
09 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

An Enhanced Evolutionary Technique for the Generation of Compact Reconfigurable Scan-Network Tests / Cantoro,
Riccardo; Damljanovic, Aleksa; SONZA REORDA, Matteo; Squillero, Giovanni. - In: JOURNAL OF CIRCUITS,
SYSTEMS, AND COMPUTERS. - ISSN 0218-1266. - ELETTRONICO. - (2019). [10.1142/S0218126619400073]

Original

An Enhanced Evolutionary Technique for the Generation of Compact Reconfigurable Scan-Network
Tests

World Scientific postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1142/S0218126619400073

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2733953 since: 2019-09-09T15:19:05Z

World Scientific

An Enhanced Evolutionary Technique for the Generation of

Compact Reconfigurable Scan-Network Tests

Submitted for the Special Issue on Design, Technology, and Test of Integrated

Circuits and Systems

Riccardo Cantoro, Aleksa Damljanovic, Matteo Sonza Reorda, Giovanni Squillero

Dipartimento di Automatica e Informatica, Politecnico di Torino,

Corso Duca degli Abruzzi 24, Turin, 10129, Italy

{riccardo.cantoro, aleksa.damljanovic, matteo.sonzareorda, giovanni.squillero}@polito.it

Nowadays many Integrated Systems embed auxiliary on-chip instruments whose func-

tion is to perform test, debug, calibration, configuration, etc. The growing complexity

and the increasing number of these instruments have led to new solutions for their
access and control, such as the IEEE 1687 standard. The standard introduces an in-

frastructure composed of scan chains incorporating configurable elements for accessing
the instruments in a flexible manner. Such an infrastructure is known as Reconfigurable

Scan Network or RSN. Since permanent faults affecting the circuitry can cause malfunc-

tion, i.e., inappropriate behaviour, detecting them is of utmost importance. This paper
addresses the issue of generating effective sequences for testing the reconfigurable ele-

ments within RSNs using evolutionary computation. Test configurations are extracted

with automatic test pattern generation (ATPG) and used to guide the evolution. Post-
processing techniques are proposed to improve the evolutionary fittest solution. Results

on a standard set of benchmark networks show up to 27% reduced test time with respect

to test generation based on RSN exploration.

Keywords: IEEE 1687; scan-chain; genetic algorithms, microprocessor testing, ATPG.

1. Introduction

Almost all modern Integrated Circuits (ICs) include resources for supporting test,

such as Built-In Self-Test (BIST) modules, sensors for monitoring internal parame-

ters, like current, temperature or delays, and registers for setting up and calibrating

the behavior of specific modules, like analog ones.

To unify and simplify the access to all these resources, IEEE published the IEEE

1687 standard [1], which extends and complements the previous IEEE 1149.1. The

new standard specifies how to split a scan chain accessible through the JTAG’s

Test Access Port (TAP) and to program its configuration, allowing the designer

to flexibly trade-off between area, access time and other parameters. The resulting

Reconfigurable Scan Networks (RSNs) support the serial access to the Test Data

Registers (TDRs) associated to internal instruments. Indeed, the newest version of

the IEEE 1149.1 standard [2] also includes ways to design similar scan networks.

In IEEE 1687, typical RSNs are chains of flip flops interleaved with Segment

1

2 R. Cantoro, A. Damljanovic, M. Sonza Reorda, G. Squillero

Insertion Bits (SIBs) and ScanMuxes (SMs) that allow to dynamically split the

whole scan chain into segments that may be connected in series or in parallel.

Using RSNs, a faster and more efficient access to the resources is possible: the user

first configures the network, selecting the subset of instruments to be accessed, then

uses the network to serially read and write the required data. CAD tools already

have support for the automating introduction of RSNs [3].

Several works focused on the test of possible permanent faults affecting a stan-

dard scan chain, e.g., by shifting into the chain a sequence of alternated 0s and 1s,

and checking that the same sequence appears at the other extreme of the chain [4–6].

Indeed, testing an RSN is far more complex, as it is necessary also to check whether

the network can be properly configured and whether it works as expected after the

configuration (i.e., whether the expected sub-network is made accessible), whichever

legal configuration we enforce. In particular, this test requires checking whether each

special module inserted to support the network configuration works properly.

While some works (e.g., [7]) already faced the issue of testing the test circuitry

mandated by the IEEE 1149.1, when adopting a IEEE 1687 RSN, one must also

consider the issue of testing the related hardware, and check for possible defects

affecting it.

In [8] we proposed a general approach to automatically generate a test sequence

for an IEEE 1687 RSN with respect to permanent faults. We provided techniques

for testing SIBs and ScanMuxes, and then we described how to combine them into

a single comprehensive test. This test is independent on the specific implemen-

tation of the network elements and does not require any change in the hardware

implementing the network itself. Test generation can directly start from the net-

work structure described using the Instrument Connectivity Language (ICL), as

mandated by the IEEE 1687. The proposed test generation algorithms were based

on different heuristics that could easily run even on relatively large RSNs.

In [9] we refined that approach to minimize the duration of the resulting test

sequence: the faced problem was properly modeled according to the graph theory,

and an optimal algorithm able to generate the minimum-duration test sequence

was described. Unfortunately, such an approach did only work on relatively small

RSNs, and sub-optimal solutions must be accepted when dealing with real cases.

In this paper we make one step forward, and we propose a method that pro-

duces test sequences far more effective than the the heuristic solutions proposed

in [8], yet that is able to deal with large and complex RSNs. The proposed method

always produces a test sequence able to detect all permanent fault affecting the

reconfigurable modules, and allows to easily trade-off between the computational

effort and the quality of the result.

Experimental results are reported on the set of benchmark networks proposed

in [10], which practically demonstrate the effectiveness of the proposed approach.

The paper is organized as follows. In Section 2 we summarize the key charac-

teristics of the IEEE 1687 networks. In Section 3 we propose the techniques for

Evolutionary RSN Test 3

generating an optimized test sequence for a RSN. Section 4 reports some experi-

mental results, and Section 5 finally draws some conclusions.

2. Background

In this Section we will first briefly overview the key characteristics of an IEEE

1687 RSN, then we will explain how their test is performed in [8], and finally we

will summarize why minimizing the test duration may turn into a computationally

complex task.

2.1. Overview of RSNs

As mentioned in Section 1, a key feature of RSNs is the possibility to partition

the set of instruments into segments controlled by programmable components, and

then dynamically decide which segments are currently accessible and which are

bypassed. The first programmable component introduced by IEEE 1687 is the SIB,

which allows to bypass a segment of a network. As a segment can be simply one

or several TDRs or a sub-network consisting of TDRs and other programmable

components, it is possible to create a hierarchical network.

Fig. 1(left) shows the simplified schematic of a possible implementation of a

SIB, which is based on a one-bit shift-update register and a two-input multiplexer.

SIBs can be programmed by shifting a bit into their S flip-flop and latching that

bit into the parallel U latch. If the latched bit is 0, the SIB is de-asserted, and the

scan-path is from the si terminal, to the so terminal via the S flip-flop, bypassing

the segment between the tsi and fso terminals. If, on the other hand, the latched

bit is a 1, the SIB is asserted, and the scan-path includes the segment connected

between the tsi and fso terminals of the SIB. In this paper, the symbol shown in

Fig. 1(right) is used to represent a SIB.

0 1

U
S so

si

fsotsi

SIB sosi

fsotsi

Fig. 1. Simplified schematic of a SIB module (left) and its symbol (right)

IEEE 1687 RSNs can be also constructed using shift-update registers and Scan-

Muxes. As an example, consider the network shown in Fig. 2(left) in which a two-bit

shift-update register is used to select among four inputs of a 4-to-1 ScanMux. Here

again, the configuration of the ScanMux can be performed by shifting the required

4 R. Cantoro, A. Damljanovic, M. Sonza Reorda, G. Squillero

values into the S shift flip-flops of the control register and then latching the shifted

bits into the U latches. In the rest of this paper, the symbol shown in Fig. 2(right)

will be used to represent the shift-update register that controls a ScanMux.

0
0

 0
1

 1
0

 1
1

U

S

TDR0

TDR1

TDR2

TDR3

U

S S

Fig. 2. Simplified schematic of a ScanMux module (left) and its control register’s symbol (right)

To keep the drawings simple in Figures 1 and 2, the clock, reset, control signals

(namely, shift, update, and capture), and the select signal used to gate the control

signals are not shown. To follow the examples in this work, it should suffice to as-

sume that only the TDR connected to the selected port of a ScanMux receives (i.e.,

reacts to) the clock and control signals. It should be noted that the configuration

of the network (i.e., the status of the latched bits) does not change when shifting a

new vector through the shift cells, but only in the update phase where the shifted

vector is latched into the U cells.

To operate an IEEE 1687 network from outside the chip, the IEEE 1149.1 TAP

can be used. The TAP finite state machine provides the control signals needed to

configure the IEEE 1687 network and access the instruments through it.

As an example, let us consider an RSN that includes five instruments: the user

can access them through the TAP port, reading or writing from/to the associated

Test Data Registers (TDR1 to TDR5). In order to save time when accessing to the

instruments, the designer, instead of connecting all TDRs into a single chain, like

in 1149.1-complaint circuits, may decide to adopt an IEEE 1687 network including

three SIBs and one ScanMux (SM), as shown in Fig. 3; each of these four config-

uration modules can be configured to allow the access to a given subset of TDRs

(and the associated instruments). Table 1 reports sixteen possible configurations

supported by this network, which depend on how the SIBs and the ScanMux have

been configured. In Table 1, “A” means asserted, “D” means de-asserted, 0 and 1

correspond to the two possible positions of the ScanMux, and “-” appears when a

module belongs to an inaccessible segment.

In order to move the network to a given configuration, the user must first shift-

in a suitable sequence of bits, so that the S flip-flops of SIBs and ScanMuxes hold

the correct value, then activate the update signal to move these bits to the U

latches. The sequence of bits to configure the network is called configuration vector.

A generic configuration vector is referred to as cvi. Once a configuration is reached,

Evolutionary RSN Test 5

TDR2

length=7

SIB2

TDR1

SIB1
TDR3

length=4

SIB3

length=2

length=6

length=3

TDR4

TDR5
SM

0

1

Fig. 3. Example of IEEE 1687 RSN.

Table 1. Set of possible configurations of the RSN in Fig. 3.

Configuration SIB1 SIB2 SM SIB3 Active path Length

C0

D

D
0

D - 2
C1 1

C4
A

0

C5 1

C2

D

D
0

A TDR3 6
C3 1

C6 A
0

C7 1

C8 A D 0 D TDR1, TDR4 9

C9 A D 1 D TDR1, TDR5 12

C10 A D 0 A TDR1, TDR3, TDR4 13

C11 A D 1 A TDR1, TDR3, TDR5 16

C12 A A 0 D TDR1, TDR2, TDR4 16

C13 A A 1 D TDR1, TDR2, TDR5 19

C14 A A 0 A TDR1, TDR2, TDR3, TDR4 20

C15 A A 1 A TDR1, TDR2, TDR3, TDR5 23

a given subset of the TDRs is accessible, which constitutes the so-called active

path. The rightmost column of Table 1 reports the length of the active path for

each configuration, which corresponds to the number of TDR and S flip-flops in

the path. The reader should note that moving from one configuration to another

may require more than one configuration vector. For example, in the network of

6 R. Cantoro, A. Damljanovic, M. Sonza Reorda, G. Squillero

Fig. 3 moving from C2 to C13 requires first turning SIB1 into the asserted state

(e.g., moving to C8) and only then we will be able to change the configuration of

the SM scan multiplexer to select input branch 1 and turn SIB2 into the asserted

state. Hence, moving from C2 to C13 requires 2 configuration vectors.

2.2. Test of RSNs

Testing a non-recongurable scan chain for permanent faults can be performed by

shifting a suitable sequence of 0s and 1s through the scan chain. RSNs are however

far more complicated to test: in addition to flip-flops composing the TDRs, which

have to be tested to check whether they can correctly shift values when included in

the active path, the recongurable modules (i.e., SIBs and ScanMuxes) have to be

also tested to check whether they are able to move the network to the corresponding

congurations.

In this work we use the high-level fault model which was introduced in [8]. The

faults affecting the recongurable modules, such as ScanMuxes, are modeled such

that a different conguration is selected rather than the expected one. Such a fault

leads to a different active path (called faulty path) than the expected one, and the

two are likely to have a different length. For example, in Fig. 3 the multiplexer

(ScanMux) may be affected by a permanent fault whose effect is that the segment

connected to the input 0 is always selected, no matter the value in the selection cell.

The same may arise for the generic SIBi, which can be affected by faults named

stuck-at asserted (SIBi-s@A) and stuck-at de-asserted (SIBi-s@D). The stuck-at

faults in the scan bits of the selection cells are considered as detected by implication

by testing such high-level faults, which cover also the faults affecting the update

logic of the recongurable modules.

Moreover, such faults cover some faults affecting the reset logic, whose effect is

that the module is stuck at the reset value. The other reset faults (i.e., those that

make the reset ineffective) are not considered but can be targeted by employing the

techniques described in [11].

Resorting to these high-level fault models, one can test an RSN by first config-

uring the RSN so that the target fault is excited, and then comparing the length

of the activated path against the length of the expected path. As an example, the

high-level fault that affects the ScanMux of Fig. 3, to always select the segment

connected to the input 1, can be excited by a conguration which selects the input

0; congurations C12 and C14 fulfill this requirement. Once one of them is activated,

one can measure the length of the active path by shifting a given sequence (called

test vector) in TDI and checking when it will appear on TDO. Any fault modifying

the length of the active path can be detected in this way. A generic test vector is

referred to as tvi in this paper.

In order to test all configurable modules in a RSN, we can thus organize the test

sequence in sessions: in each session we first configure the network via one or more

configuration vectors (so that each SIB and each ScanMux is switched into a given

Evolutionary RSN Test 7

position), and then check whether the expected path has been inserted between TDI

and TDO via a test vector, i.e., whether the right segments can be accessed. Since

the number of possible configurations of a network grows exponentially with the

number of configurable modules, the problem of identifying a sequence of sessions

which guarantees that 1) all the configurations modules are fully tested, and 2)

the total test duration is minimized, is not trivial. Coming back to the example of

Fig. 3, this means identifying the sequence of configurations (out of the 16 possible

ones) that matches the two above goals.

This paper describes a new method to automatically generate at least one test

sequence able to test all configurable modules with minimal duration for any RSN.

3. Methodology

The approach proposed in this paper aims at generating an effective test sequence

able to detect all testable faults while requiring a reduced test application time.

In a first phase, an evolutionary algorithm [12] is used to cultivate a population

of individuals representing a set of RSN configurations in which test vectors are

applied. Then, the best individual produced in terms of test application time is

further optimized by a post-processing algorithm, which tries to anticipate some

test vectors and to remove redundant configurations.

In the following, the basic concepts needed to understand the proposed approach

are briefly introduced (Section 3.1). Details are then given concerning: the algorithm

used to perform a transition from a given configuration to a target one (Section 3.2),

the evolutionary algorithm (Section 3.3), the encoding used for defining individuals

(Section 3.4), and the post-processing algorithm (Section 3.5).

3.1. Basics

The proposed approach requires the following features:

(1) A function (referred to as Transition) able to produce a sequence of configura-

tion vectors cv1, cv2, ..., cvn that moves the RSN from the generic configuration

Csrc to the configuration Cdst. The configuration vectors cv1, cv2, ..., cvn are

applied (i.e., shifted in the network through scan input pins for as many clock

cycles as the active path length, and followed by an update operation), the first

(i.e., cv1) starting from Csrc and passing through several intermediate config-

urations (i.e., C1, C2, ..., Cn−1) up to Cdst. This function can be associated to

a cost in terms of clock cycles required to apply all the configuration vectors

generated.

(2) A function Evaluation able to produce the list of faults that can be excited

when the RSN is moved to the generic configuration Ci. Such faults would be

covered by means of a test vector applied after reaching Ci. This function can

be applied to a set of configurations; in such a case, Evaluation(C1, C2, ..., Cn)

produces the list of faults covered by all the configurations in the set: if a test

8 R. Cantoro, A. Damljanovic, M. Sonza Reorda, G. Squillero

vector tvi is applied in each of the evaluated Ci, then all faults are covered.

By using an evolutionary engine which calls the Transition and Evaluation

functions we aim at identifying a sequence of configurations detecting all faults and

having minimum cost. Each configuration is associated to a test session. Each test

session is composed by applying the Transition function to generate intermediate

configuration vectors which move the network from the configuration Ci in the list

to Ci+1. The first time, the function is applied between the reset configuration Crst

and the first configuration in the list (if not equal to Crst). A test vector is applied

to the RSN after each transition to a configuration in the list. Thus, the Evaluation

function is applied to the list of configurations and the faults obtained are used to

compute the fault coverage. Moreover, the total test time is obtained as the cost

to apply the configuration vectors generated by the Transition functions plus the

time required to shift all test vectors.

As an example, let us consider the RSN in Fig. 3. For this network, let us suppose

the reset configuration is the one indicated with C0 in Table 1. A possible solution

to the problem of testing the network faults consists in the following sequence of

configurations: [C0, C8, C15]. For each configuration Ci a test vector tvi is applied,

which is made as follows:

(1) as many 0s as the longest path length, i.e., 23 bits in the example network;

(2) an alternated sequence 0101..., as long as the length of the active path currently

selected;

(3) two consecutive 1s (or two consecutive 0s) as the sequence terminator;

(4) only for the last test vector, a sequence as long as the length of the active path

currently selected (values being shifted in are not important).

As highlighted in the list of faults excited by each configuration (see Table 2),

the configurations [C0, C8, C15] allow detecting all faults in the network. The list of

vectors corresponding to such list of configurations is composed as follows:

(1) tv1 in C0 (shift of 23+2+2 bits)

(2) cv1 from C0 to C8 (shift of 2 bits, then update)

(3) tv2 in C8 (shift of 23+9+2 bits)

(4) cv2 from C8 to C15 (shift of 9 bits, then update)

(5) tv3 in C15(shift of 23+23+2+23 bits)

If a cost of 5 clock cycles is considered to move the TAP controller from shift

to update and vice-versa (also including the first shift after the network reset), the

above test sequence is executed in 168 clock cycles.

The order in which configurations appear in the list is important and results in

different vectors generated by the Transition function. For example, let us consider

the same set of configurations as in the previous example but listed in a different

order: [C0, C15, C8]. In this case, the list of vectors composing the test sequence is

the following:

Evolutionary RSN Test 9

Table 2. List of faults excited by the RSN in Fig. 3.

Configuration Set of covered faults

C0

SIB1-s@A, SIB3-s@A
C1

C4

C5

C2

SIB1-s@A, SIB3-s@D
C3

C6

C7

C8 SIB1-s@D, SIB2-s@A, SM1-s@1, SIB3-s@A

C9 SIB1-s@D, SIB2-s@A, SM1-s@0, SIB3-s@A

C10 SIB1-s@D, SIB2-s@A, SM1-s@1, SIB3-s@D

C11 SIB1-s@D, SIB2-s@A, SM1-s@0, SIB3-s@D

C12 SIB1-s@D, SIB2-s@D, SM1-s@1, SIB3-s@A

C13 SIB1-s@D, SIB2-s@D, SM1-s@0, SIB3-s@A

C14 SIB1-s@D, SIB2-s@D, SM1-s@1, SIB3-s@D

C15 SIB1-s@D, SIB2-s@D, SM1-s@0, SIB3-s@D

(1) tv1 in C0 (shift of 23+2+2 bits)

(2) cv1 from C0 to C8 (shift of 2 bits, then update)

(3) cv2 from C8 to C15 (shift of 9 bits, then update)

(4) tv2 in C15(shift of 23+23+2 bits)

(5) cv3 from C15 to C8 (shift of 23 bits, then update)

(6) tv3 in C8 (shift of 23+9+2+9 bits).

The above test sequence has the same fault coverage of the previous example

but is longer to execute (182 clock cycles). Moreover, it can be noticed that the

configuration C8 is visited twice before applying a test vector (tv3).

3.2. Transition function

The Transition function computes the sequence of configuration vectors able to

move the network state from the starting configuration to a target one with minimal

configuration cost (Algorithm 1).

The configureBranch function composes the portion of the next state that

is required to configure each multiplexer in the current branch towards the tar-

10 R. Cantoro, A. Damljanovic, M. Sonza Reorda, G. Squillero

Algorithm 1 Transition function

function Transition(Csrc, Cdst)

p← () . Empty sequence of inputs

Cnext ← Csrc

hasNext← true

while next do

hasNext← configureBranch(Csrc, Cnext, Cdst, 0, confBits)

if hasNext then

Append Cnext to p

return p

get state (Algorithm 2). First, the total number of steps required to configure a

multiplexer is calculated taking into account the target state of sub-hierarchical

multiplexers it controls. Then, the maximum number of steps for all multiplexers

in a given branch is set as a number of steps required to configure that branch. Sub-

sequently, all multiplexers that require the highest number of configuration steps

are immediately configured to match the target state. Conversely, the ones that

do not, are configured to match the minimal possible length configuration start-

ing from the higher hierarchical levels so that the previously calculated number of

required configurations is not affected.

Algorithm 2 Configuring the branch for next configuration

function configureBranch(Csrc, Cnext, Cdst, start, end)

branchSteps← branchConfigSteps . num. of steps for conf. branch

i← start . scanning the branch

while i < end do

configureBranch

Mux← {multiplexer controlled by i configuration bit}
if Mux not accessible then

continue

muxSteps← muxConfigSteps . num. of steps for conf. mux

if branchSteps > 1 and muxSteps < branchSteps then

hasNext|= minimizeMux(Csrc, Cnext, Cdst,Mux) . some state var.

on mux branches need to be conf.

else if muxSteps = branchSteps then

hasNext|= configureMux(Csrc, Cnext, Cdst,Mux)

i← next top level multiplexer

return hasNext

The function configureMux composes the portion of next state needed to

configure the given multiplexer toward the target state. First, it recursively com-

Evolutionary RSN Test 11

poses the next state configuration for the selected branch of the multiplexer. Then

it composes the next state that the multiplexer itself must assume, selecting the

shortest branch that still needs to be configured. The function returns true if some

of the state variables in the multiplexer branches still need to be configured, false

otherwise. When multiple branches of the multiplexer have to be configured, these

are configured in the order of their current scan path length in order to minimize

the cost of switching between these branches.

The function minimizeMux composes the portion of the next state needed to

configure the given multiplexer toward its minimal length configuration. However,

often imposing the minimum length configuration on the multiplexer may result in

changing (increasing) the maximum number of steps required to reach the target

state. Therefore, first it calculates which branch should be configured to minimize

the multiplexer length. Then it configures the multiplexer and its branches to match

the target configuration. If the new selection of the branch corresponds to the

minimum length branch, the length of that branch is minimized. Otherwise, the

branch with the minimum length is selected. The function returns true if some

of the state variables on the multiplexer branches still need be configured, false

otherwise.

3.3. Evolutionary algorithm

The proposed approach exploits an evolutionary meta-heuristic to identify a

test sequence which minimizes the test cost while guarantying the full test

coverage. A population of individuals is cultivated by the evolutionary engine;

each individual corresponds to a variable-length sequence of valid configurations

{Ct0, Ct1, Ct2, ..., Ctk−1}.
Individuals are evaluated by a separated evaluation engine that provides the

evolutionary engine with the fitness values of each individual. In more details, the

evaluation engine:

(1) applies the Evaluation function to the list of configurations and computes the

fault coverage;

(2) generates the test sequence, composed of configuration vectors obtained by

applying the Transition function between consecutive configurations in the list,

and test vectors {Ct0, {C0i}, Ct1, {C1i}, Ct2, {C2i}, ..., Ctk−1}; then, it computes

the cost in terms of time (number of clock cycles) needed to execute the latter

sequence.

The evolutionary framework is given in Fig. 4. In the proposed flow, the fitness of

an individual is composed of two components: the fault coverage and the inverse

of the test cost. These components are considered lexicographically: if the fault

coverage is higher, the fitness is higher, independently from the test costs.

At the beginning of the evolution, a population of np random individuals is

generated. Then, in each step, called generation, the population is first expanded,

12 R. Cantoro, A. Damljanovic, M. Sonza Reorda, G. Squillero

DDECS 2018 19

μGP core

Population

Evolutionary engine

Individual

RSN

Fitness

Evaluation engine
Ct0, Ct1, Ct2, ..., Ctk-1

Custom tool

Transition

Evaluation

Ct0,{Coi},
Ct1, {C1i},
Ct2, {C2i},
...,
Ctk-1

[coverage[%], K/ time[cc]]

Fig. 4. Evolutionary framework.

then shrunk back to its original size.

During the expansion, no genetic operators are activated and the generated

offspring is added to the population, in a steady-state approach. Genetic operators

include the standard mutation operators, that generate a new candidate solution

by slightly modifying an existing one, and crossover operators, that generate a

new candidate solution by recombining two existing solutions. Then the evaluation

engine is used to assess the fitness of all the new individuals. Finally, the least fit

individuals are discarded, shrinking the size of the population down to the original

np.

The process is iterated until a steady state is detected. That is, the fittest

individual in the population does not change for a given number of generations.

Such a condition intuitively indicates that a local optimum has been reached.

Alternatively, some individuals able to cover all faults can be directly inserted

in the initial population. This technique, called seeding, is likely to speed up the

evolutionary process: the optimizer is only asked to reduce the cost and not to

saturate the fault coverage first. However, the offspring of these few initial indi-

viduals could take over the entire population quickly, bringing the algorithm into

a local optimum. The experimental analyses suggest using seeding only when it is

particularly hard to reach the full test coverage of the considered RSN.

3.4. Individual encoding

Each individual created by the evolutionary engine consists in a sequence of config-

urations. Since a configuration is determined by values in the selection bits of each

reconfigurable element in the RSN, it can be represented by a bit-string. Individuals

are thus files composed of multiple bit-strings.

The evolutionary engine creates individuals which are structured as described

in a constraint library. The constraint library is also saved in a file and contains

one or more macros, each one defining a possible mapping of a bit-string in the

individual. In other words, in order for an individual to be considered as valid by

Evolutionary RSN Test 13

the evolutionary engine, each of its lines must match one of the macros in the

constraint library.

In the problem in hand, a macro describes which parts of a bit-sting are fixed

to predefined values and others which can be freely modified by the evolutionary

engine. As an example, if the RSN in Fig. 3 is considered, a possible macro in the

constraint library can be “D−−D”, which is satisfied by all configurations in Table 1

having SIB1 and SIB3 de-asserted (“−” means don’t care). If a macro composed of

all don’t care bits is included in the constraint library, then the evolutionary engine

is allowed to define completely random configurations. Such macro will be referred

to as the random macro.

In the proposed methodology, other than the random macro, constrained con-

figurations are extracted using automatic test patterns generation (ATPG) on a

combinational circuit that represents the problem and converted to macros. The

circuit is graphically described in Fig. 5 and receives as input the following values:

(1) as many bits as the number of configuration bits in the RSN (conf in the figure);

(2) as many bits as the number of functional faults in the RSN (faults in the figure).

length = f(conf, faults)

error = g(conf)

conf

faults

length

error

Fig. 5. Combinational circuit used for ATPG.

If one of the input signals of faults is set to 1, then the corresponding fault (e.g.,

SIB1-stuck-at-asserted) is activated.

As output, the circuit produces the following values:

(1) the active path length (length in the figure) in the configuration conf, when one

or more faults are active (i.e., one or more bits of faults are set to 1);

(2) a bit (error in the figure) that alerts when an illegal configuration is used as

the conf value.

The combinational circuit can be written in behavioral VHDL or Verilog by

encoding the truth-table of the active path length function (e.g., as in Table 1).

However, such an approach becomes easily unfeasible due to a high number of

configuration bits or when the RSN is designed using certain patterns (e.g., several

sibling SIBs). The approach we suggest is to build the circuit incrementally while

traversing the RSN hierarchy. The final length can be expressed as a sum of different

contributes associated to TDRs, SIBs, and ScanMuxes. As an example, the final

length of the RSN in Fig. 3 is the sum of the lengths associated to the sub-networks

14 R. Cantoro, A. Damljanovic, M. Sonza Reorda, G. Squillero

controlled by SIB1 and SIB3, respectively. The pseudo-code of the functions length

and error for the example RSN is reported in Algorithm 3.

Algorithm 3 Combinational circuit functions for the RSN in Fig. 3

function length(conf, faults)

if SIB2 is de-asserted or SIB2-s@D then

lengthSIB2 ← 1

else if SIB2 is asserted or SIB2-s@A then

lengthSIB2 ← 1 + 7

else

lengthSIB2 ← 0 . unexpected case

if SM selects 0 or SM-s@0 then

lengthSM ← 3

else if SM selects 1 or SM-s@1 then

lengthSM ← 6

else

lengthSM ← 0 . unexpected case

if SIB1 is de-asserted or SIB1-s@D then

lengthSIB1 ← 1

else if SIB1 is asserted or SIB1-s@A then

lengthSIB1 ← 1 + 2 + lengthSIB2 + lengthSM + 1

else

lengthSIB1 ← 0 . unexpected case

if SIB3 is de-asserted or SIB3-s@D then

lengthSIB3 ← 1

else if SIB3 is asserted or SIB3-s@A then

lengthSIB3 ← 1 + 4

else

lengthSIB3 ← 0 . unexpected case

return lengthSIB1 + lengthSIB3

function error(conf) return 0 . No illegal configurations

In order for the behavioral circuit to be ATPG ready, it is then translated in

structural Verilog by means of logic synthesis. The ATPG process consists in the

following steps:

(1) in order to activate faults internally, the faults input signals are constrained to

the value 0;

(2) in order to generate only valid configurations, the error output signal is con-

strained to the value 0;

(3) the ATPG fault list includes stuck-at-1 faults on the faults input signals, only;

Evolutionary RSN Test 15

(4) X values are used as don’t care bits in the patterns list.

After performing the ATPG, patterns are saved into a text file and translated

into macros and included in the constraint library, such that the evolutionary engine

can freely modify don’t care bits while fixing the other bits to the values reported

in the corresponging pattern.

3.4.1. Alternative encoding

A suitable test vector is shifted-in after reaching each configuration. The Transition

function interconnects the configurations in the list, eventually adding intermediate

configurations where tests are not performed. Therefore, configuration patterns to

reach the configuration Cj from Ci are decided by Transition(Ci, Cj), hence also

intermediate configurations. Since the purpose of the proposed approach is the

minimization of the test time, the Transition function should be able to compute

the minimum cost path from Ci to Cj . Alternatively, if a sub-optimal Transition

function is available, we propose to slightly modify the structure of the individuals

generated by the evolutionary engine.

The alternative encoding consists in adding a flag to each configuration in the

list to indicate whether a test vector should be applied in that configuration or

not. An example of individual for the RSN of Fig. 3 is [C0t, C8f, C12t, C13t], where

t indicates that a test vector is applied after reaching that configuration, and f

the opposite case. The example can be interpreted as the intention to force the

network to pass through the configuration C8, which becomes an intermediate con-

figuration for the transition between C0 and C12. In details, it is like splitting

Transition(C0, C12) into Transition(C0, C8) and Transition(C8, C12). Clearly, the

fault coverage is computed by applying the Evaluation function to the configura-

tions that are marked with t, only. This is because faults excited by intermediate

configurations are potentially excited but not explicitly observed.

Using the proposed modification, the problem of finding the best path to a

configuration that requires a test vector is partially delegated to the evolutionary

engine. Clearly, the problem becomes more complex compared to when an optimal

Transition function is used; thus, the progression of the evolution becomes slower.

3.5. Post-processing techniques

Two post-processing techniques are proposed in order to reduce the test cost of the

sequence generated resorting to the evolutionary algorithm described in Section 3.3.

They can be applied on the provided test sequence independently, if necessary.

The first one is used to process the full list of configurations in which test is per-

formed and configurations that are exclusively used to interconnect the latter ones.

The function reads the list in the reverse order (from end to beginning) and tries

to advance the last test vector by appending it next to one of the preceding inter-

mediate transition configurations (Algorithm 4); by doing so, all the configuration

16 R. Cantoro, A. Damljanovic, M. Sonza Reorda, G. Squillero

T

C + T

C + T

C

C

T

C + T

C + T

C + T

C

Fig. 6. Post-processing I

Algorithm 4 Bottom-up approach for moving the test states

function postproc1(S)

nextState← true

U ← S

while nextState do

Evaluate(U, faultC, costT) . calculate fault coverage and test cost

minCost← costT

bestSeq ← U

nextState← false

U ← U{ remove last Test vector}
for si ∈ {U} do

if si is Configuration then

H ← U{insert Test vector at i position}
H{remove excessive Configuration vectors}
Evaluate(H,nfaultC, ncostT)

if nfaultC = 100% then . check coverage

if ncostT < minCost then . check cost

minCost← ncostT . update cost, save new sequence

bestSeq ← H

nextState← true

U ← bestSeq

return U

vectors required previously to reach the last test state from the penultimate one can

be discarded including the last test vector (Fig. 6). Consequently, removing them,

the number of clock cycles required to apply the generated test sequence is directly

reduced. The condition for advancing such test vector is that the fault coverage

has to remain unchanged while the test cost of the modified sequence should be

reduced. If the last test vector is successfully anticipated, the algorithm continues

Evolutionary RSN Test 17

checking the updated test sequence. This operation is performed until it becomes

impossible to satisfy the condition and move forward currently last test vector in

the modified test sequence.

T0

C10 + T1

C22 + T2

C20

C21

C31 + T3

C30

{T0, T1, T2, T3}

C02
’ + Ta1

C01
’ + Ta0

{T1, T2, T3}

C10 + T1

C20 + Ta2

C22 + T2

C21 + Ta3

C31 + T3

C30 + Ta4

{Ta1, T1 , T2, T3}

Fig. 7. Post-processing II, first test vector removed

T0

C10 + T1

C22 + T2

C20

C21

C31 + T3

C30

{T0, T1, T2, T3}

T0

{T0, T1, T3}

C20
’’+ Tb0

C22
’’+ Tb2

C23
’’+ Tb3

C21
’’+ Tb1

C31 + T3

C10 + T1

{T0, T1, Tb1, T3}

Fig. 8. Post-processing II, third test vector removed

The second technique is used to perform modifications on the test vector set

(Algorithm 5). For each test vector in the list, a new (reduced by one) list is

generated excluding that particular vector. The new list is generated by applying the

Transition function on all pairs of consecutive test vectors to insert interconnecting

configuration vectors. All of the configuration vectors are considered as potential

candidates to be followed by a test vector, based on the set of faults they cover.

After traversing the whole list to find potential points of test vector insertion,

the newly generated list is evaluated and recorded only if the fault coverage is

unchanged (100%) while the test cost is reduced with respect to the one previously

18 R. Cantoro, A. Damljanovic, M. Sonza Reorda, G. Squillero

Algorithm 5 Removing test states and trying to insert new ones with reduced

cost
function postproc2(T)

CT ← T{apply Transition()} . interconnect Test vect. with Conf. vect.

Evaluate(CT, faultC, costT) . calculate fault coverage and test cost

minCost← costT

bestSeq ← T

hasNext← true

while hasNext do

hasNext← false

for ti ∈ {bestSeq} do

U ← bestSeq{remove ti test vector } . remove one Test vector

FSet← U{set of faults covered by set of Test vectors}
TList← U{apply Transition()} . add interconnecting Conf.

NTList← ()

for si ∈ TList do

if si is Configuration then . among Conf. vect. try to

if Faults(si) \ FSet 6= ∅ then . insert Test vect. to increase

Append si to NTList . fault coverage

else

Append si to NTList

Evaluate(NTList, nfaultC, ncostT) . evaluate new Test vect. list

if nfaultC = 100% then

if ncostT < minCost then . save the better solution

minCost← ncostT

bestSeq ← NTList

hasNext← true

return bestSeq

recorded. The process is repeated until no further improvement is possible for a

given sequence of test vectors. The Fig. 7 and Fig. 8 show the algorithm flow and

exemplify how removing different test vectors from the initial list results in having

different interconnected lists and consequently different test sequences. The choice

between the two is driven by the test cost, since the potential solutions with lower

fault coverage are not even considered.

4. Experimental Results

In this section we report some experimental results obtained using the proposed

technique on a sub-set of the ITC16 benchmark networks to show its effectiveness

when compared to the previous approach [13] and the sub-optimal approach based

on the depth-first algorithm [8].

Evolutionary RSN Test 19

The main reason why not all networks from the benchmark set have been con-

sidered is that they contain some constructs that are currently not supported by

our tool. The networks from the evaluation set differ in the number and type of

reconfigurable modules and therefore in the number of configuration bits, hierar-

chical depth etc. All these ITC16 benchmark network characteristics are reported

in Table 3. For each network in column 1 (Network), the columns 2 and 3, give

the total number of reconfigurable modules - number of SIBs and ScanMuxes, re-

spectively. The column Conf. bits represents the total number of bits that can be

used to program all the modules. The Max depth column refers to the maximum

hierarchical depth of the network (for SIB-based networks this value equals to the

maximum number of nested SIBs, according to [10]). The sixth column, labelled

Max path, indicates the length of the scan path with the highest possible number

of scan cells, i.e., flip-flops on it. Finally, the last column Scan cells gives the total

number of bits present in all segments of the network.

The whole framework setup consists of three modules. First, the evolutionary

engine µGP [14] which generates new individuals by applying genetic operators. A

next generation of individuals is created based on the fitness values of the newly

created offsprings. The second module, the evaluator, is written in Java and works

independently. Its role is to provide the complete set of transitions for each of the

individuals calling the Transition function. Additionally, for each of the individuals

generated by the µGP the fitness scores are formed based on the values returned by

Table 3. Benchmark networks list

Network SIB SM
Conf.

bits

Max

depth

Max

path

Scan

cells

Mingle 10 3 13 4 171 270

TreeBalanced 43 3 48 7 5,219 5,581

TreeFlat Ex 57 3 62 5 5,100 5,195

TreeUnbalanced 28 - 28 11 42,630 42,630

a586710 - 32 32 4 42,381 42,410

p22810 270 - 270 2 30,356 30,356

p34392 - 96 96 4 27,899 27,990

q12710 27 - 27 2 26,185 26,185

t512505 159 - 159 2 77,005 77,005

N132D4 39 40 79 5 2,555 2,991

N17D3 7 8 15 4 372 462

N32D6 13 10 23 4 84,039 96,158

N73D14 29 17 46 12 190,526 218,869

NE600P150 207 194 401 78 23,423 28,250

NE1200P430 381 430 811 127 88,471 108,148

20 R. Cantoro, A. Damljanovic, M. Sonza Reorda, G. Squillero

the Evaluation function that calculates the fault coverage and the number of clock

cycles required to apply the generated test sequence. The tool is able to read a file

containing the network description in various formats, including the ICL. Finally,

a separate tool is developed in Java and can be optionally used to further reduce

the test cost by manipulating the best individual created by the µGP.

The experiments were run on a server equipped with a dual Intel Xeon CPU

E5-2680 v3 and 256 GB of RAM (evolutionary phase) and on a laptop with dual

Intel i5-7200U CPU and 8GB of RAM (post-processing phase). The server was used

to run the evolutionary engine and perform evaluations for each of the individuals,

while the laptop was used to perform the post-processing. To emphasize, the reason

behind running the evolutionary and post-processing algorithms on two different

platforms is not necessity, but commodity, since the algorithms have been developed

in different environments. Additionally, the post-processing phase does not require

large amount of RAM so there was no obvious advantage of running this task on

the server as well. However, if this phase is executed on the server, wall-clock time

would be conservatively reduced up to five times.

For each benchmark RSN, the sub-optimal approach based on the depth-first

algorithm that traverses the RSN isomorphic graph structure has been executed (it

requires a single run). The depth-first approach is very efficient in terms of time

and requires few seconds to complete. The evolutionary approach has also been run

on each benchmark and compared with the depth-first approach. The experiments

executed on the server have been parallelized using up to 8 cores.

The µGP parameters were configured as follows: np set to 200, no set to 120,

while a steady state of 500 generations was chosen. Concerning genetic operators,

the following mutation operators have been enabled: insertion, removal, replace-

ment, alteration, swap; and for crossover: one-point precise/imprecise, two-point

precise/imprecise, inver-over [15].

The initial population is composed of:

• individuals that may contain random configurations (due to random macro);

• apart from random configurations, individuals may contain partially pre-defined

configurations, i.e., in this case configurations generated by the ATPG approach

• an individual with a sub-optimal solution (depth-first) that has been directly

inserted into the population - seeding.

Table 4 provides experimental results and is organized as follows: the evolution-

ary segment including columns 2-8 reports results regarding the evolutionary stage,

while the second, post-processing segment (columns 9-12) provides results obtained

by employing described post-processing techniques. For each of the benchmark net-

works, the wall-clock time (in hours) required by the evolutionary algorithm to reach

the steady state is given in column 2 (Wall-clock time). The column 3 (#macros)

reports the total number of macros defined in a constraint file for each of the net-

works. The number of evaluated individuals and the number of generations used

by the evolutionary algorithm are given in columns 4 (Eval.ind.) and 5 (Gen.),

Evolutionary RSN Test 21

respectively. Then, the number of configuration (#conf) and test (#test) vectors

as well as the total time in clock cycles (Test time) required to apply the test se-

quence delivered by the evolutionary algorithm are reported in columns 6-8. The

wall-clock time for post-processing to be applied is reported in column 9 of the same

table. After running post-processing algorithm on the test sequence generated by

the evolutionary engine, a potentially modified sequence is obtained for which the

number of configuration (#conf) and test (#test) vectors are given in columns 10

and 11, respectively. The total time (number of clock cycles) needed to apply the

aforementioned sequence is contained in column 12 (Test time).

A comparison between the presented approach and the two previously described

approaches (the evolutionary approach [13] and the depth-first approach [8]) is

given in Table 5. For all of the three approaches the table reports the number of

configuration vectors (#cv) and the number of test vectors (#tv), as well as the

total time in clock cycles required to apply the generated sequence (Test time).

In addition, the results obtained resorting to the proposed approach have been

confronted with the results from [8] and [13]. The numbers are given in percentages

in the last two columns, respectively; they are calculated based on how much is

the new Test time reduced with respect to the previous results. The same data

regarding the comparison is represented visually in the form of a chart in Fig. 9.

Applying the generated test sequences results in achieving full test coverage, i.e.,

100%, given the adopted fault model. Furthermore, by only rewriting the Transi-

tion function which is used to generate the configuration vectors between two test

steps we were able to achieve up to 27% decrease in total test cost for 6 out of 16

benchmark networks when compared to the depth-first approach. In some cases,

due to the size and complexity of the networks, seeding the population with the

sub-optimal solution individual has led the evolutionary algorithm to saturate the

population, thus not improving the inserted sub-optimal solution. However, in-

troducing the described post-processing methods led to a further decrease of the

total test cost for the remaining circuits, i.e., in total in 14 out of 16 cases. The

post-processing has shown to be highly effective even for the two large networks

(NE1200P430 and NE600P150). The results for the networks with low hierarchical

depth have not been particularly influenced (small improvement or none) by the

new technique, probably due to their low hierarchical depth and small number of

test vectors. In these cases, the depth-first approach has most likely produced the

solution close or equal to the global optimum. Additionally, here we report only

basic statistical qualifiers such as minimum, maximum and median values of time

reduction due to the limited and insufficient number of benchmark networks. When

the proposed approach is confronted to [8], the latter values are 0%, 27% and 10.1%,

respectively; when compared to [13], 0%, 26.6% and 7.1% values are derived.

22 R. Cantoro, A. Damljanovic, M. Sonza Reorda, G. Squillero

Fig. 9. Reduction chart [%]

5. Conclusions

The present article addresses the issue of minimizing the time required to test

the reconfigurable modules in IEEE 1687 RSNs. The proposed methodology is pri-

marily based on evolutionary computation. Additionally, the problem of finding

suitable test configurations has been converted into a circuit suitable for applying

the automatic test pattern generation procedure. An optimized transition function

and some techniques for post-processing the solution delivered by the evolutionary

engine have also been presented. Experimental results on the standard set of bench-

mark networks show the effectiveness of the proposed approach, since the test time

has been reduced up to 27% in 14 out of 16 cases, particularly impacting the test

time for large networks.

Acknowledgements

The work has been partially supported by the European Commission through the

Horizon 2020 RESCUE-ITN project under the agreement No. 722325. The authors

want to thank Luigi San Paolo for the environmental setup and the preliminary

experiments.

Evolutionary RSN Test 23

T
a
b

le
4
.

E
x
p

er
im

en
ta

l
re

su
lt

s
o
n

th
e

IT
C

’1
6

b
en

ch
m

a
rk

n
et

w
o
rk

s

ev
o
lu

ti
o
n

a
ry

p
o
st

-p
ro

ce
ss

in
g

N
et

w
or

k
W

al
l-

cl
o
ck

ti
m

e
[h

]
#

m
ac

ro
s

E
va

l.

in
d

.
G

en
.

#
co

n
f

#
te

st
T

es
t

ti
m

e
[c

c]

W
a
ll

-c
lo

ck

ti
m

e
[m

in
]

#
co

n
f

#
te

st
T

es
t

ti
m

e
[c

c]

M
in

gl
e

8
13

49
,1

69
5
7
6

6
7

2
,1

3
5

<
1

6
7

2
,0

1
4

T
re

e
B

al
an

ce
d

6
47

43
,9

14
5
0
0

7
8

6
9
,3

6
9

<
1

7
8

6
3
,8

4
3

T
re

eF
la

t
E

x
13

38
34

,9
31

1
,1

7
8

22
6

5
2
,0

86
<

1
22

6
5
2
,0

8
6

T
re

eU
n
b

al
an

ce
d

5
31

31
,3

29
8
1
8

1
7

1
2

1
,0

26
,3

3
3

<
1

12
1
2

1
,0

2
1
,0

2
3

a5
86

71
0

15
14

49
,1

29
5
0
0

5
5

2
9
9
,6

2
4

<
1

5
5

2
9
8
,2

1
0

p
22

81
0

32
78

21
,0

01
50

0
2

3
1
5
2
,9

3
7

1
2

3
1
5
2
,3

9
9

p
34

39
2

68
32

26
,2

92
1
,0

6
9

5
5

1
9
6
,2

2
3

<
1

5
5

1
9
6
,1

2
8

p
93

79
1

27
48

29
,9

32
50

0
4

5
7
0
8
,8

7
8

1
4

5
7
0
6
,2

4
2

q
12

71
0

24
16

19
,9

00
5
0
0

2
3

1
3
1,

0
2
2

<
1

2
3

1
3
1
,0

2
2

t5
12

50
5

8
40

21
,2

79
5
0
0

2
3

3
8
6
,0

2
4

<
1

2
3

3
8
5
,4

4
0

N
13

2D
4

3
46

47
,1

77
5
5
2

5
6

38
,7

3
1

<
1

5
6

3
1
,6

4
5

N
17

D
3

7
15

59
,3

84
5
0
9

4
5

3
,8

41
<

1
4

5
3
,7

9
7

N
32

D
6

3
15

36
,7

86
4
1
9

4
5

9
04

,9
7
4

<
1

4
5

8
5
6
,4

0
6

N
73

D
14

2
36

34
,0

75
7
7
4

1
4

1
3

6
,0

7
8
,8

6
8

<
1

13
1
3

4
,7

6
2
,1

5
0

N
E

12
00

P
43

0
78

31
7

48
,9

02
5
0
0

1
2
7

1
2
8

2
1
,5

1
5
,7

0
5

4
k

12
7

1
2
8

1
6
,1

3
1
,1

7
1

N
E

60
0P

15
0

19
28

6
45

,8
57

5
0
0

7
8

7
9

3
,7

2
6
,7

2
6

1
8
0

78
7
9

2
,7

3
5
,0

1
6

24 R. Cantoro, A. Damljanovic, M. Sonza Reorda, G. Squillero

T
a
b

le
5
.

C
o
m

p
a
ri

so
n

o
f

th
e

ex
p

er
im

en
ta

l
re

su
lt

s
w

it
h

th
e

a
p

p
ro

a
ch

es
fr

o
m

[8
]

a
n

d
[1

3
]

.

D
ep

th
-fi

rs
t

[8
]

E
vo

lu
ti

on
ar

y
[1

3]
P

ro
p

os
ed

ap
p

ro
a
ch

C
om

p
a
ri

so
n

N
et

w
or

k
#
cv

#
tv

T
es

t

ti
m

e
[c

c]
#
cv

#
tv

T
es

t

ti
m

e
[c

c]
#
cv

#
tv

T
es

t

ti
m

e
[c

c]

T
es

t
ti

m
e

re
d

u
ct

io
n

v
s.

[8
]

T
es

t
ti

m
e

re
d

u
ct

io
n

v
s.

[1
3
]

M
in

gl
e

6
7

2,
2
82

6
7

2,
07

8
6

7
2,

0
14

1
1.

7
%

3
.1

%

T
re

e
B

al
a
n

ce
d

7
1
0

69
,3

6
9

7
8

69
,3

69
7

8
6
3,

8
43

8
.0

%
8.

0%

T
re

eF
la

t
E

x
5

6
7
1,

3
41

22
6

55
,7

7
6

16
6

52
,0

8
6

27
.0

%
6
.6

%

T
re

eU
n
b

al
an

ce
d

11
12

1
,0

7
1,

79
9

1
2

12
1,

04
2,

4
50

17
12

1
,0

21
,0

2
3

4
.7

%
2.

1%

a5
86

71
0

4
5

2
99

,6
2
4

5
5

29
8,

24
1

5
5

2
98

,2
1
0

0.
5%

0
.0

%

p
2
28

10
2

3
1
52

,9
3
7

2
3

15
2,

9
37

2
3

1
52

,3
9
9

0.
4%

0
.4

%

p
3
43

92
4

5
1
96

,7
0
2

5
5

19
6,

5
05

5
5

1
96

,1
2
8

0.
3%

0
.2

%

p
9
37

91
4

5
7
08

,8
7
8

4
5

70
8,

8
78

4
5

7
06

,2
4
2

0.
4%

0
.4

%

q
12

71
0

2
3

1
31

,0
22

2
3

13
1,

02
2

2
3

1
31

,0
22

0
.0

%
0.

0
%

t5
1
25

05
2

3
38

6
,0

24
2

3
38

6,
02

4
2

3
38

5
,4

40
0
.2

%
0
.2

%

N
13

2D
4

5
6

3
8,

73
1

5
6

37
,2

5
7

5
6

31
,6

45
18

.3
%

1
5.

1
%

N
17

D
3

4
5

4
,1

43
4

5
3,

85
1

4
5

3
,7

9
7

8
.4

%
1.

4%

N
32

D
6

4
5

9
4
2,

47
0

4
5

89
3,

01
7

6
5

8
5
6,

40
6

9
.1

%
4
.1

%

N
73

D
14

1
2

13
5,

97
8,

0
47

13
13

5,
96

7,
13

7
13

13
4,

76
2,

1
50

20
.3

%
20

.2
%

N
E

12
00

P
43

0
12

7
1
28

2
1,

5
15

,7
05

12
7

12
8

21
,5

15
,7

05
1
28

12
8

16
,1

3
1,

17
1

25
.0

%
25

.0
%

N
E

60
0P

15
0

7
8

7
9

3,
7
26

,7
2
6

78
79

3,
72

6,
72

6
78

79
2,

7
35

,0
16

2
6.

6
%

2
6.

6%

Evolutionary RSN Test 25

References

1. IEEE standard for access and control of instrumentation embedded within a semi-
conductor device, IEEE Std 1687-2014 (Dec 2014) 1–283.

2. IEEE standard for test access port and boundary-scan architecture, IEEE Std 1149.1-
2013 (Revision of IEEE Std 1149.1-2001) (May 2013) 1–444.

3. F. G. Zadegan, U. Ingelsson, G. Carlsson and E. Larsson, Design automation for IEEE
p1687, in Design, Automation & Test in Europe Conference & Exhibition (DATE),
2011 , IEEE2011, pp. 1–6.

4. K.-J. Lee and M. A. Breuer, A universal test sequence for cmos scan registers, in
Proceedings of the IEEE 1990 Custom Integrated Circuits Conference, IEEE1990, pp.
28–5.

5. S. Maka and E. J. McCluskey, Atpg for scan chain latches and flip-flops, in 1997 15th
IEEE VLSI Test Symposium (VTS), IEEE1997, pp. 364–369.

6. F. Yang, S. Chakravarty, N. Devta-Prasanna, S. M. Reddy and I. Pomeranz, On the
detectability of scan chain internal faults an industrial case study, in 2008 26th IEEE
VLSI Test Symposium (VTS), IEEE2008, pp. 79–84.

7. A. T. Dahbura, M. U. Uyar and C. W. Yau, An optimal test sequence for the
JTAG/IEEE P1149.1 test access port controller, in IEEE International Test Con-
ference, 1989. Proceedings. Meeting the Tests of Time., IEEE1989, pp. 55–62.

8. R. Cantoro, M. Montazeri, M. Sonza Reorda, F. G. Zadegan and E. Larsson, On the
testability of IEEE 1687 networks, in 2015 IEEE 24th Asian Test Symposium (ATS),
IEEE2015, pp. 211–216.

9. R. Cantoro, M. Palena, P. Pasini and M. Sonza Reorda, Test time minimization
in reconfigurable scan networks, in 2016 IEEE 25th Asian Test Symposium (ATS),
IEEE2016, pp. 119–124.

10. A. Tšertov, A. Jutman, S. Devadze, M. Sonza Reorda, E. Larsson, F. G. Zadegan,
R. Cantoro, M. Montazeri and R. Krenz-Baath, A suite of IEEE 1687 benchmark
networks, in 2016 IEEE International Test Conference (ITC), 2016, pp. 1–10.

11. D. Ull, M. Kochte and H. J. Wunderlich, Structure-oriented test of reconfigurable
scan networks, in 2017 IEEE 26th Asian Test Symposium (ATS), IEEENov 2017, pp.
127–132.

12. A. Eiben and J. Smith, Introduction to Evolutionary Computing (Springer Berlin
Heidelberg, 2015).

13. R. Cantoro, L. San Paolo, M. Sonza Reorda and G. Squillero, An evolutionary tech-
nique for reducing the duration of reconfigurable scan network test, in 2018 IEEE 21st
International Symposium on Design and Diagnostics of Electronic Circuits Systems
(DDECS), IEEEApril 2018, pp. 129–134.

14. E. Sanchez, M. Schillaci and G. Squillero, Evolutionary Optimization: the µGP toolkit
(Springer Science & Business Media, 2011).

15. Genetic operators https://sourceforge.net/p/ugp3/wiki/Genetic%20operators/.

	Introduction
	Background
	Overview of RSNs
	Test of RSNs

	Methodology
	Basics
	Transition function
	Evolutionary algorithm
	Individual encoding
	Alternative encoding

	Post-processing techniques

	Experimental Results
	Conclusions

