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Abstract Here we discuss the repunits. An operation of addition of these numbers is
proposed. A recursive formula is given accordingly. Symmetric repunits are also defined.
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As explained in [1], the term “repunit” was coined by Beiler in a book of 1966 [2], for the
numbers defined as:

:10"—1
10—-1

R,

The sequence of repunits starts with 1, 11, 111, 1111, 11111, 111111, ... (sequence A002275
in the OEIS, https://oeis.org/A002275). As we can easily see, these numbers are linked to g-

integers and Mersenne numbers [3-7]. A g-integer is defined as [3]:

so we have the Mersenne numbers for g=2. The repunits are the g-integers for g=10 :

=0T 10-1

We can use the same approach for the repunits of that proposed in [4-6]. Let us consider the

following operation (generalized sum):

Rm+n:Rm®Rn
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defined in the following manner:
(1) R,®R,=R,+R,+(10—-1)R,R,

This is the addition of the g-units as given in [4,5]. The neutral element for (1)is R,=0 , so
that: R,®R,=R,+R,+(10—1)R,R,=R,,

The recursive relation for the repunits, given according to (1) and starting from R,=1 ,is:

R,®R,=R,+R,+(10—1)R, R,

Thatis: 11, 111, 1111, 11111, 111111, 1111111, 11111111, and so on.

In [8], we have discussed the symmetric g-integers, which are defined as [3]:

We can define the “symmetric” repunits as:

_ 1()"—10‘”_2 sinh(n lnlO)
10—-10"" 10—10""

n,s

The sequence is: 1, 10.1, 101.01, 1010.101, 10101.0101, 101010.10101, etc.

In this case, the addition is defined [8]:

R, ;®R, =R, ,cosh(nIn10)+R, ;cosh(m In10)

or
Rm,sEDRn,s:Rm,s\/1+k2(Rn,s)2+Rn,s\/1+k2(Rm,s)2
1 1 10—-10""
k== (10——) . _10-10 _
where 2( 0 10) Let us note that R, , o 10" 1

The recursive formula for the symmetric repunits is:

R, =R, ®R, =R, V1+K’+/1+I*(R, ]

n+l,s
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