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A NOVEL FRAMEWORK FOR DESIGNING DIRECTIONAL LINEAR TRANSFORMS WITH
APPLICATION TO VIDEO COMPRESSION

Maurizio Masera, Giulia Fracastoro, Maurizio Martina, Enrico Magli

Department of Electronics and Telecommunications
Politecnico di Torino - Italy

ABSTRACT

Transforms incorporating directional information are appeal-
ing in a wide range of applications. In this paper, we introduce
a new framework that allows to define a directional transform
starting from any two-dimensional separable transform. The
proposed method is highly general and it can be of interest in
many areas of signal processing. We also show an example
of possible application. We define a directional integer DCT
and DST and we show their application in video compression
by integrating them in the HEVC video coding standard.

Index Terms— Directional transform, video coding

1. INTRODUCTION

Directional transforms are of great interest in signal process-
ing thanks to their numerous applications in signal compres-
sion and analysis. The adaptation of geometric parameters
can optimally match the transform to the signal of interest,
resulting in a more precise signal representation that can be
convenient in many application fields.

In the past, many attempts have been made to incorpo-
rate directional information into the transform operator. One
of the most famous directional transforms is the directional
discrete cosine transform [1], which consists in a separable
transform in which the first 1D-DCT may follow a direction
other than the vertical or horizontal one. Another method to
introduce directionality in the DCT has been presented in [2],
where directional primary operations have been introduced
for the lifting-based DCT. Moreover, [3] presents another di-
rectional transform called rotational transform, which con-
sists in a secondary transform applied after the DCT that in-
duces small modifications of the DCT coefficients.

Other directional transforms employ more sophisticated
nonseparable geometries. Curvelets [4] are one of such ex-
amples, which provide an efficient representation of discon-
tinuities along smooth curves. Another example is presented
in [5], where the authors introduce a new class of bases called
bandlets, which are adapted to the local directions in which
the image has regular variations. Moreover, in [6] the discrete
contourlet transform is presented, where the authors apply a
directional image expansion using contour segments.

Recently, the theory of graph signal processing [7] has
been exploited in order to design a steerable discrete cosine
transform [8, 9, 10] and a steerable discrete Fourier transform
[11]. In the first case, starting from the graph transform of
a grid graph, a new directional transform can be designed by
rotating the 2D-DCT basis in any chosen direction. Instead,
in the second case this concept is extended and a new general-
ization of the DFT is presented. The proposed steerable DFT
can be defined in one or two dimensions. In the first case, it
can be interpreted as a rotation on the complex plane, instead
in the second case it represents a rotation in the 2D Euclidean
space.

All these directional methods, however, are designed for
a specific transform. Instead, in this paper we propose a new
technique for designing directional transforms that can be ap-
plied to a wide range of transforms. In particular, we extend
the framework presented in [9, 11] in order to define a new
method that allows us to define a directional transform for any
two-dimensional separable transform. This new directional
transform can be computed in an efficient way and it can be
oriented in any chosen direction. We also show an example
of possible applications of the proposed technique. We define
a directional integer DCT and DST and we present their ap-
plication to video compression by implementing them in the
HEVC video coding standard. We show that, using transform
basis with different orientations, we can obtain a sparser rep-
resentation, and therefore an improved coding efficiency.

2. PROPOSED METHOD

Given a two-dimensional signal represented by a matrix X ∈
Cn×n, an arbitrary two-dimensional invertible transform may
be represented as x̂ = Tx, where x ∈ Cn2

is the vectorization
ofX obtained by stacking the columns ofX and T ∈ Cn2×n2

is the transform matrix. A separable two-dimensional trans-
form can be defined as Y = AXBH , where A ∈ Cn×n
and B ∈ Cn×n are one-dimensional transforms that oper-
ate separately on the signal columns and rows, respectively.
The equivalent two-dimensional transform matrix is defined
as T = A ⊗ B, where ⊗ is the Kronecker product. If we
consider the case when A = B, we have that

T = A⊗A. (1)



Then, let t(l,k) ∈ Cn2

be the vector corresponding to the
i-th row of T , where i = l · n + k and 0 ≤ l, k ≤ n − 1, we
can define the matrix T (l,k) ∈ Cn×n in the following way

T (l,k) =
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From (1), we obtain that T (l,k) = T (k,l)T . This shows that,
if l 6= k, T (l,k) and T (k,l) represent the same frequency com-
ponent, but one in the horizontal direction and the other one
in the vertical direction. Therefore, by properly rotating these
vectors we can define a general method for designing, starting
from T , a new directional transform. The proposed technique
represents a generalization of the method presented in [9, 11]
to any separable transform defined as in (1).

Given a pair of vectors t(l,k) ∈ Cn2

and t(k,l) ∈ Cn2

cor-
responding respectively to the i-th and j-th rows of T , where
i = l · n + k and j = k · n + l with 0 ≤ l, k ≤ n − 1 and
l 6= k, we can rotate them in the following way[

t(l,k)
′

t(k,l)
′

]
=

[
cos(θk,l) sin(θk,l)
− sin(θk,l) cos(θk,l)

] [
t(l,k)

t(k,l)

]
, (2)

where θk,l is an angle in [0, 2π]. In order to define the new
directional transform T (θ) ∈ Cn2×n2

, all the pairs t(l,k) and
t(k,l), with 0 ≤ l, k ≤ n − 1 and l 6= k, are replaced by
the rotated ones t(l,k)

′
and t(k,l)

′
. In this way, the i-th row

of T (θ), with i = l · n + k, corresponds to the vector t(l,k)
′

if l 6= k, instead if l = k the i-th row of T (θ) is equal to
the i-th row of T . It is interesting to point out that we can
use more than one rotation angle per block. The number of
rotated vector pairs is p = n(n−1)

2 and each vector pair can be
rotated by a differend angle. The vector θ ∈ Rp contains all
the angles used.

The new directional transform T (θ) ∈ Cn2×n2

can be
defined as

T (θ) = R(θ)T, (3)

where R(θ) ∈ Rn2×n2

is the rotation matrix. The structure
of R(θ) is defined so that, for each pair of vectors t(l,k) and
t(k,l) where k 6= l, it performs the rotation described in (2). It
is easy to see that R(θ) can be decomposed in two matrices
as R(θ) = ∆ + R̃(θ), where ∆ ∈ Rn2×n2

is a constant
matrix representing the vectors that do not rotate (i.e. t(l,l)),
and R̃(θ) ∈ Rn2×n2

represents the rotating vectors. ∆ is a
diagonal matrix, with ∆ii = 1 for any i = k ·n+k, otherwise
∆ii = 0. Given 0 ≤ k, l ≤ n−1 and k 6= l, if i = k ·n+l and
j = l · n + k, then R̃(θ)ii = R(θ)jj = cos(θk,l), R̃(θ)ij =

sin(θk,l) and R̃(θ)ji = − sin(θk,l).
We highlight that the rotation described in (2) preserves

the total energy of the coefficients

|x̃l,k|2 + |x̃k,l|2 = |x̂l,k|2 + |x̂k,l|2, (4)

Algorithm 1 Efficient computation of the directional trans-
form

1: Input: T : separable transform satisfying property (1), θ:
chosen rotation angle;

2: Compute the transform coefficients in a separable way:
x̂ = AxAH ;

3: Compute the rotation matrix R(θ)
4: Apply the rotation: x̃ = R(θ);

where x̃l,k and x̃k,l are the transform coefficients of T (θ)

corresponding respectively to the transform vectors t(l,k)
′

and
t(k,l)

′
and x̂l,k and x̂k,l are the transform coefficients of T

corresponding respectively to the transform vectors t(l,k) and
t(k,l).

2.1. Efficient implementation

It is important to point out that, even if T is a separable trans-
form, the directional transform T (θ) is non-separable. Since
the complexity of a non-separable transform is much higher
than the one of a separable transform, this can be an important
drawback for the proposed directional transform. However,
we note that we can define an efficient way for computing the
transform coefficients of T (θ) by leveraging the separability
of T in the following way

x̃ = T (θ)x = R(θ)Tx = R(θ)x̂, (5)

where x̃ and x̂ are the transform coefficients of the signal x
obtained using respectively T (θ) and T . Equation (5) shows
that we can drastically reduce the complexity by first comput-
ing in a separable way the coefficients x̂ corresponding to the
separable transform T , and then we can obtain the coefficients
x̃ of T (θ) just multiplying x̂ by the sparse matrix R(θ). Al-
gorithm 1 summarises the proposed procedure for efficiently
computing the directional transform.

2.2. Example of directional transform

In the previous part of this section, we have defined a general
framework for efficiently designing a directional transform by
rotating the basis vectors of a given transform in any cho-
sen direction. It is important to underline that the proposed
method could be applied to any two-dimensional separable
transform that satisfies the property described in (1). The
number of transforms that could be interested by the proposed
framework is very large. Apart from the classical 2D-DCT, a
few examples of possible transforms that could be interested
by the proposed technique are 2D-DST, wavelets, 2D discrete
Hartley transform [12, 13] and integer transforms like the in-
teger DCT and the integer DST that are typically employed in
many image and video compression standards [14].

As an example, here we consider the 2D-DST and we
show how to design a directional DST. One of the major ap-
plications of the DST is in video compression, since it is used



(a) DST (b) Directional DST with θ = π
4

Fig. 1: Transform basis vectors.

in the High Efficiency Video Coding (HEVC) standard for
coding 4×4 blocks [14]. The 1D-DST is defined as follows

x̂k =

n−1∑
i=0

αixi sin
( π

2n
(2i+ 1)(k + 1)

)
,

where αi =
√

1
n if i = n − 1, otherwise αi =

√
2
n . Then,

since the 2D-DST is a separable transform, we can define the
2D-DST transform matrix T as T = A ⊗ A, where A is the
1D-DST transform matrix. In this way, we can apply the pro-
posed method as defined in (3) for designing a directional 2D-
DST. In Fig. 1, we show an example of a directional 2D-DST
transform matrix, where we rotate all the basis vectors by π

4 .
As can be seen, all the off-diagonal elements t(l,k), where
k 6= l, are clearly rotated by the chosen angle.

In the next section, we present an examples of possible
application of the proposed framework by focusing on inte-
ger transforms. In particular, we define a directional integer
DCT and DST for HEVC applications by substituting matrix
A in (1) with the integer approximations of the DCT and DST
specified in [15, 16].

3. VIDEO COMPRESSION

The most recent video compression standard is HEVC [16],
which nearly doubles the rate-distortion performance with re-
spect to the previous H.264/AVC standard [17]. However, the
increasing popularity of full-HD videos and emerging Ultra
High Definition (UHD) formats leads to a big issue in stor-
ing and transmitting video contents. For this reason, there is
a continuous effort in enhancing and developing new tech-
niques to improve the coding efficiency. For example, the
Joint Video Exploration Team (JVET) of ITU-T VCEG and
ISO/IEC MPEG is now developing the future video coding
technology, which will improve significantly the compression
efficiency with respect to the current HEVC standard [18].

In this Section, we show how to exploit both the direc-
tional integer DCT and DST to achieve a coding efficiency
improvement. The benefits are due to the fact that using trans-
form basis vectors with different orientations may lead to a
sparser signal representation. Therefore, the number of bits

needed for encoding the transform coefficients is reduced and
the rate-distortion performance is improved.

3.1. Implementation details

Stemming from the proposed framework, we implement the
directional integer DCT and DST on top of HEVC, by apply-
ing them on all the integer DCT sizes from 4×4 up to 32×32
and on the integer DST of size 4×4, which are specified in
the standard. Only the luminance signal has been considered
in this work.

Despite of improvements achievable when using different
rotation angles for different couples of transform vectors [9],
we choose to use one single angle for all the rotation vectors
in an image block. The angle is selected in a finite set of q
possible angles, uniformly distributed in the interval [0, π2 ].
Thanks to the symmetries of the transform vectors, this inter-
val is enough to represent all the relevant angles. The usage of
only one rotation angle for all the transform vectors reduces
the encoder complexity because only q integer DCT or DST
must be computed per each block. Also, this limits the num-
ber of overhead bits used to signal the rotation vector in the
bit-stream. Indeed, the signaling is implemented by specify-
ing two additional syntax elements. The first one is a flag at
the Coding Unit (CU) level which indicates whether the di-
rectional integer DCT and DST are applied or not. When the
flag is set to 0, all the Transform Units (TUs) inside the CU
are coded without rotation. On the other hand, the second
syntax element is used to specify the rotation angle for each
TU belonging to the CUs which have the first flag set to 1.
It requires log2 q bits for each TU which is coded using the
directional approach.

Concerning the encoding process, the directional integer
DCT and DST of a TU are calculated for each of the q ro-
tation angles using (5). The encoding algorithm chooses the
best rotation for each TU by minimizing the rate-distortion
cost, which is computed using the Sum of Squared Differ-
ences between the original and the reconstructed blocks and
the number of bits used in the bit-stream to represent the
block. Moreover, the cost associated to the directional trans-
forms is taken into account in the overall rate-distortion pro-
cess, which chooses the frame partitioning at the CU and TU
levels. The resulting formula of the rate-distortion cost is

J = D + λ · (Rcoeff +Rangles),

where D is the distortion introduced by the encoding process,
λ is the Lagrange multiplier and Rcoeff and Rangles repre-
sent the number of bits required to code the transform coeffi-
cient and the rotation angle respectively. Thus, the modified
HEVC encoder still produces a valid bit-stream optimized in
the rate-distortion sense, which can be correctly decoded by
the corresponding modified HEVC decoder.

At the decoder side, the bit-stream is parsed and the ad-
ditional syntax elements related to the proposed framework



are extracted and used to instruct the decoder to perform the
inverse directional integer DCT and DST with the correct ro-
tation angle.

3.2. Experimental results

To evaluate the improvements in terms of coding efficiency,
we integrate the directional integer DCT and DST in the
HEVC encoder software model version HM 16.6 [19] and we
run coding experiments according to the HEVC common test
conditions (CTC) [20]. The experiments are performed on all
the video sequences specified in the CTC, which are classified
by decreasing resolution from class A down to E, while the
last class F contains screen content of different resolutions.
To address the recent trend in resolution increase, also classes
A1 and A2 from the latest JVET common test conditions
[21] are used in our experiments, since they provide UHD 4K
video sequences which were not included in the HEVC CTC.
The encoder has been configured according to the All Intra,
Low Delay and Random Access main settings using 10 bits
as internal bit-depth.

The coding efficiency of the proposed encoder with
directional integer DCT and DST is evaluated using the
Bjøntegaard Delta Bit-Rate (BDBR) metric [22], using as
reference method the original HEVC encoder HM-16.6.
Therefore, negative values mean bit-rate savings, hence im-
proved coding efficiency with respect to the HEVC standard,
whereas positive values denote rate-distortion losses. Each
rate-distortion curve is generated by performing coding ex-
periments by using four different quantization parameters,
namely 22, 27, 32 and 37, as specified in the CTC. The com-
bined PSNRYUV metric provided by the encoder is used as
the measure of the quality.

Table 1 reports the BDBR for the video sequences of the
HEVC and JVET CTC classes encoded with the three con-
figurations. As can be observed from Table 1a, the coding
efficiency improves when increasing the number of rotation
angles, as expected. This is due to the fact that the encoder
can choose the best transform in a larger set of candidates, so
it can code the residual signal using a sparser representation.
However, using more than 16 angles the rate-distortion does
not improve further, because the performance gain is out-
weighed by the increased bit-rate used to signal the rotation
angles in the bit-stream. Moreover, it is worth noting that the
benefits of employing directional transforms are more signif-
icant for high resolution video sequences, which show large
uniform regions. These areas of the frames are usually coded
using larger TUs, for which the directional approach is very
efficient. Indeed, since the bit-rate overhead of log2N bits to
signal the rotation angle is constant for all the transform sizes,
more benefits come when larger TUs are employed.

The best coding efficiency improvements with respect to
HEVC are achieved when the All Intra configuration is em-
ployed (see Table 1a). As reported in Table 1b and 1c, smaller
rate-distortion benefits are also observed for high resolution

Table 1: BDBR [%] Comparison of the proposed directional
Transform versus HEVC for Video Compression Applica-
tions.

(a) All Intra

Class q = 2 q = 4 q = 8 q = 16
A1 -0.433 -0.572 -0.628 -0.645
A2 -0.514 -0.618 -0.634 -0.633
A -0.378 -0.577 -0.682 -0.716
B -0.305 -0.433 -0.472 -0.464
C -0.277 -0.325 -0.322 -0.302
D -0.288 -0.379 -0.364 -0.339
E -0.080 -0.106 -0.101 -0.089
F -0.176 -0.208 -0.205 -0.220

(b) Low Delay

Class q = 2 q = 4 q = 8 q = 16
A1 -0.040 -0.032 0.003 -0.022
A2 -0.084 -0.097 -0.055 -0.090
A -0.213 -0.291 -0.243 -0.309

(c) Random Access

Class q = 2 q = 4 q = 8 q = 16
A1 -0.111 -0.040 -0.014 -0.035
A2 -0.218 -0.256 -0.178 -0.236
A -0.116 -0.243 -0.124 -0.173

video sequences when encoded in the Low Delay and Ran-
dom Access configurations, whereas this technique does not
provide significant coding efficiency improvements for the
other classes. This large difference in terms of coding effi-
ciency is due to the fact that the Low Delay and Random Ac-
cess configurations employ motion estimation and compen-
sation to further enhance the prediction capability of the en-
coder. This results in a prediction signal which is more likely
to be zero, thus lowering the impact of good transform cod-
ing techniques on the overall encoding process. On the other
hand, the All Intra configuration employs only intra predic-
tion techniques. In this way, the encoder produces a residual
signal that still shows higher spatial redundancy, which is ex-
ploited by our proposed directional transforms.

4. CONCLUSIONS

In this paper, we have proposed a new method for designing a
directional transform starting from any two-dimensional sep-
arable transform. The proposed technique is highly general
and can be applied to a wide range of transforms. As an ex-
ample of possible application, we have defined a directional
integer DCT and DST and we have implemented them in the
HEVC video coding standard. The experimental results show
that the proposed directional framework can improve the cod-
ing efficiency of the HEVC standard.
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