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In this paper, systems of nonlinear integro-differential Volterra equations are examined that
can be represented as feedback interconnections of linear time-invariant block and periodic
nonlinearities. The interest to such systems is motivated by their numerous applications in
mechanical, electrical and communication engineering; examples include, but are not limited to,
models of phase-locked loops, pendulum-like mechanical systems, coupled vibrational units and
electric machines. Systems with periodic nonlinearities are usually featured by multistability and
have infinite sequences of (locally) stable and unstable equilibria; their trajectories may exhibit
non-trivial (e.g. chaotic) behavior. We offer frequency-domain criteria, ensuring convergence of
any solution to one of the equilibria points, which property is referred to as the gradient-like
behavior and corresponds to phase locking in synchronization systems. Although it is hard to
find explicitly the equilibrium, attracting a given trajectory, we give a constructive estimate for
the distance between this limit equilibrium and the initial condition. The relevant estimates are
closely related to the analysis of cycle slipping in synchronization systems. In the case where the
criterion of gradient-type behavior fails, a natural question arises which non-converging solutions
may exist in the system and, in particular, how many periodic solutions it has. We show that a
relaxation of the frequency-domain convergence criterion ensures the absence of high-frequency
periodic orbits. The results obtained in the paper are based on the method of integral quadratic
constraints that has arisen in absolute stability theory and stems from Popov’s techniques of “a
priori integral indices”. We illustrate the analytic results by numerical simulations.
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1. Introduction

The idealistic model of a mathematical pendulum, that is, a point mass swinging on an weightless and
inextensible cord, is a textbook example of a planar nonlinear system with a periodic nonlinearity. In spite
of their simplicity, pendulum-like models describe a broad class of natural and engineered systems, from
vibration units and electric machines to quantum oscillators and Josephson junction arrays [Baker & Black-
burn, 2005; Stoker, 1950; Leonov et al., 1996b; Blekhman, 2000; Czolczynksi et al., 2012; Fradkov, 2017].
More general equations with scalar or vector periodic nonlinearities naturally describe phase-locked loops
(PLL) and other synchronization systems [Lindsey, 1972; Leonov, 2006], broadly used in communication
and electronic engineering for carrier recovery in demodulator circuits, time synchronization, frequency
synthesis, clock and data recovery in communication networks [Gardner, 1966; Lindsey, 1972; Margaris,
2004; Best, 2003; Razavi, 2003]. Periodic nonlinearities in the corresponding mathematical models naturally
represent nonlinear characteristics of phase detectors (comparators). This paper deals with a general class
of infinite-dimensional systems with periodic nonlinearities and establishes a number of analytic criteria,
ensuring their convergence and nonoscillatority properties.

1.1. Literature survey

Systems with periodic nonlinearities can often be transformed into dynamical systems on toric or cylin-
dric manifolds [Kudrewicz & Wasowicz, 2007; Leonov et al., 1996a]. Considered in the Euclidean space,
such systems are multistable and have infinite sequences of equilibria. Many effects, observed in mul-
tistable systems, e.g. hidden oscillations and attractors [Leonov & Kuznetsov, 2013; Dudkowski et al.,
2016] or cycle slipping [Ascheid & Meyr, 1982], cannot be examined via linearizations at equilibria and
require special “nonlocal” techniques. Even simple models of PLLs had not been rigorously investigated
until recently [Chicone & Heitzman, 2013; Leonov & Kuznetsov, 2014; Leonov et al., 2015b,a; Best et al.,
2016]. Even more complicated is the theory of networks with periodic couplings, referred to as the Ku-
ramoto’s [Strogatz, 2000; Dörfler & Bullo, 2014] or “phase-locked” networks [Monteiro et al., 2003]. Many
important effects in such networks are still waiting for mathematically rigorous analysis. Such networks
naturally arise as approximations of pulse-coupled oscillator ensembles and have found many applications
in neuroscience [Izhikevich, 1999; Hoppensteadt & Izhikevich, 2000; Proskurnikov & Cao, 2017].

Most of the aforementioned works are confined to the case of ordinary differential equations, whereas
many practically important systems with periodic nonlinearities are essentially infinite-dimensional ; the
ODE models can be considered only as their approximations. One standard “culprit” of infinite-dimensional
dynamics is communication delay. Delays are inevitable in many synchronization circuits and may substan-
tially deteriorate the synchronization system’s behavior up to inducing instability [Wischert et al., 1992;
Bergmans, 1995; Buckwalter & York, 2002]. Distributed parameter models also naturally represent syn-
chronization systems, whose loop filters [Best, 2003; Margaris, 2004] have non-rational transfer functions;
this holds e.g. for fractional order filters that have much better attenuation of high frequencies [Hélie,
2014] than integer order filters. As reported in [Tripathy et al., 2015], a PLL with a fractional-order filter
“can provide faster response and lower phase error at the time of switching compared to its integer-order
counterpart”. In some models of PLLs, both infinite-dimensional filters and delays are present [Ya-Juan &
Zai-Hua, 2013]. Even being a finite dimensional system itself, a synchronization circuit may be incorporated
into some infinite-dimensional control system. For instance, some approaches to active vibration control for
flexible beams [Balas, 1978; Niezrecki & Cudney, 1997] employ PLLs as “residual mode” filters [Lin, 1993]
to suppress unmodeled high-frequency oscillations. Although a straightforward engineering approach to
analysis of such a system is to replace the distributed-parameter system by its finite-dimensional approx-
imation (assuming that the infinite-dimensional “residual dynamics” is attenuated), its complete model
leads to a system of PDE with a periodic nonlinearity (the characteristics of the PLL’s phase detector).

The mathematical results, regarding dynamics of infinite-dimensional systems with periodic nonlinear-
ities, are very limited. Some infinite-dimensional PLL circuits have been studied in [Hoppensteadt, 1983;
Skorokhod et al., 2000; Hoppensteadt, 2003], focusing on random and singular perturbations effects. In this
paper, we study dynamics of a general Lurie-type system, representable as a feedback interconnection of
infinite-dimensional linear part and a finite-dimensional periodic nonlinearity. The linear part is described
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by the integro-differential Volterra equation, and the nonlinearity can be partially uncertain, satisfying
some slope restrictions. Systems of this type describe, in particular, a broad class of PLLs that may have
infinite-dimensional loop filters and communication delays. Extending and refining results from the mono-
graphs [Leonov et al., 1992, 1996b] and more recent papers [Perkin et al., 2012, 2013, 2014; Smirnova et al.,
2015; Perkin et al., 2015; Smirnova & Proskurnikov, 2016], we address the following three problems: the
solutions’ convergence to the set of equilibria, deterministic cycle-slipping effects and the nonexistence of
high-frequency oscillations. The approach is based on the method of integral quadratic constraints (IQC),
which originates from Popov’s idea of “a priori integral indices” [Rasvan, 2006] and has been developed in
the framework of absolute stability theory, see [Megretski & Rantzer, 1997; Yakubovich, 2000, 2002] and
references therein. The criteria offered in this paper employ a “frequency-algebraic” condition, consisting
of a frequency-domain restriction on the linear part’s transfer function and nonlinear algebraic constraints.

1.2. Problems in question and the paper’s organization

The paper is organized as follows. Section 2 introduces the class of systems to be considered, key assump-
tions and relevant notation. Applications are also discussed that lead to the model in question.

Section 3 addresses the first of the aforementioned problems: to disclose conditions, ensuring conver-
gence of any solution of the system to one of the equilibria points. In synchronization systems, such a
convergence is often referred to as phase locking, and the system whose solutions are phase-locked is some-
times called gradient-like [Leonov, 2006; Duan et al., 2007]. In this paper, we give novel frequency-domain
criteria for gradient-like behavior of synchronization systems, extending the relevant criteria from [Leonov
et al., 1992, 1996b] in the case, where the periodic nonlinearity is slope-restricted. Note that the methods
from the works [Leonov et al., 1996a; Gelig et al., 2004; Leonov, 2006; Duan et al., 2007], addressing the
stability problems for systems with periodic nonlinearities, are based on the Kalman-Yakubovich-Popov
(KYP) lemma and cannot be employed for analysis of integro-differential equations.

Section 4 is concerned with the second of the aforementioned problems: to estimate the equilibrium
to which a given solution converges. A typical question is whether the phase converges to the nearest
equilibrium, or leaves its basin of attraction and converges to some distant point. The latter effect is
prominently illustrated by a pendulum’s rotations around the upper suspension point before calming down
at the lower point. In synchronization systems, such a behavior is known as cycle slipping [Ascheid &
Meyr, 1982], a similar phenomenon is the step (or pole) skipping in stepper motors [Stoker, 1950]. In both
situations such a behavior is considered as undesirable, leading, respectively, to demodulation errors in
communication systems and loosing the positioning quality. In the literature on PLLs, stochastic cycle
slippings are usually considered that are caused by presence of random noises and disturbances [Viterbi,
1963; Tausworthe, 1967; Ascheid & Meyr, 1982; Skorokhod et al., 2000]. In this paper, we deal with a
deterministic cycle slipping problem, pioneered in [Ershova & Leonov, 1983]: for a given initial condition,
estimate the number of slipped cycles (which, in some sense, may be considered as an estimate for the
distance between the initial condition and the solution’s limit).

Section 5 is related to the third problem: in the case where convergence of all solutions cannot be
proved by using our criterion, which types of non-convergent solutions can the system have? Although this
general problem still remains open, one can cope with a simpler problem, addressed in [Shakhgil’dyan &
Lyakhovkin, 1972; Yevtyanov & Snedkova, 1968] for PLLs: when does a periodic solution of a given period
exists? The problem of primary interest is to prove the absence of high-frequency oscillations. Most of the
existing works, concerned with the latter problem [Garber, 1967; Leonov & Speranskaya, 1985; Leonov
et al., 1996b; Leonov & Fyodorov, 2011; Perkin et al., 2015] exploit the idea of Fourier-series expansion.
In Section 5, we extend this method to the integral equations and multidimensional nonlinearities.

The concluding Section 6 is devoted to discussions, including detailed comparison of our results with
previous works and directions of ongoing research. Some technical proofs are collected in Appendix.

2. Preliminaries and notation.

Unless otherwise stated, we use lower case letters to denote vectors and diagonal matrices; all non-diagonal
matrices and sets are denoted by capital letters. As usual, d = diag(d1, . . . , dn) denotes the diagonal n×n
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σ̇(t) = b(t) +Rξ(t− h) + (Γ ∗ ξ)(t)

ξ(t) = ϕ(σ(t))

σ(t)

ξ(t)

Fig. 1. The system (1) as a feedback interconnection of two subsystems

matrix, whose main diagonal is constituted by the scalars d1, . . . , dn. A vector x ∈ Rl is considered as a

column of height l; |x| ∆
=
√
x>x denotes the Euclidean norm of the vector x. For a matrix A, |A| stands

for the induced operator norm, that is, |Ax| ≤ |A||x| for any appropriately dimensioned vector x. For a

complex-valued matrix H, we use H∗
∆
= H

>
to denote its complex-conjugate transpose. If H is a square

matrix, let ReH
∆
= 1

2(H +H∗) stand for its symmetrization. A Hermitian matrix H = H∗ is positive
definite (semi-definite), written H > 0 (respectively, H ≥ 0) if x∗Hx > 0 (respectively, x∗Hx ≥ 0) for any
vector x 6= 0 of the appropriate dimension.

We consider the system of integro–differential Volterra equations

σ̇(t) = b(t) +Rξ(t− h)−
t∫

0

Γ(t− τ)ξ(τ) dτ, ξ(t) = ϕ(σ(t)), t ≥ 0. (1)

Here σ(t) ∈ Rl is a vector function; motivated by the applications to synchronization systems, considered
below, σ(t) is said to be the phase vector, and its elements σj(t), where j = 1, . . . , l, are called phases.
The matrix function Γ(t) (the convolutional kernel) and the vector function b(t) ∈ Rl are supposed to be
known, R is a fixed l × l matrix and h ≥ 0 is a constant delay.1 To simplify matters, we consider only
smooth solutions σ ∈ C1([0,∞),Rl), such a smoothness is guaranteed by the choice of the initial conditions

σ(·)|[−h,0] = σ0(·) ∈ C([−h; 0],Rl), σ(0+) = σ0(0). (2)

Substituting the second equation in (1) into the first equation, one could get rid of the function ξ(t)
and consider (1) as a nonlinear integro-differential delay equation. The representation (1) appears however
to be more convenient, decomposing the nonlinear equation into a feedback interconnection of two simpler
subsystems (Fig. 1). The first of these subsystems is linear and described by the convolutional Volterra
equation, and the second subsystem is represented by the static nonlinearity ϕ(·). In control theory, such
a decomposition is called Lur’e form, and the systems representable in this form are referred to as Lur’e
systems [Lur’e, 1957]. The method used in this paper stems from Popov’s method of “a priori integral
indices” [Popov, 1973; Yakubovich, 2002; Rasvan, 2006]; along with other methods of “absolute stability”
theory [Popov, 1973; Megretski & Rantzer, 1997; Gelig et al., 2004; Yakubovich, 2002] this method deals
with Lur’e systems, where the linear part is known, whereas the nonlinear “feedback” can be uncertain.

2.1. Basic assumptions and notation

We start with introducing two basic assumptions, regarding, respectively, the properties of the linear part
and the nonlinearity and supposed henceforth to hold.
Assumption 1. (Linear part) The linear part of the system (1) is exponentially stable

|b(t)|+ |Γ(t)| ≤ Ce−rt, (3)

where C, r > 0 are constants. The function b(t) is continuous at any t ≥ 0.
Assumption 2. (Nonlinearity) The map ϕ : Rl → Rl is C1-smooth and satisfies the following conditions:

1For simplicity, we consider only one discrete (lumped) delay, the case of multiple discrete delays h1, . . . , hN can be considered
without serious changes, replacing Rξ(t− h) by a sum

∑s
i=1Riξ(t− hi).
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(1) (decoupling) for any j = 1, . . . , l, its jth coordinate depends only on σj , that is, ϕ(σ) =
(
ϕj(σj)

)l
j=1

;

(2) (periodicity) each scalar function ϕj(σj) is ∆j-periodic, that is, ϕj(ζ+ ∆j) = ϕj(ζ) ∀ζ ∈ R and ∆j > 0
is the minimum number with such a property;

(3) (zeros) each function ϕj(σj) has a non-empty zero set, consisting of isolated points;
(4) (slope restriction) for each j = 1, . . . , l we define

µ1j
∆
= min

j∈[0,∆j ]

dϕj(ζ)

dζ
< 0, µ2j

∆
= max

j∈[0,∆j ]

dϕj(ζ)

dζ
> 0; (4)

(5) (maximal value) for each j = 1, . . . , l we define

ϕ̂j
∆
= max

ζ∈[0,∆j ]
|ϕj(ζ)| <∞. (5)

Note that the inequalities µ1j < 0 < µ2j in (4) are entailed by conditions 2 and 3: since each of ϕj is
non-constant and periodic, it cannot be monotone, and hence ϕ′j changes its sign on [0,∆j).

2.2. Applications

In this subsection, we discuss several applications where the dynamical system (1) naturally arises.

2.2.1. Mathematical pendulum and synchronous motors

A textbook example of a system with periodic nonlinearity is the pendulum (Fig. 2a), on which a constant
rotating torque is applied. Assuming that the cord’s mass is negligible compared to the load M , the cord
is inelastic and the damping (viscous friction) force s̄ is proportional to the linear velocity of the mass
(equivalently, angular velocity σ̇), the equation of the pendulum is [Stoker, 1950]

σ̈ + aσ̇ + b(sinσ − β) = 0, (6)

where the parameters a, b > 0 and β ∈ R are uniquely determined by the mass of the load (m), the length
of the cord (l), the viscous friction coefficient and the rotating torque.

(a) (b)

Fig. 2. Illustrations to Subsections 2.2.1 and 2.2.2: (a) Mathematical pendulum; (b) Rotors on a swinging platform

The equation (6) may also serve as a simplistic mathematical model for the synchronous machine,
being a reduced form of the well known Park equations [Adkins, 1960; Halanay et al., 1987; Leonov, 2006].
Here σ(t) is the angle between the plane of the rotor frame and the plane orthogonal to the magnetic field.
The values a, b and β depend on parameters of the rotor and the magnetic field.

The equation (6) is apparently a special case of (1) since

σ̇(t) = σ̇(0)e−at − b
t∫

0

(sinσ(τ)− β)e−a(t−τ) dτ. (7)
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2.2.2. Synchronization of vibrational units (“rotors”)

Another example is synchronization of n ≥ 2 vibro-exciters (“rotors”) [Blekhman, 2000], installed on a
rigid swinging platform with one degree of freedom and rotated by asynchronous motors (Fig. 2b). The
rotors can synchronize without additional mechanical couplings among them [Blekhman, 2000].

Consider for simplicity n = 2 rotors with angular coordinates ϕi and let x stand for the vertical
coordinate of the platform. We assume that rotation torques of the motors are constant, the viscous
friction forces are proportional to the respective angular velocities ϕ̇i and the platform’s spring dampers
are linear. The equations of the system are as follows [Blekhman, 2000]

Iiϕ̈i = L0
i − kiϕ̇i +miεiẍ sinϕi (i = 1, 2), (8)

Mẍ = −cx+

2∑
i=1

miεi(ϕ̇
2
i cosϕi + ϕ̈i sinϕi), (9)

M
∆
= M0 +m1 +m2; Ii

∆
= Ji +miε

2
i .

Here Ji,mi, εi stand, respectively, for the moment of inertia, the mass and the eccentricity of the ith rotor,
L0
i , ki are the rotating torque and the friction constant of the ith motor, M0 is the mass of the platform

and c is the spring constant.
Although the equations (8),(9) cannot be solved analytically, an approximation to the solution is

given by a singular perturbation technique [Sperling et al., 1997], referred to as the method of direct
partition of motions (DPM) [Blekhman, 2000]. It is supposed (and confirmed experimentally) that around
a synchronous manifold the angular velocities of the rotors are almost constant in the sense that ϕ̇i ≈ Ω and
ϕ̈i ≈ 0, and their synchronous motion leads to nearly harmonic oscillations of the platform. The residual
ϕi(t)− Ωt is then split into the sum of “slow” and “fast” variables

ϕi(t)− Ωt = αi(t) + ψi(t,Ωt),
1

2π

2π∫
0

ψi(t, ϑ) dϑ = 0, (10)

Here |α̇i + ψ̇i|, |α̈i + ψ̈i| � 1. Substituting ϕi ≈ Ωt + αi, ϕ̇i ≈ Ω, ϕ̈i ≈ 0 into (9), the platform’s motion is
then approximated [Sperling et al., 1997] as follows

x(t) ≈ Axx
2∑
i=1

fi cos(Ωt+ αi(t)), Axx
∆
=

1

M(ω2 − Ω2)
, ω2 ∆

=
c

M
. (11)

The approximation (11) is then substituted to (8). Splitting fast and slow variables in the resulting equation
(by averaging over the “fast time” Ωt) yields in the dynamics for α̇i [Sperling et al., 1997]

I1α̈1 + k1α̇1 = k1(Ω1 − Ω)−A sin(α1 − α2),

I2α̈2 + k2α̇2 = k2(Ω2 − Ω) +A sin(α1 − α2),

Ωi
∆
=
L0
i

ki
, A

∆
=

1

2
Axxf1f2.

(12)

A natural assumption that (12) should have a static solution αi ≡ const (corresponding to the ideal
harmonic motion) leads to the condition k1(Ω1 − Ω) + k2(Ω1 − Ω) = 0, that is,

Ω =
k1Ω1 + k2Ω2

k1 + k2
. (13)

Under the assumption (13), the slow terms αi(t) obey the following nonlinear equations{
I1α̈1 + k1α̇1 +Aϕ(α1 − α2) = 0,

I2α̈2 + k2α̇2 −Aϕ(α1 − α2) = 0,
ϕ(σ)

∆
= sinσ − β

A
, β

∆
=

k1k2

k1 + k2
(Ω1 − Ω2). (14)
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Resolving (14) with respect to α̇i, one obtains

α̇j(t) = α̇j(0)e−rjt + (−1)jA

t∫
0

1

Ij
e−rj(t−τ)ϕ(α1(τ)− α2(τ)) dτ (j = 1, 2) (15)

with rj =
kj
Ij

. Therefore the deviation σ(t) = α1(t)− α2(t) is a solution to (1) with

R = 0, h = 0, b(t) = α̇1(0)e−r1t − α̇2(0)e−r2t, Γ(t) =
A

I1
e−r1t − A

I2
e−r2t. (16)

The (approximate) synchronization of rotors corresponds to the convergence σ(t)→ const and σ̇(t)→ 0
as t → +∞. Notice that the equations (14) resemble the pendulum equation (6), however, the deviation
σ(t) does not satisfy (6) (in fact, (14) can be transformed into a third-order ODE for σ(t)).

2.2.3. Phase-locked loop (PLL)

(a) (b)

Fig. 3. Illustration to Subsection 2.2.3: the “minimal” PLL vs. a more general synchronization circuit

The minimal structure of a PLL circuit is shown in Fig. 3a. The three cornerstone elements are the
phase detector (comparator), the bandpass loop filter and the voltage control oscillator, which has to be
synchronized with the reference oscillatory signal. In practice, synchronization circuits often have more
intricate structures, including e.g. frequency dividers, charge pumps to raise or lower voltage etc. (Fig. 3b)

The input to PLL is produced by some reference oscillator (RO), which is usually considered to be
harmonic with some fixed frequency ωRO > 0, that is, fin(t) = sinσRO(t), where σRO(t) = ωROt+ θ0. The
VCO’s output fout(t) = sinσV CO(t) has to be (asymptotically) synchronized with the RO in the sense that

σ(t)
∆
= σRO(t)− σV CO(t) −−−→

t→∞
σ∗ = const, σ(t) = ωRO − σ̇V CO(t) −−−→

t→∞
0. (17)

The desired behavior (17) is referred to as the phase and frequency locking. To reach it, the feedback
control loop (Fig. 3a) is designed, consisting of the phase detector and loop filter. The phase detector
(comparator) receives the input and output signals fin(t), fout(t), and returns a sum of “slowly” changing
function, represented as F (σ(t)), and a “fast” oscillatory signal, which is then cancelled by the low-pass
filter. In analog PLLs, the simplest detector of this kind computes the product

fin(t)fout(t) =
1

2
cos(σ(t))− 1

2
cos(σV CO(t) + σRO(t)).

To simplify modeling, it is typically assumed that the filter perfectly rejects high-frequency components of
the detector’s output, and only the “slow” part of this output F (σ(t)) (phase error) influences the VCO;
here F (σ) is typically a 2π-periodic function of the phase. Typically, the VCO’s controlled frequency is the
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sum of the free run (open-loop) value ω0
V CO and a term, proportional to the filtered phase error, that is,

σ̇V CO(t) := ω0
V CO + Le(t),

e(t) = −ρFF (σ(t)) +

t∫
0

gF (t− s)F (σ(s)) ds,
(18)

where L is a control gain and ρF = const, gF (·) ∈ L1[0,∞) are the filter’s characteristics.
Combining (18) with the definition of σ(t) in (17), one arrives at

σ̇(t) = (ωRO − ω0
V CO)︸ ︷︷ ︸

βF
∆
=

+LρF︸︷︷︸
R

∆
=

F (σ(t))−
t∫

0

LgF (t− s)︸ ︷︷ ︸
Γ(t−s)∆

=

F (σ(s)) ds. (19)

In the case of phase and frequency locking (17), the steady phase error β
∆
= F (σ∗) can be found from

βF + LρFβ − β
t∫

0

LgF (t− s)ds −−−→
t→∞

0⇐⇒ β =
βF

−R+
∫∞

0 Γ(s)ds
. (20)

It is convenient to introduce a shifted detector’s characteristics ϕ(σ)
∆
= F (σ)− β, vanishing at the equilib-

rium points σ∗. For ϕ(·) defined in this way, the equation (19) shapes into (1), where

b(t) = β

∞∫
t

Γ(s) ds = β

 ∞∫
0

Γ(s) ds−
t∫

0

Γ(t− s) ds

 (19),(20)
= βF + βR− β

t∫
0

Γ(t− s) ds.

and Γ, R are defined in (19) and h = 0. A more general model (1) with h > 0 corresponds to the delayed
feedback case, where the detector’s output is F (σ(t− h)). In this case, Γ(t) = 0 for t < h and b(t) depends
on the initial function σ0(·) from (2); the relevant computations are similar to the case h = 0 and omitted
here. It should be noticed that even if the absence of delays, the model of PLL can be infinite-dimensional
due to the use of intricate filters with non-rational transfer function. It has been shown in [Ya-Juan &
Zai-Hua, 2013; Tripathy et al., 2015] that fractional order filters can drastically reduce locking time and
increase capture range of a PLL, although robustness to noises can deteriorate.

Remark 2.1. One may notice that the frequency deviation βF = ωRO − ω0
V CO substantially influences the

nonlinearity ϕ(σ), which in turn determines the set of the system’s equilibria and the overall system’s
behavior. The excellent survey [Leonov et al., 2015a] provides a detailed analysis of the interrelation
between the value of βF and the PLL’s behavior2 and considers, in particular, the three sets of the values
{βF }, referred to as the hold-in, pull-in and lock-in ranges. The hold-in range is the set of βF , for which
the system has at least one (locally) asymptotically stable equilibrium; in general, this set of parameters
is disconnected and may consist of several disjoint intervals. Its subset, called pull-in (or capture) range is
constituted by values βF , for which the PLL system is gradient-like (each solution converges to one of the
equilibria3). The lock-in range (omitting some technical details) consists of the deviations βF , for which
the PLL is gradient-like and free of cycle slipping. In this work, we do not consider the problem of local
stability and focus on the global convergence (Section 3) and cycle slipping (Section 4). Dealing with PLL
circuits, the criteria from Sections 3 and 4 can be applied to estimate the pull-in and lock-in ranges of the
system, being an important problem in radio engineering. The explicit estimates, however, are beyond the
scope of this work and will be addressed in our future papers.

2In [Leonov et al., 2015a], the frequency deviation is denoted by ωfree
∆ .

3In [Leonov et al., 2015a], this property is called the global asymptotic stability of the system.



December 20, 2018 15:3 bif˙and˙chaos-v3

Paper Title 9

2.3. A frequency-domain inequality and integral quadratic constraint

In this subsection, we formulate a technical lemma, used throughout the paper to establish asymptotic
properties of the system (1). We start with introducing the set of diagonal l × l matrices and its subsets

Dl ∆
= {d = diag {d1, . . . , dl} : dj ∈ R ∀j} , Dl+

∆
=
{
d ∈ Dl : d > 0

}
, Dl+

∆
=
{
d ∈ Dl : d ≥ 0

}
,

M1
∆
= {α1 = diag {α11, . . . , α1l} , α1j ≤ µ1j ∀j} ,

M2
∆
= {α2 = diag {α21, . . . , α2l} , α2j ≥ µ2j ∀j} .

(21)

(where µ1j , µ2j are defined in (4)). We introduce the transfer function of the linear part from ξ to (−σ̇):

K(p)
∆
= −Re−ph +

∫ ∞
0

Γ(t)e−pt dt, p ∈ C, Re p > −r. (22)

In the subsequent analysis we use the frequency domain condition, involving matrix parameters
κ, ε, τ, δ, α1, α2 ∈ Dl, detα1 detα2 6= 0. Hereinafter, ı stands for the imaginary unit, ı2 = −1.

Π(ω) := Re
{
κK(ıω)−K∗(ıω)εK(ıω)−

[
K(ıω) + ıωα−1

1

]∗
τ
[
K(ıω) + ıωα−1

2

]}
− δ ≥ 0. (23)

Most typically, we will have α1 ∈ M1 and α2 ∈ M2, δ > 0 and ε, τ ≥ 0. The value of a each αij may be
either a number or ±∞. In the latter case we put α−1

ij := 0. The stability criteria, obtained in this paper,

are based on the following integral quadratic constraint, guaranteed by (23).

Lemma 1. Let (23) hold for all ω ∈ R and some matrices κ, ε, τ, δ, α1, α2 ∈ Dl, detα1 detα2 6= 0. Then
for any solution of (1), the following family of quadratic functionals

IT [w(·)] ∆
=

∫ T

0
{σ̇(t)∗κξ(t) + ξ(t)∗δξ(t) + σ̇(t)∗εσ̇(t) + (σ̇(t)− α−1

1 ξ̇(t))∗τ(σ̇(t)− α−1
2 ξ̇(t))} dt

w(·) ∆
= [σ̇(·)>, ξ(·)>, ξ̇(·)>]>,

(24)

is bounded in T . More formally, there exists a constant q, depending on the matrices κ, δ, ε, τ, αi, the
constants C, r, ϕ̄j , µ1j , µ2j from Assumptions 1 and 2 and the initial conditions (2), such that

IT [σ̇(·), ξ(·), ξ̇(·)] ≤ q ∀T ≥ 0. (25)

The technical proof of Lemma 1 is given in Appendix (in fact, we prove a more general result, dealing with a
broad class of quadratic functionals). It should be noticed that from this proof an explicit formula for q can
be obtained, being however somewhat “cumbersome”. It should be noticed that the results on asymptotic
behavior of the system, presented in this paper, do not employ the exact value of q, which, however, is
needed to get the estimates for the transient behavior of the system’s solutions (namely, the number of
slipped cycles). For some special solutions, a general estimate for the functional IT can be simplified, as
discussed in Remarks A.1 and A.2 in Appendix.

3. The global convergence (phase locking) criteria

In this section, we derive criteria, ensuring convergence of all solutions to equilibria points. This property
is often referred to as the gradient-like behavior [Leonov, 2006; Duan et al., 2007] or, when dealing with
synchronization circuits, phase locking. In fact, the following stronger property will be established.

Definition 3.1. We call a solution of (1) L2-convergent if the function ξ(t) = ϕ(σ(t)) is L2-summable.

The following simple lemma demonstrates that any L2-convergent solution converges to an equilibrium.

Lemma 2. Suppose that |ξ(·)| ∈ L2[0,∞). Then σ̇(t)→ 0 and σ(t) −−−→
t→∞

σ0, where ϕ(σ0) = 0.
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Proof. Assumption 1 implies that σ̇ is bounded, and hence σ(·) is uniformly continuous. The same holds
for ξ(t) = ϕ(σ(t)) since ξ̇ = ϕ′(σ)σ̇ and ϕ′(σ) is bounded. Using the standard Barbalat lemma [Popov,
1973], we have ξ(t) = ϕ(σ(t)) → 0 as t → ∞. Since ϕ(·) has isolated equilibria points, this implies that
σ(t) → σ0, where ϕ(σ0) = 0. Assumption 1 and (1) imply that σ̇(t) → 0 as t → ∞ (for an exponentially
stable linear system, the input vanishing as t→∞ corresponds to the vanishing output. �

Our simplest criterion for L2-convergence deals with a special case where each scalar nonlinearity ϕj(·)
has zero average over period (recall that the periods ∆j may differ). Such nonlinearities are featured by
the following simple property.

Proposition 1. For any locally summable ∆-periodic function ψ : R→ R such that
∫ ∆

0 ψ(ζ)dζ = 0 one has∣∣∣∣∫ s2

s1

ψ(ζ)dζ

∣∣∣∣ ≤ ∫ ∆

0
|ψ(ζ)|dζ ∀s1, s2 ∈ R. (26)

Proof. Since ψ is ∆-periodic, for any s ∈ R and integer k one has
∫ s+k∆
s ψ(ζ)dζ = k

∫ ∆
0 ψ(ζ)dζ = 0. Let

s2 − s1 = k∆ + ∆′, where k is integer and ∆′ ∈ [0,∆). Then, using the periodicity, one has∣∣∣∣∫ s2

s1

ψ(ζ)dζ

∣∣∣∣ =

∣∣∣∣∣
∫ s1+∆′

s1

ψ(ζ)dζ +

∫ s2

s1+∆′
ψ(ζ)dζ

∣∣∣∣∣ =

∣∣∣∣∣
∫ ∆′

0
ψ(ζ)dζ

∣∣∣∣∣ ≤
∫ ∆

0
|ψ(ζ)|dζ. �

Lemma 3. Suppose that
∫ ∆j

0 ϕj(ζ)dζ = 0 ∀j and the frequency-domain inequality (23) holds for some

κ ∈ Dl, δ ∈ Dl+, τ, ε ∈ D
l
+. Then any solution of the system (1) is L2-convergent.

Proof. In accordance with Lemma 1, for any T > 0 the following inequality holds∫ T

0
ξ(t)>δξ(t)dt =

∑
j

δj

∫ T

0
|ξj(t)|2dt ≤ q−

∫ T

0
σ̇>κξ(t)dt−

−
∫ T

0

σ̇>εσ̇(t)︸ ︷︷ ︸
≥0

+ (σ̇(t)− α−1
1 ξ̇(t))∗τ(σ̇(t)− α−1

2 ξ̇(t))︸ ︷︷ ︸
≥0

 dt ≤ q−
∑
j

κj
∫ T

0
σ̇j(t)ϕj(σj(t))dt︸ ︷︷ ︸

=
∫ σj(T )

σj(0)
ϕj(ζ)dζ

.
(27)

Proposition 1 entails that the right-hand side of (27) is uniformly bounded over T > 0. Passing to the limit
T →∞ and recalling that δ > 0, the solution is L2-convergent. �

3.1. The Bakaev-Guzh procedure and general L2-convergence criteria

As can be seen from examples, considered in Subsect. 2.2, often the condition of zero average from Lemma 3
fails to hold (e.g., it is not valid for ϕ(σ) = c+ sinσ, c 6= 0). To get rid of this restrictive assumption, the
so-called “Bakaev-Guzh procedure” [Bakaev & Guzh, 1965] can be used, decomposing the nonlinearities as

ϕj(ζ) = yj(ζ) + νjvj(ζ)|ϕj(ζ)|. (28)

Here vj(ζ) > 0 is some specially chosen ∆j-periodic function, and the multiplier νj is chosen in a way that

∆j∫
0

yj(ζ)dζ = 0⇐⇒ νj =

∆j∫
0

ϕj(ζ)dζ

∆j∫
0

vj(ζ)|ϕj(ζ)|dζ
(29)
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Introducing the auxiliary function ξj(t) = ϕj(σj(t)), one has ξj(t) = yj(σj(t)) + νjvj(σj(t))|ξj(t)|. By

noticing that ξ̇j(t) = ϕ′j(σj(t))σ̇j(t), the quadratic functional (24) can be decomposed as follows

IT [w(·)] =
l∑

j=1

κj
∫ T

0
σ̇j(t)yj(σj(t))dt+

+

∫ T

0

∑
j

[
κjνj σ̇j(t)vj(σj(t))|ξj(t)|+ δj |ξj(t)|2 + εj

(
1 + ε−1

j τjΦj(σj(t))
2
)
|σ̇j(t)|2

]
dt,

(30)

Φj(σj)
∆
=

√(
1− α−1

1j ϕ
′
j(σj)

)(
1− α−1

2j ϕ
′
j(σj)

)
. (31)

Proposition 1 implies, thanks to (29), that the first term in (30) is a bounded function of T ≥ 0 (where

the bound depends, of course, on the choice of the specific vj(·)). Choosing now vj(ζ) =
√

1 + ε−1
j τjΦj(ζ)2

and calculating νj in accordance with (29), the expression under the second integral in (30) becomes a
quadratic form of the variables ξj and σ̇jvj(σj), which appears to be positive definite under additional
restriction on the parameters. We now formulate the corresponding result.

Theorem 1. Suppose there exist diagonal matrices κ ∈ Dl, τ ∈ Dl+, ε, δ ∈ Dl+, α1 ∈ M1, α2 ∈ M2 such
that the frequency-domain inequality (23) holds and the following algebraic inequalities are valid

2
√
εjδj > |κj ν̄j |, ν̄j

∆
=

∆j∫
0

ϕj(ζ)dζ

∆j∫
0

|ϕj(ζ)|
√

1 + ε−1
j τjΦj(ζ)2dζ

, ∀j = 1, . . . , l. (32)

Then any solution of (1) is L2-convergent.

Proof. Decomposing the nonlinearities ϕj(σj) as in (28), where

vj(ζ) =
√

1 + ε−1
j τjΦj(ζ)2, νj = ν̄j , (33)

the multiplier νj satisfies (29). Due to Proposition 1, the first sum in (30) is uniformly bounded over all
T ≥ 0. Due to the inequalities (32), 4εjδj > κ2

j ν
2
j , and hence there exists a constant ϑ > 0 such that

∑
j

κjνj σ̇jvj(σj)|ξj |+ δj |ξj |2 + εj |σ̇j |2
(

1 + ε−1
j τjΦj(σj)

2
)

︸ ︷︷ ︸
=|vj(σj)|2

 ≥∑
j

ϑ(|ξj |2 + |σ̇jvj(σj)|2) ≥ ϑ|ξ|2. (34)

Using the inequality (25) and passing to the limit as T →∞, (30) implies that |ξ(·)| ∈ L2[0,∞). �

If
∫ ∆j

0 ϕj(ζ)dζ = 0, then (32) holds for any εj , δj > 0, τj ≥ 0,κj ∈ R, so the general criterion from
Theorem 1 reduces to Lemma 3 (with the only difference that Lemma 3 allows to choose εj = 0). In
general, the analytic computation of the integral in (32) may be troublesome, however, some estimates can
be used. For instance, (32) is implied by simpler yet more conservative inequalities

2
√
εjδj >

∣∣∣∣∣∣∣∣∣
κj

∆j∫
0

ϕj(ζ)dζ

∆j∫
0

|ϕj(ζ)|dζ

∣∣∣∣∣∣∣∣∣ , ∀j = 1, 2, . . . , l. (35)

Notice that the condition (35) does not involve τ , and the only restriction on this parameter is the frequency-
domain inequality (23). Choosing τ = 0, the frequency-domain inequality (23) becomes independent of α1
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and α2, in other words, the slope restriction ϕj(σj) is completely ignored. As will be showin in Example 3.1
below, such a condition may be restrictive; in particular, it cannot be valid if R = 0 and thus K(ıω)→ 0
as ω → ±∞. However, τ cannot be chosen very large since otherwise (23) is violated at ω = 0.

The Bakaev-Guzh decomposition, providing the positivity of the second term in (30) is, obviously,
non-unique. An alternative convergence criterion can be obtained, considering a convex combination of two
decompositions (28), with vj1(ζ) ≡ 1, vj0(ζ) = Φj(ζ) and the corresponding multipliers νj1, νj0 from (29):

ϕj(ζ) = aj (yj1(ζ) + νj1|ϕj(ζ)|) + (1− aj) (yj0(ζ) + νj0Φj(ζ)|ϕj(ζ)|) = yj(ζ) + νjvj(ζ),

yj(ζ) = ajyj1(ζ) + (1− aj)yj0(ζ), vj = ajνj1 + (1− aj)νj0Φj(ζ), νj = 1, aj ∈ [0, 1].
(36)

Substituting this into (30), the second integrand becomes the quadratic form of σ̇j , |ξj |, σ̇jΦj(σj) as follows∑
j

[
εj σ̇

2
j + τj (σ̇jΦj(σj))

2 + δj |ξj |2 + ajκjνj1σ̇j |ξj |+ (1− aj)κjνj0|ξj | (σ̇jΦj(σj))
]
.

Retracing the arguments in the proof of Theorem 1, all solutions are L2-convergent if the latter quadratic
form is positive definite. We arrive at the following result.

Theorem 2. Suppose there exist matrices κ ∈ Dl, δ, ε, τ ∈ Dl+, α1 ∈ M1, α2 ∈ M2 and the scalars aj ∈
[0, 1] such that (23) holds and the following matrix inequalities hold for j = 1, . . . , l εj

κjajνj1
2 0

κjajνj1
2 δj

κj(1−aj)νj0
2

0
κj(1−aj)νj0

2 τj

 > 0, νj0
∆
=

∆j∫
0

ϕj(ζ) dζ

∆j∫
0

|ϕj(ζ)|Φj(ζ) dζ

, νj1
∆
=

∆j∫
0

ϕj(ζ) dζ

∆j∫
0

|ϕj(ζ)| dζ
. (37)

Then all solutions of the system (1) are L2-convergent.

Choosing aj = 1 and τ > 0, (37) in fact reduces to (35). For aj = 0, (37) reduces to

2
√
δjτj > |κjνj0| ∀j = 1, . . . , l.

Remark 3.1. For the Bakaev-Guzh decomposition (28) with νj defined by (29), one has∫ ∆j

0
|yj(ζ)|dζ ≤

∫ ∆j

0
|ϕj(ζ)|dζ + |νj |

∫ ∆j

0
|ϕj(ζ)|vj(ζ)dζ

(29)
= sj

∆
=

∫ ∆j

0
|ϕj(ζ)|dζ +

∣∣∣∣∫ ∆j

0
ϕj(ζ)dζ

∣∣∣∣ . (38)

Using (25), (30), (26) (with ψ = yj) and (38), it is possible to obtain an explicit estimate of the norm
‖ξ(·)‖L2[0,∞) provided that the assumptions of Theorem 1 or 2 are valid.

3.2. Numerical examples: the dynamics of PLLs

The examples deal with the scalar case (l = 1), where the inequality (23) is especially easy to check. To
demonstrate the stability criteria, we confine ourselves to the equations of second order, however, higher-
order PLL circuits [Leonov & Smirnova, 1980] can also be examined by our methods.

Example 3.1. Consider the mathematical pendulum:

σ̈ + aσ̇ + (sinσ − β) = 0 a > 0, β ∈ (0, 1). (39)

Due to (7), this equation is equivalent to a PLL whose loop filter has the transfer function

K(p) =
T

Tp+ 1
, T = a−1 > 0. (40)

Using Theorem 2 with κ = 1, α11 = −∞, α21 = 1, it is possible to estimate the set of the coefficients
{(T, β)}, T, β > 0, for which all solutions of the system (39) converge. In Fig. 4, we compare the domain in
the parameter space, where the convergence is ensured by Theorem 2, with the exact convergence domain,
computed in [Belyustina et al., 1970] by using qualitative-numerical methods (the convergence domains lie
under the curves T2 and Q respectively).
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Fig. 4. The exact phase-locking domain for the system (39) vs. its estimate from Theorem 2.

Example 3.2. Consider a PLL with a proportional integral low-pass filter and a sine–shaped characteristic
of phase frequency detector. The transfer function of the linear part and the nonlinearity are, respectively,

K(p) := T
mTp+ 1

Tp+ 1
, ϕ(σ) = sinσ − β, β ∈ (0, 1), T > 0. (41)

Choosing m = 0.2 as in [Pervachev, 1962], Fig. 5 illustrates the dependencies between T−1 and β, providing
the solutions’ convergence. The stability domain obtained by numerical solution of equation (1) on the
plane (T−1, β) is located under the curve L1 [Pervachev, 1962]. Other curves are the lower estimates of the
boundary L1 received with the help of Theorems 1 and 2, choosing α21 = −α11 = 1 and fixing4 κ = 1.

For τ = 0, the condition (32) coincides with (35) and can be satisfied simultaneously with (23) only
when β < β0 ≈ 0.55; here T > 0 can be arbitrary [Gelig et al., 2004]. At the same time, the conditions (35)
and (23) with τ > 0 hold in fact for a much broader domain of parameters (T−1, β), lying under the curve
L4 [Leonov et al., 1996b]. As we have seen, (35) in the case where τ > 0 is a special case of (37) with
a1 = 1. Using the criterion from Theorem 2 and varying the parameter a1 ∈ [0, 1] in (37), a broader set of
parameters bounded by curve L3 is obtained [Perkin et al., 2009]. Theorem 1 gives curve L2, close to L3.

Example 3.3. Consider now similar to (41) system with delayed feedback

K(p) := T
0.2Tp+ 1

Tp+ 1
e−ph, h = 0.1T. (42)

Fig. 6 illustrates the dependencies between T 2 and β. The solid line stands for the upper boundary of
the stability region obtained by qualitative–numerical methods in [Belustina, 1992]. For the region of
parameters under the dashed line, the stability is ensured by Theorem 2 (where we have fixed κ = |α1| =
α2 = 1 and varied ε1, δ1, τ1, a1). Theorem 1 in fact gives the same stability domain.

4. The number of slipped cycles

The convergence criteria established in the previous section contain no information about the equilibrium
a specific solution converges to. One may suppose that, choosing σ(0) very close to an equilibrium point
σ̄0, the convergence σ(t) −−−→

t→∞
σ̄0 should take place. However, in spite of the exponential vanishing of b(·)

in (1), this term may drive the trajectory beyond the equilibrium’s σ̄0 basin of attraction, as illustrated by
the usual pendulum (Subsect. 2.2.1). If the initial angular velocity σ̇(0) is large, the pendulum can make
several complete (360◦) rotations around the suspension point before stopping at the stable equilibrium.

4Obviously, the condition (23) remains unchanged, scaling all the parameters κ, ε, δ, τ by the same positive constant. Since
ε, δ, τ > 0 and T > 0, (23) can hold only for κ > 0. Hence, without loss of generality, we can assume that κ = 1.
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Fig. 5. Stability domains for the PLL system (41) with m = 0.2.

Fig. 6. Stability domains for the PLL system with time delay (42).

In synchronization systems, such a behavior is referred to as the cycle slipping and considered to be
undesirable, leading to deviations in the carrier frequency estimation and demodulation errors. Following
the pioneering work [Viterbi, 1963], in communication engineering literature cycle slipping under stochastic
noises has been extensively studied [Tausworthe, 1967; Ascheid & Meyr, 1982; Sancho et al., 2014]. The
main concern of these studies is to reveal the relations between the signal-to-noise ratio (SNR) and the
expected number of slipped cycles. In this paper, we are confined to the aforementioned “deterministic”
cycle slipping problem, dealing with the estimate of the equilibrium to which a given solution converges.

We start with a formal definition. Recall that ∆j > 0 stands for the period of ϕj(·).

Definition 4.1. Let σ(·) ∈ Rl be a solution to (1). We say that its jth component σj(·) slips k ≥ 0 cycles

if there exists an instant t̂ ≥ 0 such that |σj(t̂)−σj(0)| = k∆j , however |σj(t)−σj(0)| < (k+ 1)∆j for any
t ≥ 0. In particular, the jth component of a solution slips less than k ≥ 1 cycles if |σj(t)− σj(0)| < k∆j .

Since the solution to (1) is uniformly bounded, each component σj slips some finite number of cycles
kj ≥ 0. We are interested in obtaining explicit estimates of these numbers, assuming that the convergence
conditions from the previous section hold. This problem may seem to be very different from the convergence
problem, addressed in the previous section: the convergence is an asymptotic property of a solution, whereas
the numbers of cycles kj characterize its transient behavior. Nevertheless, it appears that Theorems 1 and 2
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can give estimates for the numbers of slipped cycles, strengthening the algebraic conditions (32) and (37)
respectively. To understand the idea, lying in the heart of these estimates, we consider the following simpler
result, being in some sense a counterpart of Lemma 3 and giving a one-sided estimate for σj(t).

Lemma 4. Assume that the (scalar) frequency-domain inequality (23) holds for some parameters κ ∈ Dl,
δ ∈ Dl+, ε, τ ∈ Dl+ and all ω ∈ R. Suppose also that

∫ ∆j

0 ϕj(ζ)dζ = 0 for j 6= j0 and

(−1)iκj0
∫ ∆j0

0
ϕj0(ζ)dζ ≥

q +
∑

j 6=j0
∫ ∆j

0 |κjϕj(ζ)|dζ
k

, (43)

where i ∈ {0; 1}, k > 0 is integer, and q is the constant from (25). Then following inequality holds

(−1)i[σj0(t)− σj0(0)] < k∆j0 ∀t ≥ 0. (44)

Proof. The proof follows the line of the proof of Lemma 3. Assume now, on the contrary, that (−1)i[σj0(T )−
σj0(0)] = k∆j0 for some T ≥ 0. Since ξj0(t) 6≡ 0 on [0, T ] and δ > 0, one obtains that

0
(27)
< q−

∑
j

κj
∫ T

0
σ̇j(t)ϕj(σj(t))dt = q−

∑
j

κj
∫ σj(T )

σj(0)
ϕj(ζ)dζ = q−

∑
j 6=j0

κj
∫ σj(T )

σj(0)
ϕj(ζ)dζ−

−κj0
∫ σj0 (T )

σj0 (0)
ϕj0(ζ)dζ

(26)

≤ q +
∑
j 6=j0

∫ ∆j

0
|κjϕj(ζ)|dζ − κj0

∫ σj0 (T )

σj0 (0)
ϕj0(ζ)dζ︸ ︷︷ ︸

=(−1)iκj0k
∫ ∆j0
0 ϕj0 (ζ)dζ

≤ 0,
(45)

and we arrive at the contradiction. Hence the inequality (44) is valid. �

Although Lemma 4 cannot be directly used to estimate the number of slipped cycles, giving only a
one-sided estimate (44) (obviously, (44) cannot hold for both i = 0 and i = 1) and being inapplicable to

the case where
∫ ∆j0

0 ϕj0(ζ)dζ = 0, it suggests the way how such an estimate can be obtained for the given
component j0. Namely, for j 6= j0 one needs to apply the the Bakaev-Guzh procedure, which decomposes
the function ϕj(ζ) in accordance with (28),(29). For j = j0, one has to consider a modified decomposition

ϕj0(ζ) = y
(0)
j0

(ζ) + ν
(0)
j0
v

(0)
j0

(ζ)|ϕj0(ζ)| = y
(1)
j0

(ζ) + ν
(1)
j0
v

(1)
j0

(ζ)|ϕj0(ζ)|, (46)

where the choice of ν
(i)
j0

, i = 0, 1, provides the following counterpart of (43) for the functions yj(ζ)

(−1)iκj0
∫ ∆j0

0
y

(i)
j0

(ζ)dζ =
1

k

q +
∑
j 6=j0

|κj |sj

 (38)

≥ 1

k

q +
∑
j 6=j0

∫ ∆j

0
|κjyj(ζ)|dζ

 , i = 0, 1. (47)

We now formulate the counterparts of Theorems 1 and 2, estimating the numbers of slipped cycles.

Theorem 3. Under the assumptions of Theorem 1, assume that for some integer k > 0 and j0 ∈ {1, . . . , l}

κj0 6= 0, 2
√
εj0δj0 > |κj0ν

(i)
j0
|, ν

(i)
j0

∆
=

∆j0∫
0

ϕj0(ζ)dζ − (−1)i

kκj0

(
q +

∑
j 6=j0
|κj |sj

)
∆j0∫
0

|ϕj0(ζ)|
√

1 + ε−1
j0
τj0Φj0(ζ)2dζ

∀i = 0, 1. (48)

Here sj are defined in (38) and Φj is from (31). Then the component σj0(·) slips less than k cycles.

Notice that ν
(0)
j0

+ ν
(1)
j0

= 2ν̄j0 , where ν̄j is defined in (32). In other words, the conditions (48)

strengthen (32) for j = j0 (and coincide with (32) as k →∞).
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Proof. Following the proof of Theorem 1, we consider the decomposition (30), where yj(ζ) = ϕj(ζ) −
νjvj(ζ)|ϕj(ζ)| and vj(ζ) =

√
1 + ε−1

j τjΦj(ζ)2 for any j. The multipliers νj are defined as follows

νj
∆
=

{
ν̄j , j 6= j0

ν
(i)
j0
, j = j0.

Here i ∈ {0, 1}, ν̄j is defined in (32) and ν
(i)
j0

is from (48). Assume, on the contrary, that for some T > 0

one has |σj0(T ) − σj0(0)| = k∆j0 , that is, for some i ∈ {0, 1} one has (−1)i(σj0(T ) − σj0(0)) = ∆j0 and
decompose the functional (24) in accordance with (30). The conditions (32) and (48) imply (34) for some
ϑ > 0. Since ξj0(t) 6≡ 0 on [0, T ], the second integral in (30) is strictly positive. Therefore

l∑
j=1

κj
∫ T

0
σ̇j(t)yj(σj(t))dt < q.

Recall that for j 6= j0 the number νj = ν̄j satisfies (29) and (38) holds. The straightforward computation

shows that the definition of ν
(i)
j0

in (48) implies (47). Retracing the proof of Lemma 4, one has

0 < q−
∑
j

κj
∫ T

0
σ̇j(t)yj(σj(t))dt = q−

∑
j

κj
∫ σj(T )

σj(0)
yj(ζ)dζ = q−

∑
j 6=j0

κj
∫ σj(T )

σj(0)
yj(ζ)dζ−

−κj0
∫ σj0 (T )

σj0 (0)
yj0(ζ)dζ

(26),(38)

≤ q +
∑
j 6=j0

|κj |sj − κj0
∫ σj0 (T )

σj0 (0)
yj0(ζ)dζ︸ ︷︷ ︸

=(−1)iκj0k
∫ ∆j0
0 yj0 (ζ)dζ

= 0,
(49)

arriving thus at a contradiction. Hence the j0th component slips less than k cycles. �

An extension of Theorem 2, allowing to estimate the number of cycles slipped by the component σj0(·),
can be derived in the same way. For j 6= j0, one has to consider the decomposition (36). For j = j0, however,

the coefficients ν
(i)
j00 and ν

(i)
j01 (where i ∈ {0, 1}) have to be chosen in a way to provide (47), namely,

ν
(i)
j00

∆
=

∆j0∫
0

ϕj0(ζ) dζ − (−1)i

kκj0

(
q +

∑
j 6=j0
|κj |sj

)
∆j0∫
0

|ϕj0(ζ)|Φj0(ζ) dζ

, ν
(i)
j01

∆
=

∆j0∫
0

ϕj0(ζ) dζ − (−1)i

kκj0

(
q +

∑
j 6=j0
|κj |sj

)
∆j0∫
0

|ϕj0(ζ)| dζ
. (50)

Using this modified Bakaev-Guzh procedure, the following counterpart of Theorem 2 can be proved.

Theorem 4. Let the assumptions of Theorem 2 be valid. Suppose also that for some j0 ∈ {1, 2, . . . , l} and
integer k > 0 the inequalities hold as follows

κj0 6= 0,


εj0

κj0aj0ν
(i)
j01

2 0
κj0aj0ν

(i)
j01

2 δj0
κj0 (1−aj0 )ν

(i)
j00

2

0
κj0 (1−aj0 )ν

(i)
j00

2 τj0

 > 0 ∀i = 0, 1. (51)

Then the component σj0(·) slips less than k cycles.

In the scalar case, the estimates for the number of slipped cycles are further simplified by noticing that

the term
∑

j 6=j0 |κj |sj in the formulas for ν
(i)
j0

, ν
(i)
j00, ν

(i)
j01 disappears. Denoting for brevity Φ(σ) = Φ1(σ1),

the following corollaries are obtained.
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Corollary 4.1. Assume that l = 1 and the frequency-domain condition (23) holds for some κ 6= 0, δ, ε, τ > 0
and all ω ∈ R. Suppose also that for some integer k > 0 the inequality holds as follows

2
√
εδ > |κν(i)|, ν(i) ∆

=

∆∫
0

ϕ(ζ)dζ − (−1)iq
kκ

∆∫
0

|ϕ(ζ)|
√

1 + ε−1τΦ(ζ)2dζ

∀i ∈ {0, 1}. (52)

Then any solution converges to an equilibrium, slipping strictly less than k cycles.

Corollary 4.2. Assume that l = 1 and the frequency-domain condition (23) holds for some κ 6= 0, δ, ε, τ > 0
and all ω ∈ R. Suppose also that for some integer k > 0, a ∈ [0, 1] and i ∈ {0, 1} the inequality holds ε

κaν(i)
1

2 0
κaν(i)

1
2 δ

κ(1−a)ν
(i)
0

2

0
κ(1−a)ν

(i)
0

2 τ

 > 0, ν
(i)
0

∆
=

∆∫
0

ϕ(ζ) dζ − (−1)iq
kκ

∆∫
0

|ϕ(ζ)|Φ(ζ) dζ

, ν
(i)
1

∆
=

∆∫
0

ϕ(ζ) dζ − (−1)iq
kκ

∆∫
0

|ϕ(ζ)| dζ
. (53)

Then any solution converges to an equilibrium, slipping strictly less than k cycles.

Remark 4.1. The estimates from Corollaries 4.1 and 4.2 can be further improved for the special initial
conditions by noticing that the “global” constant q can be removed by a number q, depending on a specific
solution σ(t), and featured by the following property: if T > 0 and |σ(0)− σ(T )| = k∆, then

IT [σ̇(·), ξ(·), ξ̇(·)] ≤ q.
For instance, if ξ(0) = ϕ(σ(0)) = 0, then ξ(T ) = ϕ(σ(T )) = ϕ(σ(0)±k∆) = 0. As implied by Remarks A.1
and A.2 from Appendix, in this case a much less conservative estimate for q can be obtained.

Example 4.1. We again consider the PLL with a proportional integral low-pass filter, a sine–shaped
characteristic of phase frequency detector and a time–delay in the loop that has been investigated in
Example 3.3. Its mathematical description is borrowed from [Belustina, 1992]:

σ̈(t) +
1

T
σ̇(t) + ϕ(σ(t− h)) + sT ϕ̇(σ(t− h)) = 0, (54)

ϕ(σ) = sinσ − β, s ∈ (0, 1), β ∈ (0, 1], h > 0, T > 0.

The differential equation (54) can be reduced to integro-differential equation (1) with

Γ(t) =

{
0, t < h,

(1− s)e− t−hT , t ≥ h,

b(t) = e−
t
T (u− (1− s)J), u

∆
= σ̇(0) + sTϕ(σ(−h)), J

∆
=


t−h∫
−h

e
λ+h
T ϕ(σ(λ))dλ, t ≤ h,

0∫
−h

e
λ+h
T ϕ(σ(λ))dλ, t > h.

Let α21 = −α11 = 1, κ = 1, a1 = 1. The frequency-domain condition (23) reduces to

Π(ω) ≡ τT 2ω4 + ω2(T 3s cosωh− T 4s2(ε+ τ) + τ − δT 2)− T 2(1− s)ω sinωh+ T cosωh−
−(ε+ τ)T 2 − δ ≥ 0 ∀ω;

(55)

whereas the inequalities (53) may be rewritten as

2
√
εδ >

2πβ + qk−1

4(β arcsinβ +
√

1− β2)
. (56)
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Notice that for all ω ∈ R one has

Π(ω) ≥ Ω0(ω) ≡ (τT 2 − 1

2
T 3sh2)ω4 + (T 3s− T 4s2(ε+ τ) + τ − δT 2 − 1

2
Th2 − (1− s)T 2h)ω2+

+(T − (ε+ τ)T 2 − δ) ∀ω ∈ R

and Π(ω) ≈ Ω0(ω) when ωh� 1.
We consider the case T ≤ 0.9, h0 = h

T ≤ 1, since for small T and small h the PLL is gradient-like for

all β ∈ (0, 1] [Belustina, 1992]. Let us choose ε = β0

T , δ = α0T, τ = γ0T
3. As Π(0) = Ω0(0) it is necessary

that α0 + β0 + γ0T
4 ≤ 1. Then the optimal values for α0 and β0 are α0 = β0 = 1

2(1 − γ0T
4), whence

2
√
εδ = 1− γ0T

4. For γ0 = max {1
2sh

2
0,

1
2(h0 + 1− s)2} the polynomial Π0(ω) is nonnegative, ∀ω.

We choose the initial conditions in such a way that u = K(0)β [Ershova & Leonov, 1983] and ϕ(σ(0)) =
sinσ(0)−β = 0 and apply Corollary 4.2, where q is replaced, in accordance with Remark 4.1, by the better
estimate q from Remark A.2, given by

q = A+Bh0 + Ch2
0,

A
∆
= T 2(

7

2
β2 + 3), B

∆
= 3T 2(1− s)(1 + β)(3β + 1), C

∆
=

3

2
T 2(1− s)2(1 + β)2.

(57)

It follows from (56) that the number k0 of cycles slipped satisfies the inequality

k0 ≤ r0 := bq(8
√
εδ(β arcsinβ +

√
1− β2)− 2πβ)−1c, (58)

where bxc stands for the integer floor of x; in view of (57), r0 is increasing in each variable T, β, h0.
Choosing h0 = h/T = 1, s = 0.4, and T = 0.1, Fig. 7 illustrates the curves in the parameters space,

corresponding to r0 from 1 to 4; below each curve the number of slipped cycle does not exceed r0 (58).

Fig. 7. The estimates of cycle slipping for the system (54) with s=0.4, h=T

5. Frequencies of periodic solutions

A natural question arises which type of non-convergent solutions the system (1) may have when the
sufficient conditions from Theorems 1 and 2 are violated. In general, if the equilibria’s basins of attraction
do not cover the phase space of the system, it may have some “hidden” oscillations and attractors [Leonov
& Kuznetsov, 2013; Dudkowski et al., 2016; Jafari et al., 2015]. Whereas the behavior of general non-
convergent solutions of (1) remains a non-trivial open problem, in this section we establish some properties
of periodic solutions, where the periodicity is understood in the following generalized sense.
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Definition 5.1. Throughout this section, we call the solution σ(t) output-periodic with period T0 > 0 or,
equivalently, frequency ω0 = 2π/T0, if ξ(t+ T0) = ξ(t) ∀t ≥ 0. Equivalently, for some integer Ij one has

σj(t+ T0) = σj(t) + Ij∆j ∀j = 1, . . . , l, ∀t ≥ 0. (59)

The term “output-periodic” is motivated by the applications to PLLs and other synchronization circuits,
where the function ξ(t) = ϕ(σ(t)) stands for the output of the phase detector (comparator), which does
not allow to distinguish “genuine” periodic solutions σ(t) = σ(t+ T0) from output-periodic ones.

It appears that a “relaxed” version of the frequency-domain inequality (23) allows to prove the absence
of output-periodic solutions of certain frequencies. Our approach allows to extend the results from [Leonov
& Speranskaya, 1985] and [Leonov et al., 1996b] and combines the methods of Fourier expansions and
Popov’s integral indices. We now formulate a counterpart of Lemma 1 for output-periodic solutions.

Lemma 5. Assume that (23) with some matrices κ, ε, τ, δ, α1, α2 ∈ Dl, detα1 detα2 6= 0 holds for all
ω = ω0k, where ω0 > 0 and k is integer. Then for any output-periodic solution of (1) one has

IkT0 [σ̇, ξ, ξ̇] ≤ 0, T0
∆
=

2π

ω0
∀k ∈ Z ∆

= {0,±1,±2, . . .} (60)

Here IT stands for the quadratic integral functional (24).

Lemma 5 and its extension, dealing with more general quadratic functionals, is proved in Appendix. The
following “relaxed” version of Theorems 1 and 2 ensures the absence of high-frequency periodic solutions.

Theorem 5. Suppose that diagonal matrices κ ∈ Dl, τ ∈ Dl+, ε, δ ∈ Dl+, α1 ∈ M1, α2 ∈ M2 exist such
either the algebraic inequalities (32) hold or the inequalities (37) are valid for some aj ∈ [0, 1]. Then

(1) if the frequency-domain condition (23) holds for any ω = ω0k, where ω0 > 0 and k ∈ Z, then the
system (1) has no non-constant output-periodic solution of the frequency ω0;

(2) if the frequency-domain condition (23) holds for any ω = 0 and |ω| ≥ ω̄ > 0, then all non-constant
output-periodic solutions (if they exist) have frequencies less than ω̄.

Proof. The first statement is proved similarly to Theorems 1 and 2 with the only difference that the
inequality (25), ensured by Lemma 1, has to be replaced by (60). Consider an output-periodic solution of
the period T0 = 2π/ω0 exists. Applying the Bakaev-Guzh procedure (28) in the same way as in the proofs
of these theorems, the equality (30) with T = T0k and (60) imply the following

0
(60)

≥ IT0k[w(·)] =
∑
j

κj
∫ T0k

0
σ̇j(t)yj(σj(t))dt+

+

∫ T0k

0

∑
j

[
κjνj σ̇j(t)vj(σj(t))|ξj(t)|+ δj |ξj(t)|2 + εj

(
1 + ε−1

j τjΦj(σj(t))
2
)
|σ̇j(t)|2

]
dt,

(61)

The first term in (61) is uniformly bounded over k = 1, 2, . . . due to Proposition 1 and (38). Choosing
vj , νj in accordance with (33) or (36), the corresponding set of inequalities (32) or (37) implies that second
integrand in (61) is a positive definite quadratic form and (34) holds for some ϑ > 0. Passing to the limit
k →∞, |ξ(·)| ∈ L2[0,∞), which is possible only when ξ(t) ≡ 0, i.e. the solution σ(t) ≡ σ0 is constant.

Statement 2 is now obvious: if a non-constant solution of frequency ω0 < ω̄ existed, (23) would be
violated for at least one ω0k, k ∈ Z. The latter is, however, impossible since |ω0k| ∈ {0} ∪ [ω̄,∞). �

Example 5.1. Consider again the PLL with sine-shaped characteristic and proportional-integrating fil-
ter (41). In Fig. (8), we compare the stability domain for m = 0.4 with the domains, where periodic
solutions of the frequency ω ≥ ω0 are absent. The leftmost curve corresponds to phase locking (conditions
of Theorem 2 hold), in particular, absence of periodic trajectories (ω0 ≥ 0). Between this curve and dashed
curves, convergence is not guaranteed. At the same time, Theorem 5 guarantees absence of high-frequency
periodic solutions with ω ≥ ω0, where ω0 is, respectively, 3,7 and 10. As ω0 →∞, such curves converge to
the line L, on which the conditions of Theorem 5 fail to hold.
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Fig. 8. Domains of stability and slow oscillations for the system (41) with m = 0.4.

6. Conclusions, Discussion and Related Works

In this paper, the three problems have been addressed that are concerned with dynamics of infinite-
dimensional systems with periodic scalar or vector nonlinearities. We offer conditions for the solutions’
convergence (referred also to as “phase locking” and gradient-like behavior). These conditions consist of the
frequency-domain condition (23) providing the integral quadratic constraint (IQC) (A.8), and additional
algebraic conditions, allowing to derive L2-convergence of the solutions from this constraint. Stronger
versions of the latter algebraic conditions also give estimates for the number of cycles, slipped by each
component of the solution. Relaxing the frequency-domain inequality, the convergence criterion boils down
to a condition, ensuring the absence of high-frequency periodic solutions. In this section, we compare the
results with previously established criteria and discuss further extensions of the results.

6.1. Comparison with the previous results

The investigation of asymptotic properties of integro-differential Volterra equations proceeds the similar
study of many-dimensional Lur’e-type systems with a “critical” linear part [Gelig et al., 2004]:

ż(t) = Az +Bϕ(σ),
σ̇(t) = C∗z +Rϕ(σ).

(62)

Here z ∈ Rm, σ ∈ Rl; A ∈ Rm×m; C,B ∈ Rm×l; R ∈ Rl×l; A is a Hurwitz matrix and the properties of ϕ
are described in Assumption 2. The transfer function from ϕ to −σ̇ is a follows

K(p) = −R+ C∗(A− pE)−1B. (63)

For system (62), counterparts of Theorems 1-5 can be obtained by using special Lyapunov functions.
Whereas traditional quadratic Lyapunov functions prove to be inefficient [Gelig et al., 2004; Leonov et al.,
1996a] in analysis of systems with multiple equilibria, the idea of the Bakaev-Guzh decomposition (28) has
inspired the non-quadratic Lyapunov-type function as follows

V (t) = V (x(t), x(0)) = x∗(t)Hx(t) +

l∑
j=1

(∫ σj(t)

σj(0)
κjyj(ζ) dζ

)
, (64)

where x = (z, ϕ(σ))T , xt(·) stands for the truncation x|[0,t] : [0, t] → Rm+l, κj are parameters and H =
H∗ ≥ 0 is a specially chosen matrix. Note that V is not a classical Lyapunov function and depends not only
on x(t), but also on x(0) (alternatively, it can be considered as a functional on the system’s trajectory).
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The matrix H is chosen in a way to provide the condition

V̇ (t) ≤ −
l∑

j=1

Wj(|ϕj |, vj σ̇j), (65)

where Wj are positive definite quadratic forms. The existence of such a matrix H is guaranteed by an appro-
priate frequency-domain condition thanks to the seminal Kalman-Yakubovich-Popov (KYP) lemma [Gelig
et al., 2004], whereas positivity of Wj requires additional algebraic constraints on the parameters, sim-
ilar to those arising in Theorem 1. Using (65), it is shown that the system is L2-convergent and hence
gradient-like [Gelig et al., 2004]; estimates for the number of slipped cycles can be also obtained [Ershova
& Leonov, 1983]. The latter results can be further extended [Perkin et al., 2011], replacing in (64) yj by
the convex combination ajy0j + (1 − aj)y1j as in (36); Wj in the right-hand side of (65) is replaced by
a quadratic form Qj(|ϕj |, v1j σ̇j , v0j σ̇j). The presence of extra parameters aj adds more flexibility to the
frequency-domain condition and algebraic constraints (ensuring positivity of the forms Qj), leading thus
to more exact estimates of the stability domain. The inequality (65) may be directly transformed to a
linear matrix inequality (LMI) [Duan et al., 2007; Yang et al., 2005; Yang & Huang, 2007; Lu et al., 2008].
Unlike the frequency domain condition, LMI feasibility is not easy to test analytically, but can be tested
numerically by using semidefinite programming software.

An alternative method has been proposed in [Leonov et al., 1992, 1996b], based on the Popov approach.
This method directly proves boundedness of integral functionals (“a priori integral indices” [Rasvan, 2006])

IT [σ(·)] =

∫ T

0

l∑
j=1

(Wj(|ϕj |, vj σ̇j) + κjyj(σj)σ̇j) dt (T > 0), (66)

under appropriate frequency domain condition, using a counterpart of Lemma 1. The method of Popov’s
integral functionals (66) not only allows to cope with general Volterra equations (1), but also enables the
use of Fourier expansion to estimate the frequencies of periodic solutions, as done in the proof of Theorem 5.

In this paper, we extend the aforementioned results by taking into account the slope restriction on the
nonlinearity. As discussed in Example 3.2, even for a simple second-order system (62) introducing the slope
restriction (which corresponds to the choice τ > 0) substantially reduces the conservatism in convergence
criteria. Also, the matrices α1 and α2 in our criteria are varying parameters. Counter-intuitively, for the
pendulum system (Example 3.1 in Subsect. 3.2) Theorem 2 gives the best estimate of the convergence
domain for α11 = −∞ rather than for α11 = µ11. All our results deal with the general Volterra integro-
differential equation (1), comprising e.g. models of delayed and other infinite-dimensional PLLs.

6.2. Robustness of pendulum-like systems

In this section, we mention briefly two directions for the future research. The first of them addresses
pendulum-like systems with disturbances [Smirnova et al., 2017, 2018a,b]:

σ̇(t) = b(t) +Rξ(t− h)−
∫ t

0
Γ(t− τ)ξ(τ) dτ, ξ(t) = ϕ(σ(t)) + f(t), t ≥ 0. (67)

It is demonstrated in [Smirnova et al., 2017] that in the case where (f(t)− L) and ḟ(t) are L2–summable
for some constant vector L, Theorems 1 and 2 guarantee the gradient-like behavior of (67), i.e. convergence
of the solutions is robust against disturbances from this class. The extension of the convergence criteria to
bounded disturbances and robustness of the cycle slipping estimates are subjects of ongoing research.

The second direction deals with singular perturbations of (1) [Smirnova & Proskurnikov, 2017]

µσ̈µ(t) + σ̇µ(t) = b(t) +Rξµ(t− τ)−
∫ t

0
Γ(t− τ)ξµ(τ) dτ, ξµ(t) = ϕ(σµ(t)) (68)

with a positive small parameter µ > 0. As shown in [Smirnova & Proskurnikov, 2017], the conditions
of Theorems 1 and 2 provide that (68) is gradient–like for all µ ∈ [0, µ0) for µ0 being sufficiently small.
To obtain a non-conservative estimate for µ0 remains a non-trivial problem subject to ongoing research.
Singular perturbations in PLLs can stand for a “weak” low-pass filter [Hoppensteadt, 1983].
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Appendix A Proof of Lemma 1

To prove Lemma 1, we will establish a more general fact, similar in spirit to frequency-domain di-
chotomy criteria for uncertain nonlinear systems [Altshuller et al., 2004]. Consider the integral equation

z(t) = b(t) +Rξ(t− h) +

∫ t

0
Γ(t− s)ξ(s)ds, t ≥ 0, (A.1)

where z(t), ξ(t) ∈ Rl, |ξ(·)| ∈ L2[−h, 0], and b(t),Γ(t), R, h are the same as in (1). We also consider a
Hermitian form H(z̃, ξ̃, η̃), where z̃, ξ̃, η̃ ∈ Cl and the frequency-domain condition as follows

H(−K(ıω)ξ̃, ξ̃, ıωξ̃) ≤ 0 ∀ξ̃ ∈ Cl. (FC)

Recall that K(p) stands for the transfer function of the system (A.1) from ξ to (−z) and is defined in (22).

Theorem A.1. Suppose that the condition (FC) holds for any ω ∈ R. Assume also that ξ(·) is absolutely
continuous on [0,∞) and |ξ(t)| ≤ m, |ξ̇(t)| ≤ m̄ for almost all t ≥ 0. Then

sup
T≥0

IT [w(·)] <∞, IT [w(·)] ∆
=

∫ T

0
H(w(t)) dt, w(t)

∆
=
(
z(t)>, ξ(t)>, ξ̇(t)>

)>
∈ R3l. (A.2)

For the supremum in (A.2), an explicit upper estimate can be found that depends only on the bounds m, m̄,
‖ξ(·)‖L2[−h,0] and the parameters of the equation (A.1) but not on a specific solution.

It can be easily checked that Lemma 1 is a special case of Theorem A.1, corresponding to the form

H(z̃, ξ̃, η̃) = Re z̃∗κξ̃ + ξ̃∗δξ̃ + z̃∗εz̃ + (z̃ − α−1
1 η̃)∗τ(z̃ − α−1

2 η̃), (A.3)

and z(t) = σ̇(t), ξ(t) = ϕ(σ(t)). Assumptions 1 and 2 imply, obviously, that for any solution of (1) the
functions ξ(t) and σ̇(t) are bounded, and the explicit estimates for them can be found. Hence, it suffices
to prove the general result from Theorem A.1.
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Henceforth, following [Yakubovich, 2000, 2002], the vector-functions w(t) from (A.2), where ξ(·) is
defined on [−h,∞) and absolutely continuous on [0,∞) and z(t) obeys (A.1), are referred to as processes
of the system (A.1). We introduce the special case of system (A.1), corresponding to b(t) ≡ 0

z(t) = Rξ(t− h) +

∫ t

0
Γ(t− s)ξ(s), t ≥ 0, (A.4)

and introduce the set L of its processes, having zero initial conditions ξ(t) for t ≤ 0 and L2-stable:

L
∆
=
{
w(·) = [z>(·), ξ>(·), ξ̇>(·)]> : |ξ|, |ξ̇| ∈ L2[0,∞), ξ(t) ≡ 0 ∀t ≤ 0, (A.4) holds.

}
One may notice that any process from L satisfies (A.2) due to the Plancherel theorem; in fact, there exists
maxT≥0 IT = supT≥0 IT . Indeed, IT depends on T ≥ 0 continuously, I0 = 0 and, as T →∞, has the limit

lim
T→∞

IT [w(·)] =

∫ ∞
0
H(w(t)) dt

(∗)
=

1

2π

∫ ∞
−∞
H(w̃(ıω))dω

(FC)

≤ 0 ∀w(·) ∈ L. (A.5)

Here w̃ = Fw stands for the Fourier transform of the vector-function w(t). The equality marked with (*)
is implied by the Plancherel theorem. To derive the inequality (A.5), it remains to use the properties of the
Fourier transform and the assumptions ξ(t) ≡ 0 ∀t < 0 and b(t) ≡ 0, entailing that (F ξ̇)(ıω) = ıω(Fξ)(ıω)
and (Fz)(ıω) = −K(ıω)(Fξ)(ıω) due to (A.1). Hence H(w̃(ıω)) = H(−K(ıω)ξ̃(ıω), ξ̃(ıω), ıωξ̃(ıω)) ≤ 0.

To establish (A.2) for the general process w(t), which obeys the system (A.1) with b(t) 6≡ 0 with
non-zero initial conditions and need not be L2-stable, we fix T > 0 and approximate w(·) on [0, T ] by the
function wT (·) ∈ L, which is constructed as follows. First, we define for c > 0

ξT (t) =

{
ξ+(t), t < T,

ξ+(T )ec(T−t), t ≥ T, , ξ+(t)
∆
= v(t)ξ(t), v(t)

∆
=


0, t < 0,

t, 0 ≤ t ≤ 1,

1, t > 1.

(A.6)

It is obvious that ξ+(t) is absolutely continuous on R and ξ(t) = 0 when t ≤ 0. Let zT (t) be the solution
of (A.4), corresponding to ξ = ξT , and wT (·) ∈ L denote the corresponding process.

Let z0
T (t)

∆
= z(t)− zT (t), ξ0

T (t)
∆
= ξ(t)− ξT (t), w0

T (t)
∆
= w(t)− wT (t). Obviously,

ξ0
T (t) = (1− v(t))ξ(t), z0

T (t) = b(t) +Rξ0
T (t− h) +

∫ t

0
Γ(t− s)ξ0

T (s)ds ∀t ∈ [0, T ].

Since 0 ≤ v(t) ≤ 1 due to (A.6), there exist constants ci, i = 1, . . . , 4, such that

‖w0
T ‖L1[0,T ] ≤ c1, ‖w0

T ‖L2[0,T ] ≤ c2, ‖wT ‖L∞[0,T ] ≤ c3, ‖wT (·)‖L2[T,∞] ≤ c4.

The constants ci are determined by m, m̄, the initial conditions and the parameters of (A.1). Introducing
the matrix H = H∗ of the Hermitian form H, we have

H(w(t)) = w(t)>Hw(t) = 2wT (t)>Hw0
T (t) +H(w0

T (t)) +H(wT (t)) (A.7)

Integrating the latter equality over [0, T ], one arrives at the following

IT [w(·)] = 2

∫ T

0
wT (t)>Hw0

T (t)dt+ IT [w0
T (·)] + IT [wT (·)]

(A.5)

≤

≤ |H|(c1c3 + c2
2)−

∫ ∞
T
H(wT (t)) dt︸ ︷︷ ︸
≤|H|c24

≤ |H|(c1c3 + c2
2 + c2

4).
(A.8)

Remark A.1. For special solutions and Hermitian formsH, the estimate (A.8) can be tightened. For instance,
in the case where ξ(0) = 0 one may replace ξ+(t) from (A.6) by the simpler function

ξ+(t) =

{
0, t < 0,

ξ(t), t ≥ 0.
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In this case, for t ∈ [0, T ] one has ξ0
T (t) = 0 and |z0

T (t)|, as well as the constants c1, c2, depends only on the
initial conditions and b(·). The estimate for H(w0

T ) = H(z0
T , 0, 0) in (A.7) can often be improved, e.g. for

the form (A.3) one has H(w0
T (t)) = z0

T (t)>(τ + ε)z0
T (t) ≤ (maxj(τj + εj)) |z0

T (t)|2 < |H| |w0
T (t)|2.

Remark A.2. Assume that H(z, 0, 0) ≥ 0 for any z ∈ Cl, which inequality holds e.g. for (A.3). Consider
such an instant T > 0 that ξ(T ) = 0, and hence ξT (t) ≡ 0 for t ≥ T . Hence, H(wT (t)) ≥ 0 for t ≥ T and

IT [wT (·)] =

∫ ∞
0
H(wT (t))dt−

∫ ∞
T
H(wT (t)) dt

(A.5)

≤ −
∫ ∞
T
H(wT (t)) dt ≤ 0.

For such an instant T , the inequality (A.8) can be further improved

IT [w(·)] ≤ q = 2

∫ T

0
wT (t)>Hw0

T (t)dt+ IT [w0
T (·)].

Combining the tricks from Remarks A.1 and A.2, one can substantially improve the estimate of IT [w(·)]
in the case where ξ(0) = ξ(T ) = 0; this is useful in analysis of cycle slipping 4.1.

Appendix B Proof of Lemma 5

We again introduce the general linear system (A.4) and a Hermitian form H. Noting that output-
periodic solutions σ(t) correspond to periodic processes w(t), Lemma 5 is implied by the following.

Theorem B.1. Suppose that the inequality (FC) holds for any ω = ω0k, where k is integer and ω0 > 0.

Denote T0
∆
= 2π/ω0. Then for any locally L2-summable T0-periodic process w(t) = [z>(t), ξ>(t), ξ̇>(t)]>

and any integer k ≥ 1 the inequality holds as follows

IT0k[w(·)] =

∫ T0k

0
H(w(t)) dt ≤ 0. (B.1)

Proof. Due to T0-periodicity of the solution, one has IkT0 [w(·)] = kIT0 [w(·)], so it suffices to prove (B.1)

for k = 1. Since ξ(t), ξ̇ are T0-periodic and locally L2-summable, they are decomposable into the series

ξ(t) =
+∞∑

k=−∞
ξ̃ke

ıω0kt, ξ̇(t) =
+∞∑

k=−∞
(ıω0k)ξ̃ke

ıω0kt,
∞∑

k=−∞
|ξ̃k|2 <∞, . (B.2)

Here ξ̃k ∈ Cl and the convergence of the Fourier series in (B.2) is understood in L2[0, T0]-norm (equivalently,
the series converge in L2-norm on any interval [t0, t0 + T0]). Substituting (B.2) into (A.1), one obtains

z(t) = b(t) +

∫ +∞

t
Γ(τ)ξ(t− τ) dτ +Rξ(t− h) +

∫ +∞

0
Γ(τ)ξ(t− τ) dτ = β(t)−

+∞∑
k=−∞

K(iω0k)ξ̃ke
iω0kt.

Here the series converge in L2-norm on any interval [t0, t0 + T0] and β(t) −−−→
t→∞

0. Recalling that z(t) is

T0-periodic, the same holds for β(t) and thus β(t) ≡ 0. Using the Parseval theorem, one has

IT0 [w(·)] =

∫ T0

0
H(w(t))dt = T0

∞∑
k=−∞

H(−K(ıω0k)ξ̃k, ξ̃k, ıω0kξ̃k) ≤ 0

since, by assumption, (FC) holds for any ω = ω0k. �


