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Summary

Breast cancer and brain stroke are two critical and dangerous problems affecting

people worldwide. Breast cancer is the most common and second leading cause of death

in females after lung cancer, while brain strokes are among the common causes of per-

manent disability or death worldwide with more than 15 million people getting affected

annually according to statistics.

Breast cancer in its early stages is not much harmful and can be treated with a high

success rate if diagnosed accurately. Hence the critical factor is to have a system to de-

tect it in the early stages reliably. During a brain stroke, abnormal blood flow inside the

head of the patient starts, which can result in devastating changes in the brain or, at

worst, lead to death. On-the-spot accurate detection and monitoring employing head

imaging in the post-acute stage are of utmost importance for appropriate medication

for ensuring the proper care and complete recovery of the patient. Currently avail-

able standard imaging tools such as X-Ray Mammography, which is considered as gold

standard for breast cancer detection, while MRI and CT, the most common stroke mon-

itoring techniques, are limited due to their cost, size, use of ionizing radiations and low

reliability. These limitations encouraged us to design alternative imaging techniques, to

overcome their limitations and to get reliable results.

The work done in this thesis is in the framework of designing highly efficient, low

cost, low power, and reliable Microwave imaging (MI) systems to detect Breast can-

cer and to monitor brain stroke. MI systems have the advantage of using low ionizing

radiations, low cost, easy of use and are capable of producing reliable results.
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The designed MI system for breast cancer detection is compact because it uses com-

ponents off-the-shelf (COTS) to transmit and receive microwave signals, instead of

heavy lab equipment like Vector Network Analyzers (VNA) which other MI systems

usually use. I-MUSIC [90] is the preferred imaging algorithm for the designed MI sys-

tem over other common proposed approaches because it provides many processing and

practical advantages over them. Measurements are performed on 2D, and 3D breast

phantoms having properties similar to normal breast tissues and tumor and the results

obtained from the designed MI system are compared with the results obtained with

the VNA based MI system. The results from the designed COTS-based MI systems are

very similar to the results obtained with VNA and in some cases even better. Moreover,

the acceleration of the computationally intensive parts of the algorithm due to the im-

plementation of hardware acceleration in the FPGA of Zynq SoC (a development and

evaluation board), increased the execution time of the algorithm 20 times faster than

its execution in a high-performance server.

The designed MI subsystem in this thesis for stroke monitoring, is a low cost, low

power and portable system.The imaging algorithm used for stroke monitoring is Trun-

cated Singular Value Decomposition (TSVD) [104], different from I-MUSIC. In this algo-

rithm, signals are acquired at a single frequency, and the execution of the algorithm for

image reconstruction is much faster. The algorithm detects the variation of the blood

mass across two successive data, and then the reconstructed image shows this variation.

Moreover, the imaging algorithm is accelerated due to the implementation of hardware

accelerator in the FPGA of the Zynq SoC and the obtained results are at least five times

faster than the software execution of the algorithm.

Both the MI systems presented in the thesis successfully produced very reliable

results, and at the same time they were low cost, compact, consumed very low power

with fast execution times.
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Chapter 1

Introduction

1.1 Background and Motivation

Breast cancer is the 2nd most common cause of death in females after lung cancer

[1-4]. In the US only in 2017, 252,710 new cases of invasive breast cancer were esti-

mated to be diagnosed while 40,610 deaths due to breast cancer were also estimated

[5]. According to the world health organization, in 2018 deaths caused due to breast

cancer globally were 2.09 million, which is equal to the leading cause of deaths (lung

cancer) in humans by cancer [6]. Table 1 shows the percentage of new estimated female

breast cancer cases and death for the US according to the American Cancer Society for

different ages.

Table 1.1: Estimated New Female Breast Cancer Cases and Deaths by Age, US, 2017.

In situ Cases Invasive Cases Deaths
Age Number % Number % Number %

<40 1610 3% 11160 4% 990 3%
40-49 12440 20% 36920 15% 3480 9%
50-59 17680 28% 58620 23% 7590 19%
60-69 17550 28% 68070 27% 9420 23%
70-79 10373 16% 47860 19% 8220 20%
80+ 3760 6% 30080 12% 10910 27%

Source: www.cancer.org
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1 – Introduction

Table 1 shows that the percentage of females suffering from breast cancer increases

with age. Breast cancer in its early stages gives no symptoms of its presence. However,

breast cancer can be treated appropriately if detected at an initial stage. In fact, the

survival rate can be up to 97% if detected early and treated accordingly [7], which fur-

ther stresses the requirement for efficient, highly reliable, comfortable and cost-effective

methods of breast cancer detection at early stages.

Similar to breast cancer, brain stroke is another most common cause of mortality glob-

ally [8-10] and is the leading cause ofmortality in aging societies such as Europe [11][12]

and the US [13]. Brain stroke can be either of hemorrhagic or ischemic type. For normal

functioning of brain, blood supply to brain must be properly functioning and if due to

any reason this supply gets affected it can result in brain stroke, which can cause per-

manent disability in humans, heart problem and sometimes results in death, with more

than 15 million people getting affected worldwide on a yearly basis [14]. During brain

stroke blood is stored inside the human head, it can happen due to the bursting of a

blood vessel inside the intracranial chamber or due to physical trauma, abruptly torn

because of hypertensive damage or due to any other malfunction or venous infections.

After brain stroke, abnormal blood flow inside the head occurs, which can result in ir-

remediable changes or, at worst, lead to death. It can be said without any doubt that

the rapidity of intervention and treatment are very important for quick and effective

therapy. On-the-spot accurate detection andmonitoring employing head imaging in the

post-acute stage is of utmost importance for appropriate medication for ensuring the

proper care and, complete recovery of the patient [15][16].

Imaging methods like X-ray mammography, Magnetic Resonance Imaging (MRI),

Computed Tomography (CT), Ultrasound, and Positron Emission Tomography (PET)

are widely used to detect, identify, monitor and in some cases treat many injuries to

human body including breast cancer and brain stroke.
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1.1 – Background and Motivation

Breast cancer detection

In case of breast cancer detection, X-ray mammography is considered the gold stan-

dard, but it causes inconvenience to the patient during examination due to breast com-

pression and sometimes can produce false positive and negative results [17]. It also uses

ionizing radiations, which have a high risk of producing harmful effects in the body.

Brain stroke monitoring

The main problem with brain stroke monitoring is that it is performed too late at

the hospital due to non-portable access of MRI/CT scanners and their high cost. More-

over, there is no imaging technique for monitoring the stroke without moving over the

patient.

Recent efforts to look for a more accurate, reliable, safe, portable, low power con-

sumption and cost-effective imaging system have indicated Microwave imaging (MI) as

a good alternative for biomedical imaging applications.

MI is an imaging technique, which uses Electro-Magnetic (EM) waves in microwave

range (300MHz-300GHz).MI is being used for different kind of applications likeNTD&E

(nondestructive testing and evaluation), hidden weapon detection, through-wall imag-

ing, health monitoring, and medical imaging.

Recently, MI for biomedical applications attracted the interest of researchers all over

the world due to its ability to detect local variations of the dielectric properties of tis-

sues. MI can be either of quantitative type (providing electrical and geometrical pa-

rameters of an object to be imaged) or qualitative type (providing information about a

hidden object) depending upon the technique used to generate images. In the first step

of MI, target is first hit by electromagnetic waves emitted by a set of antennas and then

the scattered waves are collected by same (monostatic system) or different antennas

(bistatic or multistatic system). In the second step of MI, the signals obtained from the

3



1 – Introduction

scattered waves are post-processed and are used to generate different kind of images,

depending on the MI algorithm used. If there is a dielectric contrast between the target

and the surrounding area hit by MI, this contrast results in a larger reflection of the

backscattered waves.

Experimental research has shown that normal tissues have significantly different

dielectric properties as compared to malignant and benign tissues [18-19]. Malignant

tissues are characterized by higher dielectric contrast compared to benign and normal

tissues [20]. MI maps electrical properties of tissues, without any invasive procedure

[19]. Many researchers have put significant efforts to detect this difference and to pro-

duce images that highlight it, particularly for breast cancer detection [21]. Recent re-

search has shown that MI can also detect abnormalities in the human brain such as

those created by a hemorrhagic stroke [22]. This is because during the occurrence of a

stroke accumulation of bleeding changes the electrical properties of the affected part of

the brain resulting in a detectable dielectric contrast between the affected area and the

surrounding part of the brain. By striking brain with low power EM waves and acquir-

ing the scattered EM waves, we can image the state of the brain stroke at different time

intervals to monitor its evolution.

1.2 Challenges of the Microwave Imaging system for

biomedical applications

Researchers have proposed various MI systems for biomedical applications, espe-

cially for breast cancer detection and brain stroke monitoring. However, these mi-

crowave imaging systems have some limitations: On the one hand the imaging algo-

rithms may need a processing that may take an excessively long time for a practical ap-

plication. On the other hand, since these systems are often based on standardmicrowave

equipments, they are not portable and do not have the flexibility that is required for con-

tinuous monitoring. By solving the problem of portability and non-ionizing radiations,

4



1.3 – Aims of the thesis

microwave imaging systems could have a disruptive impact in the general medical prac-

tice, by shifting the clinical assessment path from the radiology department to general

clinics and potentially even to ambulances and medical offices.

1.3 Aims of the thesis

This thesis contributes to the field of MI for biomedical applications, both for breast

cancer detection and brain stroke monitoring. In particular, for the part concerning

breast cancer detection, the aims of the thesis are:

⇒ To contribute to the construction, characterization, and improvement of an MI

system based on Commercial Off-The-Shelf components (COTS).

⇒ To enable the acceleration of the execution time of one of the effective MI algo-

rithms by implementing hardware accelerator in field programmable gate array

(FPGA) to offload its computationally intensive parts.

For the part concerning to brain stroke monitoring, aims of the thesis are:

⇒ To contribute to the design of a compact and low power MI subsystem for con-

tinuous bedside monitoring of brain stroke.

⇒ To accelerate the execution time of the Imaging algorithm for producing fast im-

ages by the applications of hardware acceleration in FPGA on a target architec-

ture.

⇒ To reduce the cost and power consumption of the MI systems by using low cost

and low power components.
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1.4 The novelty of the research

The main novel aspects of the research activity described in this doctoral disserta-

tion are summarized in the following.

1.4.1 Breast Cancer detection:

An improved and efficient MI imaging approach, Interferometric MUltiple SIgnal

Classification (I-MUSIC) [90] was adopted for breast cancer detection. This approach

allows detecting the most scattering points inside the breast by using microwaves at

few selected frequencies in a relatively small bandwidth. This allowed us to use the

low-cost components working between 1.4 and 1.6 GHz. Moreover, since the image re-

construction algorithm used in I-MUSIC avoids non-linear inversion and the associated

processing issues, we could accelerate the execution time of the MI system by pairing

an embedded processor with ad-hoc developed hardware running in an FPGA.

The hardware accelerated MI system executed imaging algorithm 20 times faster

than multicore CPU.

1.4.2 Brain stroke monitoring.

An MI algorithm for brain stroke monitoring based on Truncated Singular Value

Decomposition (TSVD) [104] has been analyzed in detail for best hardware accelera-

tion in a low-cost embedded system with FPGA. The bottleneck of the computation has

been deployed in the FPGA.

Hardware acceleration implemented in FPGA speeds up the execution time 5× com-

pared to its software execution. To the best of our knowledge, this MI subsystem is the

first for accelerating MI algorithm for brain stroke monitoring.
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1.5 Thesis organization:

This thesis consists of the following chapters.

Chapter 1 is the introduction chapter and provides a summary of the research back-

ground.This chapter highlights the importance of the MI system to meet the challenges

which other imaging techniques are facing. Finally, it highlights the aims and the novel

contributions of the research.

Chapter 2 contains the literature review related to the research work performed

in this thesis. It explains briefly breast cancer and brain stroke. Different imaging tech-

niques being used, and their limitations are discussed in this chapter. The basis for MI

and its detection principle is also discussed. The chapter is concluded with the discus-

sion on the MI systems and the importance of portable and reliable MI systems for

breast cancer detection and brain stroke monitoring.

Chapter 3: In this chapter the MI approach (I-MUSIC) used for breast cancer detec-

tion is explained briefly. Its main parts related to detection are discussed. The chapter

is concluded with a short discussion about its implementation on the Zynq SoC.

Chapter 4 is a detailed discussion about theMI system, which is designed during re-

search. In this chapter adopted methodology, components used, challenges which were

faced during the system implementation and all the important details of the MI systems

are discussed. In the chapter factors which can affect the performance of the system are

analyzed and how to remove their effect from the final results is also discussed.

Chapter 5 contains the results obtained from theMI for breast cancer are discussed.

The results are compared with the results obtained using standard microwave equip-

ments,e.g. a VNA. In this chapter we can see that the designed COTS-based MI system

has successfully detected tumors in the breast phantom and has a performance compa-

rable to an MI system using a VNA.

Chapter 6 is about the MI imaging subsystem for brain stroke monitoring. In this

chapter details of the subsystem and the acceleration of the imaging algorithm for brain
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stroke monitoring are discussed. In the chapter the designed hardware accelerator for

accelerating the execution of imaging algorithm is explained in detail and then the chap-

ter is concluded with the obtained results.

Chapter 7: This chapter is the conclusion of the thesis.
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Chapter 2

Literature Review

2.1 Breast Cancer

The female breast is divided into two main parts, breast gland and ducts [23]. In

breast gland, there are about 15 to 20 sections called lobes, and inside each lobe there

are many small structures known as lobules, at the end of each lobule there are tiny

sacs (bulbs) which produce milk in the breast. Lobules, lobes, and bulbs are connected

by a network of thin tubes which are known as ducts. One of the functions of the ducts

is to carry milk from bulbs towards the areola, which is the dark area of skin in the

center of the breast. Ducts join to make a larger duct ending at the nipple, where milk

is delivered. In general, the breast is composed of fat, skin, glandular and connective

tissues. The breast lies at the chest, and its shape is different among individuals; conse-

quently, proportions of fat, glandular and connective tissue also vary among individu-

als, this proportion also varies during pregnancy and menstruation [24]. Breast cancer

has many types, but the two main types are non-invasive and invasive types. In Non-

invasive, cancer tumor is found in the ducts of the breast, and this type of cancer does

not spread outside the breast while in case of invasive, cancer can spread outside of the

breast which makes this type the dangerous type of breast cancer.
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2.1.1 Electrical properties of the breast

Microwave imaging for cancer detection is possible because of the different electri-

cal properties of tumor and surrounding tissues. Relative permittivity (𝜖) and conduc-

tivity (𝜎) are the two main electrical properties used in MI for cancer detection. Per-

mittivity and conductivity both give different types of information about the human

body tissue as permittivity tells about the ability of a tissue to store microwave energy

whereas conductivity informs about the loss (dissipation) or attenuation (absorption)

of microwave signal that it faces while propagating through the tissue. The higher the

conductivity of the tissue, the higher the loss or attenuation of the microwave signal.

The electrical properties of tissues, most importantly their relative permittivity, are de-

termined by the amount of water they contain [25-29]. Tissues such as fat have lower

relative permittivity compared to tissues like muscle, skin or tumor because these have

high water content than the fat has [30-31].

2.1.2 Currently used imaging methods

Commonly used screening methods for breast cancer detection are X-rayMammog-

raphy, Ultra-sound, Magnetic Resonance Imaging (MRI), and Computed tomography

(CT). X-ray Mammography is considered ”gold standard” for Breast cancer detection.

X-Ray Mammography

X-raymammography is themost recommended diagnostic tool by doctors for breast

cancer detection. In this technique, breast is compressed between two plates, and then

X-rays are passed through the breast and recorded onto film as shown in fig 2.1. X-ray

mammography has the advantage that it has good sensitivity for normal breast types,

the high-quality resolution is also possible and the time for the examination is also

short while on the other side if the breast is dense then the sensitivity decreases. For

its detection process, X-ray mammography uses ionizing radiation which has harmful
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effect on the human tissues. The fact that while examining the patient, the breast is

compressed onto plastic plates causes inconvenience for the patient and sometimes can

be very painful.

Figure 2.1: Compressed breast of patient during X-ray Mammography.
Source: https://www.theengineer.co.uk/laser-device-detects-breast-cancer-that-x-rays-can-miss/

Ultrasound

In this technique, Ultrasonic waves with a frequency range of 1 MHz to 15 MHz

are used to diagnose internal body structure. During breast cancer detection this imag-

ing technique determines whether the area under consideration has normal tissues or

cancerous tissues. Ultrasound imaging is considered a safe screening tool since it uses

non-ionizing radiation and is a noninvasive procedure. It can easily detect between

normal and suspicious tissue since it has high image contrast and resolution. However,

ultrasound has limitation to detect breast cancer, because during breast cancer detec-

tion the results produced have a high percentage of false positive and negative results.
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Ultrasound screening results depend heavily on the skills of the person performing the

test [35].

Magnetic Resonance Imaging (MRI)

Magnetic Resonance Imaging (MRI) is a non-invasive imaging technique that uses

radio waves and strong and powerful magnets to create images of tissues, bones, organs,

and other internal body structures. For breast cancer detection, MRI is generally used on

patients already been diagnosed with breast cancer, to evaluate the size of the tumor or

to look for other tumors in the breast. MRI scanning can detect small cancerous tissues

that are not identified with X-ray mammography [36]. However, MRI often produces

false-positive results for breast cancer, due to which MRI is generally not preferred as

a standalone scanning technique but to be used along with X-ray mammography for

reliable results. During breast cancer detection with MRI, the patient must lie down on

a table as shown in fig 2.2.
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Figure 2.2: MRI for Breast Cancer
source:http://www.breastlink.com/services/breast-imaging/breast-mri/

The advantage of MRI over other techniques is that it does not uses ionizing radia-

tion for its operation; however its disadvantages are: it is a time-consuming procedure,

immovable MRI machine, and false positive and negative results [37].

Computed tomography (CT)

CT scanning uses special X-ray equipment to obtain cross-sectional images of the

human body. Screening using CT can be performed on any part of the body. For breast

cancer detection, it gives information about the presence of a tumor. If a tumor is de-

tected, it can also provide information about its location and size and most importantly

it can provide information on whether the cancerous cells have spread to other parts of

the body. Scanning by CT is very comfortable and causes no pain to patients, but the

13



2 – Literature Review

amount of radiation used during CT screening is higher [38], which makes the proce-

dure harmful for frequent testing of a patient.

2.1.3 Summary of the conventional breast cancer detectionmeth-

ods

The existing methods for breast cancer detection suffer from safety, efficiency, dis-

comfort and false diagnosis. During breast cancer, detection at early stages is crucial for

proper treatment before it reaches to a dangerous stage. Over the past few decades a

number of research groups have conducted researches and experiments on alternative

and complementary tools and methods. Microwave imaging has emerged as a possi-

ble complementary method for early breast cancer detection. The reason is that tumors

have a very detectable dielectric contrast at microwave frequency range compared to

normal tissues, and MI system can detect these strong backscattered signals for imag-

ing.

A microwave-based imaging system is safe as it is noninvasive and uses non-ionizing

radiations. Portability, cost and execution time of MI system can be further improved

by using hardware acceleration in FPGA and by using commercially available low-cost

off-the-shelf components.

2.1.4 Microwave Imaging Systems

Microwave imaging (MI) has been of interest for researchers overmany years for the

detection of human body tissue abnormalities.The physical basis of microwave imaging

technique is the ability to quantify or detect the dielectric difference between different

body tissues based on their permittivity values [40]. This potential ability to distinguish

between them could help to detect breast cancer in early stages. MI can be either an al-

ternative technique or complementary imaging tool to existing imaging methods. The

advantages include a wide range of frequencies, negligible health risk, low cost, good
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detection capabilities compared to conventional methods. The highly competitive com-

mercial radio frequency (RF) electronics industry has helped to push down the prices

of electronic devices drastically, and use of these components in MI system can help us

to reduce the cost of the system. The execution time of the sometimes complex imag-

ing algorithm can be improved by the application of hardware acceleration in FPGA.

Microwave imaging is classified into three main categories based on the approach used

namely, passive, hybrid and active methods. These approaches have been investigated

by researchers extensively for detection of breast cancer at early stages. These methods

are explained briefly below.

Passive Microwave Imaging

In Passive microwave imaging (figure 2.3), the contrast between the temperatures

of the malignant tissue to that of the healthy tissue is measured. Several investigators

examining breast cancer patients have reported that there is a considerable difference

in temperature between healthy and cancerous tissue. According to their findings, can-

cerous tissues produce more heat and are more active to microwaves [41] than normal

tissues. According to the authors of [42] tumors cannot keep their temperature within

the normal limit (thermoregulatory capacity). During Passive Microwave imaging, by

using Radiometers, the temperature difference between the tissues is measured, and if a

tumor is present inside the breast, then the radiometer will record higher temperature

values then normal tissue temperature.
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Figure 2.3: Passive Microwave Imaging.

Active Microwave Imaging

In active microwave imaging an antenna or antenna array is used for transmit-

ting low power microwaves to penetrate human tissues from different positions, and

then the backscattered response is recorded. Using a suitable processing algorithm 2-D

or 3-D images of the tissues are obtained. Two approaches, Microwave Tomography

and UWB radar-based [43][44] are commonly used microwave techniques for active

microwave imaging. Both these techniques have produced promising results and are

briefly explained below.

Microwave Tomography

In Microwave Tomography imaging technique, multiple signals are collected from

antennas placed at different positions around the breast. These microwave signals are

backscattered from the breast and are received by antennas for processing. From these

backscattered microwave signals an image is created which gives information about

dielectric constant of the breast based on its permittivity using inverse scattering. For-

ward and reverse electromagnetic field problems are solved for detecting and locating
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the cancerous tissue. By assuming a known distribution of the complex dielectric con-

stant of the object to be imaged a forward problem is solved and then these electrical

parameters are compared with measured data. Using an optimization algorithm, the

process is repeated several times by changing the electrical parameters to a new value.

Measured data is then compared with new values obtained, and the procedure is re-

peated till a low error between the calculated and measured data is achieved.

UWB Radar Based Microwave Imaging

In this method amplitude of the scattered signal and the time delay between the

transmitted and scattered signal contains the information about the size and position

of the tumor. In UWB Radar based microwave imaging electromagnetic signal is trans-

mitted towards the target and the signal is either absorbed or backscattered; this scat-

tering is used to form an image which helps in identifying the position of the strong

reflections. In UWB different imaging algorithms are used such as Microwave imag-

ing via space-time beamforming, confocal or delay-and-sum method or tissue sensing

adaptive radar. The confocal method is one of the most common approaches used in

UWB radar technique [46-48]. UWB Radar based microwave imaging tumor detection

focuses mainly on detecting the existence of a strong reflection, which makes this ap-

proach computationally more efficient than microwave tomography [45].

Hybrid Microwave Imaging

In hybrid techniques, two different physical modalities and techniques are com-

bined. In one such hybrid technique, microwave energy first illuminates the breast, and

then pressure waves are detected due to the expansion of heat. Due to higher conduc-

tivity, tumors absorb more microwave energy as compared to healthy tissues, hence

producing stronger pressure waves; these pressure waves are detected using sensors or

antennas (ultrasound transducers) to estimate the presence or absence of any abnormal

tissue as shown in fig 2.4. This technique provides both sensitivity to tumors and high
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resolution of images. Further details of this technique can be found in [49].

Figure 2.4: Hybrid Microwave Imaging.

Having information on the tumor on a different energy modality may help to in-

crease the sensitivity of MI. Based on this principle, M. Helbig and his team at the Tech-

nische Universitat of Ilmenau, Germany, used magnetic nanoparticles (MNP) for an en-

hanced microwave breast cancer detection system [119]. They increased the diagnostic

reliability of their MI system assuming that the functionalized magnetic nanoparticles

accumulate selectively within the tumor tissue. Using an external magnetic field, mag-

netic nanoparticles are first modulated. Then changes in scattering of the nanoparticles

due to the application of the external magnetic field are measured using ultra-wideband

(UWB) sensors and an M-sequence UWB radar technology, which ultimately resulted

in the detection of the nanoparticles. By differentially observing the response of a breast

phantom between ON- and OFF-state of the magnetic field, Dr. Helbig and collaborators

at Ilmenau showed that with this technique the detectability in an actual measurement

case can increase. Further details and results of this technique can be found in [119].
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2.1.5 History of Microwave Imaging System

Researchers have shown interest in the potential of MI as good imaging from past

few decades; important initial work in this regard was performed by Larsen and Jacobi

in late 1990s. By immersing in water an antenna which they developed, they were able

to image the internal structure of a canine kidney [50]. Since then, due to continues

efforts of researchers, variety of applications of MI have been reported in the literature,

from detection of cancer in the lungs, ischemic heart disease to pediatric transcranial

brain imaging. Among these techniques, detection of breast cancer at early stages are

of very importance in recent times. A good discussion about the sequential growth and

advances in MI system for breast cancer detection can be found in [51-61].

2.1.6 Research Gap

Microwave imaging systems are considered as good imaging alternatives or com-

plementary tools to available methods for breast cancer detection. Microwave imaging

techniques rely on the difference of the electromagnetic parameters between different

biological tissues and offer a method with a wide range of advantages such as being

a low-cost and portable system, using non-ionizing radiations and providing fast and

reliable results. However, inspite of providing all these advantages, still, a proper MI

system is needed to image the human body for practical clinical applications. Different

type of MI system has been proposed by researchers for breast cancer detection. How-

ever, these systems are either bulky and use heavy and costly equipment like Vector

Network Analyzers (VNA), or they require time for producing results, which is unac-

ceptable for clinical applications. Finally, the lack of portability is another issue that, if

solved, would provide a dramatic shift of the current clinical path. All these limitations

motivated us to work on a newMI system to minimize the limitations mentioned before

without affecting the performance and reliability for detecting breast cancer in initial

stages.
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2.1.7 Proposed Research on MI for Breast Cancer Detection

The first objective of the work presented in this thesis is to propose solutions to

improve MI systems, especially for breast cancer detection. We propose an improved

approach for MI by using I-MUSIC [90] as an imaging algorithm for breast cancer de-

tection. This method does not require a large band to detect the main scatterer inside

the breast. The system developed works in frequency domain and provides many flex-

ibilities compared to tomography or UWB radar-based approaches. To reduce the cost

and improving the execution time of the MI system, we use COTS and hardware accel-

eration with FPGA.

2.2 Brain stroke

Brain stroke occurs, when the blood supply to the brain is interrupted, preventing

the supply of oxygen and nutrients to brain tissues. Brain stroke can be caused either

by blockage of blood flow or by bleeding into the brain. There are two main types of

brain stroke Ischemic and hemorrhagic stroke shown in figure 2.5.

Ischemic stroke: During ischemic stroke blockage of blood vessel occurs in the

brain and this is the most frequent cause of stroke causing 80% of the cases. Blockage

can occur either due to the formation of the clot within the blood vessel or bymovement

of the clot from another part of the body like the heart to the brain or due to narrowing

of an artery inside or in the path to the brain.

Hemorrhagic stroke: if bleeding occurs into the brain or at places surrounding

the brain then hemorrhagic stroke occurs.
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(a) Ischemic Stroke (b) Hemorrhagic Stroke

Figure 2.5: Types of Brain Stroke
Source:https://www.mayoclinic.org/diseases-conditions/stroke/symptoms-causes/syc-20350113

2.2.1 Electrical properties of the brain

The human brain consists of brain tissues and blood, both of which have different

dielectric contrasts. In case of stroke the dielectric difference between healthy and dis-

eased tissue increase due to the accumulation of blood at the point in the brain where

the stroke occurs [32-33]. Microwave Imaging for stoke monitoring uses this difference

for detection and monitoring of stroke.

2.2.2 Currently used Imaging Methods

Standard techniques used to monitor brain strokes are MRI, CT and Ultrasound,

where MRI and CT are considered as gold standard for monitoring brain strokes [34].

These techniques are explained very briefly in below sections.
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Ultrasound

In this technique, Ultrasonic waves with a frequency range of 1 MHz to 15 MHz

are used for diagnosing an internal body structure. To monitor brain stroke with ultra-

sound, flow of blood in the brain is evaluated. Ultrasound imaging is considered a safe

screening tool since it uses non-ionizing radiation and is a noninvasive procedure. It

can easily detect between normal and suspicious tissue since it has high image contrast

and resolution. However, ultrasound has limitation for brain stroke monitoring. During

brain stroke monitoring, adult patients are challenging to be diagnosed by ultrasound

due to their skull structure, and a large number of tissues and the results can be affected

easily by wounds or recent surgical incision, changes in blood flow due to heart disease

or due to non-uniform heart rhythms.

Magnetic Resonance Imaging(MRI)

Magnetic Resonance Imaging (MRI) is a non-invasive imaging technique that uses

radio waves and strong and powerful magnets to create images of tissues, bones, organs,

and other internal body structures. For brain stroke monitoring and imaging, MRI is

often considered as gold standard and provides better results than other imaging tech-

niques. With MRI scanning it is also possible to distinguish between the ischemic and

hemorrhagic strokes which is vital for proper and timely treatment. Figure 2.6 shows a

typical setup of a patient undergoing MRI scanning.
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Figure 2.6: MRI for stroke monitoring
source: https://www.radiologyinfo.org/en/info.cfm?pg=headmr

Computed tomography(CT)

CT scanning uses special X-ray equipment to obtain cross-sectional images of the

human body. CT scan is very common for initial brain stokemonitoring especiallywhen

the patient is in the emergency room for the ischemic type. CT scan has the advantage of

showing abnormalities in the brain and can identify if the abnormality is caused by in-

sufficient blood flow (ischemic stroke) or due to the ruptured blood vessel (hemorrhage),

or another kind of problem. This technique has the advantage of being comfortable but

the amount of radiation used during CT screening is higher [38].
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2.2.3 Summary of common brain stroke monitoring techniques

Main limitations with existing methods to monitor brain stroke monitoring are

safety, efficiency, time of operation, and most important, the lack of portability. The

existing methods for monitoring brain strokes mostly uses ionizing radiation and the

equipments used are bulky and hence are not portable and they can not be used as a

bedside monitoring device or to be used in ambulances for initial diagnosis and care.

Researchers have proposed microwave imaging systems as a possible complementary

method for brain stroke monitoring. The reason is that bleeds and blood clots have a

very detectable dielectric contrast at microwave frequency range, and MI system can

detect these strong backscattered signals for imaging. Evolution of MI system for brain

stroke monitoring can be found in [62-68].

A microwave-based imaging system is safe as it is noninvasive and uses non-ionizing

radiations. Portability, cost and execution time of MI system can be further improved

by using hardware acceleration in FPGA and by using commercially available low-cost

off-the-shelf components.

2.2.4 Research Gap

Microwave imaging systems in general are low-cost, and use non-ionizing radia-

tions for detection purposes. However, inspite of these advantages, still, a proper MI

system to monitor brain strokes in a practical clinical applications is needed. Different

type of MI system has been proposed for brain stroke monitoring. However, most of

the systems are fixed and does not provide the critical property of portability,in fact a

portable imaging system using non-ionizing radiations is not only important for brain

stroke monitoring but it can also be used for other clinical applications. These limita-

tions motivated us to work on new MI systems to minimize the limitations mentioned

earlier without affecting the performance and reliability.
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2.2.5 Proposed Research on MI for Stroke Monitoring

The second objective of the work presented in this thesis is to propose a new MI

subsystem to improve MI systems for brain stroke monitoring.The proposed MI system

is portable and can be used as bedside monitoring subsystem. The imaging algorithm

is accelerated due to the implementation of the hardware accelerator in programmable

system-on-chip where FPGA offloads heavy part of the computation from ARM-based

CPU for improving the execution time of the system to get results instantly.

2.3 Conclusion

There are four main imaging techniques in clinical applications to image the abnor-

malities of the human body. These methods are X-ray mammography, Ultrasound, MRI

and CT scan. Each of these methods have their own limitations such as the use of ion-

izing radiations, costly, bulky, immovable equipment, and time-consuming procedure.

Microwave imaging system has been proposed by researchers as an alternative or com-

plementary technique to these available methods. The basis of the MI system relies on

the dielectric contrast of the different human body tissues. Many researches reported in

the literature have proved that there is a significant difference in the electrical proper-

ties of normal and abnormal tissues in the human body. The focus of the past research

has been on validating the functionality of MI systems, both for breast cancer and brain

stroke. There is lack of research focused on making these systems low cost, compact,

portable, and fast. Use of non-ionizing radiations gives MI systems the freedom of re-

peating the procedure on patient many times for reliable and accurate results.

The next chapter is about the proposed “I-MUSIC” algorithm for breast cancer detection.

This imaging algorithm has many advantages over the commonly used Tomography

and UWB approaches.
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I-MUSIC Algorithm

Microwave Imaging for breast cancer detection is considered a useful diagnostic

tool to complement and, in some cases, replace well established diagnoses techniques

like X-ray mammography [73] and magnetic resonance imaging [69-71]. At microwave

frequencies, benign, malignant and normal tissues have different dielectric properties

[74]. Significant research has been put to build MWI systems to detect and image this

difference without any invasive procedures. During the last two decades researchers

have proposed several imaging techniques to image the dielectric difference between

the benign, malignant and normal tissues and these techniques, in general, are catego-

rized as linear and non-linear inversion techniques. In nonlinear inversion techniques

the dielectric and conductivity parameters of the breast are imaged while in linear in-

version techniques (also known as radar focusing) breast tumor can be detected and

localized. Both techniques have their limitations, because non-linear inversion tech-

niques are computationally intensive [117] and subject to issues such as false solutions

and convergence problems, while linear methods being robust typically needs large

bandwidths. Generally, Ultra-Wide-Band (UWB) Radar and Tomography are the pro-

posed approaches for MI systems.
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3.1 Ultra-Wide-Band (UWB) Radar

UWB Radar approach belongs to the class of linear scattering technique. In this ap-

proach the amplitude of the scattered signal and the time delay between the transmitted

and scattered signal contain the information about the size and position of the tumor

to be imaged [72]. This approach is a detection method since it determines the highest

energetic spots in the field as determined by the highest dielectric contrast created by

the presence of a tumor. To use the UWB radar approach in time-domain, new ad-hoc

integrated circuits (ICs) must be developed [76-78]. It is possible to use this approach

in the frequency-domain and reconstruct the UWB pulses via FFT, an approach usu-

ally referred in the literature as Stepped-Frequency Continuous Wave (SFCW) and in

this case it is possible to use laboratory microwave tools, besides the developed new

ICs [79-80], which have the flexibility of handling large bandwidth with the required

accuracy and precision.

3.2 Tomography

This approach aims at reconstructing the dielectric profile of breast by collecting

the scattered field at single or few selected frequencies. In this approach a non-linear

and ill-posed inverse problem needs to be solved, which may cause problems of con-

vergence to inaccurate results as well as problems of speed such that the execution of

the algorithm sometimes can take days of CPU [72].

For our prototype, we adopted another approach “Interferometric- MUltiple SIgnal

Classification (I-MUSIC)” developed by G. Ruvio and co-workers [90].This approach of-

fers many significant practical advantages over the other mentioned approaches. In the

following we describe the I-MUSIC approach to highlight the reasons why we decided

to use it. We refer the reader to the original publication for more details [90].
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3.3 Interferometric-MUltiple SIgnal Classification (I-

MUSIC)

I-MUSIC is an imaging approach belonging to a class of linear scattering imaging

techniques like radar methods. However, it is different from both UWB-Radar and to-

mography approach because for the detection of scattering points inside breast it does

not require a large bandwidth. The term interferometric in I-MUSIC is related to the di-

versity introduced by using different frequency samples. I-MUSIC can also be viewed as

a multi-frequency variant of the time-reversal MUSIC [82]. In I-MUSIC by multiplica-

tivelymixing different frequencies, images are obtained. I-MUSIC has been theoretically

and experimentally verified by many researchers [81,91].

3.3.1 Advantages of using I-MUSIC algorithm

One of the advantages of I-MUSIC is the minimal dependence of a priori informa-

tion of the antenna. In MI imaging systems different RF components are used and these

components, especially the antennas play an essential role. During breast cancer detec-

tion presence of antennas in the proximity of breast is beneficial for better and reliable

results. However, their presence in the proximity of the breast can change the antenna

response and can cause degradation of the detection system if this depends on a precise

knowledge of the antennas response. Hence it is important to consider the presence of

antennas around breast for achieving the best performance from anMI system. A possi-

ble solution to this problem is to characterize the antenna for near-field MI by running

some preliminarymeasurements or numerical solutions [118]. However, in practical sit-

uations, antennas are placed close to the breast, and their response is unknown because

breast properties vary from patient to patient and this brings complication in the re-

construction problem of standard linear inversion methods. With I-MUSIC algorithm it

is possible to detect tumor with very low contrast to surrounding breast tissue without

considering the antennas response during image generation.The advantage of I-MUSIC
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over other approaches has been extensively studied and compared in [81,75,91].

I-MUSIC has two main advantages:

⇒ Reduction in overall cost, time for calibration and testing.

⇒ Complete independence from antenna characterizations.

Reduction in overall cost, time for calibration and testing

The use of I-MUSIC algorithm allows the use of simple monopole antennas, which

can be easily fabricated in university laboratories. As shown in the next chapter, we built

a prototype with Ultra-Wide-Band (UWB) monopole antennas, which we designed to

be of small size, low cost, and with good matching performance when immersed in the

coupling mediums. These coupling liquids are needed during measurements and their

dielectric properties should be matched with dielectric values of the average female

breast. The average dielectric values of these coupling mediums are one of the input

parameters of the I-MUSIC algorithm.

Complete independence from antenna characterizations

When antennas are placed close to the breast, their response is mostly unpredictable

because antenna response depends on distance from skin, profile of skin layer and its

thickness. The sensitivity of the antenna to changes in all these factors (e.g. from one

patient to another) bring complications in the image reconstruction. One of the rea-

sons why we selected I-MUSIC over other imaging algorithms is the fact that I-MUSIC

is completely agnostic of the antenna response, which means that it does not require

any prior antenna characterization. Authors in [91] had tested the validity of I-MUSIC

using three different antennas (planar monopole, semi-folded monopole, and antipo-

dal Vivaldi antenna) without characterizing them. They performed experiments under

the same conditions for all the antennas and compared their results with other mi-

crowave imaging techniques. The results generated using I-MUSIC were superior to
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other imaging techniques, and for all antennas, the results were almost identical. Even

though I-MUSIC desensitizes the imaging procedure from a priori antenna characteri-

zation (near-field information), it still benefits from better energy focusing: for example,

results with Vivaldi antennas are better than those obtained with monopole antennas

due to an improved SNR for each scan.

3.4 A brief explanation of I-MUSIC

In our MI system (discussed in the next chapter) results are obtained by processing

the acquired data with the I-MUSIC algorithm. The I-MUSIC algorithm allows generat-

ing an image through the acquisition of data obtained from several pairs of antennas

in the configuration Tx/Rx, arranged in a circle around the breast. The algorithm con-

sists of two main steps. The first step is clutter removal, which is mainly due to large

scattering at the interface between coupling medium and skin interface, and second

is the image generation from the acquired data to show the detection. During clutter

removal, I-MUSIC uses subspace projection method based on singular value decompo-

sition (SVD).

Let us assume the data in the scattered field is sensed by A different antenna pairs op-

erating in bistatic mode (different antennas for transmitting and receiving RF waves)

at N different frequencies. The acquired complex data is then organized in N rows and

A columns in the matrix form and is transformed in SVD. The clutter is removed by

discarding the projections relative to the two dominant singular values. After removing

the clutter, we obtain the decluttered 𝑆𝑑 matrix, and this matrix is the input for image

generation (second step).

For the correlation matrix R, we calculate the eigenvectors and eigenvalues [V, D] for

each frequency f. The correlation Matrix R is given as

R = 𝑆𝑓
𝑑 .((𝑆𝑓

𝑑 ))𝐻 (3.1)
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Where 𝑆𝑓
𝑑=is the fth row of the NxA decluttered matrix 𝑆𝑑. Each pixel of the output

image is than multiplied by an array of Green function W and are identified by row

and column indexes (u,v), through a Hermitian inner product of the dominant eigen-

vector 𝑉𝑚𝑎𝑥 of R. These functions then model the propagation between antenna pairs

A and the point in the scanned region corresponding to the pixel in question. To model

the propagation, I-MUSIC uses a breast average dielectric permittivity, which can be

computed by averaging the data of breast tissues from a large database [120]. For all N

frequencies, function F(u,v,f), which is the Euclidian norm of the Hermitian product is

computed. Than all frequency components of F(u,v,f) are combined as

∏
𝑓

(1 − 𝐹 (𝑢, 𝑣, 𝑓)2

By taking the inverse of the above term, we get P(u,v) which contains the output

image. It is important to note that the product of single frequency produces a kind of

constructive interference, highlighting the actual tumor response and reducing spuri-

ous artifacts. For more details on the I-MUSIC equations we refer the reader to [81].

3.5 Standardhardware/software implementation of I-

MUSIC

In MI systems RF components play an essential part. The overall cost, form fac-

tor, and portability of the imaging system depend upon these components. A current

conventional imaging system such as X-Ray mammography, MRI, Ultrasound all have

costly equipments and are very bulky and stationary imaging systems. The modern MI

systems generally use costly lab equipment such as VNA to generate microwave sig-

nals to feed antennas and then receive the backscattered waves.Then the MI algorithms

process the amplitude and phase of these input and output signals to generate images

for detection purposes. These algorithms are typically software coded in a high-level
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programming language or in a Matlab script and executed in a general purpose proces-

sor. The figure 3.1 shows a conventional MI system, where a VNA is connected to the

antennas (TX and RX) to transmit and receive microwave signals to and from a target

(tumor). The target and the antennas are placed in a coupling medium to provide an en-

vironment similar to a practical clinical scenario, such that the coupling medium must

have properties similar to female breasts. The angle between the antennas and their

position is an essential factor to be considered in MI for tumor detection. In the above

figure there are only two antennas, and for a complete scan of the tumor, either an-

tennas or tumor have to be rotated. However, it is also possible to have a large switch

system with many antennas around the breast where each antenna can be used as a

transmitter and receiver, and for a practical system, this is the case. The VNA is then

connected to a processing system having a graphical interface in which the software

coded algorithm is processed, and the image is generated based on the amplitude and

phase values of the signals.

Figure 3.1: Conventional MI system.

The I-MUSIC algorithm has been coded in C language and is reported entirely in
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Appendix A. This code is assumed to run in a standard MI system like the one sketched

in figure 3.1.

3.6 Pros and Cons of the standard approach

The standard MI approaches have their own pros and cons, some of them are men-

tioned below.

Pros

⇒ Standard approaches are easy to use because they use standard CPU which are

easy to program and they mostly have VNAwhich is flexible and easy to operate.

⇒ Abundance of references in the literaturemakes it easy to reproduce experiments.

Cons

⇒ Standard approaches are very slow in executing the imaging algorithm, hence

they are time-consuming.

⇒ The equipments used consume a considerable amount of power.

⇒ Usually these equipments have a large form factor, hence not portable.

The combination of VNAwith a standard CPU is not meant to be a definite solution,

but it is rather a flexible and reliable set up useful in preliminary research or for a

proof-of-concept. One possible evolution in a directionwhere portability, reliability, low

power and speed are required is to develop ad-hoc integrated circuits (ICs). However,

this will have a tremendous impact on the overall cost of the MI system. Fortunately,

as we show later on, this is not necessary because existing commercial off-the-shelf

(COTS) components can be used instead.
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3.7 Our approach in solving the limitations of the stan-

dard approaches

To overcome some of the limitations of the standard approaches, we replaced the

VNA and the processing system (generally a PC) with COTS components to generate

microwave signals, to receive them, and finally to process them. Instead of developing

new ICs as required by other MI techniques such as UWB Radar, we used commercially

available low-cost components for this purpose. The other essential requirement is to

have a processing system to run the algorithm and to generate images. For this purpose

we replaced the standard PC with a Zynq SoC having an embedded FPGA. With this

approach, we decreased the overall cost and size of our prototype without affecting

its performance compared to the system operated with VNA and PC. The comparison

of our MI prototype with the MI system operated with VNA is provided in chapter 5.

I-MUSIC despite being faster than non-linear inversion algorithms, still requires CPU

time which is not feasible for standard practical applications and the execution time

is unacceptable if running on an embedded processor. The Use of Zynq SoC with an

embedded FPGA helped us to speed up the execution time of the algorithm. The details

of the components which we had used in our MI prototype is provided in next chapter.

3.8 Conclusion

In this chapter, we explained why we selected I-MUSIC as a good approach for the

MI system instead of common UWB Radar and Tomography approach. We explained

briefly the advantages of the I-MUSIC algorithm and the way it works for removing

clutter and image generation. In this chapter we also explained what kind of compo-

nents conventional imaging techniques and MI systems are using and what kind of

problems, especially related to antennas can occur and how I-MUSIC algorithm deals

with this problem.
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Next chapter is related to the Microwave imaging system which we built. In that chap-

ter, we will discuss the hardware of our prototype, software, the methodology which

we adopted, designed hardware accelerator and the results of our prototype and their

comparison to MI systems comprising of costly components.

35



Chapter 4

COTS-based Microwave Imaging

System for Breast Cancer Detection

For our MI system, we adopted I-MUSIC [90-91] algorithm because it offers bet-

ter flexibility compared to the other mentioned approaches. I-MUSIC does not require

large bandwidth for its detection of the tumor (scatterer) and makes the imaging al-

gorithm independent of antenna characterization. Numerical and experimental assess-

ment of I-MUSIC using a Vector Network Analyzer (VNA) for breast cancer detection

is in [91] where the authors have used a costly and bulky component like VNA and

PC for processing the data. We followed a different approach for building an innova-

tive MI system using low-cost off-the-shelf components. This approach is described in

the following sections of this chapter. Since this is the result of a collaborative work, it

is important to highlight what were my personal contributions as a PhD candidate to

the construction and characterization of the COTS-based MI system. My contributions

were as follows:

• Construction of the second version of the tank used for experiments (see section

4.5.2).

• Design and testing of the digital electronic interface and the software needed to
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move the data from the data acquisition board to the Zedboard for data processing

(see section 4.6).

• Implementation of the software for automating the measurements to run in the

Zedboard (see section 4.7).

• Full implementation of the I-MUSIC software in the Zedboard and improvement

of the FPGA hardware accelerator design (see section 6.3).

• Conception of the calibration method and its testing and characterization (see

section 4.9).

4.1 System Architecture and Design

A detailed diagram of our designed prototype for breast cancer detection is in figure

4.1. This diagram is also helpful for understanding the main sections of the prototype

and what function each part plays.

Figure 4.1: Schematic of the MI system.

Main parts of The Prototype

• Transmitter section.
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• Receiver Section.

• Zynq SoC for controlling and processing.

• Measurement tank, containing breast phantom and wideband antennas.

4.2 Transmitting Subsection

One of the purpose of our prototype is to replace complex and costly equipments

(e.g., Vector Network Analyzers) with low cost yet high precision off the shelf compo-

nents. In the prototype, Zynq SoC configures the phase-locked-loop (PLL)-based trans-

mitter (Tx), and for this purpose, we use the following components in the transmitting

section of the prototype:

• 10 MHz Oscillator.

• LT DC590B PCI interface.

• LTC6946 N-synthesizer board.

• DC 1705B interface board.

• Voltage Controlled Amplifier

• UWB monopole Antenna(TX)

• Low Pass Filters

Our prototype has a working frequency of (1.4 GHz -1.6 GHz), and the RF signal

is provided by a 10 MHz oscillator by Golledge Electronics Ltd, in conjunction with

DC1705B featuring the Linear Technology LTC6946. The LTC 6949 frequency synthe-

sizer has a range from 0.37 GHz to 6.39 GHz with Integrated VCO, a phase-locked loop

(PLL) with a fully integrated VCO, including a reference divider, a phase-frequency de-

tector (PFD) with a phase-lock indicator, ultra low noise charge pump, integer feedback
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divider, and VCO output divider. The integrated low noise VCO requires no external

components for its calibration and can be calibrated internally to the correct output

frequency without any external system support. The 10 MHz oscillator is connected to

the DC 1705B board and has a 50-Ω SMA connector for the reference frequency input,

𝑓𝑅𝐸𝐹, the reference output buffer (REF OUT), and the differential RF output (RF+ and

RF−). The two differential outputs (RF+ and RF−) are then used as input to transmitting

antenna and as input to the local oscillator at the receiver board. RF+ is supplied to the

antenna (Tx) through power amplifier connected in between transmitter antenna (Tx)

and the LTC6946 boards RF output. The purpose of the amplifier is to raise the power

level of the signal so that it propagates effectively in the mixture to breast phantom

and is then backscattered so that the receiver antenna (Rx) senses these RF signals. The

schematic of the transmitter section is given in figure 4.2.
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Figure 4.2: Transmitting subsection of the Prototype.
Source:

https://www.analog.com/media/en/dsp-documentation/evaluation-kit-manuals/DC1705CFB.PDF/

4.3 Receiver Subsection

Receiving subsection of the prototype consists of the following main components.

• UWB monopole Antenna (RX).

• Pre-amplifiers.

• Low Pass Filters.

• DC-Receiver LTM9004.
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• Clock Signal Source

At the receiver side of the prototype, we are using 14bit direct conversion LTM9004b

chip by Linear Technology. The backscattered signal from the breast phantom received

by Rx is supplied to the input of the LTM9004b, through a pre-amplifier to raise the

power level of the received signal. The use of a direct conversion (DC) receiver provides

many advantages over the more common heterodyne approach [79], in particular:

• The DC receiver solves the requirement for RF front-end bandpass filters because

it is not susceptible to signals at the image frequency. The only signals which RF

bandpass filters must attenuate are strong out-of-band signals.

• DC eliminates the need for intermediate-frequency (IF) amplifiers and bandpass

filters as the RF input signal is directly converted to baseband.

• The entire chain is DC-coupled and provides access for DC offset adjustment.

• Use of DC also provides comparatively better robustness to phase inaccuracies in

the paths of the local oscillator. As a result, direct conversion performs better in

terms of signal-to-clutter ratio as compared to the heterodyne approach [79].

The integrated on-chip broadband transformers provide 50 Ω single-ended inter-

faces at the RF and LO inputs. LTM 9004b is then connected to the demonstration cir-

cuit DC1513. DC1513 is an evaluation board featuring Linear Technology Corporations

LTM 9004 14-bit direct conversion receiver subsystem. The DC1513b has three inputs:

one is the RF signal from the antenna through filters and amplifiers, the other input is

the local oscillator (LO) input from the transmitting boards (RF−), and the third input

is the clock input from external frequency generator, required for sampling for analog

to digital conversion. The sampled data is then sent via a USB-interface board to the

Zynq SoC. LTM9004b removes the second-order nonlinearity of the receiver, generated

by unwanted baseband signals and provides DC offset correction options. The DC off-

set can be corrected manually on the board by two separately rotatable terminals for
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each channel (I−Q). In our prototype, all the components are off the shelf except the

low-cost custom printed antennas. Fig 4.3 shows a block diagram of the arrangement

of our COTS-based system, whereas figure 4.4 shows a picture of it.

Figure 4.3: Blockdiagram of the COTS of Prototype.

Figure 4.4: COTS of the Prototype.

The passive components on the Linear Technology boards used for both the trans-

mitter and the receiver sections offer good 50Ω matching in the working frequency

range (1.4 GHz-1.6 GHz) of the prototype (input return loss better than -10 dB). By de-

fault, the chips can cover a much larger bandwidth ranging from 0.37 to 5.7 GHz for Tx

and 0.7 to 2.7 GHz for Rx. However, working on a wider bandwidth apart from bring-

ing matching complication does not improve the detection performance, and this has

been verified by comparing our results with that obtained from VNA working in the

full bandwidth (0.5-3 GHz) discussed in the next chapter. Thus, we selected frequency
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range (1.4 GHz-1.6 GHz) with 200 MHz bandwidth for our experiments.

4.4 Measurement Tank with Coupling liquid and An-

tennas

To validate our approach and to test our MI system we designed a first test envi-

ronment consisting of a cylindrical tank filled with a coupling liquid and in which we

immersed various kinds of breast phantoms. To irradiate the phantoms and to collect

the scattered field we used antennas immersed in the coupling liquid.

Antenna design is an essential aspect of microwave imaging. Traditionally, while

designing antenna it is assumed that the antenna lies in the free space, but for the proto-

type, we designed antennas by considering the fact that, they will lie close to the breast

in the near-field region. The other important issue while designing an antenna is its

dimensions. In order to increase the number of antennas in a circular plastic tank of 10

cm diameter, it is crucial that geometrical dimensions must be kept as small as possible

without affecting the performance. Our designed antenna shown in fig 4.5 is a wide-

band monopole antenna with an SMA connector printed on a standard FR4 dielectric

substrate.This technology helps in reducing the cost of antenna fabrication and the size

of the antenna is reduced due to its flat shape. The designed antenna has good match-

ing performance when immersed in the coupling mediums used during measurements.

These coupling mediums are further explained in the following section. The geometry

of the designed antenna is given in fig 4.6. The S11 parameters of the antenna ( for 50 Ω

reference) is also given in fig 4.5, obtained when the antenna is fully immersed in the

coupling liquids.
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Figure 4.5: Designed UWB antenna and its S11 Parameter.

Figure 4.6: Geometry of the designed antenna (values are in cm).

The measurements are performed with two different coupling mediums having dif-

ferent dielectric properties. Both coupling liquids have been proposed in the literature

[115][96].

The first coupling medium is the mixture of 80% glycerin [95], and 20% water with

average dielectric value of permittivity 𝜖𝑟=22.The secondmedium is Triton x-100 which
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mimics the dielectric characteristics of the 85-100% of the adipose tissue content of the

normal breast tissue [96] in (0.5-3.0 GHz) frequency range and has average dielectric

value of permittivity 𝜖𝑟=7. Triton x-100 is a nonionic surfactant, also normally used as

a detergent in laboratories and therefore easily supplied. Dielectric properties of both

liquids are shown in fig 4.4 for the frequency range 0.5-3.0 GHz.

(a) (b)

Figure 4.7: (a) Relative Permittivity (b) Conductivity of the Coupling liquids.

We observed that the characteristics of the first coupling medium are stable over the

time (the measured dielectric properties did not change even several weeks after cre-

ating the liquid blend), which clearly improves the repeatability of experiments. Since

it is a mixture, however, it is difficult to reproduce it in exact proportions repeatedly.

This mixture offers higher conductivity as shown in fig 4.7, hence, a higher signal at-

tenuation, which is useful to eliminate the effect of multipath. Its attenuation also pro-

vides a good impedance matching for minimizing signal attenuation due to reflections

at breast/liquid surface.The second coupling liquid, Triton x-100, is not a mixture which

makes it simpler to use than the first medium (no need to blend).

Using these two significantly different coupling mediums in terms of dielectric val-

ues also helped us in validating that the our prototype MI system and the I-MUSIC
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algorithm can work in different scenarios that mimicked breasts having different di-

electric values (low and high); the results reported in next chapter verifies this claim.

Using these two coupling mediums and having satisfactory results in both cases also

shows that the designed prototype is robust and quite insensitive to changes in the test

environment.

For the prototype two different versions of the tankwere used, which were designed

for two set of experiments of increasing realism. The first tank was used with a 2D

version of the breast and the tumor phantoms, whereas the second tank was used with

a more realistic 3D version of the phantoms. The two versions are shown in figure 4.8

on the left and of the right picture, respectively.

Figure 4.8: (a) First 2D version of the tank and (b) second 3D version of the tank, both
filled with coupling liquids and breast phantoms.
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In the first 2D setup, Tx and Rx antennas are mounted on a plexiglass support and

placed in the tank filled with the mixture of glycerin and water.The antennas are placed

along a circle of 20-cm diameter and the angle between the Tx and Rx antennas can be

any multiple of 45𝑜. This is due to design constraints of the prototype shown in figure

4.8(a), which has 45𝑜-spaced holes in the plexiglass support. It is also important to men-

tion here that the angle between the antennas is an important input parameter of the

I-MUSIC algorithm and testing with different antenna angles also gives us an additional

knob to evaluate the performance of the imaging algorithm.We used three different an-

gles between the antennas in the measurements reported in the next chapter: 45𝑜, 90𝑜

and 135𝑜. We kept the angle fixed during any complete measurement, therefore the

results are reported for each individual angle.

In this 2D setup, a tumor phantom is represented by a metallic cylinder (mainly

used as a control case) or by a hollow plastic cylinder with a very negligible thickness.

The plastic cylinder is filled with a liquid, which could be different than the coupling

medium liquid or the same (another control case). As shown in next chapter, these differ-

ent liquids represent different scenarios of tumor of varying contrast to the surrounding

medium. In this version of the tank, the cylinder can be placed at any position. Notice

that the position of the scatterer inside the tank stresses the algorithm differently. A

scatterer located close to the tank sides mimics a tumor located close to the breast skin,

which is an adverse condition for the imaging algorithm because the information is

concentrated across a limited number of scans. When the tumor phantom is around the

center of the tank (away from skin), it is another adverse condition because now the

algorithm needs to differentiate across a high degree of ambiguity.The exact location of

the scatterer is crucial to evaluate the quality of the generated images and the detection

capabilities, therefore it was carefully considered during the measurements.

Notice that a complete scan of the measurement scene is obtained by rotating a
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pair of antennas around the tumor rather than by switching between different anten-

nas, which simplifies the measurement setup and avoids the use of a complex switch

matrix. To further simplify the set up, instead of rotating the pair of antennas around

the tank, a motor rotates the tank and the 2D tumor inside it in fixed angle steps, while

keeping the antennas in the same position.This arrangement of rotating the tankmakes

the experiment in the laboratory simpler and rotating the phantom is equivalent to ro-

tating the antennas.This setup also gives us much more flexibility than having a system

with fixed position antennas. In order to eliminate or reduce external interference all

the components and the tank were shielded with the help of aluminum foils during

measurements.

The second setup of the tank is shown in fig 4.8(b), where to hold the antennas, we

added two external wooden supports. This setup allows the movement along the z-axis

in steps and makes it easy to change the angle between antennas. In the figure 4.8(b)

the angle between Tx and Rx is 135𝑜 and for this version of the tank, we used a full

3D breast-phantom whose details are explained in the next section. The motor is placed

below the tank, and the whole tank containing the breast phantom is rotated. Similar

to the first setup, antennas are at their original position during entire measurement

while the tumor rotates and a complete scan of the phantom is recorded. Motor rota-

tion in both setups is controlled automatically by the Zynq SoC and the IP to control

the motor, as discussed in upcoming sections. We adopted the rotating arrangement in

both versions of the tank to simplify our prototype. By eliminating the use of switch

matrix for multiplexing Tx and Rx antennas in both versions of the tank, we reduced

the measurement inaccuracies and minimized the cost of the prototype. However, for

a clinical setting, this approach is not possible, because the patient cannot be rotated

during measurements. In a clinical setting, the patient will lay still in prone position,

and a tank attached with a motor and containing antennas will be placed under the pa-

tient breast. It is also possible in a realistic setup to rotate compact antennas around the

breast. For 3D measurements, additional motors can be used for moving the antennas

48



4.5 – Breast and Tumor Phantoms

up and down.

4.5 Breast and Tumor Phantoms

Our prototype as discussed earlier has two different versions of the tank with dif-

ferent coupling mediums and tumor phantoms. These versions are explained below.

4.5.1 First Version of the Tank

In the first version of the tank (fig 4.8(a)), measurements are performed using 2D

tumor phantoms. We used two different phantoms, one is a 12-mm diameter metallic

cylinder and the 2nd is a 20-mm diameter plastic cylinder filled with a mixture of (i)

40% glycerin and 60%water, (ii) same mixture as of the coupling liquid and (iii) only wa-

ter. Metallic tumor mimics a highly reflective tumor and it was used as a control case,

whereas the other tumors offer much less dielectric contrast compared to the metallic

tumor. Both the tumor phantoms have a length equal to the length of the tank. The

antennas are at fixed positions and the tumors rotate with a step of 15𝑜 (however this

angle can be easily changed with Zynq SoC), and in total there are 24 measurement

positions for a complete rotation. Although results reported in next chapter are for 24

steps, measurements were also performed with different steps and the results were the

same in all considered cases (18, 24 and 30 steps), with no noticeable change in detec-

tion results. This number of steps is in accordance to the existing literature [81][91] but

it is also important to mention here that thanks to the way the prototype is designed,

it is easy to increase or decrease the number of steps or the rotation angle. The mea-

surements and the results reported in the next chapter for this first tank refer to Tx and

Rx antennas with an angle of either 45𝑜 or 135𝑜 between them, placed along a 20cm

diameter circle.
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4.5.2 Second Version of the Tank

In this version of the tank shown in fig 4.8(b), similar to the first version fixed

antennas and phantom are placed inside the tank. In this case we experimented with

the GeePs-L2S breast phantom [72][97], which we received in the framework of BMBS

COST Action TD1301 “MiMed”, a project funded by European Union dedicated to the

applications of microwave imaging in the field of medicine. The GeePS-L2S is a 3D

breast model, fabricated with a 3D printer. In this breast model, fibrograndular, adi-

pose, and tumor, the three different tissues are represented by three different parts of

the 3D breast phantom as shown in fig 4.9. Each part is filled with a liquid mimicking

the dielectric properties of the corresponding tissue [97] which are obtained by a proper

mixture of water, salt, and Triton X-100. The conductivity and permittivity of the breast

are reported in fig 4.9 (a) and (b).

Figure 4.9: GeePs-L2S phantom, (a) Permittivity and (b) Conductivity of the liquids,
mimicking the breast tissues.

The 2D horizontal cut of the GeePs-L2S phantom is given in fig 4.10. The cut cor-

responds to the plane of tumor detection by I-MUSIC algorithm and also shows the

position of Tx and Rx.
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Figure 4.10: GeePs-L2S breast phantom: (a) horizontal cut in the antenna plane; the
outer circle represents the rotation path. (b) Cross section view showing tumor size
and position. The antennas can be placed at any vertical position.

In this tank we used Triton X-100 as a coupling medium because it has the dielectric

properties of an “average” breast. The antennas are placed at a 15-cm diameter circle, so

as to surround the breast phantom at a shorter distance than in the previous tank. The

angle between Tx and Rx antennas can be 45𝑜, 90𝑜, or 135𝑜, as described before. The
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motor rotates with a 15𝑜 step, and there are total 24 positions to record the measure-

ments. In figure 4.10 (a) the path of the rotation of the antennas is shown by dashed lines

and the shape of the three tissues is represented by different patterns similar to their

actual shape inside the 3D breast phantom. Tumor with a diameter of 16mm is located

inside the fibroglandular tissue, which represents an adverse condition for detection

because the dielectric contrast between them is 1.2:1, which is very less compared to

the contrast between fat and tumor which is 11:1. The cross-sectional view of the 3D

breast phantom is given in figure 4.10(b), which also shows the position of antennas

relative to phantom and they are located at 75mm distance from the center of phan-

tom near the upper part. With this version of the tank, it is also possible to perform 3D

measurements, because the height at which antennas are placed can be changed easily.

The tank with both versions of the coupling liquids and all the components are shielded

from external interference by placing components in a metallic box and by a metallic

foil around the tank enclosing antennas, tumor and coupling liquids.

4.6 Vivado and Zedboard

For controlling the transmitter, receiving the digital complex data from the digital

receiver, storing them and then running the I-MUSIC algorithm on the acquired data

to generate results, we are using Zynq SoC mounted on the Zedboard board. Zedboard

is an evaluation and development board based on the Xilinx Zynq-7000 Extensible Pro-

cessing Platform.
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Figure 4.11: Zedboard ( Evaluation and Development board).
source:http://zedboard.org/product/zedboard

The Zynq combines both applications processor and FPGA fabric due to which its

features, capabilities, and potential applications are different from a processor or an

FPGA in isolation. The Zynq-7000 All Programmable SoC (System on Chip) has a dual-

core ARM Cortex-A9 processing system and hard peripherals coupled with Xilinx 7-

Series 28 nm programmable logic, all integrated on a single SoC. The internal clock

frequency of the processing system is 667 MHz. Its memory consists of 512 MB DDR3

RAM, a 256 MB Flash Quad-SPI and a 4 GB SD card. Figure 4.11 shows the labeled

diagram of the ZedBoard and position of its main components such as the Zynq pro-

cessing system, power supply, RAM, USB, JTAG, push button. Further details about the

Zedboard can be found in [84].
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In order to design for Zynq we used the Vivado Design Suite (2016.3) available

at Xilinx website and from it installed Vivado IDE and SDK . Both are very important

as they provided the bases for designing hardware and software respectively [113] for

our MI system. A short description of both of these is provided here for understanding

their importance.

Vivado IDE

Vivado is an integrated development environment (IDE) where the hardware sys-

tem part of the SoC design is created, i.e., processor, peripherals, memories, external

interfaces, and bus connections. In Vivado IDE reusable hardware blocks called Intel-

lectual Properties (IPs) can be developed and packaged for later reuse . Packaging IP

is an important facility offered by Vivado IDE because it broadens the possibilities for

design reuse and creating new IPs according to the requirements.

SDK

The Software Development Kit (SDK) based on the popular Eclipse platform is a

software design tool. It includes driver support for all Xilinx IPs, GCC library support

for ARM using the C++ and C languages, and tools for debugging and profiling.

An outline of the design flow for designing hardware and software using Vivado

IDE and SDK is given in the figure 4.12.
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Figure 4.12: Zynq SoC Design flow.
source:http://www.zynqbook.com/download-book.php

Further details about the design flow for Zynq SoC in Vivado IDE and SDK readers

can find in [114][83-85]
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4.7 Vivado Project for the MI system

A project using the Vivado IDE design tool has been created, and the I-MUSIC

algorithm written in C is compiled and executed on the ARM processor using SDK .

SDK (Software Development Kit) is also included in the Vivado design suite and can

be launched within the Vivado IDE environment. For the prototype, we designed an

embedded system in Vivado by adding a ZYNQ7 processing system block and other

necessary IPs. We also created custom IPs using Vivado IP manager, whose function

is to receive the data coming from the DC receiver and storing them into the DRAM

of the Zynq SoC in I and Q form. This data is then inputted to the I-MUSIC algorithm

for generating the image. Block diagram of the project containing all the essential IPs

necessary for the processing system is given in figure 4.13.
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Figure 4.13: Vivado Project for MI system.
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In the above figure two essential IP blocks ”my−block” and “dcmotor” are custom

made IPs, which we created for three important functions. The IP block ”my−block”

shown in figure 4.14 performs two important functions: first it receives the output of

the DC receiver for processing in the imaging algorithm, and our designed accelerator

which is described in next section for accelerating the imaging algorithm is also in-

side this IP. The other IP “dcmotor” (figure 4.15) automatically rotates the dc motor,

which in turns rotates the tank (in which breast phantom and tumor are present). With

this IP the bucket is rotated automatically after specified time interval, when the data

is acquired at a particular position for the complete frequency range. This makes our

prototype completely autonomous, and data is acquired for a complete rotation of the

tank and is stored in DRAM for processing.

Figure 4.14: IP for acquiring data from DC Receiver.

Figure 4.15: IP for Rotating the Tank.

Dc motor is rotated at an angle of 15𝑜 and for a complete rotation 24 steps are

needed. At each of the 24 positions, data is acquired for each of the 11 discrete frequen-

cies and frequency of the output RF is updated automatically after a fixed time interval

(to store I and Q components for each 11 discrete frequencies) in the steps of 200 MHz.
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4.8 FPGA-Based Digital Back End

Our goal of designing the prototype is to have an imaging system, which is low-

cost and portable compared to other MI systems. The Xilinx’s Zynq SoC plays the most

crucial role in achieving our goal. It integrates into its dual-core ARM processor chip, a

level 2 cache, various standard peripherals and is denoted by a processing system (PS)

with an Artix-7 FPGA denoted as programmable logic (PL) shown in figure 1. During

measurement at every antenna position and for each frequency, data is acquired in the

form of (I & Q) samples by the DC receiver, and then these 14bit samples are sent in the

source-synchronous mode to the Zynq SoC using the IP block ”my− block” discussed

earlier. The data is first buffered in a FIFO implemented in PL part of the Zynq, and then

the buffered samples are transferred via DMA to the external DDRmemory. Before pro-

cessing the received samples, they are averaged for reducing the noise. After that, the

decluttering phase and eigenvalue computation are performed for each frequency. The

computational bottleneck is in two loops where Green functions and Hermitian prod-

ucts are evaluated. It is important to notice that for each pixel of the image in a 2D

slice, kernel code of the loops is repeated and if multiple scans are performed along the

z-axis, then the execution time would be the number of scans multiplied by execution

time. In a clinical application the execution of these loops in a pure software environ-

ment is not a feasible solution because the time it will take to execute the algorithm to

produce results will be longer, hence not acceptable for practical applications; therefore

we decided a hardware acceleration for these loops is a good choice. We implemented

the hardware accelerator in the PL part of the Zynq. The remaining part of the algo-

rithm runs in the software in ARM processor, while the accelerator and ARM processor

communicates via DMA. The accelerator is defined in behavioral SystemC and by us-

ing commercial High-Level Synthesis (HLS) tool we obtained its RTL description. RTL

description is the entry point of the Xilinx FPGA design flow. With the help of the HLS

tool, we validated in about four months more than 100 design alternatives. We obtained
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these alternatives due to the application of parallelism, loop unrolling, pipelining and

other design knobs, starting from a single high-level description. We ranked all the ac-

celerator solutions based on the performance in terms of the execution time and the one

with least execution time was selected. Final accelerator which we selected is shown in

figure 4.16.

Figure 4.16: Implemented Accelerator in Zynq SoC for computing I-MUSIC.

Our designed accelerator consists of identical processing elements (PE). These

PEs are operating in parallel each on the row of the image. Using HLS for each complex

operations such as square root, division, trigonometric functions etc. which these PEs

execute, we obtained a high performance, pipelined implementation. In the accelerator,

we pipelined computation and communication in such a way that the communication

between accelerator and processor does not hold the computation and we do not waste

a single clock cycle. The designed accelerator has the bus-master interface for DMA

data transfers and two bus-slave interfaces for status and commands information. As

our goal behind the prototype is to have high performance while minimizing cost and

form-factor, we synthesized the maximum possible number of PEs that could fit on the

Zynq. To check the performance of our prototype, we compared the execution time

of the prototype with a server-class Intel multicore (Xeon E5-2653 @ 3.3 GHz, 64GB

RAM). The Intel multicore completed the execution of a 2D scenario in around 20s

while the designed accelerator completed the execution in less than 1s independent of
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the input data. With our accelerator, we obtained more than 20× speed-up compared

to software execution. From these results, we can estimate that for a 3D scenario the

overall measurement timewill reduce from (20-30) minutes to only a fewminutes which

is acceptable for a clinical application.

4.9 System Calibration

Our prototype uses components off the shelf and DC receivers often introduces

offset issue due to LO leakage [98] and second order non-linearities. For a better un-

derstanding of these issues let us consider the given below schematic of DC conversion

receiver.

Figure 4.17: Direct Conversion receiver structure.

Let us assume that input signals to RF and LO of the receiver have the same frequen-

cies, i.e. 𝜔𝑋𝑖 = 𝜔𝑌 𝐿𝑂. Note that in the calculation terms involving x are those which

are due to the input signal, y are those which are due to local oscillator signal, if a term

involves r then it means these are the terms related to reference signal (when trans-

mitter is directly connected to the receiver input RF with a known attenuation) while

m denotes the terms related to measured values. Considering only offset and second-

order-linearity, and taking into account that terms at frequencies 𝜔 and multiples are

eliminated by the low pass filters in Fig. 4.17, than the overall response of the receiver

to these factors is given by the equation 4.1.
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𝑍𝐼 = 𝐺𝐼
𝐴𝑥𝐴𝑦

2
𝑐𝑜𝑠(𝜙𝑥 − 𝜙𝑦) + 𝛿𝐼𝑥

𝐴2
𝑥

2
+ 𝛿𝐼𝑦

𝐴2
𝑦

2
+ 𝛾𝐼

𝑍𝑄 = −𝐺𝑄
𝐴𝑥𝐴𝑦

2
𝑠𝑖𝑛(𝜙𝑥 − 𝜙𝑦) + 𝛿𝑄𝑥

𝐴2
𝑥

2
+ 𝛿𝑄𝑦

𝐴2
𝑦

2
+ 𝛾𝑄

(4.1)

where G is the gain of the amplifier in the respective sides (I & Q), the 𝛿 terms are

related to 2nd order non-linear errors, while 𝛾 term is related to offset errors. 𝐴𝑥,𝐴𝑦

are the amplitudes of the RF and LO signal while 𝜙𝑥 and 𝜙𝑦 are their respective phases.

In the above equation the terms 𝐴𝑥,𝐴𝑦 and others involving x and y together with 𝐺𝐼

and 𝐺𝑄 are the useful terms due to input signal (albeit possibly affected by gain errors

due to the difference between I and Q gains, if any).

Equation 4.1 tells us about all the factors which can possibly affect the performance

of the prototype. To reduce these inaccuracies, we devised an analytical procedure to

identify these factors and then took the necessary steps for their possible compensation.

4.9.1 Offset compensation

To compensate for the offset let us consider 𝑋𝑖𝑛 = 0 and 𝑌𝑖𝑛 = 0 in equation 4.1,

the equation will be simplified as
𝑍𝐼 = 𝛾𝐼

𝑍𝑄 = 𝛾𝑄

(4.2)

These values do not depend upon the frequency and can be compensated by the adjust-

ment of I&Q terminals in the receiver board.

4.9.2 Non-linearity Determination

To know the factors which are responsible for the non-linearity, let us first set LO

signal 𝑌𝑖𝑛 different then zero and the input signal from the antennas equal to zero. i.e

𝑌𝑖𝑛 ≠ 0, 𝑋𝑖𝑛 = 0. Because the offset is already compensated the equation can be now
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written as,

𝑍𝐼𝜔 = 𝛿𝐼𝑦
𝐴2

𝑦

2

𝑍𝑄𝜔 = 𝛿𝑄𝑦
𝐴2

𝑦

2

(4.3)

These values do not depend upon the input signal from the transmitter but depend

only on the LO signal. Therefore they are constant at a given frequency and can be fully

compensated during the processing phase.

4.9.3 Non-linearity due to input signal 𝑋𝑖𝑛

The non-linearities due to input signal is determined when 𝑌𝑖𝑛 = 0, and 𝑋𝑖𝑛 ≠ 0.

𝑍𝐼𝑥 = 𝛿𝐼𝑥
𝐴2

𝑟
2

+ Compensated terms

𝑍𝑄𝑥 = 𝛿𝑄𝑥
𝐴2

𝑟
2

+ Compensated terms
(4.4)

Notice that to determine the terms due to non-linearity, we apply as input signal a

reference signal of amplitude 𝐴𝑟.

4.9.4 Characterization with reference signal

For the reference signal, equation takes the below form after compensations

𝑍𝐼𝑟 = 𝐺𝐼
𝐴𝑟𝐴𝑦

2
𝑐𝑜𝑠(𝜙𝑥𝑟 − 𝜙𝑦) + Compensated terms

𝑍𝑄𝑟 = −𝐺𝑄
𝐴𝑟𝐴𝑦

2
𝑠𝑖𝑛(𝜙𝑥𝑟 − 𝜙𝑦) + Compensation terms

(4.5)

Assuming that the difference of I and Q gains is negligible, i.e. 𝐺𝐼 = 𝐺𝑄 = 𝐺 then

the above equation can be simplified further as

63



4 – COTS-based Microwave Imaging System for Breast Cancer Detection

𝑍𝐼𝑟 = 𝐺
𝐴𝑟𝐴𝑦

2
𝑐𝑜𝑠(𝜙𝑥𝑟 − 𝜙𝑦) + Compensated terms

𝑍𝑄𝑟 = −𝐺
𝐴𝑟𝐴𝑦

2
𝑠𝑖𝑛(𝜙𝑥𝑟 − 𝜙𝑦) + Compensated terms

(4.6)

The magnitude and phase of the non-linear terms due to reference signal are given

by 𝐺𝐴𝑟𝐴𝑦
2 =√𝑍2

𝐼𝑟 + 𝑍2
𝑄𝑟 while the angle is given by (𝜙𝑥𝑟 − 𝜙𝑦) = − arctan 𝑍𝑄𝑟

𝑍𝐼𝑟

All the above-calculated terms are essential in calculating the overall transfer func-

tion of the system due to non-linearities.

4.9.5 Transfer Function of the System

Assuming linearity, the response of the system at a given frequency 𝜔 to an unitary

excitation is given by 𝐻 exp𝑗𝜙𝐻. This response in terms of magnitude and phase, our

system needs to obtain similar to what a VNAwould obtain. Equation below shows how

we can obtain it from the measured 𝑍𝐼𝑚 and 𝑍𝑄𝑚. By considering that the X input to

the receiver is now replaced by the reference signal multiplied by the transfer function

H, equation 4.1 can be rewritten as follows.

𝑍𝐼𝑚 = 𝐺
𝐴𝑟𝐻𝐴𝑦

2
𝑐𝑜𝑠(𝜙𝐻 + 𝜙𝑥 − 𝜙𝑦) + 𝛿𝐼𝑥

𝐻2𝐴2
𝑟

2

𝑍𝑄𝑚 = −𝐺
𝐴𝑟𝐻𝐴𝑦

2
𝑠𝑖𝑛(𝜙𝐻 + 𝜙𝑥 − 𝜙𝑦) + 𝛿𝑄𝑥

𝐻2𝐴2
𝑟

2

(4.7)

replacing 𝐺𝐴𝑟𝐴𝑦
2 by 𝛼 and 𝛿𝐼𝑥

𝐴2
𝑟

2 by 𝑏𝐼 and 𝛿𝑄𝑥
𝐴2

𝑟
2 by 𝑏𝑄 and putting (𝜙𝐻+𝜙𝑥−𝜙𝑦) =

𝜃 the equation simplifies to

𝑍𝐼𝑚 = 𝛼𝑐𝑜𝑠(𝜃)𝐻 + 𝑏𝐼𝐻2

𝑍𝑄𝑚 = −𝛼𝑠𝑖𝑛(𝜃)𝐻 + 𝑏𝑄𝐻2
(4.8)

Having determined 𝑏𝐼 and 𝑏𝑄 after the characterization with the reference signal,

we can solve this equation algebraically to obtain the magnitude H and the angle 𝜃, and

from 𝜃 we can obtain the angle 𝜙𝐻. An approximated but still accurate result can be
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obtained by neglecting 𝑏𝐼 and 𝑏𝑄. Even though in general the system of equations 4.8

can be solved to get the values of 𝑏𝐼 and 𝑏𝑄, we found out that these two terms are neg-

ligible in the receiver board which was used in the prototype. As a result, the equation

4.8 after neglecting the mentioned two terms can now be written as follows:

𝜙𝐻 = − arctan
𝑍𝑄𝑚

𝑍𝐼𝑚
− arctan

𝑍𝑄𝑟

𝑍𝐼𝑟

𝐻 =
√𝑍2

𝐼𝑚 + 𝑍2
𝑄𝑚

√𝑍2
𝐼𝑟 + 𝑍2

𝑄𝑟

(4.9)

Notice that the compensation of offset and non-linearity has to be performed at

different frequencies.The behavior of the system reference signal and offsetwith respect

to the considered frequency range is in figure 4.18. The given offset behavior in the

figure is obtained after performing a partial offset compensation with the help of the

terminals available at the receiver board at the starting frequency (1.4 GHz). Measured

values of offset for each frequency are given in Table 4.1.

For the reference, measurement values are given in Table 4.2. The values that are

obtained here are not just 𝛾𝐼 and 𝛾𝑄, i.e., the offset values when both Ax and Ay = 0, but

when the local oscillator (LO) is active (𝐴𝑦 ≠ 0); therefore they also include the terms

𝛿𝐼𝑦 and 𝛿𝑄𝑦.
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Figure 4.18: Behavior of Offset and Reference Signal with Frequency.

Table 4.1: Behavior of offset with frequency.

Freq(GHz) I-Component Q-Component Magnitude of Offset Offset in dB Scale

1.40 -0.7 4 4.06 0.608
1.42 1.5 -2.7 3.08 0.489
1.44 -3.5 -3.2 4.742 0.676
1.46 -11 -4.4 11.847 1.0736
1.48 -18 -6.2 19.038 1.28
1.50 -22 -7.7 23.308 1.37
1.52 -25 -8.8 26.503 1.42
1.54 -27.8 -11.5 30.084 1.48
1.56 -30 -15.4 33.72 1.53
1.58 -29.4 -21 36.13 1.56
1.60 -22.5 -26 34.38 1.536
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Table 4.2: Behavior of reference signal with frequency.

Freq(GHz) I-Component Q-Component Magnitude of Reference Reference in dB

1.40 745 1685 1842 3.26
1.42 -1526 -970 1808 3.25
1.44 1742 12 1742 3.24
1.46 -1484 892 1731 3.23
1.48 782 -1506 1969 3.23
1.50 101 1611 1614 3.2
1.52 -948 -1264 1580 3.19
1.54 1353 554 1462 3.16
1.56 -1471 217 1486 3.17
1.58 1066 -928 1413 3.15
1.60 -420 1221 1291 3.11

From the above figure 4.18 and tables 4.1 and 4.2, we can say that when frequency

is changed during measurement, the values of offset are also changed, and their effect

must be subtracted during post processing, because they can affect the image. However,

change in frequency does not affect the reference signal much and its response is almost

constant throughout the measurement.

4.10 Conclusion

In this chapter, the developed MI prototype is described in detail. All the essential

parts of the prototype, their characteristics, and their dependence on different factors

which can affect their performance is discussed. In this chapter we discussed in detail

the coupling mediums which we used and the two measurement setups of the proto-

type. In the chapter, we also discussed the designed accelerator required to speed up the

execution time of I-MUSIC. In the chapter, factors which can affect the performance of

the prototype are analyzed, and their behavior with respect to frequency is observed,
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and then the steps required to minimize the effect of these errors from the final gener-

ated image are also proposed.

In the next chapter, the results of our measurements performed with the prototype and

their comparison with a MI system operated with VNA and PC is provided.
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Chapter 5

Experimental results of the COTS

based Microwave imaging prototype

In this chapter the results of our experiments performed with our built prototype

are given. The tank of the prototype, which contains the breast phantoms, and the an-

tennas can be connected to a broadband Vector Network Analyzers (VNA) or to our

components of the shelf (COTS) based Microwave Imaging system. This flexibility

allows us to compare our COTS-based prototype with a standard system consisting of

VNA and CPU. We obtained results by running the I-MUSIC algorithm with the data

acquired with the VNA and with our prototype. When we conducted experiments with

our system, we acquired data of the backscattered field between the frequency range of

1.4 GHz to 1.6 GHz in 200 MHz step. We selected this range, because the board with the

DC receiver has the best matching for this range. When conducting measurements with

the VNA, we acquired data in the same bandwidth for a fair comparison, but we also

acquired data between 0.5 and 3.0 GHz which is the full bandwidth where our antennas

are matched (|𝑆11| ≤ −10 dB) (figure 4.5). This gives us two crucial measurement ad-

vantages: first by doing this, we can compare our system with the VNA and evaluate its

accuracy; the other advantage is by comparing our results with 0.5 to the 3.0 GHz range

we can assess that there is no loss of valuable information when considering only the
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1.4-1.6 GHz range. In the previous chapter, we explained that our prototype has two ver-

sions of tank one with the mixture of Glycerin (80%) and (20%) water while the other

tank is filled with Triton X-100. Experimental results obtained with both versions and

their comparison with VNA is discussed in the next sections of this chapter.

Before acquiring the real measured data, compensation for offset and non-linearities

for each experiment was performed. This was done according to the procedures men-

tioned in chapter 4 section 4.9 from the actual measured data. Then, images are ob-

tained by running the I-MUSIC algorithm on the acquired data obtained after compen-

sation subtraction. As a control case for checking the prototype, measurements were

performed using the metal as tumor and the prototype was able to efficiently detect the

tumor. When the prototype detected the tumor easily measurements were performed

in different scenarios using both version of the tank (explained in previous chapter),

these results are provided below.

All the experiments and measurements described in this chapter of the thesis were

personally conducted by the PhD candidate.

5.1 Results Obtainedwith aMixture of Glycerin (80%)

&Water (20%) as CouplingMedium (1st Version of

the Tank)

5.1.1 TumorCylinder filledwith same liquid as of couplingmedium

In the first version of the tank before filling the tumor cylinder with the mixture

(40%Glycerin and 60%water) we filled it with the same liquid as of the couplingmedium

(80% Glycerin and 20% water). This is a control case because theoretically, since there

is no contrast between the tumor and the coupling medium, there should not be any

detection (the plastic cylinder is transparent in the frequency range considered). The
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measurements with prototype and with the VNA were performed under same condi-

tions and with the same arrangement of the tank. The images obtained by running the

I-MUSIC algorithm on the data acquired by the VNA and our prototype are in figure

5.1.

(a) Generated Image obtained with COTS-Based
MI System. Colorbar unit is dB.

(b) Generated Image obtained with VNA. Color-
bar unit is dB.

Figure 5.1: Tumor phantom same as the Coupling Medium.

The images in figure 5.1 are plotted in the plane transversal to the tumor cylinder

with origin at the center of the tank. The image corresponds to a scanned circular area

of 10-cm radius, therefore it has a width and length of 10 cm on each side (x and y) from

origin. Rx and Tx in figure indicate the receiver and transmitter antennas respectively.

In the image, the yellow circle shows the actual position and size of the tumor, while

colored shades highlight the scattering points detected by the algorithm. For a success-

ful detection by the algorithm the detected scattered points and the yellow circle needs

to be overlapped, or at least they must be in close proximity of each other. In the images

the unit of colorbar is in dB normalized to the highest value.

The result in figure 5.1 is in accordance with our expectations, as there is no de-

tection in or around the yellow circle. Notice the similarity between the two cases in
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terms of exhibiting an artifact (albeit at different locations) and not detecting the cylin-

der at the predefined location (yellow circle) in figures 5.1(a) and 5.1(b), which shows

that both our prototype and the VNA behave quite similarly in this situation. The two

images are different in terms of location of maximum (artifact) but this behavior was

random when the measurements were performed in this condition (same tumor and

coupling medium liquid). Sometimes the images obtained were very clean (i.e. no ar-

tifact), and sometimes with different location of maximum. The exact reason for this

random behavior in this condition is difficult to predict but it could be due to noise and

antenna mismatching. The ambiguity of the scene that theoretically has many degrees

of symmetry when there is no scatterer certainly plays a role in determining an almost

random location of the artifact.

5.1.2 Tumor Cylinder filled with water

In this case, we filled the tumor cylinderwithwater while the coupling liquid is same

(80% Glycerin and 20% water). Water and the coupling liquid have very high dielectric

contrast (4:1) between them, and the prototype should detect the tumor easily. By run-

ning the acquired data under this condition in the I-MUSIC algorithm, the generated

image is in figure 5.2 (colorbar unit is dB).
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(a) Generated Image obtained with COTS-Based
MI System. Colorbar unit is dB.

(b) Generated Image obtained with VNA. Color-
bar unit is dB.

Figure 5.2: Tumor Cylinder filled with water.

Constructed images with the prototype and with the data acquired from VNA have

similar detection.The slight difference (2mm on y-axis between the scatterers) in the de-

tection position could be due to the movement of the tumor inside the tank because the

tumor is a very thin plastic cylinder and can be easily twisted. However, the important

thing here is the similar behavior of our prototype and VNA.

5.1.3 Tumor Cylinder filled with mixture (40% Glycerin and 60%

water) and Metallic Rod as tumor phantoms

After the successful detection in previous cases we tested our prototype with dif-

ferent cases and compared the results of our chosen range with the full range of the

VNA. In the figure 5.3, the results obtained with the prototype are compared with the

VNA in the subrange (1.4 GHz to 1.6 GHz) and full range (0.5-3.0 GHz). Angle between

the Tx and Rx is 135𝑜, different from previous cases as we tried different possibilities of

the antenna arrangement. In the figure below images from (a) to (c) are obtained when

the tumor phantom was a metallic cylinder, while in the images from (d) to (f) tumor
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phantom was a cylinder filled with the mixture (40% Glycerin and 60% water). By an-

alyzing the figures and comparing the results obtained with VNA for both ranges to

the image obtained with the prototype, we can easily say there is no significant loss of

the information, and the results are very similar. Our system has successfully detected

the tumor phantom and there is a negligible shift of the detection position when the

tumor inside the tank is a metallic rod. Notice that this can be considered a control case

because the metallic cylinder offers the highest contrast being totally reflective.

In the 2nd case when the tumor phantom is the mixture of (40% Glycerin and 60%

water), the angle between Tx and Rx is 45𝑜 again. Also in this case, the results obtained

with the prototype are in complete agreement with the results obtained with VNA for

both ranges. Based on these initial results it is safe to say that our prototype is as efficient

as VNA for detecting the tumor and the frequency rangewhichwe selected is producing

reliable results and there is no noticeable effect on the performance of the prototype.
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Figure 5.3: Images obtained with I-MUSIC, (a)-(c) 12-mm metallic target, (d)-(f) 20-mm
cylinder filled with 40%-60% glycerin-water mixture. (a) and (d) obtained with the VNA,
full bandwidth; (b) and (e) obtained with the VNA, 1.4-1.6 GHz; (c) and (f) obtained with
our system. Colorbar unit is dB.

5.2 Results Obtained with Triton X-100 as Coupling

Medium (2nd Version of the Tank)

In this version of the tank,TritonX-100 is used as a coupling liquid, and theGeePs-

L2S is the breast phantom. In this measurement setup with both VNA and prototype,

the angle between the Tx and Rx is changed after a complete scan of the tumor. Data is

acquired when the angle between the antennas is 45𝑜, 90𝑜 and 135𝑜 (reasons explained

earlier) due to the fact that the prototype is designed in such a way that the space

between antennas can be a multiple of 45𝑜. Figure 5.4 reports the results obtained on

the acquired data under these conditions.
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Figure 5.4: Images obtained with I-MUSIC using the GeePs-L2S breast phantom; the
angle between the TX and RX antennas is 45𝑜 in the first row (a-c), 90𝑜 in the second
row (d-f), and 135𝑜 in third row (g-i); in the first column (a,d,g) the VNA is used in the
0.5-3 GHz range; in the second column (b,e,h) the VNA is used in the 1.4-1.6 GHz range;
in the third row (c,f,i) our system is used in the 1.4-1.6 GHz range. Colorbar unit is dB.

In the figure first two columns are the results with VNA in the full bandwidth and

the (1.4-1.6 GHz) range, while in the 3rd column results obtained with the prototype

are given. The above figure is a good representation of an actual scenario because the

image reconstruction is affected by some delocalization, which in turn depends on the
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angle between the Tx and Rx antennas. Please notice that working at 45𝑜 is best be-

cause at this angle the delocalization is less and same is the case for 90𝑜 with VNA and

the prototype and the behavior is same for both. When the angle between the antennas

is 135𝑜 the behavior is again same for both but there is less localization and it can be

due to multi-path because the signal has to travel more and probably it will go from

more paths and the dispersion is more in this case as compared to the others. We can

say that this localization problem is due to the result of the unavoidable model mis-

match between the equivalent permittivity of the I-MUSIC algorithm (i.e. the breast

average dielectric permittivity) and the actual breast dielectric profile, antenna angles,

and multipaths. However, the important thing is our COTS-based system has detected

the tumor. These results are very encouraging because the dielectric contrast between

the tumor and surrounding fibro-glandular tissue is very low (1:2:1) and the fact that a

tumor is somewhat hidden by the fibro-glandular tissue, as shown in figure 4.9(a). The

above result is also a functional verification of the suitability of the frequency range

which we selected. If we compare the results of column 1 with column 2, we can ob-

serve that the results obtained under full range with VNA are worse then the results

obtained with 1.4 GHz-1.6 GHz range, as the detection in full range is not much focused

compared to the other range and is due to the fact that the signal in the upper frequency

range is affected by noise, which ultimately results in worse performance.

For each case of figure 5.4, a comparison of the results obtained with VNA and by

our system is shown in table 5.1. In this table, the signal-to-mean (SMR) ratio, which is

the ratio of maximum value of backscattered energy in the tumor region to the average

energy in the whole image, and the signal-to-clutter (SCR) ratio, which is the ratio of

maximum value of backscattered energy in the tumor region to the maximum value

found elsewhere in the image, are given. SMR and SCR are the standard metrics to

evaluate how good the detection is by comparing signal to clutter and signal to mean.

An ideal system would detect a peak as a maximum surrounded by a null background

with no clutter, which would result as infinite values for both metrics. As a general
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rule of thumb, we can assume that at least 30 dB are needed for a clear detection. Now,

almost all the values in table 5.1 meet this criterion, with the exception of the VNA in

the full frequency range. This is in accordance with the qualitative results in figure 5.4,

in which the VNA at full bandwidth performs worse than both the VNA and the COTS-

based prototype in the 200-MHz range centered around 1.5 GHz. Notice that SMR and

SCR metrics do not indicate if the detection occurs in the exact location or slightly off.

Thereforewe obtain high SMR and SCR values even if the detection occurs slightly offset

with respect to the yellow circle indicating the exact location. Nevertheless, the results

in figure 5.4 show that both the VNA reference and the COTS system are equivalent

as far as precision of peak location is concerned, which is a consequence of limited

precision in determining the exact tumor and the antenna position, slight changes in

the coupling medium permittivity, and I-MUSIC model errors.

Table 5.1: SMR AND SCR OBTAINED WITH THE GEEPS-L2S BREAST PHANTOM IN
A TRITON COUPLING MEDIUM, VARYING THE ANTENNA ANGLE.

VNA full bandwidth VNA 1.4-1.6GHz Our System 1.4-1.6GHz
Angle SMR SCR SMR SCR SMR SCR
(deg) (dB) (dB) (dB) (dB) (dB) (dB)

45 47.8 30.4 52.0 29.4 53.8 32.7
90 30.7 28.4 56.3 92.9 55.6 68.0
135 36.8 41.1 34.9 38.9 42.4 57.1

The quantitative metrics of the detection are generally higher for the COTS-based

system as compared to the VNA. However, for the case when the angle between Tx and

Rx is 90 degree these values are better for VNA, especially the SCR metric for which we

obtained an exceptional value od 92.9 dB. There is no apparent reason for this excep-

tional result and we tend to believe that it was a lucky case with an extremely peaked

maximumwith small clutter, as it is evident from the very small clutter around the peak

in figure 5.4(e).
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5.3 Conclusion

In this chapter, we presented the results obtained with our COTS-based MI system.

The results are also compared with VNA for different versions of tank, tumor, coupling

medium, and antenna angles and in each case results of the prototype were comparable

to the results obtainedwith VNA.These results are very encouraging and based on these

results we can say that the built prototype is comparable to an MI system using a VNA.

The results reported here are obtained when only one scatterer was inside the tank. We

also performed measurements for the cases when two tumors were placed inside the

tank, however, the results were not consistent and in the final image the detection was

mostly misplaced due to which those results are not reported here.

Our prototype is very fast in producing results thanks to the hardware acceleration

and the execution time is improved by 20x compared to high-end multicore CPU. Our

COTS-based system is compact because it uses very few and smaller components and

most importantly our prototype is cost effective because the components used are com-

mercially available and are very low in cost, their cost is negligible when compared to

a MI system with VNA.
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Chapter 6

Acceleration of a Microwave Imaging

Algorithm for Brain Stroke

Monitoring

Research groups who had worked on MI for brain stroke, mostly have worked on

developingMI algorithms specific to brain stroke or on their numerical evaluation [103-

106] or implementation of prototypes [108-109]. Continuing our work on the applica-

tion of MI for breast cancer detection we believe that most of the concepts which we

had already used to design the prototype for breast cancer detection and discussed in

previous chapters can be applied to brain stroke monitoring. Due to the availability of

the commercial off-the-shelf components which we had already used in our prototype

for breast cancer detection, we are very confident that it is possible to build a MI sub-

system to monitor the brain stroke and keep the overall cost and size of the brain stroke

monitoring low without affecting its performance. However, at the time of writing this

dissertation the hardware prototype for brain stroke monitoring is still under develop-

ment and we cannot report results obtained on actual measurements performed in the

laboratory on the full system.
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However, a part of this prototype system is complete already, and is the digital sys-

tem in charge of accelerating the imaging algorithm that shows the evolution of the

brain stroke. Therefore we will present in this chapter the design of this system and the

results of acceleration of the imaging algorithm. We will show how we implemented

the microwave imaging algorithm in a programmable system-on-chip with an FPGA

for acceleration, similar to the one used for breast cancer detection. We will show how

wemanaged to reduce the execution time by more than five times compared to the soft-

ware implementation of the same algorithm in an ARM CPU. The speed of execution

as well as the small form factor and weight of the hardware makes our system suitable

for bedside monitoring.

Due to the lack of full-system measurements at this stage of the project, the in-

put data for the accelerated imaging algorithm are obtained from numerical electro-

magnetic simulations. Notice, however, that the performance of our digital system is

independent on the quality of the input data. Therefore the reported results are repre-

sentative of a realistic case.

The imaging algorithm which we are using in this MI system for brain stroke mon-

itoring is different from the imaging algorithm (I-MUSIC) used for the breast cancer

detection. With I-MUSIC the goal was to detect the presence of the tumor by finding

the point in the scene that scatters the most the incident field because of a dielectric

contrast (e.g. tumor vs healthy tissues surrounding it). For brain stroke monitoring,

instead, the goal is to monitor the evolution of the stroke area by determining small

changes in the dielectric properties of the scene between two different measurements.

For this applicationwe use an imaging algorithm based on the Truncated Singular Value

Decomposition (TSVD) [104] approach.

Before describing the digital system that we designed for accelerating the TSVD

algorithm we give a description of the MI system that we are building and give some

details on how the imaging algorithm works.

Notice that this is a collaborative work, therefore it is important to highlight what
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were my personal contributions:

• C++ software porting for the Zynq programmable SoC of the TSVD algorithm

described in section 6.2 (code reported in Appendix B).

• FPGA hardware implementation of the digital accelerator for the TSVD algorithm

described in section 6.3.

• Experimental results described in section 6.4.

6.1 Brain stroke Monitoring via Microwave Imaging

Essential requirements of an MI system, especially for stroke monitoring, are porta-

bility and low power consumption. To achieve these goals, we are designing an MI

prototype based on COTS, using the same approach followed for the brain cancer de-

tection application. At the present stage of the project we developed the programmable

system-on-chip with an FPGA for accelerating the imaging algorithm, which can pro-

duce images in a negligible time for a quick evaluation of how the stroke is evolving.

Even though the rest of the system is under development, we will now illustrate the

system architecture that it is currently developed, which corresponds to the scenario

that we used to obtain the electromagnetic numerical simulation results with which we

feed the imaging algorithm.

6.1.1 The Layout of Microwave Imaging System for Brain Stroke

Monitoring

The block scheme in figure 6.1 shows the five main parts of the MI system for brain

stroke monitoring that is currently under development:

• A helmet which contains the antennas.

• A switch matrix for routing the transmitted and received RF signals.
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• A Vector Network Analyzer (VNA) or equivalent equipment (e.g. a COTS-based,

custom-built one) for transmitting and receiving signals.

• Dedicated hardware for processing the acquired data for monitoring.

• A display for showing the reconstructed image.

Tx/Rx
Processing

Antenna Switch

RF Signals

Figure 6.1:MI system composed of a helmetwith 24 antennas, the equipment to transmit
and receive RF signals, a switch matrix to route these signals to the antennas, and the
processing unit for the image elaboration.

Inside the helmet, there are a number of antennas for transmitting (Tx) and receiv-

ing (Rx) the microwave signals. These antennas are arranged in an array and are placed

around the head at the upper part of the head and provide uniform irradiation to the

patient’s head, as shown in figure 6.2. Due to the physical dimensions of the antennas

(3cm×4cm wideband monopoles in FR4 substrate), we planned to insert up to 24 an-

tennas in the helmet. This number is obtained also taking into account that the helmet

will hold a matching medium inserted between the antennas and the head at a 2.5-cm

distance with the help of a holder and a plastic membrane. The coupling medium will

be a mixture of water and Triton x-100, with proportions determined in such a way to

favor the penetration of the microwave signal inside the head at a frequency of 1 GHz
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[104]. The number of antennas and their layout around the head given in figure 6.2 pro-

vide an acceptable trade-off between stability, accuracy, spatial resolution for the image

reconstruction, hardware complexity and overall cost of the system.

Figure 6.2: Arrangement of the antennas around head.

The antennas in the array can act as transmitter and receiver and are connected

through the switching matrix to an equipment for RF signal generation and acquisi-

tion. At first, a VNA will be used for transmitting and receiving the signals due to its

efficiency and easy of use.The ultimate goal, however, is to replace the VNAwith COTS

similar to those used in the prototype built for breast cancer detection.
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The switching matrix is designed in a way that the signal generated by the transmit-

ter is routed to one antenna at a time to act as Tx while keeping the remaining antennas

as Rx. A controller controls the switch matrix in such a way that at a given time only

one of the antennas acting as Tx and one acting as Rx are simultaneously connected

to the transmitter/receiver pair or the VNA in bistatic mode. The scattering parame-

ters are obtained from the ratio between received and transmitted microwave signals.

These scattering parameters are then converted from magnitude-phase representation

into complex numbers with real and imaginary parts.

For a complete scan of the head, all antennas are configured iteratively as transmit-

ters (Tx), and receivers (Rx) one by one and 24X24 signals are recorded which means

the reflection captured by the transmitting antenna is also recorded. When the head is

wholly scanned, the scattering parameters are recorded in a textual format as a 24x24

matrix. This file is then used as an input to the imaging algorithm for image reconstruc-

tion.

It is again stated here that the system is in its initial stages and the results shownnext

are based on the data obtained from electromagnetic numerical simulations without

including the noise.The goal here is to accelerate the imaging algorithm for brain stroke

monitoring based on the data obtained in a collaborative workwith the authors of [104].

6.2 MI imaging algorithm for brain stroke monitor-

ing

The goal of the imaging algorithm implemented in the MI system is to detect the

variations between two instances of the measurement, i.e., corresponding to two dif-

ferent monitoring times and so two possibly different extensions of the stroke area,

as determined for instance by the effect of a medical treatment. To achieve this goal,

we used a differential imaging algorithm that uses as input the difference between the

scattered field recorded at two different times. The idea is that the dielectric contrast

85



6 – Acceleration of a Microwave Imaging Algorithm for Brain Stroke Monitoring

between the stroked area and the healthy tissues around it changes over time, and by

sensing this difference we can image the area affected by the stroke.

More in detail, the algorithm senses these variations as a change in dielectric con-

trast Δ𝜒, which results in variations Δ𝐸𝑆 of the scattering matrices recorded at two

different instances of time. These dielectric variations affect a volume of minimal size

compared to the total volume of the investigated scene (i.e. the whole brain), which

is supposed not to change between measurements. With this assumption the distorted

Born approximation can be adopted [110], and the imaging problem can be linearized

as:

Δ𝐸𝑆 (𝑟𝑝, 𝑟𝑞) = 𝐿 (Δ𝜒) (6.1)

where 𝐿 is a linear and compact integral operator and relates the differential data

Δ𝐸𝑆 (𝑟𝑝, 𝑟𝑞) to the unknown Δ𝜒.

(𝑟𝑝, 𝑟𝑞) are the positions of transmitting and receiving antennas, respectively.

In the above equation kernel of the𝐿 operator is given by−𝑗𝜔𝜖𝑏/4∗𝐸b(𝑟𝑚, 𝑟𝑝)⋅𝐸b(𝑟𝑚, 𝑟𝑞),

where 𝑟𝑚 is a point in the head, which is the region of interest (ROI), and 𝐸b(𝑟,𝑟𝑝) is the

“background” electric field radiated in each point 𝑟 of the ROI by the antenna located

at 𝑟𝑝 when Δ𝜒 (𝑟) = 0.

To solve linear inverse problems, such as the one in Equation (6.1), the singular

value decomposition (SVD) of 𝐿 is generally used as an initial step [110]. An effective

and regularized inversion strategy is to use a truncated SVD (TSVD) of the operator 𝐿,

for avoiding error amplification and reaching a stable solution.

Let S = {𝜎𝑛} be the singular values of 𝐿, which we obtain using a reference head

model [104].

U = {𝑢𝑛}, and V = {𝑣𝑛} are the vectors of its singular functions, where U, and V

are complex numbers.

86



6.2 – MI imaging algorithm for brain stroke monitoring

The unknown differential contrast Δ𝜒 in each point 𝑟 of the ROI is obtained as:

Δ𝜒(𝑟) =
𝑚

∑
𝑛=1

1
𝜎𝑛

< Δ𝐸𝑆, 𝑢𝑛 > 𝑣𝑛(𝑟), (6.2)

In the above equation < 𝑎, 𝑏 > is a dot-product between vectors and 𝑚 is a thresh-

old corresponding to the index at which TSVD summation is truncated. V = {𝑣𝑛} is

the basis for the object space, i.e., the space of the unknown of the imaging problem.

Because TSVD limits the object space to the one spanned by first 𝑚 singular function,

for improving the accuracy one might use a threshold as large as possible. However,

doing this can lead to error amplification, which means a low value of 𝑚 is a preferable

choice for the stability of the solution against the amount of noise affecting the data.

Hence, a good trade-off between stability and accuracy is achieved by correctly choos-

ing an appropriate threshold value. Since it is challenging to estimate the best value of

threshold in advance, MI algorithm runs with different values of 𝑚 and with each value

of 𝑚 different images are generated.

The TSVD algorithm is initially implemented in C++ and to simplify the matrix

manipulation, we included the freely available Eigen libraries [111]. Main parameters

and the data types of algorithm are listed in Tables 6.1 and 6.2, while the pseudo-code

of the algorithm is given in Algorithm 1.

Table 6.1: Algorithm parameters.

Parameter Value Note

NV 24 Number of transmitter antennas
NM 24 Number of receiver antennas
NC 18,690 Total grid points in 3D volume
𝜃min −80 dB Minimum threshold
𝜃max −10 dB Maximum threshold
Δ 10 dB Threshold step

Please note that in both Algorithm 1 and Table 1, the TSVD threshold is defined

as a value in decibel, 𝜃. This value compares the relative magnitude of the threshold
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Algorithm 1 Pseudo-code of the original software implementation
1: (U, S,V) = SVD(L); ▷ Singular Value Decomposition of L operator, computed

offline

2: E ← measured variation of scattered field

3: 𝜃 = 𝜃min;

4: while 𝜃 < 𝜃max do

5: 𝑚 = index of singular value 𝜎𝑚 ∈ S closer to 𝜃;

6: R = 0;

7: for 𝑖 = 1 to 𝑚 do

8: 𝑥 = E ⋅ Ui;

9: 𝑦 = 𝑥/𝜎𝑖;

10: T = 𝑦Vi;

11: R = R + T;

12: end for

13: storage ← R; ▷ R stored in memory

14: 𝜃 = 𝜃 + Δ;

15: end while

Table 6.2: Data type and dimensions.

Data Type Size (FP)

𝐸 Complex Vector 2 × 𝑁𝑀2 = 1152
𝑆 Real Vector 𝑁𝑀 × 𝑁𝑉 = 576
𝑈 Complex Matrix (2 × 𝑁𝑀2, 2 × 𝑁𝑀2) = (1152,1152)
𝑉 Complex Matrix (2 × 𝑁𝐶, 2 × 𝑁𝑀2) = (37,380,1152)
𝑅 Complex Vector 2 × 𝑁𝐶 = 37,380

singular value to the first and most important singular value. It requires that singular

values of 𝑆 are first arranged in decreasing magnitude and that the index 𝑚 is found as

the index of the singular value 𝜎𝑚 belonging to 𝑆 whose relative magnitude is closest

to the threshold (Algorithm 1 Line 5).
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The reason of the value of the various parameters in Table 6.1 is now given. The

reason due to which 24 antennas were chosen depends on the physical dimensions of

the antennas and their arrangement in the helmet, as it has been already explained

in section 6.1. The total number of grid points NC=18690 depends on the size of the

investigated volume (20cm×14cm×14cm) and the resolution of the grid. NC is a critical

parameter for the execution time of the algorithm, which has to compute Δ𝜒 for each

of these points. Notice that while we report results only for this setting of NC, this is a

constant that can be changed without affecting the functionality neither of the software

nor of the hardware that runs the imaging algorithm.

The threshold is another critical parameter for the execution time, because it de-

termines the number of different runs of the algorithm. As stated above, it is difficult

to determine a priori which threshold, and so which number of singular values, will

result in the best image. For this reason the algorithm is run a number of times that

depends on the minimum and maximum threshold and the threshold step. According

to the values in table 6.1, the algorithm is executed eight times, starting from threshold

-10 dB up to -80 dB in 10-dB steps. Consequently, eight images are generated and the

best image is selected at the end. Results for a “good” and a “bad” value of the thresholds

are reported in figures 6.3-6.5 and 6.6, respectively.

The pseudo-code in Algorithm 1 has two main sections: the computation of the

SVD (line 1) and the computation associated with the for loop ( Lines 7-12). Since SVD

is related to the background and does not change in successive measurements, it can be

computed off-line and stored inmemory.The results than can be retrieved frommemory

quickly before executing the rest of the code, hence the accelerator is required to speed

up the computation of the other part (for loop). The accelerator which we designed for

this section of the code is described in section 6.3.1.

In Table 2 we can see that there are up to 𝑆= 576 singular values, obtained by mul-

tiplying the number of transmitters (NM) and the number of receivers (NV) ( here both

are 24, hence 576). In the algorithm, all variables are complex numbers except for 𝜎𝑖 and
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𝜃 which are real numbers. R is the output of the computation in the pseudo-code, and

an image can be plotted from the output R, highlighting the variation of the contrast in

each point of the region of interest (ROI). While loop in the algorithm runs from min-

imum threshold 𝜃min with step Δ up to maximum threshold 𝜃max, the value of Δ is in

table 1 (10 dB). In this way, different images are generated, as explained earlier.

To assess the performance of the MI algorithm we use electromagnetic simulations

at a single frequency of 1 GHz, which is appropriate for a good penetration in the head

[104]. By illuminating the head model from 24 Tx antennas and by recording the scat-

tered signal received by 24 Rx antennas we obtain the inputs for the MI algorithm. In

figure 6.3, an image reconstructed with a threshold value of -80 dB is given. With this

value of the threshold, out of the 576 singular values only the first 299 are used. In the

figure, there are different slices, which represent different sections in the axial plane

of the 3-dimensional ROI of a head. In the figure, blue color is the background, i.e. the

part of the scene that did not change across two different measurements, while the yel-

low color represents blood mass as the area detected by the algorithm that changed the

most across two different measurements. All the images are normalized to the highest

amplitude value.
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Figure 6.3: Reconstructed images obtained with a threshold value of −80 dB.

Figure 6.4 shows a zoomed section of the image in figure 6.3 with four slices, in

which we can better see how the blood mass extension changes with the eight along

the axis where the slices have been cut.
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6 – Acceleration of a Microwave Imaging Algorithm for Brain Stroke Monitoring

Figure 6.4: Section of the reconstructed images obtained with a threshold value of
−80 dB.

Figure 6.5 shows another cutout section of the figure 6.3. Here the shown slices are

located at a higher position compared to those of figure 6.4. We can clearly see that the

blood mass tends to disappear as we consider slices located higher and higher.

Figure 6.5: Section of the reconstructed images obtained with a threshold value of
−80 dB.

Figure 6.6 is another example of the image obtained with a threshold value of -20 dB.
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6.3 – Hardware Implementation of Imaging algorithm

The first 120 singular values generate this image. By comparing this image with those

in figures 6.3-6.5, we can clearly see that image of -80 dB has reconstructed a better

image and -20 dB is not able to accurately reconstruct it. With −20 dB we have limited

information (we are discarding toomany singular values), hence resulting image cannot

image the stroke.
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Figure 6.6: Reconstructed images obtained with a threshold value of −20 dB.

6.3 Hardware Implementation of Imaging algorithm

In this part of the chapter implementation of imaging algorithm on specialized hard-

ware is discussed. This part is divided into three sections

• Speeding up the computation with a specialized Accelerator

• Hardware Platform
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6 – Acceleration of a Microwave Imaging Algorithm for Brain Stroke Monitoring

• Accelerator Design.

6.3.1 Speeding up the computation with a Specialized Accelera-

tor

The computationally intensive part of Algorithm 1 is associated with the for loop

( Lines 7-12), where the loop runs m times. In a software execution of the algorithm

this part of the code will affect the performance and the total time required for the

execution of the algorithm will increase considerably as explained in the section 6.4.

The accelerator which we had designed deals with this part of the Algorithm 1. The

yellow colored block in figure 6.1 represents the algorithm processing block of the MI

system. Two different implementations of this block are given in figure 6.5 (a), (b) and

figure (c) shows the timing diagram of the execution of these two configurations.
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P only P & A
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P only
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Execution Time

slowM

P A

DMA

t

t

M

P fast

Figure 6.7: Comparison between processing systems implemented: as a general purpose
processor alone (a); or with an accelerator (b); and related timing diagrams (c).

In figure 6.7(a), a processor (P) communicates with the memory through a bus. This

implementation is labeled as “P only.” In Figure 6.7(b), there is an accelerator (A) con-

nected to the same bus and accesses the memory via DMA. This implementation is

labeled as “P&A”. In the timing diagram of the first implementation (P only), the pro-

cessor runs (brown bar) from the beginning and reaches to end, while for the case of

“ P&A” the total execution takes less time, because, the accelerator is evoked at some

time (green bar) runs a certain amount of time and then handles the execution to the
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6.3 – Hardware Implementation of Imaging algorithm

processor again. For both the execution, note that accelerator only executes some part

of the code (replacing the slow section of the code with a fast one), the initial and final

parts of the execution time are same for both cases.

A specialized accelerator like the one in the “P & A” case can be faster than a general

purpose processor like the one in “P case” only when:

• There is a use of specialized arithmetic units

• There is a higher level of computation parallelism

• A higher level of pipelining that can be achieved through careful design.

An important factor when working with accelerator is to consider the clock fre-

quency, especially in the case of programmable SoC on FPGA. Because, in FPGAs, the

processor is often a fixed hardwired component, while on the other hand the acceler-

ator is synthesized from a register-transfer level (RTL) code and then implemented in

the PL part of the SoC, hence, the clock frequency of the accelerator is not as high as

of the processor. However, the accelerator usually speeds up the computation thanks

to the pipelining, higher parallelism and the use of specialized units. The final impor-

tant factor of hardware acceleration is the speed of data communication, which in other

words is the speed at which the accelerator accesses the data stored in the memory.

Let us understand this concept for our cases. In the case of “P&A” if the data trans-

fer time exceeds the time spent by the processor in “P-case” for the computation, then

clearly there is no need of using the accelerator. However, when the computation time

and data transfer time are comparable then by overlapping data processing and data

transfer, the latency of the data communication can be hidden.

6.3.2 Hardware Platform

Wemapped the processing block of figure 6.1, highlighted in yellow color to an em-

bedded system. The embedded system consists of a Xilinx Zynq programmable SoC
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with external memory (NAND flash and DDR3), standard peripherals for connectivity,

and display ports (VGA, HDMI). We used the Diligent Zedboard board for development

and testing of the accelerator. This board is low-cost and contains a Zynq XC7020, 4-GB

flash in removable SD card, 512-MB low power DDR3 DRAM memory and the previ-

ously mentioned peripherals. Further details about the board and its main components

are in [84]. On the Zynq board, we ran a version of Linux based upon Ubuntu LTS 16.04

for ARM [112]. The Zynq SoC has two main parts, The processing system (PS) and

the programmable logic (PL) part. In the PS part, there is a dual-core ARM Cortex

A9 with its own L1 and L2 cache, while the PL part features an Artix-7 Xilinx FPGA.

Both parts are connected through an AXI bus. Figure 6.8 shows the processing block

and the connections between PS and PL. In the figure there is a hypothetical accelerator

implemented in the PL part communicating with the PS using FIFO and direct memory

access (DMA) controller.
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Figure 6.8: Detail of the processing system implemented in a Xilinx Zynq SoC.

Let us again consider the Algorithm 1 and identify its main parts which need ac-

celeration. We can see that from a computational point of view, it has two main parts:

• Computation of the SVD (line1)

• Computations associated with the for loop (line7-12)
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Since computation of the SVD can be done offline and the results stored in SD card

can be retrieved from there very quickly before executing the rest of the code, hence

for a fast computation the for loop is the critical part. Our designed accelerator speeds

up the computation of only the for loop and is discussed in next section.

6.3.3 Accelerator Design

The Algorithm involves floating-point (FP) computation, and the accelerator is

designed in such a way that it kept the precision same as the software implementa-

tion of the algorithm. Xilinx Vivado design tool provides many pre-designed FP blocks

such: multipliers, dividers, adders etc. These blocks reduce the design complexity of

the accelerator and since they also support the AXI stream protocol their composition

is very simplified. These blocks are fully pipelined which makes them very useful for

acceleration application because the input data arrays (U and V) are streamed at very

high speed via DMA, and they need to be processed instantly. Details about the Xilinx

Vivado design tool, IP blocks, AXI streams etc. is available in [83].

In the designed accelerator, we used the composable blocks (discussed earlier) and

the functions corresponding to (lines 7-12) of the Algorithm 1 are implemented with

them. Figure 6.9 shows the data path of the designed accelerator,
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Figure 6.9: Datapath of the accelerator.

from the data path in figure 6.7 we can see that the accelerator has three main sub-

blocks.

• The first subblock computes the dot product(𝑥) between the complex vectors 𝑈𝑖

and 𝐸. 𝐸 is fetched from an on-chip memory. The resulting product 𝑅𝑒(𝑥) and

𝐼𝑚(𝑥) are then stored in corresponding registers (Line 8 in Algorithm 1).

• The second subblock computes 𝑅𝑒(𝑦) and 𝐼𝑚(𝑦). This block is the divider block, it

starts from 𝑅𝑒(𝑦) and 𝐼𝑚(𝑦) and from the singular value 𝜎𝑖 (Line 9 in Algorithm

1). These singular values are then stored in and loaded from an on chip memory.

(within PL part of the Zynq).

• The third subblock in the figure is the block that stores the output 𝑅. These ac-

cumulated 𝑅 values are computed from the 𝑅𝑒(𝑇 ) and 𝐼𝑚(𝑇 ) variables (Lines

10-11). The values of the output 𝑅 are also stored in their separate on-chip mem-

ory.

In our designed accelerator, the dot product 𝑥 and accumulation of 𝑅, four float-

ing point (FP) multiplications are computed in parallel, and they are concurrent with
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various FP subtractions or additions due to pipelining. It is important to note here, as

already discussed, accelerators have higher parallelism and deeper pipelining than the

general-purpose processors. Moreover, the concurrency of control and datapath opera-

tion in the accelerator removes the control overhead for handling the loop in Algorithm

1, whereas the processor may incur such loop overheads. In figure 6.9 there are data FI-

FOs which are used for communication between PS and PL parts of the SoC. Two of

these FIFOs are serving the purpose of transferring first 𝐸 and 𝑆 arrays, which are then

stored in their respective on-chip memories as shown in figure 6.9. There is another

FIFO which transfers the columns of 𝑈, two FIFOs transfers back the real and imagi-

nary values of 𝑅 in reverse direction. We had used same FIFOs to transfer the real and

imaginary parts of 𝐸, 𝑆, and 𝑈 because 𝐸 and 𝑆 are transferred only one time before

the while loop in the Algorithm 1, and then 𝑈’𝑠 columns are transferred one at a time

for each loop iteration, hence there is no real advantage in using separate FIFOs for

each of these arrays. Moreover, there is no need to store the values of 𝑈 in on-chip

memory, as each column of 𝑈 is used only one time per iteration, however, 𝐸 and 𝑆

are stored in an on-chip memory because they are reused at each iteration. In figure 6.7

control unit controls the repetition of computation performed by data path depending

upon the number of loop iterations “m” in Algorithm 1. This number is transferred to

the control unit by the command FIFO before transferring the data of 𝑈 and 𝑉 columns.

Control unit read data from the FIFOs for each of the 𝑚 iterations and then manages

the execution of the three subblocks accordingly. The control unit is basically a Finite

State Machine (FSM) and is represented by the state transition diagram in figure 6.8.

FSM changes the state based upon the commands sent explicitly by the processor to the

accelerator via the command FIFO (e.g., cmd=START, cmd=STOP) or on internal events,

like completion of reading E, S, U and V from their respective FIFOs when the terminal

count is raised (e.g. cntr=UMAX) or when a flag indicates the completion and validity

of the computation (e.g. valid DOT). In figure 6.10, block states colored green are the

loops that are repeated m times. The diagram also shows that 𝐸 and 𝑆 are transferred
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before the loop is started hence, their FIFOs can be reused for sending 𝑈 values.

CLR
START EMAX cntr=

SMAX

UMAX VMAX

valid Rvalid DOT

reset

cntr=RMAX

WAIT

U

WAIT

DOT

WAIT

V

WAIT

R

CHECK

CMD

iter < m

iter = m

cmd = CLR

cntr = cntr =

cmd = cntr =WAIT

CLR

WAIT

START

WAIT

E

WAIT

S

WRITE

R

Figure 6.10: State transition diagram for the finite state machine that controls the ac-
celerator’s datapath.

The pseudo-code of the Algorithm 1 needs to be modified now, and the pseudo-

code in Algorithm 2 shows the code modifications which are required to support the

accelerator. On the processor side, workload mainly consists of controlling the data

transfer from/to external memory and from/to the accelerator. When the accelerator

receives the “start” command, then it starts the computation (line 10 Algorithm 2).
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Algorithm 2 Pseudo-code of the hardware-accelerated implementation
1: (U, S,V) = SVD(L); ▷ Singular Value Decomposition of L operator, computed

offline

2: putdata(S); ▷ S sent to the accelerator via FIFO data queue

3: E ← measured variation of scattered field

4: putdata(E); ▷ E sent to the accelerator via FIFO data queue

5: 𝜃 = 𝜃min;

6: while 𝜃 < 𝜃max do

7: 𝑚 = index of singular value 𝜎𝑚 ∈ S closer to 𝜃;

8: putcmd(𝑚); ▷ 𝑚 sent to the accelerator via FIFO command queue

9: putcmd(reset(R)); ▷ “reset R” command sent via FIFO command queue

10: putcmd(start); ▷ “start” command sent via FIFO command queue

11: for 𝑖 = 1 to 𝑚 do

12: putdata(Ui); ▷ 𝑖th column of U sent via FIFO data queue

13: putdata(Vi); ▷ 𝑖th column of V sent via FIFO data queue

14: end for

15: getdata(R); ▷ R retrieved from FIFO data queue

16: storage ← R; ▷ R stored in memory

17: 𝜃 = 𝜃 + Δ;

18: end while

In the pseudo-code of Algorithm 2 the operations performed by putdata and putcmd

are nonblocking; hence the two columns 𝑈𝑖 and 𝑉𝑖 are streamed simultaneously. More-

over, as soon the first data are available at the output of FIFO, control unit lets the data-

path to start and as a result of it, a complete overlap of computation and data transfer

is enabled.
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6.4 Results

For the MI system to monitor brain stroke, we designed the accelerator and its FIFO

interfaces at the register-transfer level (RTL) using the description language VHDL and

implemented it with Vivado 2016.1. The Vivado software performs the logic synthesis

and place and route targeting the FPGA of XC7Z020 Zynq device.The designed acceler-

ator uses a single 100 MHz clock. All the FPGA resources which the accelerator utilized

are in Table 6.3.

Table 6.3: FPGA resources utilized by the accelerator in the Xilinx XC7Z020 Zynq device.

Resource Utilization

LUTs 19.04%
FFs 14.2%

BRAM 100%
DSPs 14.55%
IOBs 38%

Our designed accelerator uses less than 20% of the logic resources look-up tables

(LUTs), digital signal processing blocks (DSPs) and flip-flops (shown in Table 3). The

Block RAMs (BRAMs) has been utilized to 100% (saturated the utilization limit) because

all the FIFOs uses this type of resource. In fact FIFOs utilize 70% of BRAM resources

while the accelerator uses 30% of the remaining resources to store E, S, and R.

A sketched timing diagram in figure 6.11 shows that computation and communica-

tion overlap, hence the total execution time depends upon the data transfer time from

the processor to the accelerator and back to the processor and is mainly determined on

time for transferring the columns of 𝑈 and 𝑉 at each iteration of the for loop.
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computation

iUi UiVi Vi Vi
U

x T & R
y

x T & R
y

SE

communication

1st iteration 2nd iteration

x T & R
y

3rd iteration

R

last iteration

Figure 6.11: Timing diagram showing concurrency of communication (between proces-
sor and accelerator) and computation (within the accelerator).

As mentioned before the accelerator has a 100 MHz clock, for the AXI bus clock is

100 MHz and one floating point (FP) value can be transferred in burst mode after each

clock cycle. Consequently, columns of 𝑈 and 𝑉 are transferred each in

1152/100= 1152µs time to transfer 𝑈

37380/100 = 373.8µs time to transfer 𝑉

The number of iterations for the for loop is generally 300 for the threshold between -80

and -50 dB. Number of iterations for the for loop is less when the threshold value is

higher, and this relation can be observed in fig 6.10.
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Figure 6.12: (a) Number of iterations; and (b) execution time.

Figure 6.12 (b) shows the total execution time corresponding to the relationship be-

tween the number of iterations and the threshold value. In this figure, the two curves

colored blue and red represents the time required to complete the execution by the ARM

processor and our hardware-accelerated case. Comparing both the curves, we can see
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6 – Acceleration of a Microwave Imaging Algorithm for Brain Stroke Monitoring

that there is an improvement of at least five times when the accelerator is used. In the

figure, there is another purple color curve which represents the software case for an In-

tel Xeon Processor E5-2650. Comparison of this with our accelerator shows that there

is a very significant performance gap between them, in fact our accelerator has 7 times

less speed then Xeon processor. However, The Intel Xeon Processor has better perfor-

mance due to a very high-power cost, because the Xeon processor consumes power in

the order of 100 W, which is way more then the power that our board consumes. In fact

the development and evaluation board, where we implemented our processing system,

consumes only 3.8 W, which in comparison to Intel Xeon processor is 26 times less. The

performance-per-watt figure of merit of our MI system is about 3.7 times greater than

that of Intel Xeon processor. However, since the board only allows to measure the over-

all power consumed, which includes several other more substantial contributions as a

result of which we, unfortunately, were not able to measure the magnitude of power

consumed by the ARM processor and accelerator. Nevertheless, the magnitude of power

consumed still lies in the requirement of low power, and as a result of this low power

consumption, the system is portable and has a very small form factor.

6.5 Conclusion

In this chapter, we described the design of a processing subsystem used in a MI

system for continuous brain stroke monitoring. The designed subsystem is low-cost,

low-power and compact. The subsystem consists mainly of a Xilinx Zynq SoC, which

has an ARM-based CPU and an FPGA connected with the CPU by AXI bus interfaces.

The implementation of the hardware accelerator in the FPGA decreases the execution

time of the algorithm 5 times compared to its software execution by executing the heavy

part of the computation itself.
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Chapter 7

Conclusions

7.1 Conclusion

In this thesis, two different Microwave systems, one for detecting breast cancer and

second for monitoring the brain stroke are discussed. The microwave imaging systems

presented in the thesis are novel as both systems, not only can detect the presence of ab-

normal tissue but the imaging algorithms are also accelerated by specialized hardware

accelerators for speedy execution of the algorithm.

7.1.1 COTS-Based Microwave Imaging System for Breast Cancer

Detection

Chapters 3, 4 and 5 are devoted to the prototype which we build to detect breast

cancer in females. The built prototype is different from other MI systems because for its

operation it uses commercially available components off the shelf (COTS), altogether

avoiding the use of costly and bulky lab equipment, such as Vector Network Analyzers

(VNA) which other MI systems usually use. Use of COTS makes it possible to have a

small form factor MI system. We used I-MUSIC as Imaging algorithm because for its

detection it does not require large bandwidth, it offers the advantage of avoiding the
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processing issues of nonlinear inversionmethods andmost importantly this approach is

independent of antenna characterization which is very important for detection systems

as antenna response is unknown in practical cases when they are placed close to the

breast. To speed up the execution of the I-MUSIC, especially of its most computation-

ally intensive kernel we paired the embedded processor with a hardware accelerator

running in FPGA. As an embedded system we used Xilinx’s Zynq SoC to control the

prototype for transmitting and receiving the radiofrequency (RF) signals and to pro-

cess the I-MUSIC algorithm. In the prototype we used as breast and tumor phantoms

different mixtures having properties like a real tumor inside a breast, such as (60-40%

glycerin-water) mixture and a 3D-printed breast phantom. Both these tumor models

are proposed in the literature due to their excellent mimicking ability of the real tu-

mor. As a coupling liquid, we used (80-20% glycerin-water) mixture and Triton X-100

a commercially available lab detergent, because both these liquids mimic the dielectric

characteristics of the healthy breast tissue. During our experiment with the prototype,

we used both 2D breast phantoms and 3D printed breast models with three separate

tissues for adipose, fibro-glandular and tumor. The prototype has a working frequency

range of (1.4-1.6 GHz) because at this range the receiver has a good matching. How-

ever, this range does not affect the performance of the prototype as the comparison of

the results obtained from the prototype with the results of the VNA operating in full

range are very similar, in fact in some cases, the results of our COTS-based prototype

are better than the results obtained from VNA operating in full range. Moreover, due to

hardware acceleration of the imaging algorithm we speed up its execution, in fact, our

prototype with hardware acceleration is 20× faster than a high-performance server at

image reconstruction.
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7.1.2 Acceleration of a Microwave Imaging Algorithm for Brain

Stroke Monitoring

Chapter 6 of the thesis deals with aMI subsystem for monitoring brain stroke. Based

on our work for designing a MI system to detect breast cancer, we used most of those

concepts and ideas to design a processing subsystem for monitoring brain stroke. Our

goal was to design a low power, portable, and cost-effective subsystem to monitor brain

stroke with sufficiently fast response for bedside monitoring of patients during practi-

cal clinical applications. The imaging algorithm we used to monitor stroke is different

from the I-MUSIC which we used for breast cancer detection. The algorithm which we

used here is TSVD in which signals are acquired at single frequency instead in time or

multi-frequency, which offers the advantage of simple acquisition and comparatively

fast processing; an essential criteria for a continuous bedside monitoring device. The

algorithm for image reconstruction detects the variation of blood mass across two suc-

cessive data acquisition and the reconstructed image shows the variation of the stroke

over time. From the reconstructed image, it is possible to analyze the condition of stroke

visually and to take necessary actions accordingly.

Like the MI system for breast cancer detection, we used the Xilinx Zynq SoC device for

processing the algorithm, and we implemented a hardware accelerator in its FPGA to

execute the heavy part of the computation. Our designed accelerator uses less than 20%

logic resources of the Xilinx Zynq device. The execution time of the algorithm is five

times faster compared with the software execution without losing precision.

Both the MI systems presented in this thesis produced very encouraging results, and

due to hardware acceleration, they have fast execution of the imaging algorithms. As

per the best of our knowledge, this is the first attempt in accelerating imaging algo-

rithms for MI systems with dedicated hardware to monitor brain strokes and to detect

breast cancer in females.
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Appendix A

C-code implementation of the

I-MUSIC Algorithm

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <complex.h>

#include <math.h>

#include <sys/time.h>

#include ”f2c.h”

#include ”blaswrap.h”

#include ”clapack.h”

#define NUMFREQ 11

#define S11_S21 1

#define switch_tx_rx 1

#define c 300000000

#define nx 200

#define ny 200
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int main(){

doublereal normc();

doublecomplex multr();

doublecomplex divr();

doublecomplex addc();

doublecomplex expc();

doublecomplex sqrtc();

doublecomplex multc();

doublecomplex conju();

int max_array();

doublereal complex_norm();

doublereal max_matrix();

integer ROWS = 35;

integer COLS = 24;

integer ldu=ROWS;

integer lda=ROWS;

integer ldvt=COLS;

int i,j,t,q,u,v,w;

//File directors//

FILE * re;

FILE * im;

FILE * eemr;

FILE * eemi;

FILE * epsre;

FILE * epsimg;

FILE * xxf;

FILE * yyf;

/////////////////

doublecomplex J;
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doublereal beta=45;

doublereal theta[COLS];

doublereal angle_step;

doublereal ang[21];

doublereal x,y;

doublereal xx[nx], yy[ny];

doublereal xo[COLS];

doublereal yo[COLS];

doublereal xi[COLS];

doublereal yi[COLS];

doublereal rs=0.095;

doublereal mod;

doublereal x_circle_1 = 0.0085;

doublereal y_circle_1 = 0.0205;

doublereal r_circle_1 = 0.0035;

doublereal xx1[21],yy1[21];

doublereal epsrbre[NUMFREQ];

doublereal epsrbimg[NUMFREQ];

doublecomplex epsrb[NUMFREQ];

doublereal real[ROWS][COLS];

doublereal imag[ROWS][COLS];

doublecomplex e_m[ROWS*COLS];

double S[COLS];

doublecomplex U[ROWS*ROWS];

doublecomplex VT[COLS*COLS];

doublecomplex S_d[ROWS*COLS];

doublereal ee_mr[ROWS][COLS];

doublereal ee_mi[ROWS][COLS];

doublecomplex ee_m[ROWS*COLS];

doublecomplex Ediff1[NUMFREQ*COLS];

doublecomplex Ediff1_conj[NUMFREQ*COLS];

doublecomplex Ediff1_trasp[COLS*NUMFREQ];

doublecomplex R[COLS*COLS];

doublereal eig[COLS];
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doublecomplex eigvecs[COLS*COLS];

doublecomplex provv[COLS];

doublereal norm[NUMFREQ];

doublereal freq[NUMFREQ] = {1.40e+09, 1.42e+09, 1.44e+09,

1.46e+09, 1.48e+09, 1.50e+09, 1.52e+09, 1.54e+09,

1.56e+09, 1.58e+09, 1.60e+09};

doublereal ws[NUMFREQ];

doublecomplex kb[NUMFREQ];

doublecomplex Ak[COLS];

doublecomplex F_provv;

double F[ny*nx][NUMFREQ];

double Fcm[ny*nx];

double P22[ny*nx];

double PP[ny*nx];

//for zgesdd_ subroutine

integer lwork = COLS*COLS+2*COLS+ROWS;

doublecomplex work[lwork];

doublereal rwork[5*COLS*COLS+7*COLS];

integer iwork[8*COLS];

integer info;

//for zheevd_ subroutine

integer lworkz = COLS*COLS+2*COLS;

integer lrworkz = 2*COLS*COLS+5*COLS+1;

integer liworkz = 5*COLS+3;

doublecomplex workz[lworkz];

doublereal rworkz[lrworkz];

integer iworkz[liworkz];

/////Time elements/////

struct timeval fft1, fft2;

113



A – C-code implementation of the I-MUSIC Algorithm

struct timeval svd1, svd2;

struct timeval eig1, eig2;

struct timeval her1, her2;

struct timeval det1, det2;

struct timeval tot1, tot2;

////////////////////////

gettimeofday(&tot1,NULL);

gettimeofday(&fft1,NULL);

//initialize -i

J.r = 0.0;

J.i = -1.0;

//take real and imaginary part to build e_m matrix

re = fopen(”realpart.txt”,”r”);

for(i=0;i<ROWS;i++){

for(j=0;j<COLS;j++){

fscanf(re,”%lf”,&real[i][j]);

}

}

fclose(re);

im = fopen(”imagepart.txt”,”r”);

for(i=0;i<ROWS;i++){

for(j=0;j<COLS;j++){

fscanf(im,”%lf”,&imag[i][j]);

}

}

fclose(im);

//compute e_m matrix

for(i=0;i<ROWS;i++){

for(j=0;j<COLS;j++){
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e_m[i+ROWS*j].r = real[i][j];

e_m[i+ROWS*j].i = imag[i][j];

}

}

gettimeofday(&fft2,NULL);

printf(”FFT_time = %f secondi\n”,(doublereal)

(fft2.tv_usec - fft1.tv_usec)/1000000 +

(doublereal) (fft2.tv_sec - fft1.tv_sec));

//compute the svd.

gettimeofday(&svd1,NULL);

zgesdd_( ”A”,&ROWS, &COLS, e_m, &lda, S, U,

&ldu, VT, &ldvt, work, &lwork, rwork, iwork, &info);

//verify the correctness of zgesdd function

if(info>0){

printf(”Error in zgesdd!\n”);

return 0;

}

//initialize S_d elements all zero

for(i=0;i<ROWS;i++){

for(j=0;j<COLS;j++){

S_d[j*ROWS+i].r = 0;

S_d[j*ROWS+i].i = 0;

}

}

//compute declutter matrix (take eigenvalues between 1st&10th)

for(t=1;t<NUMFREQ;t++){

for(i=0;i<ROWS;i++){
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for(j=0;j<COLS;j++){

S_d[i+j*ROWS].r= S[t]*U[i+ROWS*t].r*VT[j*COLS+t].r

+ S_d[i+j*ROWS].r;

S_d[i+j*ROWS].i= S[t]*U[i+ROWS*t].i*VT[j*COLS+t].i

+ S_d[i+j*ROWS].i;

}

}

}

gettimeofday(&svd2,NULL);

printf(”SVD_time = %f secondi\n”,(doublereal)

(svd2.tv_usec - svd1.tv_usec)/1000000 +

(doublereal) (svd2.tv_sec - svd1.tv_sec));

///////Angles evaluation///////

angle_step = 360/COLS;

theta[0] = 0;

theta[COLS-1] = -340;

for(i=1;i<COLS-1;i++){

theta[i] = -angle_step*i;

}

x = 0.1;

y = 0.0;

/*Vector with receiving antennas position [1X24]*/.

for(i=0;i<COLS;i++){

if (S11_S21 == 0){ //S11

xo[i] = x*cos((theta[i]*0.0174532925))-

y*sin((theta[i]*0.0174532925));

yo[i] = x*sin((theta[i]*0.0174532925))+

y*cos((theta[i]*0.0174532925));
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} else if (S11_S21 == 1){ //S21

xo[i] = x*cos(((theta[i]+beta)*0.0174532925))-

y*sin(((theta[i]+beta)*0.0174532925));

yo[i] = x*sin(((theta[i]+beta)*0.0174532925))+

y*cos(((theta[i]+beta)*0.0174532925));

}

if (switch_tx_rx == 1){ // normal

xo[i] = x*cos(((theta[i]+beta)*0.0174532925))-

y*sin(((theta[i]+beta)*0.0174532925));

yo[i] = x*sin(((theta[i]+beta)*0.0174532925))+

y*cos(((theta[i]+beta)*0.0174532925));

}else if (switch_tx_rx == 0){ //switch antennas position

xo[i] = x*cos((theta[i]*0.0174532925))-

y*sin((theta[i]*0.0174532925));

yo[i] = x*sin((theta[i]*0.0174532925))+

y*cos((theta[i]*0.0174532925));

}

/* Vector with transmitting antennas position [1x24]*/

if (switch_tx_rx == 1){ //normal

xi[i] = x*cos((theta[i]*0.0174532925))-

y*sin((theta[i]*0.0174532925));

yi[i] = x*sin((theta[i]*0.0174532925))+

y*cos((theta[i]*0.0174532925));

}else if (switch_tx_rx == 0){ //switch antennas position

xi[i] = x*cos(((theta[i]+beta)*0.0174532925))-

y*sin(((theta[i]+beta)*0.0174532925));

yi[i] = x*sin(((theta[i]+beta)*0.0174532925))+

y*cos(((theta[i]+beta)*0.0174532925));

}

}

///////end angles evaluation////////
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//define xx and yy vectors

xxf = fopen(”xx.txt”,”r”);

for(i=0;i<nx;i++){

fscanf(xxf,”%lf”,&xx[i]);

}

fclose(xxf);

yyf = fopen(”yy.txt”,”r”);

for(i=0;i<ny;i++){

fscanf(yyf,”%lf”,&yy[i]);

}

fclose(yyf);

//take real and imaginary part to build ee_m matrix

eemr = fopen(”EE_m_matrix_real.txt”,”r”);

for(i=0;i<ROWS;i++){

for(j=0;j<COLS;j++){

fscanf(eemr,”%lf”,&ee_mr[i][j]);

}

}

fclose(eemr);

eemi = fopen(”EE_m_matrix_imag.txt”,”r”);

for(i=0;i<ROWS;i++){

for(j=0;j<COLS;j++){

fscanf(eemi,”%lf”,&ee_mi[i][j]);

}

}

fclose(eemi);

//compute ee_m matrix

for(i=0;i<ROWS;i++){
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for(j=0;j<COLS;j++){

ee_m[i+ROWS*j].r = ee_mr[i][j];

ee_m[i+ROWS*j].i = ee_mi[i][j];

}

}

//define ws vector

for(i=0;i<NUMFREQ;i++){

ws[i] = 2*M_PI*freq[i];

}

//take real and imaginary part to build epsrb vector

epsre = fopen(”epsrb_real.txt”,”r”);

for(i=0;i<NUMFREQ;i++){

fscanf(epsre,”%lf”,&epsrbre[i]);

}

fclose(epsre);

epsimg = fopen(”epsrb_img.txt”,”r”);

for(i=0;i<NUMFREQ;i++){

fscanf(epsimg,”%lf”,&epsrbimg[i]);

}

fclose(epsimg);

for(i=0;i<NUMFREQ;i++){

epsrb[i].r = epsrbre[i];

epsrb[i].i = epsrbimg[i];

}

gettimeofday(&eig1,NULL);

//Ediff1 matrix and its transpose and conjugate:

//Ediff1 matrix
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for(i=0;i<NUMFREQ;i++){

for(j=0;j<COLS;j++){

Ediff1[i+NUMFREQ*j] = ee_m[i+ROWS*j];

}

}

//transpose

for(i=0;i<NUMFREQ;i++){

for(j=0;j<COLS;j++){

Ediff1_trasp[j+COLS*i].r = Ediff1[i+NUMFREQ*j].r;

Ediff1_trasp[j+COLS*i].i = Ediff1[i+NUMFREQ*j].i;

}

}

//conjugate

for(i=0;i<NUMFREQ;i++){

for(j=0;j<COLS;j++){

Ediff1_conj[i+NUMFREQ*j] = conju(Ediff1[i+NUMFREQ*j]);

}

}

/////Correlation Matrix//////

for(t=0;t<NUMFREQ;t++){

for(i=0;i<COLS;i++){

for(j=0;j<COLS;j++){

R[i+COLS*j] = multc(Ediff1_trasp[i+t*COLS],

Ediff1_conj[t+j*NUMFREQ]);

}//j

}//i

/*compute eigenvalues and eigenvectors;

- eig --> contains the eigenvalues;

- R --> contains eigenvectors,*/
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zheevd_(”V”, ”U”,&COLS, R, &COLS, eig, workz,

&lworkz, rworkz, &lrworkz, iworkz, &liworkz, &info);

//save each eigenvectors into a 24x11 matrix

for(j=0;j<COLS;j++){

eigvecs[t*COLS+j] = R[max_array(COLS,eig)*COLS+j];

provv[j] = R[max_array(COLS,eig)*COLS+j];

}//j

norm[t] = complex_norm(COLS,provv);

}//t

gettimeofday(&eig2,NULL);

printf(”EIGENVALUE_time = %f secondi\n”,

(doublereal) (eig2.tv_usec - eig1.tv_usec)/1000000

+ (doublereal) (eig2.tv_sec - eig1.tv_sec));

gettimeofday(&her1,NULL);

for(w=0;w<NUMFREQ;w++){

//compute different wave numbers

kb[w].r = ws[w]*(sqrtc(epsrb[w]).r/c);

kb[w].i = -ws[w]*fabs(sqrtc(epsrb[w]).i/c);

for(u=0;u<nx;u++){

for(v=0;v<ny;v++){

F_provv.r = 0.0;

F_provv.i = 0.0;

for(q=0;q<COLS;q++){

//steering vector

Ak[q]=multc(expc( multc(multr(kb[w],sqrt(pow((xx[u]-xo[q]),2)
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+pow((yy[v]-yo[q]),2))),J) ),

expc( multc(multr(kb[w],sqrt(pow((xx[u]-xi[q]),2)

+pow((yy[v]-yi[q]),2))),J) ));

//complex hermitian product

F_provv =addc(multc(conju(Ak[q]),eigvecs[w*COLS+q]),F_provv);

}//q_2

F[v+u*ny][w] =normc(divr(F_provv,complex_norm(COLS,Ak)*norm[w]));

}//v

}//u

}//w

gettimeofday(&her2,NULL);

printf(”HERMITIAN_time = %f secondi\n”,(doublereal)

(her2.tv_usec - her1.tv_usec)/1000000 + (doublereal)

(her2.tv_sec - her1.tv_sec));

gettimeofday(&det1,NULL);

//initialize Fcm matrix

for(v=0;v<ny;v++){

for(u=0;u<nx;u++){

Fcm[v+u*ny] = 1.0;

}

}

//compute denominator of detection function

for(w=0;w<NUMFREQ;w++){

for(v=0;v<ny;v++){

for(u=0;u<nx;u++){

Fcm[v+ny*u] = Fcm[v+ny*u] * (1-pow(F[v+ny*u][w],2));

}
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}

}

//compute Detection Function

for(v=0;v<ny;v++){

for(u=0;u<nx;u++){

P22[v+ny*u] = 1/Fcm[v+ny*u];

}

}

gettimeofday(&det2,NULL);

printf(”DETECTION_time = %f secondi\n”,(doublereal)

(det2.tv_usec - det1.tv_usec)/1000000 +

(doublereal) (det2.tv_sec - det1.tv_sec));

gettimeofday(&tot2,NULL);

printf(”\nTOTAL_time = %f secondi\n”,(doublereal)

(tot2.tv_usec - tot1.tv_usec)/1000000 +

(doublereal) (tot2.tv_sec - tot1.tv_sec));

//define xx1 e yy1 elements to plot detection circle

ang[0]=0;

ang[20]=2*M_PI;

for(i=1;i<20;i++){

ang[i] = M_PI/10 + ang[i-1];

}

for(i=0;i<21;i++){

xx1[i]= x_circle_1 + r_circle_1*cos(ang[i]);

yy1[i]= y_circle_1 + r_circle_1*sin(ang[i]);

}

123



A – C-code implementation of the I-MUSIC Algorithm

//compute PP matrix, to plot it

for(v=0;v<ny;v++){

for(u=0;u<nx;u++){

PP[v+ny*u] = 20*log10(P22[v+ny*u]/max_matrix(ny,nx,P22));

}

}

//without noise;represent the circle into the rectangle

for(v=0;v<ny;v++){

for(u=0;u<nx;u++){

mod = sqrt(pow(xx[v],2)+pow(yy[u],2));

if(mod > rs){

PP[v+ny*u]=-10;

}

}

}

//print detection function PP on a file with xx and yy

FILE* file=fopen(”/dev/matrix.txt”,”w”);

for(u=0;u<nx;u++){

for(v=0;v<ny;v++){

fprintf(file,”%.3f %.3f %.3f\n”,xx[u],yy[v],PP[v+ny*u]);

}

fprintf(file,”\n”);

}

fclose(file);

//print on a file the coordinates

FILE* file1=fopen(”/dev/coordin.txt”,”w”);

for(u=0;u<21;u++){

fprintf(file1,”%f %f\n”,xx1[u],yy1[u]);
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}

fclose(file1);

return 0;

}

//function to determine the maximum value between

//the elements of a doublereal array

int max_array(int n, doublereal *array){

int i,index;

doublereal max=array[0];

for(i=0;i<n;i++){

if(array[i] >= max ){

max = array[i];

index = i;

}//if

}//for

return index;

}

//function to define norm of a complex values vector

doublereal complex_norm(int n, doublecomplex *array){

doublereal norm, square=0.0;

int i;

for(i=0;i<n;i++){

square = array[i].r*array[i].r + array[i].i*array[i].i + square;

}

norm = sqrt(square);
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return norm;

}

//function to determine the maximum value between

//the elements of a doublereal matrix

doublereal max_matrix(int m, int n, doublereal *matrix){

int i,j;

doublereal max=matrix[0];

for(i=0;i<m;i++){

for(j=0;j<n;j++){

if(matrix[i+j*m] >= max ){

max = matrix[i+j*m];

}//if

}//for_j

}//for_i

return max;

}

doublecomplex conju(doublecomplex a){

doublecomplex z;

z.r = a.r;

z.i = (-1)*a.i;

return z;

}

doublecomplex multc(doublecomplex a, doublecomplex b){

doublecomplex res;
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res.r = a.r*b.r - a.i*b.i;

res.i = a.r*b.i + a.i*b.r;

return res;

}

doublecomplex sqrtc(doublecomplex a){

doublecomplex res;

doublereal mod, theta;

mod = sqrt(a.r*a.r + a.i*a.i);

theta = atan(a.i/a.r);

res.r = sqrt(mod) * (cos(theta/2));

res.i = sqrt(mod) * (sin(theta/2));

return res;

}

doublecomplex expc(doublecomplex a){

doublecomplex res;

doublereal t = exp(a.r);

res.r = cos(a.i);

res.i = sin(a.i);

res.r=t*res.r;

res.i=t*res.i;

return res;

}

doublecomplex addc(doublecomplex a, doublecomplex b){

doublecomplex res;

res.r = a.r + b.r;

res.i = a.i + b.i;
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return res;

}

doublecomplex divr(doublecomplex a, double b){

doublecomplex res;

res.r = a.r/b;

res.i = a.i/b;

return res;

}

doublecomplex multr(doublecomplex a, doublereal b){

doublecomplex res;

res.r = a.r*b;

res.i = a.i*b;

return res;

}

doublereal normc(doublecomplex a){

doublereal norm;

norm = sqrt(a.r*a.r + a.i*a.i);

return norm;

}
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C++ implementation of the TSVD

Algorithm for Brain Stroke

Monitoring

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <iostream>

#include <fstream>

#include <string>

#include <sstream>

#include <complex>

#include <Eigen/Dense>

#include <vector>

#include <ctime>

#include <chrono>
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using namespace Eigen;

using namespace std;

#define TRUE 1

#define FALSE 0

#define CHARMAX 20

#define NV 24 /* Number of transmitters */

#define NM 24 /* Number of receivers */

#define NX 64 /* x points */

#define NY 64 /* y points */

#define NZ 64 /* z points */

#define NC 18690 /*total points IT COULD BE A NON CARTESIAN GRID*/

/* Constants’ definitions */

#define m0 12.56637061e-7

#define e0 8.854188e-12

#define freq 1e9

#define eb 40

#define sb 0.01

#define pi 3.1415926

/* Customizable parameters */

#define threshold -5

#define minT -80 /* Maximum threshold */

#define maxT -20 /* Minimum threshold */

#define stepT 10 /* Threshold Step */

#define reconstructionIndex 5

/* Custom complex type definition */

#define myFloat float

#define myInt int

#define ComplexMatrix MatrixXcf /*Matrix of Complex.d=double,f=float*/
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#define FloatVector VectorXf /* Matrix of: d = double, f = float */

#define FloatRowVector RowVectorXcf

#define ComplexVector VectorXcf /*Vector of Complex.d=double,f=float*/

namespace patch

{

template < typename T > std::string to_string( const T& n )

{

std::ostringstream stm ;

stm << n ;

return stm.str() ;

}

}

const std::complex<myFloat> If(0.0f, 1.0f);

struct svd_complex_struct {

myFloat r;

myFloat i;

};

typedef struct svd_complex_struct myComplex;

void createMatrixFromFileC(char fileName[],

myInt r, myInt c, ComplexMatrix &Mat_E);

void createMatrixFromFileR(char fileName[],

myInt r, FloatVector &Vec_E);

int main()

{

myFloat Q, threshold_tmp;

myInt j;

/* Load U and V solutions from file */

131



B – C++ implementation of the TSVD Algorithm for Brain Stroke Monitoring

ComplexMatrix U(NM*NM, NM*NM);

ComplexMatrix V(NC, NM*NM);

FloatVector S(NM*NM);

cout << ”Calling function U\n”;

createMatrixFromFileC(”U.txt”, NM*NM, NM*NM, U);

cout << ”Calling function S\n”;

createMatrixFromFileR(”S.txt”, NM*NV, S); /* NM*NV*/

cout << ”Calling function V\n”;

createMatrixFromFileC(”V.txt”, NC, NM*NM, V);

// createMatrixFromFileR(”S.txt”, NM, S); Check!

std::cout << ”U MAT size ” << U.rows() <<

”-” << U.cols() << std::endl;

std::cout << ”V MAT size ” << V.rows() <<

”-” << V.cols() << std::endl;

std::cout << ”S size ” << S.size() << std::endl;

//std::cout << ”U: ” << U << std::endl;

//std::cout << ”V: ” << V << std::endl;

//std::cout << ”S: ” << S << std::endl;

/******************/

/* RECONSTRUCTION */

/******************/

/* Differential Matrix */

ComplexMatrix Es1_E(NM, NM), Es2_E(NM, NM);

createMatrixFromFileC(”Es1.txt”, NM, NM, Es1_E);

//std::cout << ”Es1_E: ” << Es1_E << std::endl;

createMatrixFromFileC(”Es2.txt”, NM, NM, Es2_E);

//std::cout << ”Es2_E: ” << Es2_E << std::endl;
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ComplexMatrix Es_E(NM, NM);

Es_E = Es2_E - Es1_E;

/* Normalization */

complex<myFloat> tmp_var;

time_t tstart, tend;

for(threshold_tmp = minT; threshold_tmp<maxT;

threshold_tmp=threshold_tmp+stepT){ /* Start threshold loop */

Eigen::FloatVector valsingn = S/S(0);

valsingn = valsingn.cwiseAbs();

valsingn = 20*(valsingn.array().log() / log(10.0));

valsingn = valsingn.array() - threshold_tmp;

valsingn = valsingn.cwiseAbs();

int min_i, min_j;

myFloat minimum = valsingn.minCoeff(&min_i, &min_j);

/* Reshape Difference Matrix Es into a Row Vector */

Eigen::Map<FloatRowVector> Es_vec_E(Es_E.data(), Es_E.size());

ComplexMatrix RI(NC, 1);

RI.fill(0);

cout << ”INNER LOOP TRIP COUNT: min_i = ” << min_i << endl;

auto start = std::chrono::steady_clock::now( );

//tstart = time(0);

for(j=0; j<min_i; j++){

tmp_var = U.col(j).dot(Es_vec_E);
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tmp_var = tmp_var/S(j);

ComplexVector tmp_vec = V.col(j) * tmp_var;

RI = RI + tmp_vec;

}

//tend = time(0);

auto elapsed = std::chrono::duration_cast<std::chrono::milliseconds>(

std::chrono::steady_clock::now( ) - start );

std::cout << ”It took ” << elapsed.count( )

<<” millisecond(s) for threshold:”<< threshold_tmp << endl;

//cout << ”It took ”<< difftime(tend, tstart)

//<<” second(s) for threshold:”<< threshold_tmp << endl;

/* Print results to file */

std::string fileName;

fileName = ”singleP_RI_threshold_” + patch::to_string(threshold_tmp);

std::ofstream RIfile(fileName.c_str());

RIfile << RI << std::endl;

RIfile.close();

} /* End threshold loop */

printf(”\n--> Execution FINISHED! <--\n”);

return 0;

}

void createMatrixFromFileC(char fileName[],

myInt r, myInt c, ComplexMatrix &Mat_E){
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FILE *tmp = NULL;

myInt i, j;

double re, im;

tmp = fopen(fileName, ”r”);

if(tmp == NULL){

printf(”Missing File: %s\n”, fileName);

return;

}

printf(”File %s found.\n”, fileName);

printf(”Matrix: %s [%d][%d] created!\n”, fileName, r, c);

for(i=0; i<r; i++){

for(j=0; j<c; j++){

fscanf(tmp, ”%lf %lfi ”, &re, &im);

myFloat myRe, myIm;

myRe = (myFloat) re;

myIm = (myFloat) im;

Mat_E(i, j) = myRe + myIm * If;

}

}

return;

}

void createMatrixFromFileR(char fileName[],

myInt r, FloatVector &Vec_E){

FILE *tmp = NULL;

myInt i;

double re;

tmp = fopen(fileName, ”r”);
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if(tmp == NULL){

printf(”Missing File: %s\n”, fileName);

return;

}

printf(”File %s found.\n”, fileName);

printf(”Vector: %s [%d] created!\n”, fileName, r);

for(i=0; i<r; i++){

fscanf(tmp, ”%lf ”, &re);

Vec_E(i) = (myFloat) re;

}

return;

}
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[empty]
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