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 Fig.1. Circuit analysis of the DLS inverter gate at a) high and b) low 

output, c) static transfer curve characteristics, d) hysteresis windows 

amplitude over the power supply. 
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Abstract— In this paper, two circuit topologies of pW-

power Hz-range wake-up oscillators for sensor node 

applications are presented. The proposed circuits are based on 

standard cells utilizing the Dynamic Leakage Suppression logic 

style [4]-[5]. The proposed oscillators exhibit low supply 

voltage sensitivity over a wide supply voltage range, from 

nominal voltage down to the deep sub-threshold region (i.e., 0.3 

V). This enables direct powering from energy harvesters or 

batteries through their whole discharge cycle, suppressing the 

need for voltage regulation. 

Post-layout time-domain simulations of the proposed 

oscillators in 180nm show a power consumption of 1.4-1.7pW, 

a supply-sensitivity of 55-40%/V over the 0.3V-1.8V supply 

voltage range, and a compact area down to 1,500µm2. The very 

low power consumption makes the proposed circuits very well 

suited for energy-harvested systems-on-chip for Internet of 

Things applications.  

 

Keywords—Relaxation oscillator, wake-up oscillator, pW-

power, Internet of Things, Dynamic Leakage Suppression logic 

I. INTRODUCTION 

The demand for miniaturized and long-lived sensor nodes 
for the Internet of Things (IoT) has led to the necessity of 
integrated systems with extremely low power consumption 
that fits the average power delivered by small energy 
harvesters [1]-[2]. Such low power consumption is typically 
achieved by duty cycling the sensor node, which is 
periodically woken up by oscillators with very low duty 
cycle and oscillation frequency. Due to their very tight power 
budget, such sensor nodes invariably rely on asynchronous 
and event-driven wireless communications [3]. Compared to 
quartz oscillators, this drastically relaxes the frequency 
accuracy and stability (e.g., 10-20%) requirements, enabling 
substantial power savings in the wake-up oscillator. In turn, 
the power consumption of the wake-up oscillator is critical, 
since the oscillator is always on, hence its power represents 
the minimum attainable by the sensor node under heavily 
duty-cycled operation [5]-[8]. For this reason, various wake-
up oscillators with deep sub-nW power have been recently 
proposed [6]-[12]. 

Conventional on-chip wake-up oscillators require 
ancillary circuitry such as current and voltage references, as 
well as voltage regulation. However, the quiescent power of 
current state-of-the-art references/voltage regulators is in the 
order of nWs or higher [13]-[14], and easily exceeds the 
intrinsic power consumption of the oscillator. Accordingly, 
the dismissal of voltage regulation and references is essential 
to truly take advantage of deep sub-nW oscillators [6]-[12]. 

In this paper, two novel and compact wake-up oscillator 
topologies are introduced to achieve low sensitivity to the 
supply voltage at pW-range power consumption, which is the 
lowest reported. The oscillators are based on the dynamic 
leakage suppression (DLS) logic style, which was introduced 
in [4]-[5]. The proposed oscillators can operate with no 
voltage regulator or current reference in a supply voltage 

range from 1.8 V down to 0.3 V, which is the widest 
reported to date. The first topology (AEFF oscillator) targets 
area efficiency and requires a flying capacitor, which in turn 
requires the availability of metal-oxide-metal (MoM) or 
double-poly capacitors in the adopted process. The second 
topology (NOFLY oscillator) does not have any flying 
capacitor, hence the capacitors determining the oscillation 
frequency are grounded, and can be implemented with 
ubiquitously available MOS gate oxide capacitors. 

This paper is structured as follows. The properties of 
DLS logic relevant to the design of oscillators are first 
summarized in Section II. Based on the general concept 
introduced in [6], two novel topologies of DLS-based 
oscillators are introduced in Section III. Design aspects and 
validation are discussed in Section IV. Concluding remarks 
are finally reported in Section V. 

II. CLASS OF WAKE-UP OSCILLATORS BASED ON DYNAMIC 

LEAKAGE SUPPRESSION (DLS) LOGIC 

A. DLS Logic Style 

The Dynamic Leakage Suppression (also known as Ultra-

Low-Power) logic style was introduced in [4]-[5] to 

drastically reduce the standby power of digital standard 

cells, at the cost of substantially degraded speed. In 

particular, the standby power is typically two-three orders of 

magnitude lower than regular transistor leakage (i.e., at zero 

gate-source voltage), and the typical gate delay is in the 

millisecond range. These two combined features make DLS 
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logic very well suited to wake-up oscillator design, as they 

need to be slow (Hz range [6]-[12]) and hence their 

consumption is invariably dominated by the standby power. 

In Subsection B, other relevant and less obvious properties 

of DLS logic will be uncovered.  

As a representative example, the DLS inverter gate is 

sketched in Fig. 1, where the DLS pull-up (MPU) and pull-

down (MPD) transistors are the same as in a standard 

CMOS inverter (same observations hold for any other 

standard cell). In addition, DLS gates include an NMOS 

header transistor MN and a PMOS footer MP, whose gate 

terminal is driven by the cell output, thus creating a 

feedback loop. In turn, this loop is responsible for 

significant standby current reduction and hysteretic 

behavior, as discussed below. 

Regarding the standby current drawn by DLS logic gates, 

Fig. 1a shows that a low input turns off MPD and sets the 

output high, which in turn switches off the PMOS footer 

MP. Since the drain currents of MPD and MP are equal, the 

voltage 𝑉𝑥 of their common node 𝑋 settles to a value that is 

close to VDD/2 [4]-[5]. This translates into a negative gate-

source (source-gate) voltage in MPD (MP) around -VDD/2, 

and hence super-cutoff operation [15]. Dual considerations 

hold for a high input, which leads to super-cutoff operation 

in MN and MPU, as shown in Fig. 1b. Being in the super-

cutoff region, the standby current of DLS logic gates is two 

to three orders of magnitude below the regular leakage 

current. In 180-nm CMOS, the inverter gate standby current 

becomes 10 fA/gate [4] (i.e., about 700X lower than regular 

leakage), and is even lower for other logic gates with 

stacked transistors. 

The positive feedback loop in DLS logic also introduces 

hysteresis in the static transfer characteristics. As shown in 

Fig 1c, the DLS inverter has low (high) input threshold 

VDLS,L  (VDLS,H ) equal to 75 mV (250 mV) at VDD=0.4 V. 

Interestingly, from the plot of the hysteresis thresholds 

versus VDD in Fig. 1d, both DLS thresholds weakly depend 

on  VDD . In detail, the low hysteresis threshold VDLS,L 

exhibits a very low supply sensitivity of 10 mV/V over the 

wide supply voltage range from 1.8 V down to 0.3 V. 

The above interesting properties make DLS logic very 

well suited for wake-up oscillators. First, the current 

delivered to the load by DLS gates is very small (pA range), 

allowing Hz-range operation with small on-chip capacitors, 

and hence low area. Second, the transistor ON current is 

rather insensitive to VDD, and permit to eliminate the voltage 

regulator. Similarly, the hysteresis thresholds of DLS logic 

gates are relatively independent of the supply voltage, and 

can hence be leveraged to create a stable switching 

threshold that sets the oscillation frequency, as routinely 

required by relaxation oscillators. Third, the dominant 

standby current drawn by the DLS logic style is also 

relatively voltage-independent, which avoids the traditional 

drastic increase in the power consumption, when 𝑉𝐷𝐷  is 

increased from sub-threshold to nominal voltage. In the next 

section, these properties of DLS logic will be exploited to 

introduce two novel relaxation oscillators. 

B. Prior Art in DLS-Based Oscillators 

The broad class of oscillators based on DLS logic was 

recently introduced in [7], which leveraged the properties 

discussed in the previous subsection to derive a first 

example of oscillator topology with pW-power. The 

oscillator in [7] is shown in Fig. 3a, where all gates are in 

DLS logic style. The oscillation frequency is set by the 

Metal-on-Metal (MoM) capacitor C. Nodes A and B drive 

the DLS inverter gates G1a-b, and are driven by the outputs 

Q̅ and Q of the latch G3a-b. G3a-b are loaded by G4a-b with 

short-circuited input/output. G4a-b act like inverter gates 

and hence serve as active load of G3a-b, once the terminal 

ENABLE in Fig. 3a is asserted to start the oscillation. The 

size ratio of G3a-b and G4a-b sets the high (low) DC 

voltage VAB,H (VAB,L) of vA and vB, which is 275mV (32mV) 

under minimum-sized gates and VDD=0.4V (see Fig. 4). 

The waveforms of the voltage vA (vB) at node A (B), as 

well as the oscillator output voltage, are reported in Fig. 3b. 

If Q̅ is assumed to be high (Q is assumed to be low) at the 

beginning of a period (t0 in Fig. 2b), vA = VAB,H since G3a 

is pulling Q̅ high and is loaded by G4a (see above). On the 

other hand, vB = VMAX > VAB,H at t=t0, from the analysis at 

the end of the oscillation period (see below). After t0, vB is 

pulled down by the DLS gate G3b, which draws a small 

(3pA) and nearly supply-independent current IDLS  that 

discharges C. During this transient,  vB drops down until it 

crosses the switching threshold VDLS,L of G1b at t=t1 in Fig. 

3b, whereas node A remains “inactive” at the voltage 𝑉𝐴𝐵,𝐻 . 
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Hence, the capacitor voltage at t=t1 becomes vC = vA-vB =

VAB,H-VDLS,L . Right after t1, the low value of vB  and the 

inverting behavior of G1b, G2b and G3b pull Q high, raising 

vB to the G3b high output voltage VAB,H (see t=t2 in Fig. 3b). 

As C maintains the same voltage vC = VAB,H-VDLS,L 

before/after the transition, vA = vB + vC  is pulled up from 

VAB,H  to VMAX = VAB,H + (VAB,H-VDLS,L) > VAB,H . At this 

point, a semi-period T/2 is completed, and a new semi-

period with inverted signals starts (same as above, swapping 

Q and Q̅, vA and vB). A full-swing output OUT is restored by 

the G2a-b latch, and is a square wave with nearly 50% duty 

cycle and period T ≈ 4C(VAB,H-VDLS,L)/IDLS  (constant-

current discharge of C, see Fig. 3b). The period T has low 

sensitivity to the supply voltage since VAB,H, VDLS,L and IDLS 

are all weakly supply-dependent in DLS logic (see Figs. 1d 

and 4b). The power consumption is dominated by the static 

sub-leakage current drawn by transistors, which is again 

rather insensitive to VDD in DLS logic [7]. 

III. PROPOSED DLS-BASED WAKE-UP OSCILLATORS 

In this section, two oscillators belonging to the broad class 

of DLS-based oscillators are explored. 

A. AEFF Oscillator: Area-Efficient Topology 

 The AEFF relaxation oscillator in Fig. 4a eliminates the 

active loads G4a-b to further reduce complexity, the 

associated standby power and to allow full-swing voltage at 

nodes A and B. Moreover, the inverters G1a-b in Fig.2a are 

replaced with NAND gates, equivalent to the inverters G1a-b 

when the ENABLE signal is high. Accordingly, the 

oscillation period in the circuit in Fig. 4a is defined directly 

by the low hysteresis threshold of the NAND gates G1a-b in 

Fig. 4a, which set the lowest voltage at node A and B below 

which the output makes the opposite transition.  

 The comparison of Fig. 2a and Fig. 4a reveals that the 

elimination of G4a-b results in larger voltage fluctuations in 

the “inactive” node between A and B (e.g., A between t0 and 

t1 in Fig. 4a), when the active node between A and B (e.g., B 

between t0 and t1 in Fig. 4a) is instead being pulled down by 

G3a. Also, the voltage swing of nodes A and B increases 

compared to Fig. 2a, which in turn takes more time to 

complete a transition. In turn, this allows operation at even 

lower oscillation frequency at the same capacitance C, 

compared to Fig. 2a. Equivalently, the same (low) oscillation 

frequency is achieved with a smaller capacitor and lower 

area, compared to Fig. 2a. In summary, the area efficiency of 

the AEFF oscillator in Fig. 4a stems from the reduction in 

the area of capacitor C, and only to a minor extent from the 

suppression of the inverter gates. 

B. NOFLY Oscillator: Topology without Flying Capacitor 

 Another topology based on the general concept in [7] is 

presented in Fig. 5a (NOFLY oscillator). In this figure, the 

active loads of the original topology are dropped as in Fig. 

4a. In addition, the flying capacitor C is replaced by two 

grounded capacitors connected at nodes A and B. Unlike the 

circuit in [7] and in Fig. 4a, the grounded capacitors can be 

implemented with MOS capacitors. This is particularly 

beneficial since the NOFLY oscillator does not require MoM 

or double-poly capacitors, as is normally needed to 

implement a flying capacitor. In other words, the NOFLY 

topology in Fig. 5a can be implemented in very low-cost 

processes with very limited metal layers available (which 

would make MoM capacitors impractical, and area-hungry), 

and single poly (since no double-poly capacitors are needed). 

In addition, the ability to operate with simple MOS 

capacitors in Fig. 5a takes advantage of the relatively high 

capacitance per unit area associated with such capacitors, 

which again reduces the area of the capacitor C. 

 In spite of the seemingly limited circuit differences 

between Figs. 2a, 4a and 5a, the operation of the NOFLY 

oscillator is rather different. Indeed, nodes A and B are no 

longer capacitively coupled to each other. As an  

interesting consequence, no voltage boosting of node A (B) 

beyond the logic-high output voltage of G3a-b  occurs in 

Figs. 5a-b during the rising transition of node B (A) at t=t0 , 

as opposed to Figs. 2a and 4a. Accordingly, from Fig. 5b the 

charge and discharge transient of nodes A and B in the 

NOFLY oscillator is pronouncedly much more symmetric 

than in Figs. 2b and 4b. Similar to Fig. 4b, neither A or B is 

really inactive (i.e., relatively constant) at any point of time, 

as opposed to Fig. 2b. 
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IV.  VALIDATION AND PERFORMANCE COMPARISON 

 The wake-up oscillators proposed in Section III were 

designed in 180-nm CMOS, with a relatively small capacitor 

C of 500fF. The oscillators’ performance was analyzed via 

post-layout time-domain simulations. From Fig. 6a, the 

AEFF (NOFLY) oscillator is expectedly slower than the 

oscillator with lowest power to date [7] up to 36% (18%), at 

the same capacitance C. In other words, AEFF and NOFLY 

oscillators need a smaller capacitor than [7], when same 

frequency is targeted. 

 The AEFF and NOFLY oscillators preserve the ability to 

operate from nominal voltage (1.8 V) down to deep sub-

threshold (0.3 V), as in [7] and as opposed to the rest of prior 

art [8]-[12] (see voltage range in Table I). At the same time, 

the proposed AEFF and NOFLY oscillators can be directly 

powered from a harvester without voltage regulation (or 

from a battery across the entire discharge process). Indeed, 

the frequency sensitivity to VDD of AEFF (NOFLY) is only 

14%/V (18%) in the very wide 0.6-1.8V range. This is even 

lower than prior voltage-regulated oscillators [10]-[11] and 

assures an error of only 1%(4%) when VDD fluctuates by 100 

mV, as certainly acceptable in wake-up oscillators[7]-[12].  

 Similarly, Fig. 6b shows a very low sensitivity of the 

current drawn from the supply to VDD, which changes by less 

than 2X when increasing VDD from sub-threshold to nominal 

voltage. This means that the proposed oscillators draw 

approximately the same current from the harvester or battery, 

even if the supply voltage changes drastically. On the 

contrary, the current drawn by conventional CMOS 

oscillators is well known to increase by several orders of 

magnitude, thus requiring again voltage regulation [8]-[12].   

 Fig. 6c and Table I show that the sensitivity to the 

temperature is in line with oscillators employing 

temperature-compensated references [11]. Since such 

references are used in AEFF and NOFLY, from Table I these 

oscillators need to be used in applications where temperature 

fluctuations are limited (e.g., implantables, indoor sensors, 

smart clothing, food supply chain management, and so on). 

In such applications, from Table I the frequency shift is 

comparable or better than prior art [7], [10], [11], and below 

10% under 10% VDD fluctuations. 

The proposed AEFF (NOFLY) oscillator exhibits the 

lowest power to date of 1.4 pW (1.6 pW) at 0.4 V. The 2.5-

2.6X improvement over the previous best in class allows true 

pW-range power consumption, as no additional (and 

typically much greater) power contribution needs to be 

considered thanks to the suppression of voltage regulation 

and reference, as opposed to prior art [8]-[12]. As expected, 

the area is comparable to [7] and 10% lower in the case of 

the AEFF oscillator, and 4-160X lower than other prior art. 

V. CONCLUSION 

In this paper, two DLS-based relaxation oscillator 
topologies were introduced. The AEFF oscillator has the 
lowest area reported to date, whereas the NOFLY oscillator 
can be implemented in low-cost processes with limited metal 
stack and no double-poly option. Both oscillators can operate 
in the very wide voltage range from deep sub-threshold to 
nominal voltage, and achieve the lowest power reported to 
date (1.4-1.6 pW), outperforming the previous best in class 
by 2.5X. Accordingly, the proposed oscillators are well 
suited for miniaturized (e.g., millimeter-sized) energy-
harvested sensor nodes for the Internet of Things.  
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TABLE I. COMPARISON TABLE (BEST PERFORMANCE IN BOLD) 

 
proposed AEFF proposed NOFLY [7] [8] [9] [10] [11] [12] 

Technology [nm] 180 180 180 55 65 65 180 180 

Supply voltage [V] 0.4 0.4 0.4 1.2 0.6 0.5 0.6 1.2 

Power* [pW]  1.4 1.6 4.2 224 124 44.4 4.2 5,800 

Frequency* [Hz] 7 9 11 90 9.3 2.8 18 11 

Voltage range [V] 0.3 - 1.8 0.3 - 1.8 0.3 - 1.8 1.1 to 3.3*** 0.6 to 1.1 0.48 to 0.52 N/A 1.2 to 2.2 

Supply sensitivity [%/V] 14** 18** 0.8** 0.93**** 1.6**** 160**** 50**** 1**** 

Temperature range [°C] -20 to 40 -20 to 40 -20 to 40 -5 to 95 -40 to 120 -40 to 60 -30 to 60 -10 to 90 

Thermal drift**[ppm/°C] 13,000 16,000 20,000 260 1,000 1,260 20,000 45 

Frequency shift @ 10% 

VDD, 5°C  temper. change 
7.9 9.8 10.1 0.22 0.66 16.63 15 0.12 

Area (µm2) 1,500 2,100 1,600 57,000 9,100 6,035 N/A 240,000 

Volt. regulator/temp.-
comp. curr. ref. requires 

NO / NO NO / NO NO / NO YES / YES 
YES / 
YES 

YES / NO YES / YES YES / YES 

* Performed at VDD=0.4V    **On the supply voltage range [0.6 - 1.8V]    *** 3.3V operation is due to thick-oxide transistors    **** Obtained with regulated supply 
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