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As explained in [1],  the term “repunit”  was coined by Beiler  in a book of 1966 [2],  for the

numbers defined as: 

Rn=
10n−1
10−1

The sequence of repunits starts with 1, 11, 111, 1111, 11111, 111111, ... (sequence A002275

in the OEIS, https://oeis.org/A002275). As we can easily see, these numbers are linked to q-

integers and Mersenne numbers [3-7]. A q-integer is defined as [3]: 

[n]=q
n−1
q−1

so we have the Mersenne numbers for q=2. The repunits are the q-integers for q=10 :

[n]q=10=
10n−1
10−1

We can use the same approach for the repunits of that proposed in [4-6].  Let us consider the

following operation (generalized sum):

Rm+n=Rm⊕Rn
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defined in the following manner:

(1) Rm⊕Rn=Rm+Rn+(10−1)RmRn

This is the addition of the q-units as given in [4,5]. The neutral element for (1) is R0=0 , so 

that: Rm⊕R0=Rm+R0+(10−1)RmR0=Rm . 

The recursive relation for the repunits, given according to (1) and starting from R1=1 , is:

Rm⊕R1=Rm+R1+(10−1)Rm R1

That is: 11, 111, 1111, 11111, 111111, 1111111, 11111111, and so on. 

In  [8], we have discussed the symmetric q-integers, which are defined as [3]:  

[n]s=
qn−q−n

q−q−1

We can define the “symmetric” repunits as:

Rn , s=
10n−10−n

10−10−1
=2

sinh(n ln10)
10−10−1

The sequence is: 1, 10.1, 101.01, 1010.101, 10101.0101, 101010.10101, etc.

In this case, the addition is defined [8]:

Rm, s⊕Rn , s=Rm ,s cosh (n ln 10)+Rn , scosh (m ln 10)

or

Rm, s⊕Rn , s=Rm ,s√1+k2(Rn , s)2+Rn , s√1+k2(Rm,s)2

where k=1
2

(10− 1
10

) . Let us note that R1 ,s=
10−10−1

10−10−1
=1 .

The recursive formula for the symmetric repunits is:

Rn+1 , s=Rn, s⊕R1, s=Rn,s√1+k2+√1+k2(Rn , s)2
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