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Abstract—When microprocessor-based devices are used in
safety-critical applications (e.g., in automotive systems), it is
common to adopt solutions aimed at testing them in-field, so that
permanent faults that may affect them are identified before they
cause critical consequences. In this way, the required reliability
figures can be achieved. A popular solution to perform in-field
test (especially when executed concurrently to the application)
is based on triggering the execution of proper procedures (com-
posing a Self-Test Library, or STL), which are able to activate
faults and make them visible when checking the produced results
(e.g., in memory). Unfortunately, a special class of faults exists
(mamed Performance Faults), which do not impact the value of the
results, but only the timing behavior of the processor. This paper
describes a set of experiments aimed at quantitatively evaluating
the number of these faults in a simple processor core, and outlines
some observation techniques that can be used for their detection.

Index Terms—test; reliability; functional safety; performance
faults;

I. INTRODUCTION

When electronic systems are used in safety critical appli-
cations (e.g., in the space, avionic, automotive or biomedical
areas), we need to guarantee that the probability of failures due
to faults of any kind (unreliability) is lower than a specified
threshold. One of the possible causes of failures are defects
affecting the hardware components. Different techniques can
be used to reduce the chance that hardware defects can occur
(e.g., acting on the adopted semiconductor technology) or to
minimize the probability that they produce critical failures
(e.g., by introducing redundancy). Unfortunately, most of
these techniques have a severe impact on the cost of the
resulting product. In some cases (especially when advanced
semiconductor technologies are used, e.g., to achieve enough
performance) the probability of failures is anyway too large.
Hence, a solution which is commonly used in several sce-
narios lies on periodically performing a test able to detect
the occurrence of any fault before it produces a failure (in-
field test). This kind of test can resort either to Design
for Testability (DfT) or to functional approaches. The latter
solution is normally based on forcing the CPU inside the
Device Under Test (DUT) to execute a properly written test
program, which is able to activate possible faults and to make

their effects visible in some observable locations (e.g., the data
memory). This approach (also called Software-based Self-test,
or SBST [1]) has the advantage of testing the DUT exactly in
the same conditions of the application, and is more suitable
for concurrent in-field test, since it is less intrusive than DfT.
On the other side, SBST solutions may require a large effort
to develop a suitable test program.

The SBST approach is currently experiencing a growing
success, mainly because it offers the possibility (besides the
other advantages) to the semiconductor company manufactur-
ing the device (and knowing its internal structure) to develop
the test code, grade it in terms of achieved Fault Coverage,
and pass it to the system company, which eventually integrates
it in the application code. The system company is also in
charge of developing the code in charge of launching the test
and retrieving the results it produced, managing the situations
where a fault is detected. Since the test code is often activated
in small chunks, whose execution can fit in the idle times
of the application, it is convenient to organize it in a set of
procedures, composing a Self-Test Library (STL). STLs are
currently offered by several semiconductor and IP companies
(2] [3] [4] [5] [6] [7].

When developing the code of a STL, special techniques
must be followed to activate the target faults and to make them
visible. The latter point is particularly important, especially
because during in-field test the observability of the DUT
behavior is necessarily limited. Hence, several solutions can
be adopted, possibly involving the support of existing or ad
hoc hardware [8].

When considering permanent faults that may affect an elec-
tronic device (such as a microprocessor, or a System on Chip),
a special class is represented by Performance Faults, i.e., those
faults which do not affect the results of the computation, but
simply the timing behavior of the DUT. Examples of these
faults can be found in a Branch Prediction Unit (BPU). If
the BPU is faulty, it may always produce a wrong branch
prediction. The final result of the program execution will
be correct, but the time required for the execution will be
larger. Performance Faults can be found in other parts of a
processor, such as the cache and memory controller. Clearly,
the relevance of Performance Faults from a practical point
of view may change depending on the application. Since real-
time constraints are often important, in many cases they cannot



be neglected and need to be detected.

Some previous works already dealt with Performance Faults.
In particular, in [9] the authors describe a method to detect
them resorting to Performance Counters, i.e., those hardware
structures which are often included in a processor to count the
occurrence of internal events (e.g., cache misses, or wrong
branch predictions), mainly to support the manufacturer in
assessing the correct behavior of the design. In [10] a method
to estimate the impact of performance faults on different
performance-related modules in a CPU is proposed.

The goal of this paper is to expand the work done in
[8] focusing on performance faults and showing first of all
some figures to quantitatively assess their presence in the
different parts of a pipelined CPU module. Secondly, the paper
lists a number of observation mechanisms, and experimentally
evaluate their effectiveness in detecting performance faults.
The reported analysis can be precious for the test engineer
to cleverly decide which observation mechanisms have to
be implemented in a STL, and for the designer of a CPU
or SoC to judge whether it is worth to add some special
hardware to support SBST code development. The rest of the
paper is organized as follows: Section II presents the different
observation mechanisms we considered, Section III describes
the experimental setup and analyze the obtained results, and
Section IV presents the conclusions.

II. OBSERVATION MECHANISMS

In the following, the solutions considered to observe the
effects of possible faults during in-field SBST testing of a
processor-based system are briefly presented. A detailed de-
scription can be found in [8] and [11]. Some of the observation
methods are considered only to be taken as ideal reference
solutions, as they can hardly be adopted during in-field SBST.

Processor-Level Observation (solution S2) assumes that all
the processor outputs can be continuously monitored. It is
one of the scenarios that are commonly adopted for end-of-
manufacturing test. Due to the need of constant monitoring of
all the processor outputs, this observation solution requires the
use of an ATE and thus, cannot be adopted by in-field SBST.

System Bus Observation (solution S3) is similar to the
previous one but excluding from observation all the processor
outputs not related with the system bus. Again, it is very
difficult to adopte this technique for in-field testing.

When using Memory Content Observation (solution S4),
a fault is marked as detected if the content of the system
memory is different than the expected one at the end of
the execution of the SBST program. No dedicated tester or
any other equipment is needed, so this is one of the most
commonly adopted solutions for in-field SBST. Since the
test results are checked only at the end of the test program
execution, without taking into account when these results are
produced, some performance faults may escape when using
this observation mechanism.

Performance Counters Observation (solution S5). Perfor-
mance Counters (PeCs) measure the number of occurrences
of different internal events from modules like caches, pipeline
stages and bus interfaces. They are already quite common in

general-purpose high performance processors, and are used
mainly for design validation, performance evaluation and to
support silicon debug.

Their values can normally be accessed via software. Hence,
a test program may read the value of a given PeC, execute a
sequence of instructions, and then read again the value of the
PeC comparing it to the expected one. The usage of these
counters as part of the observation mechanism adopted in
testing was proposed in several works, such as [9] [12] [13]
[14]. Regarding observability issues, the PeCs may provide
deeper details on internal events that may not reach the output
ports, and allow the detection of several performance faults.
Thus, exploitation of PeCs and propagation of their values to
system memory increase observability and may represent a
valuable solution during in-field SBST.

Debug Interface Observation (solution S6) uses the features
currently provided by many processors to support the debug
of the software. Examples of such debug interfaces are the
vendor independent standard Nexus IEEE-ISTO 5001 [15]
[16] extensively used in U.S. automotive applications, and the
ARM CoreSight On-chip Trace and Debug Architecture [17],
widely adopted by chip vendors using ARM Cortex cores.

These features typically allow tracing the sequence of
instructions executed by the processor (without slowing it
down), either by writing them to an external interface that can
be accessed on-the-fly or by storing them in a special memory.

In order to use the mentioned external interface to observe
in-field test results, ad hoc hardware is required to produce a
signature of the flow of data produced by the debug interface.
Although such ad hoc hardware is usually not available in
a typical in-field test scenario, it may be added if some
programmable hardware is available on the board or on-chip.
This approach is particularly attractive in the SoC platforms
provided by FPGA vendors, often equipped with ARM proces-
sors and the mentioned ARM CoreSight Architecture, e.g., the
Zyng-7000 SoC platform by Xilinx or Cyclone V SoC family
by Intel. On these platforms, the ad hoc port provided by the
debug interface is connected to the FPGA fabric, so that an
on-the-fly monitor can be added with a moderate effort. Such
a scheme is presented in [18] and its effectiveness in particular
to detect control flow errors, i.e., faults that modify the normal
program execution flow, is experimentally evaluated.

III. EXPERIMENTAL SETUP AND RESULTS
A. Experimental setup

The experimental setup we use for the purpose of this work
is similar to the one described in [8], with two additional
observation methods. It uses a MIPS-like 5-stage pipeline
processor, based on the RT-level 3,131 lines VHDL description
available at [19]. When sinthesized with a generic library, the
processor size is 41,959 equivalent gates and 2,112 equivalent
D flip flops. The fault list consists of the single stuck-at faults
in the whole processor (268,424 faults).

The test program used was manually developed by a test
engineer knowing the netlist of the processor, targeting the
maximization of the stuck-at fault coverage for the whole
processor when using processor level observation (S2). It is



written in assembly language, occupies 1,576 bytes and the
execution duration is 19,298 clock cycles.

In order to compute the fault coverage that can be achieved
resorting to the different observation mechanisms, a mod-
ule wrapping the processor was added to provide all the
elements required by them, exporting the different sets of
observed signals as primary outputs of the wrapper during
fault simulation (Fig. 1). Two different performance counters
were implemented: one obtains the test duration using a timer
register enabled at the end of the test to capture the value of
a timer input 7_in provided by the testbench (labeled S5%);
the other (Perf_cnt) increments each time an incorrect branch
prediction arises (S5). A set of internal signals produced by the
execution stage of the pipeline was exported up to the wrapper
interface to support solution S6. Finally, a second read port
was added to the RAM memory to support the memory con-
tent observation mechanism, allowing to observe the memory
content without interfering with the normal memory access
operations performed by the test program. Fault simulation
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Fig. 1. Experimental environment and considered observation solutions.
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was performed using Synopsys TetraMAX. The experiments
were driven by a Value Change Dump (VCD) file produced
via logic simulation by means of a test-bench surrounding the
wrapper, which represents the top module in the TetraMAX
simulations. The VCD file provides the proper stimuli to the
wrapper’s primary inputs: ck, reset, spy_addr (to select the
RAM location observed at spy_dout) and t_in (the timer signal
provided by the testbench). At the end of the test program
execution, spy_addr continuously scans the address interval
selecting the RAM zone to be observed through spy_dout. A
memory write operation added at the end of the test program
triggers the Timer register to capture the final time value.

Fault simulation experiments were run using each of the
different observation solutions shown in Fig. 1. Solutions S2
and S3 are identical in this case because all the outputs of the
MIPS-like processor are system bus related. Solutions S4 to
S5* can be implemented in-field by a few instructions at the
end of the test program to read the final value of the observed
entity and compare it with the expected one. Instead, in order
to assess the fault coverage using a fault simulation tool like
TetraMAX, the final value of the observed signal must be
presented as a primary output of the top entity being simulated,
i.e., the wrapper, and the fault simulator must be instructed to
only observe this primary output, and to observe it only at the
end of the experiment.

A summary of the signals observed by each solution fol-
lows:

e S2/S3: all the original processor outputs (memory data,
address and control signals labeled as bus in Fig. 1)
during the whole simulation.

o S4: outputs spy_dout, (while inputs spy_addr sweep the
RAM area used for program results) at the end of test.

e S5: PeC value (pc_out), at the end of test.

o S5%: timer register output (treg_out) at the end of test.

e S6: the address (instr_adr) and opcode (instr) of the
instruction being executed, the instruction being executed
(instr_adr_valid) and instruction branch (instr_bra) flags,
grouped as debug_out in Fig. 1, observed at cycles in
which a branch instruction is executed in the non-faulty
execution (golden run).

B. Results

To better assess each observation method strengths and
weaknesses, the coverage was obtained for each internal
module of the MIPS-like processor. TABLE I lists the internal
modules along with the number of single stuck-at faults in it.
The execution stage is by far the biggest module with about
60% of the faults, followed by the register bank (a 32x32
register bank with 2 read and 1 write ports) with about 17%
and the Branch prediction unit with 10% of them.

In TABLE I the column labeled S2/S3 presents the fault
coverage (detected/total module faults) obtained for each mod-
ule using processor level observation, i.e., the one for which
the test program was originally developed. This column shows
that the test program best performances are obtained for the
Execution unit (97,11%) and the Register bank (96,27%).
These are the bigger modules and consequently have the bigger
impact on the overall coverage. On the other hand, the poorer
performances are for the Address calculation (51,34%) and
Memory access (53,42%) stages and for the Branch prediction
unit (57,49%), being the former the one that influences the
most on overall coverage due to its greater size.

The next column labeled S4 presents the percentage of the
faults detected by S3 which are also detected by S4. Note that
as stated in [8], all the faults detected by S4 are also detected
by S3. This column shows that in the modules that are well
covered by S3, like the Execution stage and the Register bank,
solution S4 covers almost all the faults covered by S3. It also
behaves well in the Coprocessor system and in the connections
between modules. However, it has a poor performance in
modules like the Address calculation stage (36,8% of the faults
covered by S3), the Branch Prediction unit (61,3%) and the
Bus controller unit (72,7%).

The next three columns in TABLE I present the coverage
obtained by S5, S5*% and S6, also as a percentage of the
number of faults detected by S3. But unlike the case of S4,
methods S5, S5* and S6 include signals not observed by S3
and hence they allow the detection of faults uncovered by
S3. As a consequence, the figures in these three columns can
be greater than 100% as is the case of the interconnect row
using observation method S6. The results show that these new
methods are complementary with S4 as they perform better



TABLE I

RESULTS
per module stuck-at faults FC FC relative to S3 FC increment wrt S4

Faults S2/S3 S4 S5 S5 ] S6 S5 S5 ] S6 | all all

[#] ] [%] [%] [%] [# of faults] [%]
ul_pf (Address calculation) 2,244 0.8 51.34 36.8 70.2 70.1 99.0 490 489 716 716 319
u2_ei (Instruction extraction) 1,876 0.7 72.87 88.3 85.8 85.5 96.1 5 5 113 113 6.0
u3_di (Instruction decoding) 8,468 3.1 71.76 90.5 81.1 79.5 95.1 255 250 | 1,113 | 1,117 13.2
ud_ex (Execution) 165,876 61.8 97.11 99.7 6.0 6.1 6.5 126 176 860 936 0.6
u5_mem (Memory access) 3,394 1.3 5342 95.7 65.7 66.0 65.7 15 19 16 20 0.6
u6_renvoi (Bypass unit) 3,964 1.5 79.06 94.5 72.1 69.6 71.9 165 139 159 165 42
u7_banc (Register bank) 45,274 16.9 96.27 99.9 26.2 25.1 26.2 0 0 39 39 0.1
u8_syscop (System coprocessor) 8,524 3t2 63.96 100.0 1.0 1.0 1.0 0 0 0 0 0.0
u9_bus_ctrl (Bus controller) 1,422 0.5 75.67 72.7 41.8 43.0 44.1 6 16 30 40 2.8
ul0_predict (Branch prediction) 27,354 10.2 57.49 61.3 93.4 93.4 95.8 5,061 | 5,057 | 5,437 | 5,441 19.9
interconnect (Interconnections) 28 0.01 25.00 100.0 100.0 | 100.0 | 185.7 0 0 6 6 || 214

[ whole_circuit [ 268,424 ] 100.0 J] 89.59 [| 964 [ 194 ] 192 ] 204 ] 6,123 [ 6,151 | 8489 [ 8593 || 3.2 |

than S4 in modules like the Address calculation stage and the
Branch prediction unit where the S4 coverage is bad.

Finally, the rightmost block in TABLE I shows, detailed by
module, the coverage increment obtained by adding the faults
detected by S5, S5*%, S6 and all the three methods to those
detected by the memory content observation method S4. The
coverage increments are presented as the amount of faults. The
rightmost columns repeats the “all” column values expressed
as a percentage of the module faults. The newly covered faults
can be identified as performance faults. The main contributions
to the coverage enhancement come from the Branch Prediction
unit, and from the Decode instruction, Execution and Address
calculation stages. Looking at the whole circuit, the most
important result is that the addition of the three methods to
method S4 gives a coverage increment of 3.2% of the total
faults and rises the total fault coverage to 89.59%, essentialy
the same value obtained by S2.

IV. CONCLUSIONS

A set of observation methods was evaluated, aimed at
obtaining a good coverage of performance faults in an in-
field SBST scenario. The per module coverage results were
presented and analyzed along with the results obtained with
observation methods commonly used in end-of-manufacturing
(S2) and in-field test scenarios (S4). The results comparison
allows to identify about 3% of the total faults as performance
faults contributing to overall coverage enhancement. We can
also conclude that the new considered observation methods are
an effective complement to the traditional memory content ob-
servation method S4, as they present very good coverage in the
modules that are poorly covered by S4. This complementary
behavior allows to obtain in the field a coverage similar to the
one obtained using processor level observation S2.

The provided information can be fruitfully used from one
side by the test engineer in charge of developing SBST
code to chose the most suitable observation mechanisms, and
from the other by the designer, who may possibly introduce
some hardware structures to better support the SBST code
development and increase the achieved Fault Coverage.

Moreover, the paper describes in detail how a conventional
fault simulator can be used to compute the Fault Coverage
achieved by a Self-Test Library.
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