0 1
0 0

]
x+

[
0
1

]
u, (18a)

y =
[

1 0
]
x. (18b)

with x ∈ R2, u ∈ R and y ∈ R. It is assumed that the
dynamics (18a) are affected by unknown disturbances while
the output (18b) is corrupted by measurement noise, both
described as Gaussian, zero-mean processes with covariance
matrices V = 1

%2 I and W = I , respectively, where % is
a nonnegative scalar parameter. The above setting may, for
instance, capture the scenario in which one is interested in
estimating the ground position of a mobile robot via GPS
measurements affected by random noise. To this end, the
steady-state behavior of the Kalman-Bucy filter is given by
the observer (2), with v given by

v =

[ √
2%+1
% 0
1
% 0

]
e. (19)

It may be of interest to assess whether such choice is optimal
with respect to a deterministic criterion. Thus, note that the
smallest positive semidefinite solution to (14) is

Π� =

[ √
2%+1
%

1
%

1
%

√
2%+1

%2

]
.

Hence, letting S = C>W−1C consider the linear matrix
inequality (16). Although the matrix given in (17) is not
positive semidefinite for all % ∈ R, % > 0, the set of all the
solutions to the LMI (16) can be parametrized as

Q =

[
0 0
0 0

]
, R =

[
1 −

√
2%+1

−
√
2%+1 2%+1

]
r, (20)

for all nonnegative %, where r is a nonnegative scalar. The
definitions in (20) identify a family of cost functionals, param-
eterized with respect to r, for which the correction term (19)
yielded by the Kalman-Bucy filter is optimal in a deterministic
sense. It is worth highlighting that any cost functional for
which v is optimal does pose any weight whatsoever on the
transient behavior of the estimation error. Figure 1 depicts the
correction input given in (19) and the behavior of the error e
with % = 1 and e(0) = [ 1 3 ]>. Note that v is such that
Rv(t) = 0 for all t ∈ R>0.

VI. CONCLUSIONS

In this paper, we provide a characterization of the deter-
ministic properties of the steady-state behavior of the Kalman-
Bucy filter. This is achieved by borrowing an inverse optimal
control argument and by relying a preliminary result, contained
in the paper and interesting per se, that allows to formulate
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Fig. 1: Correction input and time behavior of the error.

the problem of designing the correction term of a Luenberger
observer as an LQ optimal control problem with feasibility
constraints on the corresponding feedback.

APPENDIX

A. Proof of Theorem 1

Two preliminary technical lemmas are discussed, which are
instrumental for the proof of Theorem 1. To provide a concise
statement of the following results, let Em×p

j,k denote the matrix
of dimension m×p with all the elements equal to zero except
the entry of position (j, k), which equals one. Hence, define
the permutation matrices Um×p =

∑m
j=1

∑p
k=1E

m×p
j,k ⊗

Em×p
j,k , Um×p =

∑m
j=1

∑p
k=1E

m×p
j,k ⊗ Ep×m

k,j and consider
the following two technical lemmas.

Lemma 1. For any a ∈ Rm and b ∈ Rp, one has

(Im ⊗ a>)Um×p(Ip ⊗ b) = ab>. �

Proof. By relying on [22], [23], [24], it follows that

(Im ⊗ a>)Ūm×p(Ip ⊗ b)

=

m∑
j=1

p∑
k=1

(Im ⊗ a>)(Em×p
j,k ⊗ Em×p

j,k )(Ip ⊗ b)

=

m∑
j=1

p∑
k=1

Em×p
j,k ⊗ (a>Em×p

j,k b)

=

m∑
j=1

p∑
k=1

(Im ⊗ b>)(Em×p
j,k ⊗ Ep×m

k,j )(Ip ⊗ a)

=(Im ⊗ b>)Um×p(Ip ⊗ a) = (b> ⊗ Im)(Ip ⊗ a) = ab>.

thus concluding the proof.

Lemma 2. Consider two matrices M ∈ Rm×n and N ∈
Rn×p, and suppose that N 6= 0. Then, it follows that
Mxx>N = 0 for all x ∈ Rn if and only if M = 0. �

Proof. Sufficiency is straightforward: if M is the identically
zero matrix, then Mxx>N = 0 for all x ∈ Rn. On the other
hand, to show necessity, note that x ∈ Rn is such that

Mxx>N = 0 (21)

if and only if one of the following two statements hold:
(i) Mx = 0, which implies x ∈ ker(M);

(ii) N>x = 0, which implies x ∈ ker(N>).
Thus, one has that (21) holds if and only if x ∈ ker(M) ∪
ker(N>). Therefore, (21) holds ∀x ∈ Rn if and only if

ker(M) ∪ ker(N>) = Rn. (22)

Since Rn is a subspace, and the union of two subspaces is a
subspace if and only if one is a subset of the other [17], it
results that (22) holds if and only if one of the following two
statement hold:

(I) ker(M) ⊆ ker(N>) = Rn;
(II) ker(N>) ⊆ ker(M) = Rn.

Statement (I) cannot hold due to the fact that N is not the
zero matrix. Therefore, if (21) holds for all x ∈ Rn, then (II)
holds, i.e., M is the zero matrix.

By relying on Lemmas 1 and 2, we can prove Theorem 1.
Sufficiency: In order to show sufficiency of the stated

conditions, define the quadratic functions V (e) = e>Pe,
substitute the information-constrained control laws (6) in (3),
and consider the Hamilton-Jacobi-Bellman equation [25]

0 = min
K
{e>(2P (A+KC) +Q+ C>K>RKC)e}, (23)

which should hold for any e ∈ Rn. By [25], there exists a
solution to the optimal observation problem (3), (4), provided
there exist P that solve such equation. Therefore, define
M(K) = 2PKC + C>K>RKC, and note that

∂
∂K (2P (A+KC) +Q+ C>K>RKC) = ∂

∂KM(K).

By borrowing the tools discussed in [22], one obtains that

∂(e>M(K)e)
∂K = 2(In ⊗ e>P )Un×p(Ip ⊗ Ce)

+ (In ⊗ e>C>)Un×p(Ip ⊗RKCe)
+ (In ⊗ e>C>K>R)Un×p(Ip ⊗ Ce).

The only terms dependent on K in the expression above are

N(K) = (In ⊗ e>C>)Un×p(Ip ⊗RKCe)
+ (In ⊗ C>K>R)Un×p(Ip ⊗ C).

Furthermore, by Lemma 1, it follows that

(In ⊗ e>C>)Un×p(Ip ⊗RKCe)
= (e>C> ⊗ In)(Ip ⊗RKCe) = RKCee>C>

= (In ⊗ e>C>K>R)Un×p(Ip ⊗ Ce).

Therefore, N(K) can be rewritten as N(K) = 2(In ⊗
e>C>)Un×p(Ip⊗RKCe). Consider now the Hessian matrix
H of the (scalar) function e>M(K)e with respect to vec(K),

H := ∂
∂(vec(K))>

(
vec
(

∂
∂K (e>M(K)e)

))
= ∂

∂(vec(K))>
(vec(N(K))) .

By the reasoning given above, it results that vec(N(K)) =
2 vec((e>C> ⊗ In)(Ip ⊗ RKCe)) = 2 vec(RKCee>C>) =
2((Cee>C>) ⊗ R) vec (K). Hence, one has that H =
2(Cee>C>) ⊗ R, which is positive semidefinite due to the
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positive semidefiniteness of Cee>C> and R. Hence, the
scalar function e>M(K)e is convex with respect to vec(K).
Therefore, by classical results about convex functions [26],
the matrix K? minimizes e>M(K)e for all e ∈ Rn if and
only if ∂

∂KM(K?) = 0. Thus, by Lemma 1, K? must satisfy
RK?Cee>C> = −Pee>C>, for all e ∈ Rn, i.e.,

(RK?C + P )ee>C> = 0. (24)

Thus, by (24) and Lemma 2, one has that K? must be such
that RK?C = −P . By [22], (24) can be written as

vec(RK?C) = (C> ⊗R) vec(K?) = − vec(P ), (25)

i.e., vec(P ) must be in the image of C> ⊗R, i.e., (7b) must
hold. Thus, substituting RK?C with −P into (23), we obtain
e>(PA+A>P+Q−PR†P )e = 0 for all e ∈ Rn, i.e., P must
satisfy (7a). Therefore, if there exists P that solves (7a) and
such that (7b) holds, then, letting K? be a solution to (25),
one has that v? = K?e is an admissible optimal correction
input for (3), (4).

Necessity: In order to prove necessity, assume that there is
an admissible optimal correction input v? = K?e, but (7a)
does not hold or vec(P ) /∈ im

(
C> ⊗R

)
. Define the function

V (e) = J?(e), which is analytic by (12) and [19] and hence
must satisfy [25], for all e ∈ Rn,

0 = ∂V
∂e (A+K?C)e+ e>Qe+ e>C>K?>RK?Ce.

By considering the Taylor series expansion of V about the ori-
gin e = 0, one has that V can be expressed as V =

∑
`>1 p`,

where p` is a homogeneous polynomial in e of degree `.
Therefore, since ∂

∂eV =
∑

`>1
∂
∂ep` and p` is homogeneous

of degree ` with respect to the standard dilation [27], one has
that ∂p`

∂e (A+K?C)e is still homogeneous of degree `. Thus,
letting A? = A + K?C, the expression given in (26) can be
equivalently rewritten as

∂p`

∂e A
?e = 0, ` > 1, ` 6= 2,

∂p2

∂e A
?e = −e>Qe− e>C>(K?)>RK?Ce,

Thus, by rewriting p2 as p2 = e>Pe, for some symmetric
P ∈ Rn×n, one has that (23) must hold, thus leading to a
contradiction by the reasoning given to prove sufficiency.

B. Proof of Theorem 2

Sufficiency: It suffices to show that if there exist symmetric
and positive definite matrices Q and R such that (16) holds
then the hypotheses of Theorem 1 are met. Hence, assum-
ing that (16) holds, let P = RΠ�S, which is symmetric
and positive semidefinite by (16d) and (16c). Furthermore,
by (16e), such an equation solves (7a). Thus, it remains to
prove that (7b) holds. Note that, by construction, we have

vec(P ) = vec(RΠ�S) = vec(RΠ�C>W−1C)

= (C> ⊗R) vec(Π�C>W−1),

and hence also (7b) holds, thus concluding the proof.

Necessity: To prove necessity, assume that the steady-state
behavior of the Kalman-Bucy filter is optimal for some cost
functional of the form (4), with Q and R substituted by Q�

and R�, respectively, which are not both zero, but that there
does not exist a nontrivial solution to (16). By Theorem 1, this
implies that there exists P � = P �>, P � � 0, that solves (7)
and such that P � = R�Π�C>W−1C. This implies that Q�

and R� solve (16), thus leading to a contradiction.
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