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On the Spectral Behavior and Normalization of a
Resonance-Free and High-Frequency Stable Integral

Equation
Tiffany L. Chhim†*, Simon B. Adrian‡, and Francesco P. Andriulli†1

†Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
‡Department of Electrical and Computer Engineering, Technical University of Munich, Munich, Germany

Abstract—The combined field integral equation (CFIE) used
for solving scattering and radiation problems, although a
resonance-free formulation, suffers from an ill-conditioning that
strongly depends on the frequency and discretization density,
both in the low- and high-frequency regime, resulting in slow
convergence rates for iterative solvers. This work presents a
new preconditioning scheme for the CFIE that cures the low-
and the high-frequency as well as the dense discretization
breakdown. The new preconditioner for the CFIE is based on a
spherical harmonics analysis and the proper regularization with
Helmholtz-type operators. Numerical results have been obtained
to prove the effectiveness of this new formulation in real scenarios.

I. Introduction
The combined field integral equation (CFIE), which is com-

monly used to solve scattering and radiation problems, suffers
from the low-frequency, the dense-discretization, and the high-
frequency breakdowns: the condition number of the system
matrix, when the frequency is decreased (low-frequency break-
down, mesh is unchanged), when the mesh is refined (dense-
discretization breakdown, frequency is unchanged), or when
the frequency is increased (high-frequency breakdown) while
keeping the average edge length h of the mesh a fixed fraction
of the wavelength (typically h ≈ λ/10).

In fact, the CFIE inherits these defects from the electric field
integral equation (EFIE) and magnetic field integral equation
(MFIE) operators, which are combined to the CFIE, a com-
bination which is necessary since each of these two operators
alone suffers from interior resonances leading to nonphysical
solutions. The low-frequency breakdown of the EFIE has been
solved first many decades ago [1], and the dense-discretization
breakdown was solved first with the advent of Calderón
preconditioning [2]. While the high-frequency breakdown was
typically tackled with algebraic preconditioners, only recently
schemes have been presented which strive to obtain a bounded
condition number for the asymptotic limit k → ∞, with kh
constant, where k is the wave number.

The high-frequency breakdown has been typically tackled
with algebraic preconditioners, for example, based on in-
complete LU decompositions or sparse approximate inverses.
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While these methods can reduce the condition number and
thus the number of iterations required by an iterative solver to
converge, they cannot prevent that the condition number grows
unboundedly for the asymptotic limit. After the first seminal
contributions in [3], more recent contributions have been
presented which obtain obtain a bounded condition number in
the asymptotic limit for specific geometries (see [4], [5] and
references therein). Previous approaches have been leveraging
on either square roots of differential operators or on variations
of Calderon identities results. This however, resulted in either
the need to use operator square root approximations or in
the need for new dense operator discretizations. At the same
time, the importance, for the harmonic subspace treatment, of
symmetrizing both the electric and the magnetic part has been
shown [5].
This work presents a novel strategy to the high-frequency

preconditioning of already resonance-free equations. We lever-
age on the full Helmholtz operator properly combined with
layer potential and with a symmetrizing factor on the magnetic
part. The result is an effective approach resulting in minimal
overhead with respect to a non-preconditioned scenario and
which will be compatible with an harmonic regularization. Our
equation will be resonant-free and will exhibit a low condition
number that stays constant at all frequencies and any mesh
discretization. In this paper we apply the strategy to a 2D
case where we show its effectiveness via an exact eigenvalue
analysis.

II. Background and Notation
In the following we consider equations for TM polariza-

tion; results for TE polarization can be obtained analogously.
Consider a closed surface Γ, the EFIE operator

Tk(J) B
kη
4

∫
Γ
J(r ′)H(2)0 (k |r − r ′ |) dS(r ′) (1)

and the MFIE operator

(I/2 +Kk) (J) B J(r)/2

− j/4 n̂(r) ×

∫
Γ
J(r ′) ∇H(2)0 (k |r − r ′ |) dS(r ′) , (2)

where η =
√
µ/ε is the wave impedance, H(2)0 is the Hankel

function of second kind, I is the identity operator and n̂(r) is
the outward unit normal to Γ at point r .



Combining the EFIE and MFIE operator yields the CFIE
operator

αTk + (1 − α) η (I/2 +Kk) , (3)

where the combination parameter α ∈ (0, 1) (typically chosen
to be 0.5). The choice made in this conference paper of dealing
with 2D TM equations allows us to deliver a CFIE which in
addition of being resonance-free is also low-frequency and
refinement stable. In this way we can focus on the remaining
high-frequency ill-conditioning.

III. The New Formulation

A. Treatment of the EFIE and of the MFIE
The integrative property of the TM-EFIE, which causes

bad conditioning, is usually cancelled by multiplying with a
derivative factor such as the TE-EFIE, which corresponds to
the Calderón identities. Here instead, we will first multiply the
integrative operator by a modified Helmholtz operator

Hkmod (J) =
(
k2
mod + ∆Γ

)
(J) , (4)

where ∆Γ is the surface Laplacian and where we chose
kmod = −k − j0.4k1/3R−2/3 following [3] with R the radius
of the smallest circle encompassing the geometry Γ. This
step will change the nature of the overall product into a
derivative one. We then finalize the preconditioning by a final
multiplication by the initial TM-EFIE operator obtaining

Tkmod Hkmod Tk . (5)

Dually, the MFIE is left-multiplied as follows(
I/2 −Kkmod

)
(I/2 +Kk) . (6)

B. Novel CFIE formulation
The complete equation we propose is obtained by combining

the left-multiplied EFIE and the MFIE to get

cM η2 (I/2 −Kkmod ) (I/2 +Kk) + cE Tkmod Hkmod Tk , (7)

where cM and cE are normalization factors. A spectral asymp-
totic study has been made in order to normalize the equation
and achieve an asymptotic value of 1 for the spectrum. In
order to balance both terms, we seek to obtain a limit of 0.5
for each term in the elliptic regime. This leads to the following
normalizing factors for the MFIE and EFIE terms respectively

cM =
4
η2 , cE =

4
k kmod η2R2 . (8)

IV. Numerical Results

As a benchmark case we have used a 2D circle of radius
R = 1. Fig. 1 corresponds to the spectrum of the standard
CFIE at varying frequencies and clearly shows that, although
the equation is resonant-free, the overall conditioning still
increases as a function of the frequency. The spectrum of our
new equation is displayed in Fig. 2. On top of being resonance-
free and low-frequency and refinement stable, it is also stable
in the high-frequency regime.
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Fig. 1. Circle: spectrum of the unpreconditioned CFIE.
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Fig. 2. Circle: spectrum of the new CFIE formulation.
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