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Abstract

when deciding to pay off a debt.

types and how they are best discovered.

Context: The technical debt (TD) concept inspires the development of useful methods and tools that support TD
identification and management. However, there is a lack of evidence on how different TD identification tools could
be complementary and, also, how human-based identification compares with them.

Objective: To understand how to effectively elicit TD from humans, to investigate several types of tools for TD
identification, and to understand the developers’ point of view about TD indicators and items reported by tools.

Method: We asked developers to identify TD items from a real software project. We also collected the output of
three tools to automatically identify TD and compared the results in terms of their locations in the source code.
Then, we collected developers’ opinions on the identification process through a focus group.

Results: Aggregation seems to be an appropriate way to combine TD reported by developers. The tools used
cannot help in identifying many important TD types, so involving humans is necessary. Developers reported that
the tools would help them to identify TD faster or more accurately and that project priorities and current
development activities are important to be considered together, along with the values of principal and interest,

Conclusion: This work contributes to the TD landscape, which depicts an understanding between different TD

Keywords: Technical debt, Automated technical debt identification, Human-based technical debt identification

Introduction

The technical debt (TD) concept brings a new perspec-
tive on how software development tasks are discussed
and managed. It describes the tradeoff between the
short-term payoffs (such as a timely software release) of
delaying some technical development activities and the
long-term consequences of those delays [7]. According
to Avgeriou et al. [5], TD is a collection of design or im-
plementation constructs that are expedient in the short
term, but set up a technical context that can make fu-
ture changes more costly or impossible. TD presents an
actual or contingent liability whose impact is limited to
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internal system qualities, primarily maintainability and
evolvability.

It is common for a software project to incur TD dur-
ing the development process since small amounts of
debt can increase productivity [43]. However, its pres-
ence brings risks to the project. Effects of TD can be no-
ticed in different stages of software development due to
different types of debt. Low quality, delivery delay, low
maintainability, rework, and financial loss are among the
top 10 most commonly impactful effects of TD [36, 37].

Based on a familiar vocabulary from the financial do-
main, the TD concept facilitates discussion among prac-
titioners and researchers and has potential to become a
truly universal language for communicating technical
tradeoffs. However, the TD management is more than
just facilitating communication; it is comprised of a
whole set of tools and techniques. These tools must
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provide, among other things, facilities for TD identifica-
tion, an essential step for making TD manageable and
explicit, which leads to creating a TD “list” that allows
better control of the debt situation. Currently, TD iden-
tification approaches can be broadly categorized into
two groups:

Automated tools use a metric or analyze an artifact
in a way that defines indicators of TD in software
projects. Most of these tools have been developed to
detect potential debt in the source code;

Manual approaches identify TD items by asking
developers or other stakeholders about the presence
of debt or by making a manual search for debt in
artifacts from the project.

Automated tools are less time consuming and their
application is scalable. However, manual approaches are
hypothesized to have two advantages over automated ap-
proaches. One is that they might be more accurate, i.e.,
more likely to identify TD that is most significant, while
automated analyses may reveal many anomalies that
turn out to be unimportant. The other advantage is that
human stakeholders might be able to provide additional
important contextual information related to each in-
stance of TD (e.g., effort estimates, impact, decision ra-
tionale) that is difficult or even impossible to glean from
analysis tools.

Both approaches are relevant and have been investi-
gated in different studies ([14, 23, 27, 38, 51, 52]; Mor-
genthaler [30, 34]). Some of these studies have indicated
that it is possible to identify certain classes of potential
TD (in particular design debt) with computer-assisted
methods (Schumcher et al. [14, 38]). Other studies have
shown that code comment analysis can also be used to
identify several types of debt such as design, defect, and
requirement debt [11, 25]. More specifically, Schuma-
cher et al. [38] showed that metric-based detection ap-
proaches perform well compared to human classification
and that their use decreases the effort spent on manual
code inspections.

Despite the fact that a number of studies have been
conducted regarding TD identification, there is a lack of
evidence on how different tools could be complementary
and, also, how human-based identification compares
with them. The work presented in this paper intends to
investigate this area by performing a two-phase study,
involving several complementary research methods, con-
sidering both automated and human-based TD identifi-
cation approaches. The goal of the first phase of the
study was to compare human elicitation of TD to auto-
mated TD identification. We studied three automated
approaches (code smells, automated static analysis
issues, and collection of code size and complexity
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metrics), and how their output (in terms of the location
in the codebase they pointed to as having potential TD
items) compares to TD that is elicited from humans.
The goal of the second phase was to understand the dif-
ferences in the outcomes of the two approaches to TD
identification and gain an understanding of when and
how they can best be used and/or combined. We also
hoped, in Phase Il, to glean from developers some un-
derstanding on findings that were observed from the
first phase but that were hard to understand without
contextual information.

The results from the first phase were previously pub-
lished [51]. Here, we summarize the previously pub-
lished results from Phase I, present the results from
Phase Il, and then draw conclusions based on the entire
set of results. Thus, this paper includes new analysis of
data that was collected in addition to that presented in
the previous paper, in particular the focus group, plus
the integration of the two data sets. Figure 1 highlights
the results from Phase | that were published in [51] (in
yellow), the steps from Phase | that were reanalyzed
based on the whole set of data that was collected, and
the steps of the work that are specific to this paper (in
blue). Thus, this work has three main contributions for
the area:

1. Better understanding of how to elicit TD from
humans: We assessed a TD template [40] that can
be used to capture, store, and communicate
essential information about TD to support decision-
making about debt payment. Our results give some
insight into the dynamics of eliciting TD from a
team of developers, helping us to answer such ques-
tions as: How did the developer find the TD items?
Were identified TD items related to code
ownership?

2. Comparison among several types of tool support for
TD identification; Despite the fact that automated
approaches point to system code fragments that
need improvement, it is not clear yet if they point
to the most important TD from software project
stakeholders’ point of view. Thus, we are interested
in exploring the extent to which they can support
TD identification, how big of a gap they leave if
used without human elicitation of TD, and whether
new tools might be warranted, possibly derived
from knowledge of manual TD inspections. This
understanding can help address questions such as
how tools can best be used, instead of or in addition
to manual approaches, in the identification of TD.

3. Developers point of view about TD indicators and
TD items reported by tools: We asked questions
regarding the connection between a TD indicator
(e.g., as reported by a tool) and a TD item (i.e.,
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something a developer would find worthwhile to
pay off), the value of performing preventive
maintenance to remove some of the issues found by
the tools, and level of surprise about the results
reported by the tools.

We identified that the main resources used by the de-
velopment team members to identify TD items is their
own knowledge on the project, augmented by an artifact
closely related to their own specific development tasks.
Different people, who work with different artifacts and
have different roles on the project, appear to report
completely different TD items. Thus, we have further
shown that different stakeholders know about different

debt in their project, indicating that TD identification
should include a range of project team members. We
also found that automated TD identification tools, to
some extent, point to different potential debt than
people do. The three different automated approaches
did well in pointing to source code files with defect debt
and also could point to some instances of design debt.
On the other side, many developer-identified TD items
could not have been found by the tools or metrics since
the artifacts in which they were located are not included
in the static code analysis. The type of debt that repre-
sented the greatest agreement between the human-
elicited TD items and the automatically detected TD
was defect debt.
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The remainder of the paper is organized into six more
sections. Section 2 describes some background concepts
related to TD and also related work. Next, section 3 pre-
sents the design of the present study. Section 4 reports
the results of the quantitative and qualitative analyses of
the study data. Next, section 5 discusses the results of
the study. After, the threats to validity are presented in
section 6. Finally, section 7 presents some final remarks
on this work.

Background and related work

This section begins with an overview of relevant back-
ground on technical debt management. In particular, we
present a specific view of TD management that moti-
vates our data collection instrument. Second, we review
past work on TD identification approaches in particular.

Background

TD is seen as an important part of software manage-
ment [43]. According to Guo et al. [15], the manage-
ment of TD can center on a TD list. This list contains
TD items (in the following simply referred to as items)
that represent tasks that were left undone, but that run a
risk of causing future problems if not completed. Each
item is described by a set of properties (see Table 1).

The principal on the debt refers to the cost to elimin-
ate the debt (i.e., the effort required to complete the
task). Depending on the type of TD, this can translate
into different kinds of activities, such as updating out-
dated documentation, refactoring code that is hard to
maintain, or defining new test cases to improve their
coverage. The cost of TD repair might be understood
better in some cases than in others. For example, adding
missing documentation might be more straightforward
to estimate than a more complex code refactoring. Sea-
man and Guo [40] proposed to initially estimate the
principal on a rough ordinal scale from low to medium
to high, which allows enough understanding to contrib-
ute to iteration planning. To further help in estimating
principal, historical effort data can be used to make a

Table 1 The TD template [40]
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more accurate and reliable estimation beyond the initial
high/medium/low assessment. For example, if a debt
item is a set of classes that need to be refactored, the
historical cost of modification of those classes can be
used as the future modification cost (principal of the
debt item) estimation.

The second main component of TD is interest, which
is composed of two parts:

1. The interest amount is the potential penalty in
terms of increased effort and decreased productivity
that will have to be paid in the future as a result of
not completing these tasks in the present, including
the extra cost of paying off the debt later, as
compared to earlier. Sometimes, historical data can
help in estimating the interest amount. Like TD
principal, data on past defects, effort, and changes
can be useful. Also, like TD principal, an initial
estimate of high, medium, or low can be used for
initial prioritization decisions [40];

2. The interest probability is the probability that the
debt, if not repaid, will make other work more
expensive over a given period of time or a release
[40]. The probability part of the definition of
interest is necessary because TD will not always
bring negative impacts on future project activities.
For example, the higher the probability that the
artifact that contains the debt will undergo
maintenance, the higher the probability that the
interest will negatively impact the project, and vice
versa. Interest probability can also be estimated
using, e.g., historical usage and defect data. Again,
estimation can use a simple high, medium, and low
scale until numeric estimates become necessary. In
addition, it is also important to consider the time
variable because probability varies over time. For
example, the probability that a module that needs
refactoring will cause problems in the next release
(because modifications will need to be made to it)
may be very low, but that probability rises if we

D TD identification number

Responsible Person or role who should fix this TD item

Type design, documentation, defect, testing, or other type of debt
Location List of files/classes/methods or documents/pages involved
Description Describes the anomaly and possible impacts on future maintenance

Estimated principal

Estimated interest

amount High/Medium/Low

Estimated interest

probability High/Medium/Low

Intentional? Yes/No/Do not Know

How much work is required to pay off this TD item on a three point scale: High/Medium/Low

How much extra work will need to be performed in the future if this TD item is not paid off now on a three point scale:

How likely is it that this item, if not paid off, will cause extra work to be necessary in the future on a three point scale:
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consider longer periods of time, e.g., over the next
year or 5 years.

The process of managing TD usually starts with de-
tecting TD items to construct the TD list. The next step
is to measure the debt items on the list by estimating
the principal, interest amount, and interest probability.
This estimation (often using a scale of high/medium/low
as in this example) is difficult and most often relies on
subjective, but educated, guesses from developers. How-
ever, there are ways to use historical data to make this
estimation more accurate. For example, interest prob-
ability, in most cases, is really the probability that a
given module will be touched in future maintenance
work. This probability can be estimated by calculating,
based on historical data, the frequency with which the
module has been touched in past releases. Once each
TD item’s interest and principal have been estimated,
using whatever methods are available, the debt items are
monitored and decisions can be made on when and
what debt items should be paid or deferred.

Recently, three mapping studies addressed the man-
agement of TD as part of their scope [1, 4, 22]. Ampat-
zoglou et al. [4] investigated the management of TD
from a financial perspective. Their goal was to under-
stand how financial aspects are defined in the context of
TD and how they relate to the underlying software en-
gineering concepts. As a result, the authors found that
the most common financial terms that are used in TD
literature are principal and interest. Besides, the financial
approaches that have been more frequently applied for
TD management are real options [3], portfolio manage-
ment [41], cost/benefit analysis [41], and value-based
analysis [44].

In another secondary study in the area of TD manage-
ment, Li et al. [22] presented an overview on the current
state of research on TD management. The authors iden-
tified eight TD management activities (identification,
measurement, prioritization, prevention, monitoring, re-
payment, documentation, communication) and 29 tools
for TD-related activities (among the 29 tools, only four
are tools dedicated to managing TD). Most tools support
code and design TD management, while few tools sup-
port managing other types of TD. Also according to the
authors, these TD activities received significantly differ-
ent levels of attention, with TD repayment, identifica-
tion, and measurement receiving the most attention and
TD representation/documentation the least attention.

More recently, Alves et al. [1] identified several TD
management strategies. However, only five strategies
(Portfolio Approach [41], Cost-Benefit Analysis [41],
Analytic Hierarchy Process [41], Calculation of TD Prin-
cipal [16], and Marking of dependencies and Code Issues
[9]) were cited in more than one paper. Thus, most of
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them still require further investigation and empirical
evaluation. Further, few empirical studies have been per-
formed in real settings. This is an indicator that, for
some areas, we still do not fully understand all the costs
or benefits of the proposed TD management strategies.

Finally, Rios et al. [36, 37] identified, through a tertiary
study, a list of situations in which debt items can be
found in software projects, and organized a map repre-
senting the state of the art of activities, strategies and
tools to support the TD management. According to the
authors, there are a number of gaps that need to be ad-
dressed when dealing with TD management. The exist-
ing limitations such as lack of tools/strategies to support
some activities and the lack of comprehensive solutions
that consider a management process for TD as a whole
can make TD management difficult to perform.

Our work focuses on TD identification (discussed in
the next section), which is common to all approaches to
managing TD in the literature.

Technical debt identification
In this study, we are focused on the first step in TD
management: TD Identification. We can use different
strategies, both automated and human-based, to find TD
items for each TD type. Two automated strategies that
have been proposed and studied to support the identifi-
cation of design debt in software projects are identifica-
tion of code smells and issues raised by automatic static
analysis (ASA) tools, aka ASA issues. In addition to code
smells and issues, in this case study, we also collected
basic structural code metrics for size and complexity, in
order to study whether any relationship exists between
high levels of these metrics and the existence of TD.

The concept of code smells was first introduced by
Fowler and Beck (as Bad Smells) [12] and describes pat-
terns in object-oriented code that are less than ideal,
e.g., that violate the rules of good object-oriented design,
and should be refactored. Code smells are a type of de-
sign debt, because they are believed to slow down devel-
opment, in particular changes and enhancements to
affected code, when not removed early. Fowler and Beck
originally suggested that developers identify code smells
by performing code reviews during development, i.e.,
continuous refactoring. Marinescu [26] was the first to
see the opportunity to automatically detect code smells
by using metric-based rules that can be checked via a
tool. He proposed rules (detection strategies) for identi-
fying a set of 11 code smells. The precision and recall
for Marinescu’s classifiers have been studied for the most
often studied code smell, god classes, and found to be
high (precision 71%, recall 100%) [38].

Several studies have looked into the relationship be-
tween code smells (and related phenomena) and change
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and defect proneness. Most of these have focused on
one smell in particular, god classes. Most such studies
have found that god classes are associated with higher
change proneness and defect proneness [20, 21, 33, 38,
40], although there is some evidence that this association
disappears when the number of defects and changes are
normalized by size [33]. Other examples include a study
by D’Ambros et al. [10] that identified that introducing a
design flaw in a class is likely to generate bugs that affect
the class. However, this does not hold for all design flaws
in all software systems. Further, the authors also identi-
fied that there is no design flaw addition that has a con-
sistently high correlation with bugs in all the systems. In
another study on the relationship between code smells
and software maintainability, Yamashita and Moonen
[47] investigated the interactions among 12 code smells
and analyzed how those interactions relate to mainten-
ance problems. This study found empirical evidence that
certain inter-smell relations were associated with prob-
lems during maintenance and also that some inter-smell
relations manifested across coupled artifacts. More re-
cently, Soltanifar et al. [42] have used data science and
analytics techniques on software data to build defect
prediction models. As result, they found that code smells
are a good indicator of defect proneness of the software
product. This literature is representative of the work that
has established at least a correlational relationship be-
tween code smells and maintainability and has motivated
the use of code smell detection as a form of TD
identification.

Other types of TD identification that appear frequently
in the literature are automated static analysis (ASA) and
the use of code metrics. ASA refers to a set of source
code analysis techniques that consist of extracting infor-
mation about a program from its source or source code-
based artifacts using automatic tools [6]. ASA tools look
for issues in terms of violations of recommended pro-
gramming practices and potential anomalies that might
cause faults or might degrade some dimension of soft-
ware quality (e.g., maintainability, efficiency). ASA issues
are generally at a finer-grained level (e.g. at the source
code line) than code smells (e.g. at the method or class
level), and previous work indicates that there is little
overlap between the two automated approaches when
used to identify TD [52]. Issues should be removed
through refactoring to avoid future problems, and thus
may constitute TD. Many ASA tools exist; for this study,
we selected FindBugs, which is widely used in the litera-
ture and already used in past work [17, 45].

Gat and Heintz [13] identified TD in a customer sys-
tem using both dynamic (i.e., unit testing and code
coverage) and static (computing rule conformance, code
complexity, duplication of code, design properties) pro-
gram analysis techniques. Nugroho et al. [32] also used a
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combination of static analysis and code metrics to iden-
tify TD. They assigned levels of different metrics and in-
dicators to risk categories to quantify the amount of
interest owed in the form of estimated maintainability
cost. A CAST report [8] focuses on the density of static
analysis issues on security, performance, robustness, and
changeability of the code. The authors built a pricing
model assuming that only a percentage of the issues are
actually being fixed. Sonar (http:.//www.sonarsource.
org/) is an open source toolkit that has gained in popu-
larity. It also uses static measurements against various
source code metrics and attributes to assess the level of
TD in a code base.

In a recent mapping study, Alves et al. [1] investigated
the types of TD, how TD items can be identified through
indicators of their existence in projects, and the strat-
egies that have been developed for the management of
this debt. Moreover, they assessed the degree of maturity
of the existing proposals through an analysis of the em-
pirical evaluations that have been carried out. TD indica-
tors allow the discovery of TD items when analyzing the
different artifacts created during the development of a
software project. The authors observed that some types,
such as design, already have a fair number of indicators
and, on the other hand, indicators were not identified
for some types of debt (process, infrastructure, people,
and usability debt). In total, the study mapped 45 differ-
ent TD indicators, and the results show that the most
cited and analyzed TD indicator is code smell, and the
type of code smell that has been most investigated is
god class. According to the authors of the study, an ex-
planation for this is that god classes are conceptually
easy to understand and are up to 13 times more likely to
be affected by defects and up to seven times more
change-prone than their non-smelly counterparts, which
makes them a good candidate when starting to detect
TD from the source code.

Few studies have explored the task of manually identi-
fying TD. Potdar and Shihab [34] manually analyzed
code comments to identify text patterns and TD items.
They read more than 101 K code comments and showed
that 2.4-31.0% of the files in a project contain self-
admitted TD. The most used text patterns that indicated
the presence of TD were (i) “is there a problem” with 36
instances, (ii) “hack” with 17 instances, and (iii) “fixme”
with 761 instances. Next, Maldonado and Shihab [25]
evolved the work of Potdar and Shihab [34] proposing
four simple filtering heuristics to eliminate comments
that are not likely to contain technical debt. For that,
they read 33 K code comments from source code of five
open source projects. According to the authors, the
most common type of self-admitted TD is design debt
(between 42% and 84% of the classified comments). Re-
lated to this work, but performed in an automatic way,
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Farias et al. [11] proposed the CVM-TD. CVM-TD is a
contextualized structure of terms, implemented in a tool
named eXcomment, which focuses on using word clas-
ses and code tags to provide a TD vocabulary, aiming to
support the detection of different types of debt through
code comment analysis.

Despite the fact that a number of studies have been con-
ducted regarding TD identification, there is a lack of evi-
dence on how different tools could be complementary
and, also, how human-based identification compares with
them. This study intends to shed some light on this area.

Research design

In this section, we describe the methods and techniques
we used to investigate our research questions. Both
phases took place in the same industrial context, which
we describe in the next subsection, and used the same
goals, described in the “Goal and research” section.
Then, we describe the data collection and analysis activ-
ities in Phase | and Phase I, respectively.

Figure 1 illustrates our research strategy. The two
phases of the study are complementary and contribute
in different ways to the study findings. While in the first
phase, the goal was to understand the human elicitation
of TD and compare it to automated TD identification
(see “Phase 1” section), in the second phase the goal was
to understand those differences, and gain an understand-
ing of when each set of approaches is appropriate and
how they can best be combined (see “Phase 11" Section).
For instance, at the end of the first phase, we had several
open questions regarding how developers found TD
items, if there is a connection between identified TD
items and code ownership, if the results provided by
tools were expected or unexpected, and others. Phase 11
was designed to answer as many of those open questions
as possible. At the end, the results from both phases
were analyzed together.

Context

The two-phase study was conducted at KaliSoftware, a
small software development company located in Rio de
Janeiro, Brazil, that developed primarily web applica-
tions written in Java and based on the MVC framework.
The project we studied consisted of a small application
of 25K non-commented lines of code. It was a
database-driven web application for the sea transporta-
tion domain. It had undergone a full product lifecycle
(elicitation, design, implementation, deployment, and
maintenance). The project team was composed of five
professionals: two developers, one maintainer, one
tester, and one project manager who also played the
role of the requirements analyst. Table 2 shows the
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Table 2 Characterization of the participants

Participant Level of experience in years
Project Manager 10

Developer 2

Tester 2

Developer 15

Maintainer 15

level of experience of the participants in terms of years
working in the software development area.

Goal and research questions

The goal of the study is to understand the human elicit-
ation of TD and compare it to automated TD identifica-
tion. The study research questions are:

RQ1—Do the TD identification tools find the
TD items that were reported by the members
of the development team?

RQ2—How much overlap is there between the
TD items reported by different members of
the development team?

RQ3—Is the TD item template a feasible and
effective tool for eliciting TD items from
members of development teams?

Data collection and analysis

Below, we outline the data collection and analysis tech-
niques used in Phase | and Phase 1l. More details about
the Phase | research design can be found in [51].

Phase |
As can be seen in Fig. 1, one of authors trained the de-
velopment team in TD basic concepts via Skype. This
training included an opportunity for Q&A. As the de-
velopment team’s native language was Portuguese, all
the material was prepared and then translated to Portu-
guese before presentation. Initially, we explained some
basic concepts related to TD. The definition of TD we
used was [29]: Technical Debt refers to delayed tech-
nical work that is incurred when technical short cuts
are taken, but that creates a technical context in which
the same work will cost more to do later than it would
cost to do now. To explain the attributes of a TD item
(principal, interest, interest probability) and the TD
template used to report a TD item, we used the con-
cepts and definitions presented in the “Background”
section of this work.

During the training, we wanted to give some examples
of TD items to make sure that the team members under-
stood the concept well. However, we also wanted to
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avoid biasing them towards, later, reporting only TD
items that were similar to the examples we presented.
Our solution was to present only non-software-related
TD items as examples (for instance, “TD items” related
to house or car repair). The types of TD presented dur-
ing the training (design, documentation, defect, and test-
ing) were defined and described as follows:

Design debt: any kind of anomaly or imperfection
that can be identified by examining source

code that leads to decreased maintainability if
not remedied;

Testing debt: refers to issues found in testing
activities that can affect the quality of those
activities. Examples of this type of debt are tests
that were planned but not executed,;
Documentation debt: refers to the problems found
in software project documentation and can be
identified by looking for missing, inadequate,

or incomplete documentation of any type;

Defect debt: known defects that are not yet fixed.

We indicated that those types are just examples of
debt that could affect software projects. Thus, the par-
ticipants were free to consider any other type of debt
during the study. After the training, two parallel activ-
ities took place: manual and automatic TD identifica-
tion, i.e, collecting TD items from the development
team and collecting the output of tool-based analysis
on the source code.

For automatic TD identification, we applied the
CodeVizard and FindBugs tools to the latest version of
the subject project source code, in order to identify
code smells and ASA issues. These tools were chosen
primarily because of our previous experience in using
them in studies of technical debt [14, 18, 38, 45, 48-50,
52], as well as their ability to find common smells and
issues. They were, at the time, the best tools available
for our purposes. The resulting data described, for each
file (i.e., class) in the code base, how many of each type
of code smells were identified and how many of each
type of ASA issues were present. Each FindBugs issue
has a category (e.g., Performance, Correctness), and a
priority from 1 (highest) to 3 (lowest). We also selected
and computed for each file the following structural
metrics: Lines of Code, McCabe’s Cyclomatic Complex-
ity, Density of Comments, and Sum of Maximum Nest-
ing of all Methods in a Class. Lines of Code and
McCabe's Cyclomatic Complexity are widely used in
the literature on defect and maintainability prediction
(e.g., [31, 35]). Higher accidental complexity is hypothe-
sized to point to TD since complexity increases main-
tenance cost (TD interest). Density of comments was
selected to study whether highly commented code
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might have a relationship with TD, while Max Nesting
measures complexity in depth similar to McCabe'’s
complexity measure. The metrics were computed with
ad-hoc scripts/tools. Application of all these tools, met-
rics, and indicators resulted in a very large amount of
data and an enormous number of potential TD items.
Therefore, in order to present relevant results, we de-
vised and applied some filtering strategies to the tool
outputs. Thus, the results presented in the “Results”
section do not include all of the metrics and indicators
mentioned here. The filtering mechanisms are also ex-
plained in the “Results” section.

In parallel to automatic identification, the develop-
ment team (project manager, developers, maintainers,
and testers) was asked to report TD items individually.
For this, we provided the team members with a short
questionnaire to both report the TD items through the
TD template (question 1 below) and provide informa-
tion about the difficulty of documenting debt items
(questions 2 to 5 below). The respondents were asked
to document up to five of the most pressing TD items
they knew of in the current version of the software.
The questions were the following:

1. If you were given a week to work on this
application, and were told not to add any new
features or fix any bugs, but only to address TD
(i.e., make it more maintainable for the future),
what would you spend your time on?

2. How difficult was it to identify TD items?

3. How difficult was it to report TD items (i.e., fill in
the template)?

4. How much effort did you need to identify and
document all the TD items?

5. Which are the most difficult fields to fill in/which
are the least difficult ones?

All answers were given as free text, although the re-
spondents were asked to use the TD template in Table 1
to answer question 1.

In addition to the financial properties of TD, several
properties that support decisions on repayment are cap-
tured in the TD template:

1. The type of debt can be helpful to tailor debt
payment to critical quality characteristics of
interest. For example, known defect debt may be
differently perceived in life critical software
applications. Other known TD types are design
debt, documentation debt, and testing debt, all of
which are defined above as they were defined for
the respondents. Other types of debt have been
identified and proposed in the literature [2], but at
the time this study was performed, these were the
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types primarily referenced, and so were the ones
used in the survey. However, respondents were also
free to invent other types of debt when these four
did not cover a particular situation, and some of the
respondents did that.

2. Was the original decision to go into debt made
intentionally or unintentionally? This information
can help to understand how explicit debt and
TD decisions are managed in a project.

3. Who is responsible for fixing the TD? This
information is important for administrative
reasons and may help to provide a basis for
assessing principal and interest.

4. Where is the TD located? This field indicates,
if the debt is code-related, the file, class, or
component that needs to be modified to
eliminate the debt. For other types of debt,
the relevant artifact or document is specified.
This information is important to understand
impact on the product, relationships between
items, and ripple effects in source code when
repaying the debt. For our study, it also allowed
us to match up the elicited TD items with the
output of the automated tools.

After manual and automatic identification of TD, we
performed data analysis with a comparison of the two
sets of results. More details and preliminary results
from Phase | were presented at the 17th International
Conference on Evaluation and Assessment in Software
Engineering (EASE 2013) [51].

Phase Il

Phase Il of the study involved a focus group with devel-
opers to help gain a deeper understanding of the find-
ings from Phase I. After reviewing the Phase | results,
we developed a structure for the focus group based on
questions about specific findings. First, questions CQ1
and CQ2 were used to gain an overall perception of
how the project team members worked to identify TD
items on the project:

CQ1—How did you (developer) find the
TD items?

CQ2—Were identified TD items related
to code ownership?

Next, we chose several specific instances in the
results where the same location in the source code was
found to have a high level of some TD indicator (as evi-
denced by one of the automated tools) and was indi-
cated in a TD item reported by a developer. Question
CQ3 helped us to determine if these instances of over-
lapping were meaningful:
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CQ3—Do you (developer) think there is a
connection between this indicator and the
TD item?

Questions CQ4 and CQ5 were asked about specific
instances in the results where issues were identified by
automated approaches in a particular file, but no TD
items in those files were present on anyone’s reported
TD list:

CQ4—Does this file have any TD?
CQ5—Would it be worthwhile to do some
preventive maintenance to remove some
of the issues found by the tools?

Finally, questions CQ6 and CQ7 were asked to shed
light on cases where a TD item was flagged by devel-
opers in a particular location but the tool-identified in-
dicators did not signal a problem:

CQ6—Are you (developer) surprised that the
automated tools did not find any problems
with this file?

CQ7—Would you have expected to see
more problems found by the tools? Why

or why not?

Due to the distance and language, this phase also in-
volved a company contact, who was part of the re-
search team (first author) and was in charge of data
collection, conducted the focus group, and performed
all communication between the project team and the
research team. All communication with the project
team was in Portuguese, while the research team com-
municated in English. We conducted the focus group
meeting over Skype, audio-recorded the entire session,
and transcribed it for analysis. The transcription of the
focus group was then translated to English. The next
step was to code [39] the transcription in order to find
evidence to help the authors understand the differ-
ences found in the results from Phase |. The coding
was also performed by the first author, who generated
and followed the coding schema defined in Table 3.

We coded the focus group data in vivo, using codes
that emerged from the data and thus were, in some
sense, related to the formulated questions. For this, we
used a combination of pen, paper, and Microsoft Excel.
We formulated findings by synthesizing the coded seg-
ments pertaining to categories that had substantial
data weight. That is, the findings were grounded in the
data rather than formulated ahead of time and vali-
dated through the data. At the end, the results of both
Phase | and Phase Il were put together and we drew
conclusions based on the entire set of results.
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(2019) 25:5 Page 10 of 21

Code

Description

TD Item Description
Specific Question
Generic Question

New Question
Confirmation Question
Metric Correlation

Code Smells Correlation
Find bug Correlation
Note

Answer

Technical Debt Overlap
Technical Debt Identification

Indicators and Technical Debt
Identification

Benefits of TD Management

Benefits of TD Documentation

TD Identification without code reading
TD Identification with code reading

Indicators and Problems in the Project

Code Inspection Feasibility

Question and answer that helps explain a specific TD item.

A question about a specific TD item.

A question that is not specific for any TD item.

A question that was not planned before the meeting.

A question asking for confirmation from all participants.

Answers related to the correlation between TD items and metrics.
Answers related to the correlation between TD items and code smells.
Answers related to the correlation between TD items and FindBugs issues.
Moderator notes about participant actions.

Answers to new or generic questions.

Answers addressing the lack of overlap between the identified TD Items.
Answers about the manual TD identification process.

Answers about the correlation between technical debt and metrics, code smells, and
FindBugs issues.

Comments about the benefits of TD management.

Comments about the benefits of TD identification.

Comments about TD identification without reading the source code.
Comments about TD identification by reading the source code.

Comments about the correlation between problems in the source code and metrics, code
smells, and FindBugs issues.

Comments about the feasibility of inspecting the source code to look for TD items.

Results

The tools we used generated a large number of issues
pointing to potential TD, with indicators occurring in
nearly every file in the code base. Therefore, we had to
pre-filter the results in some way to allow a meaningful
comparison with the manually elicited TD items. For
each automatically generated indicator, we sorted the
source code files by the number or severity of issues
found. For example, we sorted by the number of Find-
Bugs Priority 1 issues, and by the value of each of the
source code metrics, and the number of each kind of
code smell found. For each indicator, we examine the
top 10% of the sorted list and determined how many
source files in that 10% corresponded to TD items re-
ported by developers. The indicators having the most
developer-reported source files in the top 10% were
FindBugs P1 issues, the MAX nesting metric, and In-
tensive Coupling code smell.

We realize that this filtering approach somewhat
biases our results by only showing the automated tool
results that performed best in terms of matching up
with manually reported TD items. Our motivation was
to determine simply if any of the automated ap-
proaches were related to the TD elicited from devel-
opers and to simplify the presentation of results.
Clearly, we cannot claim that these three top

performing indicators in this study would also be the
best ones in any given case. Thus, we can reject the
notion that none of the automated indicators (metrics,
ASA issues, and code smells) are good at finding TD,
but we are still not at the point where we understand
which indicators generally predict TD best, or under
which circumstances they predict best, especially given
the high number of false positives typically included in
the results from such tools.

Results in Fig. 2 show how the 21 TD items
(presented in Appendix) identified by the software
team, each represented as a colored box, were distrib-
uted over project roles and types of debt. As the legend
indicates, each box has three faces, corresponding to
principal (front), interest probability (right side), and
interest amount (top). Each face can be green, yellow,
or red with respect to the estimation of the team mem-
ber (respectively low, medium, and high). An “i” on the
front face indicates that the debt was intentionally in-
troduced. Note that one new TD type, usability debt,
was introduced by one of the subjects to describe the
lack of a common user interface template.

Figure 3 shows the results of automated identifica-
tion approaches (FindBugs, Code Smells, Metrics)
compared to the items reported by the development
team. Each box in Fig. 3 corresponds to one of the
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Fig. 2 Results of the human elicitation of TD items (adapted from [51])

boxes (elicited TD items) shown in Fig. 2. An “s” on
the front face of a box shows that the TD item was lo-
cated in the source code by the subject who reported
it (as opposed to some other artifact besides code).
The overlapping shaded areas in Fig. 3 depict the over-
laps between the TD items reported by the human
subjects (shown in Fig. 2), and the TD items found by
the top three automated indicators (MAX Nesting,
FindBugs P1, and Intensive Coupling). We can observe
that there are overlaps in only two types of debt, de-
fect, and design debt. For example, the shaded area la-
beled “Defect Debt” in Fig. 3 contains the nine defect

debt items reported by the development team (actually
by Developer 2 and the Maintainer) and that are
depicted in the “Defect Debt” shaded area of Fig. 2.
Figure 3 shows that, of these nine defect debt items,
seven were also found by all three automated indica-
tors. A possible explanation for this concentration of
overlaps on only those two types of debt is that they
are closely related to the code (and then, could be
reached by the tools) and there are participants whose
roles are also directly related to code tasks
(developers, tester, and maintainer). The other identi-
fied instances of debt in this study (documentation,

































