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Abstract

Among the various phenomena that can be modeled by Boolean networks, i.e.,
discrete-time dynamical systems with binary state variables, gene regulatory
interactions are especially well known. Therefore, the analysis of Boolean net-
works is critical, e.g., to identify genetic pathways and to predict the effects of
mutations on the cell functionality. Two methodologies (i.e., the semi-tensor
product and the Gröbner bases over finite fields) have recently been proposed to
tackle the problem of determining cycles and attractors (with the correspond-
ing basin of attraction) for such systems. Here, it is shown that, by suitably
coupling methodologies taken from these two fields (i.e., linear algebra and al-
gebraic geometry), it is not only possible to determine cycles and attractors,
but also to find closed-form solutions of the Boolean network. Such a goal is
pursued by finding an immersion that recasts the Boolean dynamics in a linear
form and by computing the closed-form solution of the latter system. The effec-
tiveness of this technique is demonstrated by fully computing the solutions of
the Boolean network modeling the differentiation of the Th-lymphocyte, a type
of white blood cells involved in the human adaptive immune system.

Keywords: Boolean networks, linear systems, algebraic geometry, linear
algebra

1. Introduction

One of the most simple ways to explain the flow of genetic information in a
biological system is the central dogma of molecular biology, which asserts that
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the information contained in each single gene is transcribed into a sequence
of mRNA, which, in turn, is translated into a protein that —possibly inter-
facing with other proteins — regulates the replication and the transcription of
several genes, giving rise to complex interactions (Crick, 1958, 1970). Since
the pioneering work of Kauffman (1969), one of the most intuitive, yet effective,
models that have been used in the literature (Albert and Barabási, 2000; Bansal
et al., 2006; Davidich and Bornholdt, 2008) to represent these complex dynam-
ics is the Boolean network, i.e., a discrete-time dynamical system, whose state
variables admit only two operational levels: ON (or 1) when active, and OFF
(or 0) otherwise. Such systems have recently gained a growing interest thanks
to the availability of high-throughput experimental technologies (as, e.g., gene
expression micro-arrays) that allow to obtain qualitative and quantitative data
about the molecular make-up of cells, which permit to identify gene interactions
through simple computational analysis (Covert et al., 2001; Papin et al., 2003;
Bansal et al., 2007; Busetto and Lygeros, 2014).

Several tools are available in the literature to represent and analyze the dy-
namics of Boolean networks as, e.g., linear systems obtained through the semi-
tensor product (Cheng and Qi, 2010), logical models (Chaouiya et al., 2012),
Boolean functions (Müssel et al., 2010), Petri nets (Rohr et al., 2010), directed
graphs obtained through exhaustive enumeration of the states (Menini et al.,
2017; Possieri and Teel, 2017), and truth tables (Wuensche, 2011; Shah et al.,
2018) (for illustrative purpose, Figure 1 shows several representations of a simple
Boolean network representing the dynamics of a 3-repressilator (Dilão, 2014)).
Each of these methods presents its own advantages and disadvantages for the
representation and the analysis of Boolean dynamics. For instance, the ap-
proach based on semi-tensor product has been proved successful to characterize
the structural properties of a Boolean network (Cheng et al., 2010; Fornasini and
Valcher, 2013), but the dynamical matrices of the corresponding linear system
have large dimensions, whereas the approach based on a polynomial representa-
tion (Veliz-Cuba et al., 2010; Hinkelmann et al., 2011b; Menini and Tornambe,
2013b) can successfully identify attractors and the corresponding basins of at-
traction, but the involved tools are rather complex from a computational point
of view (Hinkelmann et al., 2011a).

The main objective of this paper is to show that a comprehensive analysis
of the dynamics of a Boolean network can be carried out by suitably coupling
tools borrowed from algebraic geometry and from linear algebra. Some tools
borrowed from algebraic geometry over finite fields (namely, over the Galois
field of order 2) allow to easily encode the dynamics of a Boolean network in
polynomial form, thus paving the way towards a simplified linear representa-
tion of the Boolean dynamics. In fact, it is shown that, by employing standard
algebraic geometry tools (which essentially consist of determining a solution to
a system of linear equalities modulo 2), it is possible to immerse any Boolean
network into a linear, time-invariant, discrete-time system, which will be called
the reduced linear representation. The main advantage is that the obtained
linear system has, in general, a smaller dimension than the one obtained by
using other approaches (as, e.g., the semi-tensor product or the monomial im-
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1 1 1 1 1 1 1 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1
0 1 0 0 1 1 0 1
0 0 0 0 0 0 1 1
0 0 0 0 1 0 0 1
0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1


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0 0 0 0 0 0 1 0

, q(x) =



x1x2x3
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x2
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
Figure 1: Several representations of a 3-repressilator. (a) Wiring diagram, where xi

represents a protein and the end symbols → and a indicate that the reactions are activating
and inhibitory, respectively. (b) Logical representation, x(t + 1) = f(x(t)). (c) Polynomial
representation, x(t + 1) = p(x(t)). (d) Representation through truth table. (e) Extensive
graphical representation, where each node represent a state x ∈ Fn

2 and there is an arc
between the node x and the node y if and only if y = f(x). (f) Representation through linear
immersion, z(t + 1) = Az(t), x(t) = Bz(t), z(0) = q(x(0)).

mersion(Menini and Tornambe, 2013a), which generically immerse the Boolean
network into a linear system with 2n states), thus enlarging the “size” of the
Boolean networks that can be analyzed. Furthermore, the reduced linear repre-
sentation allows to determine a closed-form expression for the solutions of the
Boolean network and to characterize its limit cycles by using standard linear
algebra methods.

The effectiveness of this framework is demonstrated by applying the pro-
posed tools to the Boolean network modeling the differentiation of the Th-
lymphocyte. Namely, a polynomial representation of the dynamics of such a
Boolean network is derived and is used to determine an immersion that recasts
it into a compact linear form. Such a representation is then used to characterize
the cycles of this Boolean network and to determine a closed-form expression
for its solutions.
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2. Representation of Boolean networks through polynomials and bi-
nary matrices

2.1. Boolean networks

A Boolean network is a discrete-time dynamical system in which each state
variable takes value in F2 = {0, 1}. In this model, the current state determines
uniquely the future evolution of the system since, at each time instant, the value
of the next state is determined uniquely by the current value of the state, using a
logical rule. Hence, a Boolean network with n state variables can be represented
as a discrete-time system of the form

x(t+ 1) = f(x(t)),

where x(t) ∈ Fn2 is the state vector and f : Fn2 → Fn2 is a logical function
assigning to each element of Fn2 a Boolean vector in Fn2 .

2.2. Representation of Boolean networks through polynomial systems

Among all the models for describing Boolean dynamics, it is worth men-
tioning the possibility of representing a Boolean network through a polynomial
system (Hinkelmann et al., 2011a). In fact, by defining the sum and product
operators over F2 as

a+ b =

{
1, if a 6= b,

0, if a = b,
ab =

{
1, if a = 1 ∧ b = 1,

0, otherwise,
(1)

for each a, b ∈ F2, one obtains that the set F2 has the structure of a finite field
(it is usually known as the Galois field of order 2 ). Thus, in view of the usual
Boolean relations

¬0 = 1, 0 ∧ 0 = 0, 0 ∨ 0 = 0, 1 ∧ 1 = 1,

¬1 = 0, 0 ∧ 1 = 1 ∧ 0 = 0, 1 ∨ 0 = 0 ∨ 1 = 1, 1 ∨ 1 = 1,

it can be noticed that a∧b = ab, a∨b = a+b+ab, and ¬a = a+1 for each a, b ∈
F2. Therefore, each Boolean function f : Fn2 → Fk2 can be represented through
a polynomial vector in n variables with coefficients in F2. In particular, letting
x = [ x1 · · · xn ]> be such variables, for each Boolean map f(x), there exists
a polynomial vector p(x), with coefficients in F2, such that p(x) = f(x) for all
x ∈ Fn2 (in the remainder of the paper, following the notation usually employed
when dealing with polynomials(Cox et al., 2015), the set of all the polynomials
in x with coefficients in F2 is denoted F2[x]). Such a polynomial vector can
be easily determined by using the Lagrange interpolation formula (Menini and
Tornambe, 2013a) (see Figure 2):

p(x) =
∑
w∈Fn2

f(w)

n∏
i=1

(1 + wi + xi), (2)
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[
0
0

]
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=

[
x1x2 + x1

x1x2 + x2

]

Figure 2: Lagrange interpolation formula. Example of application of the expression given
in (2) for the logical map f : F2

2 → F2
2 representing the reduced dynamics of the Th-lymphocyte

differentiation network (Veliz-Cuba, 2011), where x1 and x2 denote the presence/absence of
T-bet and GATA-3, respectively.

where sums and products of the coefficients of the monomials in x appearing in
(2) are carried out by using (1). Thus, in view of (2), each f : Fn2 → Fk2 can be
represented by the corresponding polynomial vector p(x) with coefficients being
either 0 or 1 and whose degree in each variable xi is lower than 2. In particular,
for any polynomial vector q ∈ Fk2 [x] define its canonical form as follows:

q(x)]F2
:=

∑
w∈Fn2

q(w)

n∏
i=1

(1 + wi + xi).

In the following, the ring of all such canonical forms is denoted F2[x]. It is
worth noticing that F2[x] has the structure of a quotient ring over F2, F2[x] =
F2[x]/〈x2

1 +x1, . . . , x
2
n +xn〉, since each g ∈ F2[x] that can be written as g(x) =

g1(x)(x2
1 + x1) + · · · + gn(x)(x2

n + xn) for some g1, . . . , gn ∈ F2[x] vanishes
identically over F2. Thus, in view of the Lagrange interpolation formula (2),
each Boolean network can be represented through a discrete-time polynomial
system of the form

x(t+ 1) = p(x(t)), (3)

where p ∈ Fn2 [x]. Such a polynomial representation has many advantages. As
a matter of fact, it allows one to use all the tools arising from computational
algebraic geometry over finite fields (Cox et al., 2015), which are efficiently im-
plemented in several computer algebra systems as, e.g., Macaulay2 (Grayson
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[
x1x2 + x1

x1x2 + x2

]
=

[
1 · x1x2 + 1 · x1 + 0 · x2 + 0 · 1
1 · x1x2 + 0 · x1 + 1 · x2 + 0 · 1

]
=

[
1 1 0 0
1 0 1 0

]
x1x2

x2

x1

1


x1 x2

fixing the GRL order⇐===========⇒
with x1>x2

Figure 3: Representation of polynomial vectors through Boolean matrices. Linear
matrix in F2×4

2 (where green and white cells represent entries equal to one and to zero,
respectively) that represents the Boolean network modeling the reduced dynamics of the Th-
lymphocyte differentiation.

and Stillman, 2018), which is especially suited for computations with polyno-
mial dynamical systems (Menini and Tornambe, 2013). It is worth noticing that
a wholly similar approach has been proposed in Kobayashi and Hiraishi (2017);
Menini et al. (2017) to find a polynomial representation of the Boolean dynam-
ics and to design a control law for the network using polynomial and integer
programming tools.

2.3. Linear representation of Boolean networks

An interesting byproduct of the use of polynomials to represent Boolean dy-
namics is that such a representation allows to immerse the Boolean network into
a linear discrete-time system. In fact, letting Nn =

∑n
r=0

(
n
r

)
= 2n be the num-

ber of different monomials in F2[x] and letting q(x) = [ q1(x) · · · qNn(x) ]>

be the vector of all such monomials, for each p = [ p1 · · · pk ] ∈ Fk2 [x], there

exists a matrix P ∈ Fk×Nn2 such that

p(x)]F2
= Pq(x). (4)

In particular, the (i, j)-th entry of the matrix P is the coefficient of the monomial
qj(x) in the i-th entry pi(x) of p(x) (see Figure 3). Thus, each Boolean network

can be efficiently stored by saving the matrix P ∈ Fn×Nn2 corresponding to the
function p ∈ Fn2 [x], which is composed by n2n bits, once that an order on the
monomials q1, . . . , qNn has been fixed. Moreover, the expression given in (4)
allows one to easily obtain a map that immerse the polynomial system (3) into
linear form. In fact, by taking the entries of q as new state variables, z = q(x),
in the z-coordinates the system exhibits linear dynamics:

z(t+ 1) = Az(t), x(t) = Bz(t), (5)
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A = B = q(x) =


x1x2

x1

x2

1


Figure 4: Immersion of Boolean dynamics into a linear system. Immersion of the
reduced dynamics of the Th-lymphocyte differentiation network into a linear system, where
matrices with entries in F2 have been depicted as tables in which green and white cells represent
entries equal to one and to zero, respectively.

where A ∈ FNn×Nn2 is such that (q◦p(x))]F2 = Aq(x) (namely, the matrix A can

be determined by inspection of the coefficients of (q ◦ p(x))]F2) and B ∈ Fn×Nn2 ,

B = (∂q(x)
∂x )#F2

∣∣
x=0

(see Figure 4). Note that the number of entries of z(t) is
the same as the number of states of the linear immersion obtained by using the
semi-tensor product approach (Cheng and Qi, 2010).
The linear representation given in (5) has several desirable properties: first, it
allows to determine a closed-form solution of the Boolean network (3) as

x(t) = BAtq(x(0));

secondly, it allows to determine cycles by using linear algebra. In fact, x ∈ Fn2
belongs to a cycle of length ` if and only if

(A` + I)q(x) = 0, (Aj + I)q(x) 6= 0, j = 1, . . . , `− 1,

i.e., the vector q(x) is an eigenvector relative to the eigenvalue 1 for A`, but not
for Aj , j = 1, . . . , `− 1, using F2 as ground field.

2.4. Reduced linear representation of Boolean networks

Even tough the representation through linear immersion of Boolean networks
given in (5) has several advantages (as, e.g., the possibility of computing the
closed-form solution of the Boolean network and the availability of efficient tools
to determine cycles), it has a major drawback: the size of the state. As a matter
of fact, system (5) has 2n states, whence the dimension of system (5) grows
exponentially with the number of Boolean variables involved in the network. In
order to overcome this issue, it is possible to use algebraic geometry to obtain
a reduced linear representation of the Boolean network. In particular, assume
that the interest is just to analyze the dynamical behavior of the output vector
y(t) ∈ Fm2 which is related to the current state of the Boolean network through
a logic function h ∈ Fm2 [x] (possibly, m = n and h(x) = x), i.e. y(t) = h(x(t)).
By the same reasoning given in the previous section, there exists a matrix C ∈
Fm×Nn2 such that

y = h(x) = Cq(x).

Thus, letting A ∈ FNn×Nn2 be the matrix such that (5) holds, by the Cayley-
Hamilton theorem (Meyer, 2000), there exists a monic polynomial σ(s) = sNn +

7



λNn−1s
Nn−1 + · · ·+ λ0 ∈ F2[s], λ0, . . . , λNn−1 ∈ F2, such that

ANn + λNn−1A
Nn−1 + · · ·+ λ0INn = 0,

where INn denotes the Nn-dimensional identity matrix over F2. In particular,
σ(s) is the characteristic polynomial of the matrix A using F2 as ground field,

σ(s) = det(sINn −A).

Note that σ(s) is a polynomial in F2[s], but σ]F2(A) need not be equal to zero

since A is a matrix in FNn×Nn2 and not a scalar value in F2. Thus, by pre-
multiplying the expression above by C and post-multuplying it by q(x), since
y(t+ i) = CAiq(x(t)) for all (t, i) ∈ Z>0 × Z>0, one obtains that

y(t+Nn) = λNn−1y(t+Nn − 1) + · · ·+ λ0y(t). (6)

However, the number Nn need not be the smallest integer K ∈ Z>0 such
that y(t + K) can be expressed as a linear combination over F2 of y(t), y(t +
1), . . . , y(t+K − 1). In order to obtain such an integer K, it is possible to use
some tools borrowed from algebraic geometry (Cox et al., 2006). Namely, define
the operator ∆ph(x) = (h ◦ p(x))]F2 and its iteration ∆k+1

p h(x) = ∆p ∆k
ph(x),

k ∈ Z>0. Thus, given k ∈ Z>0, consider the matrix Mk of Fm×(k+1)

2 [x1, . . . , xn]
defined as follows:

Mk :=
[

∆k
ph(x) ∆k−1

p h(x) · · · ∆ph(x) h(x)
]
.

By (6), the vector [ 1 λNn−1 · · · λ0 ]> ∈ FNn+1
2 is in the syzygy module

of MNn (Cox et al., 2006). Thus, in order to determine whether y(t + k) can
be expressed as a linear combination over F2 of y(t), y(t + 1), . . . , y(t + k − 1)
it suffices to check if there exists a vector γ = [ γk+1 γk · · · γ0 ] ∈ Fk+1

2 ,
with γk+1 = 1, in the syzygy module of Mk. If such a vector exists, then

y(t+ k) = γk−1y(t+ k − 1) + · · ·+ γ0y(t),

otherwise y(t + k) cannot be expressed as a linear combination over F2 of
y(t), y(t + 1), . . . , y(t + k − 1). Therefore, the integer K can be determined
by defining the matrices Mk, k = 1, 2, . . . , Nn, and letting K be the smallest
integer such that there exists a constant vector, with the first entry being equal
to 1, in the corresponding syzygy module. It is worth noticing that such compu-
tations can be carried out by simply equating to 0 modulo 2 all the coefficients
of the monomials in x appearing in the vector

∆k
ph(x) + γk−1∆k−1

p h(x) + · · ·+ γ1∆ph(x) + γ0h(x),

i.e., γ and K can be determined by solving systems of linear equations modulo 2.
It is worth stressing that all these computations do not employ the matrices A,
B, and C, which may have large dimensions. Thus, once that the integer K has
been found, together with the corresponding vector γ = [ 1 γK−1 · · · γ0 ] ∈
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a

p(x) =

 x3 + 1
x1 + 1
x2 + 1


h(x) = x1

b

h(x) = x1

∆ph(x) = x3 + 1
∆2
ph(x) = x2 + 1 + 1 = x2

∆3
ph(x) = x1 + 1

∆4
ph(x) = x3 + 1 + 1 = x3

c

∆4
ph(x) + 1︸︷︷︸

γ3

∆3
ph(x) + 0︸︷︷︸

γ2

∆2
ph(x) + 1︸︷︷︸

γ1

∆1
ph(x) + 1︸︷︷︸

γ0

h(x) = 0

d

E =


0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 1


Figure 5: Reduced linear representations of a 3-repressilator. (a) Polynomial repre-
sentation, x(t + 1) = p(x(t)), y(t) = h(x(t)). (b) Directional increments of the output. (c)
Constant syzygy of the matrix M4. (d) Dynamical matrix of the reduced linear representation.

FK+1
2 , γ ∈ syz(MK), the dynamics of the output of the Boolean network can be

represented, through the change of variables
y0

y1

...
yK

 =: ye = OK(x) :=


h(x)

∆ph(x)
...

∆K−1
p h(x)

 , (7)

by the following linear dynamics

ye(t+ 1) = Eye(t), E =


0m Im 0m · · · 0m
0m 0m Im · · · 0m
...

...
...

. . .
...

0m 0m 0m · · · Im
γ0Im γ1Im γ2Im · · · γK−1Im

 , (8)

where 0m and Im denote the m–dimensional zero and identity matrices, respec-
tively. Note that the linear representation given in (8) may be much smaller
than the one given in (5) since ye(t) ∈ FmK2 , whereas z(t) ∈ FNn2 . Furthermore,
if the map OK : Fn2 → FKm2 is injective (as, e.g., if h(x) = x), then it configures
as a state immersion (Isidori, 2013), i.e., there exists O−1

K : FKm2 → Fn2 such
that O−1

K ◦ OK(x) = x for all x ∈ Fn2 , whence it is possible to recast the state
evolution of the Boolean network as

x(t) = O−1
K (ye(t)).

For instance, if m = n and h(x) = x, it results that

O−1
K (ye) = [ In 0n · · · 0n ]ye.
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Finally, it is worth noticing that the approach given in this section for de-
termining a reduced linear representation of the Boolean dynamics has some
similarities with the technique given in Kobayashi et al. (2010) to determine if a
Boolean network is controllable. As a matter of fact, in Kobayashi et al. (2010),
the adjacency matrix of the Boolean dynamics is used to determine whether
there exists a time T ∈ Z>0 such that the output of the network at time T
depends just on the inputs at time 0, 1, . . . , T . On the other hand, by using dif-
ferent tools, the approach given in this section allows one to determine whether
the outputs at time T depends just on the outputs at time 0, 1, . . . , T − 1.

3. Application

In this section, the tools presented in Section 2 are used to study the dynam-
ics of a Boolean network taken from the literature. Namely, it is shown how the
linear representation given in (8) can be exploited to fully characterize cycles
and equilibria of Boolean networks without resorting to the linear immersion
given in (5). The proposed method seems to be particularly appealing since,
differently from other tools given in the literature (as, e.g., the ones given in
Veliz-Cuba, 2011), the dynamics of the Boolean network are fully represented
by its immersion, without neglecting any transition.

3.1. Th-lymphocyte differentiation

Th-lymphocytes (or Th-cells) are a subtype of white blood cells that play
a crucial role in the adaptive immune system. They support the activity of
other immune cells by secreting small proteins (called cytokines), which assist
and regulate the active immune response. Such cells, when subject to proper
stimulations, can differentiate into Th1 or Th2 cells, which enable cell mediated
immunity and humoral responses, respectively, by secreting different cytokines.
Experimental evidences showed that these cells are strongly related with autoim-
mune diseases and with allergic reactions (Murphy and Reiner, 2002; Agnello
et al., 2003).
The main objective of this subsection is to analyze the Boolean network mod-
eling the Th-lymphocyte differentiation (Mendoza, 2006; Remy et al., 2006)
through algebraic geometry and linear algebra tools. Such a Boolean network
involves n = 12 Boolean state variables which represent presence/absence of reg-
ulatory factors (T-bet, GATA-3) signaling transduction factors (STAT1, STAT4,
STAT6, SOCS-1), lymphokines (IFN-γ, IL-4, IL-12) and receptors (IFN-γR,
IL-4R, IL-12R). Figure 6 depicts the wiring diagram of the Th-lymphocyte
differentiation network and the corresponding Boolean network written in the
polynomial form given in (3).
Letting m = n = 12, h(x) = x = [ x1 x2 · · · x12 ]>, the Boolean vector

γ = [ 1 0 0 0 1 0 0 0 0 0 0 0 0 ]> ∈ F13
2

is in the syzygy module of M12 = [ ∆12
p h(x) ∆11

p h(x) · · · ∆ph(x) h(x) ].
Therefore, the Boolean network modeling the Th-lymphocyte differentiation
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a

STAT1 T-bet GATA-3 STAT6

IFN-γR IFN-γ

STAT4

IL-4 IL-4R

IL-12R

IL-12SOCS-1

b

p(x) =



x9x11 + x9 + x11

x7x12 + x12

0
x1x10 + x1

x2x10 + x2

x3x8 + x3

x4

x5

x6x12 + x6

x7x11 + x7 + x11

(x7 + (x7 + 1)x11)(x12 + 1)
x8x11 + x8



c

x1 = IFN-γ

x2 = IL-4

x3 = IL-12

x4 = IFN-γR

x5 = IL-4R

x6 = IL-12R

x7 = STAT1

x8 = STAT6

x9 = STAT4

x10 = SOCS1

x11 = T-bet

x12 = GATA-3

d

Figure 6: Model of the Th-lymphocyte differentiation. (a) Wiring diagram of the
interactions. (b) Polynomial update rule of the Boolean network x(t + 1) = p(x(t)). (c)
Physical meaning of the states of the Boolean network. (d) Extensive graphical representation
of the Boolean network (see the Discussion section).

can be immersed into the linear system (8) with E ∈ F144×144
2 (represented

graphically in Figure 7). Note that the number of state variables of system (8)
is smaller than the one of the linear immersion given in (5) or the one obtained
by using the semi-tensor product (in fact, for such a Boolean model, one has
z(t) ∈ F4096

2 whereas ye(t) ∈ F144
2 ).

By defining the vector O12(x) as in (7), the linear immersion of the Boolean
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Figure 7: Linear immersion of the Boolean network modeling the Th-lymphocyte
differentiation. Dynamical matrix of the linear immersion given in (8), where green and
white cells represents entries being equal to one and zero, respectively.

a

0 1169

2054

b

129 1040

c

1 1024

12816

17 1025

1152144

145 1041

11531168

Figure 8: Equilibria and cycles of the Boolean network modeling the Th-
lymphocyte differentiation. For compactness of representation, each Boolean state
x = [x1 · · · x12]> ∈ F12

2 has been uniquely identified by its Hamming distance (Ham-

ming, 1950), d =
∑12

i=1 212−ixi, d ∈ Z>0. (a) Equilibria. (b) Cycle of length 2. (c) Cycles of
length 4.

network given in (8) can be used to characterize its cycles. In fact, a Boolean
state x ∈ F12

2 belongs to a cycle of length ` if and only if

(E` + I)O12(x) = 0, (Ej + I)O12(x) 6= 0, j = 1, . . . , `− 1.

By using this method, it can be derived that the Boolean network has (see
Figure 8):

• three equilibria (i.e., three cycles of length 1);

• a cycle of length 2;

• no cycle of length 3;

• three cycles of length 4;

• no cycle of length greater than or equal to 5.

Furthermore, by using classical linear algebra tools, the immersion (8) can be
used to compute the solutions of the Boolean network in closed-form. As a mat-
ter of fact, there exist a nonsingular matrix T ∈ F144×144

2 and a block diagonal
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a b

Figure 9: Jordan normal form of the dynamical matrix of the immersion. Matrices
T ∈ F144×144

2 and J ∈ F144×144
2 such that E = TJT−1. (a) Nonsingular matrix T . (b) Block

diagonal matrix J .

matrix J ∈ F144×144
2 in Jordan form such that E = TJT−1 (see Figure 9 for a

graphical representation of such matrices).
In particular, the matrix J can be expressed as

J = blk diag

J0,8, . . . , J0,8︸ ︷︷ ︸
12 blocks

, J1,4, . . . , J1,4︸ ︷︷ ︸
12 blocks

 ,

where Ji,j denotes the Jordan block relative to eigenvalue i ∈ F2 of order j ∈
Z>0. Thus, since E` = TJ`T−1 and x(t) = [ I12 012 · · · 012 ]ye(t), the
solutions of the Boolean network modeling the Th-lymphocyte differentiation
are given by

x(t) = [ I12 012 · · · 012 ]TJ tT−1O12(x(0)),

where

J t = blk diag

J t0,8, . . . , J t0,8︸ ︷︷ ︸
12 blocks

, J t1,4, . . . , J
t
1,4︸ ︷︷ ︸

12 blocks

 .

4. Discussion

It has been shown that tools from algebraic geometry and linear algebra can
be suitably coupled in order to characterize and study the dynamics of Boolean
networks. In particular, given the logic map representing the dynamics of the
network, it is possible to find a polynomial that represents such a map. Such a
representation and algebraic geometry tools can then be used to determine an
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immersion that recasts the Boolean network in a linear, time-invariant, discrete-
time system, here called the reduced linear representation. Such a system can be
studied by using classical linear algebra tools in order to determine a closed-form
expression for the solution of the Boolean network and to find its cycles.

The main advantage of the proposed tools is that the dimension of the lin-
ear system is generically much smaller than the one obtained by using other
approaches taken from the literature, as, e.g., the semi-tensor product or a
monomial immersion. Therefore, in principle, the coupling of algebraic geome-
try and of linear algebra allows the analysis of networks involving a large number
of binary state variables, in a simple and systematic way.

Since there always exists a constant vector in FNn+1
2 in the syzygy module

of MNn , the worst case computational complexity of the proposed method is
2Nn (which corresponds to the brute force approach in which all the vectors in
FNn+1

2 are tested to determine whether they are in the syzygy module of MNn).
Nonetheless, such a computational complexity can be highly reduced if efficient
methods are used to compute Gröbner bases over finite fields such as the one
given in Faugère and Ars (2004).

It is worth mentioning that, since even the singleton attractor detection
problem is known to be an NP-hard problem (Akutsu et al., 2012; Melkman
and Akutsu, 2013), the method proposed in this paper need not be able to con-
struct a simplified linear model for all the Boolean networks. Nevertheless, in
some cases of practical interest, as those given in this paper, it can be efficiently
employed to characterize the dynamical behavior of Boolean networks. Fur-
thermore, differently from the tools given in Akutsu et al. (2012) and Melkman
and Akutsu (2013), the technique given in this paper can be used also if the
logical function that governs the Boolean dynamics is not a nested canalyzing
function. The drawback is that the computational complexity of the proposed
method may be larger than the one of the techniques given in Akutsu et al.
(2012) and Melkman and Akutsu (2013) when the Boolean network satisfies the
nested canalyzing assumption.

The effectiveness of these tools has been shown through their application to
the analysis of the Boolean network modeling the Th-lymphocyte differentiation.
In particular, it has been shown that, while the classical semi-tensor product
immerses the Boolean network into a linear system with state of dimension 4096,
the proposed approach immerses the same Boolean network into a linear system
with state dimension 144. This suggests that the reduced linear representation
can be employed to find closed-form solutions of Boolean networks with a large
number of Boolean states.

Note that the proposed tool allows to efficiently determine the cycles of the
Boolean network. As a matter of fact, by comparing the extensive graphical rep-
resentation of the Boolean network modeling the Th-lymphocyte differentiation
depicted in Figure 6d (that is a directed graph in which each node represents a
Boolean state x ∈ F12

2 and where there is an arc between the node corresponding
to x ∈ F12

2 and the node corresponding to y ∈ F12
2 if and only if y = p(x), where

p ∈ F12
2 [x] is the polynomial vector given in Figure 6b) and the cycles depicted

in Figure 8, it can be easily noted that all the cycles of the Boolean network
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have been determined by using the proposed approach. In particular, note that
there is a cycle in each connected component of the graph depicted in Figure 6d
and hence each connected component of such a graph constitutes the basin of
attraction of the corresponding cycle. However, determining the cycles of the
Boolean network by inspecting the corresponding extensive graphical represen-
tation may be rather challenging, due to the fact that this graph has 4096 nodes
(that is the same number of states obtained using the semi-tensor product ap-
proach). Hence, the proposed tool seems to be particularly appealing, since it
just requires the computation of the null-space of matrices in F144×144

2 .
Furthermore, it is to be noted that, differently from the tools proposed in

Veliz-Cuba (2011), the technique given in this paper does not neglect the dynam-
ics of any subsystem of the network, by allowing a comprehensive representation
of all of its states. As a matter of fact, note that the reduced Boolean network
modeling the Th-lymphocyte differentiation (depicted in Figures 2 and 3) has
just 3 equilibria (i.e., cycles of length 1 that corresponds to the steady states of
the original system):

• [ 0 0 ]> that corresponds to the equilibrium

[ 0 0 0 0 0 0 0 0 0 0 0 ]>

of the original system;

• [ 0 1 ]> that corresponds to the equilibrium

[ 0 1 0 0 1 0 0 1 0 0 0 1 ]>

of the original system;

• [ 1 0 ]> that corresponds to the equilibrium

[ 1 0 0 0 0 0 0 0 0 1 1 0 ]>

of the original system;

and no cycle of length greater than or equal to 2. Therefore, such a network
has reduced representation capabilities with respect to system (8), since some
complex behaviors (as the cycles of length 2 and 4) are neglected in such a
simplified model. Indeed, the main difference between the dimension reduction
approach given in this paper and the one given in Veliz-Cuba (2011); Veliz-Cuba
et al. (2014, 2015) is that the latter just preserves the steady states, whereas the
former allows to take into account also the transient behavior of the network
as well as cycles of length greater than or equal to 2. Nonetheless, since the
dimension reduction approach given Veliz-Cuba et al. (2015) works directly on
the wiring diagram of the network, it can be used also to deal with very large
sparse AND-NOT networks.
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