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ABSTRACT
UAVs are increasingly being employed to carry out surveillance,
parcel delivery, communication-support and other specific tasks.
In certain cases, the same geographical area may be in need of
multiple services, which can be carried out by the same drones. In
this paper, we propose and investigate a joint planning of multitask
missions leveraging a fleet of UAVs equipped with a standard set of
accessories enabling heterogeneous tasks. To this end, an optimiza-
tion problem is formulated yielding the optimal joint planning and
deriving the resulting quality of the delivered tasks. In addition,
a heuristic solution is developed for large-scale environments to
cope with the increased complexity of the optimization framework.
The developed joint planning of multitask missions is applied to
a specific post-disaster recovery scenario of a flooding in the San
Francisco area. The results show the effectiveness of the proposed
solutions and the potential savings in the number of UAVs needed
to carry out all the tasks with the required level of quality.

KEYWORDS
Unmanned Aerial Vehicles; Natural Disasters; Post-Emergency
Monitoring; Fleet Area Coverage; Parcel delivery
ACM Reference Format:
Francesco Malandrino, Cristina Rottondi, Carla-Fabiana Chiasserini, An-
drea Bianco, and Ioannis Stavrakakis. 2019. Multiservice UAVs for Emer-
gency Tasks in Post-disaster Scenarios. In Proceedings of ACM Workshop on
innovative aerial communication solutions for FIrst REsponders network in
emergency scenarios (iFIRE’19). ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.475/123_4

1 INTRODUCTION
The usage of Unmanned Aerial Vehicles (UAVs) to accomplish differ-
ent kinds of tasks in post-disaster recovery scenarios has recently
become the subject of investigation [1]. Fleets of UAVs perform-
ing environmental monitoring [2], dispatching medicines in ru-
ral/hardly accessible areas [3], or ensuring mobile connectivity [4]
have already been envisioned. As a relevant example, UAVs are
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employed in Rwanda to deliver blood packs to 21 hospitals located
in remote and isolated areas on a regular basis, even in the presence
of harsh weather conditions [5].

However, such critical tasks have up to now been considered
in isolation, thus requiring separated fleets with equipment, com-
putational resources, and capabilities dimensioned on the specific
mission to be performed [6]. In this study, we adopt a different
approach and investigate a joint planning of multitask missions
leveraging a fleet of UAVs equipped with a standard set of acces-
sories (i.e., a videomonitoring system [7], a cellular communication
interface and a mounting frame for parcel carriage), which enables
them to perform heterogeneous tasks (i.e., medicine/blood delivery,
aerial monitoring, and mobile coverage).

To show the benefits achieved by the usage of multi-purpose
UAVs, we develop an optimization framework based on Integer
Linear Programming (ILP) to optimally schedule their tasks in a
post-disaster environment and apply it to a scenario of a simulated
flooding event in the San Francisco area, where UAVs depart from
one of the depots surrounding the emergency area and must re-
turn to a depot after completion of their task to change/recharge
batteries. In addition, a heuristic solution is developed for larger
scale environments to cope with the increased complexity of the
optimization framework.

Results show that our heuristic provides a performance closely
approaching the optimum. Furthermore, fully equipping all UAVs,
e.g., providing all of them with cameras and radios, allows for a
greater flexibility that outweighs the resulting lower payload avail-
able for parcel delivery missions, and further increases performance.

2 RELATEDWORK
Beside military and security operations, the usage of UAVs is envi-
sioned in a plethora of civil applications, ranging from agriculture
to environmental monitoring and disaster management (see [8] for
a thorough taxonomy and survey). In the following, we focus on
the three types of tasks encompassed in the scenario under study.

UAV placement for wireless coverage. UAVs can be leveraged in a
number of wireless networking applications, e.g., complementing
existing cellular systems by providing additional capacity where
needed, or to ensure network coverage in emergency or disaster
scenarios (see [9] for a comprehensive overview). Differently from
the works in [9], our model jointly optimizes the scheduling of the
UAV mobility and actions.
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UAV-based post-disaster monitoring systems. As overviewed in
[10], fleets of UAVs operating as distributed processing systems can
be adopted for various monitoring tasks, including, e.g., surveil-
lance, object detection, movement tracking, support to navigation.
A prototype of UAV-based architecture for sensing operations has
been described in [11]. In our paper, we consider a conceptually
similar UAV equipment of hardware and software modules.

UAVs for parcel delivery. Several recent studies have already in-
vestigated optimization strategies for drone-assisted delivery mod-
els (see [12] for a literature review). In particular, variations of the
Travelling Salesman Problem leveraging UAVs for last-mile delivery
have been introduced [13].

3 SYSTEM MODEL AND OPTIMIZATION
PROBLEM

Space and time. Time is discretized into a setK = {k} of epochs,
while space is discretized in a setL = {l} of locationsThe notation1.
The distance between two locations l1, l2 is indicated as v(l1, l2)
(clearly, v(l, l) = 0). Some locations L̄ ⊆ L host depots.

Binary variables λ(d,k, l) indicate whether UAV d is at location l
in epoch k . Clearly, UAVs can only be in one location at a time
and can only travel between locations closer than the maximum
distance V UAVs can cover in an epoch. This translates into the
following constraints:Õ

l ∈L
λ(d,k, l) = 1, ∀d ∈ D,k ∈ K . (1)

λ(d,k, l) ≤
Õ

m∈L : v(m,l )≤V
λ(d,k − 1,m) ∀d ∈ D,k ∈ K, l ∈ L.

(2)

Payload. UAVs have a payload capacity C and can carry zero
or more payload items p ∈ P, each weighting w(p). Examples
of payload items (payloads for short) are blood packs or cameras.
Binary decision variables ω(d,k,p) express whether payload p is
carried by UAV d at time k .Õ

p∈P
w(p)ω(d,k,p) ≤ C, ∀d ∈ D,k ∈ K . (3)

UAV payload can only change at depot locations:

ω(d,k,p) = ω(d,k − 1,p), ∀d ∈ D,k ∈ K,p ∈ K : L(d,k) < L̄.
(4)

(4) implies that we do not account for the fact that some payloads,
e.g., medicine packs, will be dropped somewhere as a part of the
mission. This accounts for the worst-case event that one or more
drops fail, due to a variety of potential reasons (e.g., ground condi-
tions are not adequate for UAV landing): in such a case, UAVs must
have enough energy to bring all payloads back, if need be.

1The notation we use is summarized in Tab. 1. Lower-case Greek letters indicate
decision variables, lower-case Latin ones indicate parameters. Upper-case, calligraphic
Latin letters indicate sets. Upper-case, regular Latin letters with indices indicate a
specific element of the corresponding set, e.g., the location of an UAV. Upper-case,
regular Latin letters without indices indicate design choices, e.g., UAV range, or system-
wide parameters.

Table 1: Notation

Symbol Type Meaning
a(p) ∈ K parameter Earliest epoch at which deliver payload p
b(p) ∈ K parameter Latest epoch at which deliver payload p
C parameter Payload capacity of UAVs
E parameter Battery capacity of UAVs
e(l1, l2) parameter Energy consumed when traveling between loca-

tions l1 and l2, per unit of weight
f (p) ∈ L parameter Location at which payload p shall be delivered
H parameter Horizon over which satisfaction is computed
K set Epochs
L set Locations
L̄ ⊆ L set Locations with depots
L(d , k ) ∈ L Shorthand Location of UAV d at epoch k
M set Non-delivery missions, e.g., coverage or monitor-

ing
n(k ,m, z) parameter Work for missionm needed by users in zone z at

epoch k
q(l ,m, z) parameter Work for missionm that an UAV at location l can

perform for users in zone z , in one epoch k
r (m, p) ∈
{0, 1}

parameter Whether payload p is necessary to perform mis-
sionm

s(m) parameter Data generated by performing one unit of work
of missionm

P set Payload items
P̂ ⊆ P set Payload items to be delivered
t (l1, l2) parameter Traffic that can be transferred between locations l1

and l2, per epoch
V parameter Maximum distance an UAV can cover in one epoch
W parameter UAV weight
w (p) parameter Weight of payload p
v(l1, l2) parameter Distance between locations l1 and l2
Z set Zones
β (d , k ) Real vari-

able
Battery level of UAV d at epoch k

λ(d , k , l ) Binary
variable

Whether UAV d is in location l at epoch k

µ(d , k ,m, z) ∈
[0, 1]

Real vari-
able

Fraction of epoch k that UAV d spends in mis-
sionm for zone z

σ (k ,m, z) ∈
[0, 1]

Real aux.
variable

Satisfaction of users in zone z concerning mis-
sionm at epoch k

σ̄ (m) ∈ [0, 1] Real aux.
variable

Mission-wide satisfaction concerning missionm

τ (d1, d2, k ) Real vari-
able

Traffic transferred from UAV d1 to UAV d2 at
epoch k

ω(d , k , p) Binary
variable

Whether UAV d carries payload p at epoch k

Energy and battery. Real variables β(d,k) express the battery
level of UAV d at epoch k . Clearly, such variables shall be positive
and can never exceed the battery capacity E, i.e.,

0 ≤ β(d,k) ≤ E, ∀d ∈ D,k ∈ K . (5)

Next, we need to account for power consumption:

β(d,k) ≤ β(d,k − 1)+

− e(L(d,k − 1), L(d,k)) ©«
W +

Õ
p∈P

ω(d,k,p)w(p)ª®¬
,

∀d ∈ D,k ∈ K : L(d,k) < L̄. (6)

In (6), the energy consumed at time k is given by the product
between a factor e(l1, l2), accounting for the distance between the
locations, hence, for how far the UAV had to travel2, and the total
weight of the UAV. Such a weight is given by the weightW of the

2Note that e(l , l ) > 0, i.e., energy is also consumed by hovering over the same location.
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UAV itself and the sum of the weight of the payload items it carries.
Note that (6) does not hold at depot locations in L̄, as UAVs can
recharge or swap their batteries therein.

Delivery missions. Some payload items P̂ ⊆ P must be delivered
at certain location and times. Specifically, parameters f (p) ∈ L,
a(p) ∈ K , b(p) ∈ K indicate the target location (final point), as well
as the earliest and latest times at which the delivery can take place.
The following constraint imposes that all deliveries are carried out:

Õ
d ∈D

b(p)Õ
k=a(p)

ω(d,k,p)λ(d,k, f (p)) ≥ 1, ∀p ∈ P̂ . (7)

(7) can be read as follows: there must be at least one epoch be-
tween a(p) and b(p) during which an UAV d visits the target loca-
tion f (p) while carrying payload p.

Additional missions. We consider a set M = {m} of additional
missions, e.g., wireless network coverage and monitoring. For the
purposes of such missions, we partition the topology into zones z ∈
Z, and express their demand for mission m at epoch k through
parameters n(k,m, z), e.g., the traffic offered by the users3. Parame-
ters q(l,m, z) express how well an UAV in location l can perform
missionm for zone z, e.g., the quality of coverage it can provide.
Furthermore, parameters r (m,p) ∈ {0, 1} express the fact that some
payload items p, e.g., radios, are needed for missionm. Finally, pa-
rameters s(m) express how much data is generated by performing
one unit of work in missionm.

The main decision to make is how long UAVs perform additional
missions, and for the benefit of which zones. This is conveyed by
variables µ(d,k,m, z) ∈ [0, 1], expressing the fraction of epoch k
that UAV d uses to perform mission m for the benefit of zone z.
The first constraint we need to impose is that UAVs do not perform
missions that they are not equipped for:

µ(d,k,m, z) ≤ ω(d,k,p)
∀d ∈ D,k ∈ K,m ∈ M,p ∈ P : r (m,p) = 1, z ∈ Z. (8)

Also, we cannot exceed the need of zones:Õ
d ∈D

µ(d,k,m, z)q(L(d),m, z) ≤ n(k,m, z)

∀k ∈ K,m ∈ M, z ∈ Z. (9)

Note that (9) also accounts for the quality with which UAVs at
different locations can perform the missions.

Next, we need to ensure that all the data traffic generated by
additional missions is transferred to the in-field deployed cellular
network (denoted with Ω), so that it can be offloaded to the back-
bone network infrastructure. We model such transfer to happen
in a multi-hop fashion, without store-carry-and-forward. We have
a set of parameters t(l1, l2) expressing the throughput that can be
achieved between UAVs staying at locations l1 and l2. If location l is
covered by a traditional network, then t(l,Ω) expresses the amount
of traffic that can be delivered to such a network in an epoch. De-
cision variables τ (d1,d2,k) express the amount of data transferred
from UAV d1 to UAV d2 at epoch k .

3Notice that, for simplicity and without loss of generality, in this paper we only focus
on uplink traffic.

We need to impose a flow-like constraint, expressing that the
incoming traffic to every UAV d , plus the one generated at d itself,
must be transferred to either other UAVs or the traditional network:Õ

d ′ ∈D
τ (d ′,d,k) +

Õ
m∈M

Õ
z∈Z

µ(d,k,m, z)q(L(d),m, z)s(m) =

=
Õ

d ′′ ∈D
τ (d,d ′′,k) + τ (d,Ω,k), ∀d ∈ D,k ∈ K . (10)

We also need to account for the fact that only UAVs with specific
equipment, e.g., a cellular radio, can act as relays. To this end, we
add to the set of missionsM an element called relay, ensure that
it requires the radio payload (i.e., r (relay, radio) = 1), and then
impose that only UAVs performing the relay mission act as relays:

τ (d1,d2,k) ≤ t(L(d1), L(d2))µ(d1,k, relay, ·),
∀d1 ∈ D,d2 ∈ D ∪ {Ω},k ∈ K . (11)

In (11), the · symbol in lieu of a zone indicates that the relay mission
is specified for no particular mission. Also, (11) ensures that the
maximum quantity of data that can be transferred t(L(d1), L(d2))
is not exceeded. Finally, all traffic generated by all missions must
make its way to Ω:Õ

d ∈D

Õ
m∈M

Õ
z∈Z

µ(d,k,m, z)q(l,m, z)s(m) =
Õ
d ∈D

τ (d,Ω,k),

∀k ∈ K . (12)

Objective. As a first step, we define the satisfaction σ (k,m, z) of
zone z at epoch k for missionm. Such a value is the ratio between
how much service the zone was provided, and how much it needed.
Importantly, it is not defined with reference to epoch k alone, but
also to the previous H ones:

σ (k,m, z) =
Ík
h=k−H

Í
d ∈D µ(d,k,m, z)q(L(d),m, z)Ík
h=k−H n(k,m, z)

. (13)

Leveraging the σ variables defined in (13), we can define the
mission-wise satisfaction as the minimum satisfaction across all
zones and epochs:

σ̄ (m) = min
k ∈K

min
z∈Z

σ (k,m, z), ∀m ∈ M . (14)

Finally, we can define our objective as maximizing the minimum
satisfaction across all missions:

max min
m∈M

σ̄ (m). (15)

4 HEURISTIC ALGORITHM
Focusing only on the blood/medicine delivery tasks, the problem
described in Sec. 3 can be modelled as a Vehicle Routing Problem
with Time Windows (VRPTW), which has been extensively studied
in the literature (see [14] for a thorough overview on heuristic
and meta-heuristic approaches for VRPTW). In light of this, here
we present a heuristic algorithm aimed at tackling large instances
of the considered post-disaster scenario, which builds upon the
insertion method first proposed in [15]. To incorporate additional
tasks such asmonitoring and connectivity coverage, we leverage the
multi-objective enhancement of the insertion approach described
in [16].
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The insertion heuristic aims at sequentially building the tours
of each UAV by adding one delivery location at a time. To do so, a
graph is created where every delivery location f (p) ∈ L : p ∈ P̂
is identified by a graph node l (an additional node l∗ is added
to identify the UAVs depot in L̄4) and arc (l, l ′)д represent route
д ∈ Gl l ′ connecting delivery locations l, l . Note that we consider a
set Gl l ′ of alternative routes for each location pair (i.e., every node
pair is connected by |Gl l ′ | arcs). More specifically, between each
two locations l1, l2 ∈ L, the following routes are considered:

• the shortest path from l1 to l2;
• all paths going from l1 to an intermediate location l3 and
thence to l2, taking the shortest path between l1 and l3 and
the one between l3 and l2, provided that their length does
not exceed twice that of the shortest path from l1 to l2;

• all paths including two intermediate locations l3 and l4, sub-
ject to the same aforementioned conditions.

Each arc is associated withmultiple weights:ψ (l, l ′)д and e(l, l ′)д
respectively express the time (in number of epochs) and energy
spent by the UAV to travel from node l to l ′ along route д ∈ Gl l ′ ,
whereas c(l, l ′)д and ν (l, l ′)д respectively quantify the satisfaction
level of coverage and monitoring tasks achieved by the UAV while
travelling along route д from l to l ′. As tour initialization criterion,
the insertion of the delivery task with earliest deadline has been
chosen among the criteria proposed in [15]. Then the algorithm
iteratively operates as follows. Let [l0, l1, ..., lm ] be the current route,
with l0, lm = l∗. For each unserved delivery at l ∈ Lu (where
Lu ⊆ L is the set of delivery locations not yet inserted in any
tour), the best insertion position îl ∈ {1, ..,m} is evaluated by
minimizing the function ϕ1(li−1, l, li ) = minд∈Gli−1 ,l ,д

′ ∈Gl ,li
(1 −

α1 − α2) · (ψ (li−1, l)д +ψ (l, li )д′ −ψ (li−1, li )д̂) − α1 · (c(li−1, l)д +
c(l, li )д′ − c(li−1, li )д̂) − α2 · (ν (li−1, l)д + ν (l, li )д′ − ν (li−1, li )д̂),
where д̂ is the route from li−1 to li included in the current tour and
α1,α2 are weights such that α1 + α2 ≤ 1. The closer α1 (resp. α2)
approaches 1, the more predominant the satisfaction of coverage
(resp. monitoring) tasks becomes w.r.t. the minimization of the
total duration of the tour. Note that, if inserting the route pair д,д′
in the tour leads the overall energy consumption to exceed the
UAV battery capacity or if the arrival epoch of the UAV at each
delivery location does not meet the time window constraint of the
corresponding delivery task, the insertion of the route pair д,д′ is
considered as infeasible.

Once the value îl = argmini ∈1, ..,m ϕ1(li−1, l, li ) has been found,
in order to choose the best unserved delivery to be inserted in
the tour, the function ϕ2(lîl−1, l, lîl ) = maxд∈Gl∗ ,lî

l

(1 − α1 − α2) ·

ψ (l∗, lîl )−α1 ·c(l
∗, lîl )д −α2 ·ν (l

∗, lîl )д −ϕ1(lîl−1, l, lîl ) is computed

for every unserved delivery l ∈ Lu . Such function quantifies the
savings obtained by adding delivery l in the current tour, as opposed
to direct service of delivery l in a new, dedicated tour starting
from the depot. If maxl ∈Lu

ϕ2(lîl−1, l, lîl ) ≥ 0, then delivery l̂ =

argmaxl ∈Lu
ϕ2(lîl−1, l, lîl ) is added to the current tour and the

insertion procedure is repeated from the start. Otherwise, a new

4For the sake of simplicity, we consider a single depot for all drones, i.e., | L̄ | = 1 .

Figure 1: The reference topology we consider. Blue dots cor-
respond to locations in L, while orange ones correspond
to zones in Z. Blue lines connect locations between which
UAVs can travel in one epoch; orange lines connect zones
with the locations from which UAVs can provide coverage
to them. The shadowed area corresponds to the small-scale
topology we use for our comparison against the optimum.

tour is initialized. The algorithm ends when all the delivery tasks
are inserted in a tour.

5 REFERENCE SCENARIO
As our reference scenario, we consider a flooding over San Francisco,
depicted in Fig. 1 and simulated through the software Hazus [17].
Over the disaster area, we identify |L| = 40 locations and |Z| = 50
zones, with each zone reachable from an average of two loca-
tions. UAVs have to perform a total of |P̂ | = 20 deliveries of
blood or medicine packs, due at randomly-selected locations (the
f -parameters) over a time window of 10 epochs for medicine packs
and 5 epochs for blood packs (the a- and b-parameters).

UAVs can also perform |M| = 2 additional missions:i) providing
network coverage for users escaping from the disaster, whose mo-
bility is simulated through the MatSim simulator [18], as detailed
in [19]; ii) video monitoring, e.g., to assess the level of the flooding
in a certain area.

The quantity of needed service (the n-parameters) is determined
as follows. For the coverage mission, the values computed in [19],
based on the expected flow of vehicles, are used. For video monitor-
ing, a subset of 50 randomly-selected zones are deemed to need the
service, hence, n(z) = 1, while all others have n(z) = 0. Coverage
and monitoring mission require additional payloads, respectively,
the software radio [20] and the camera system [7], each weighting
1 kg. The maximum throughput values achievable between any
two locations, i.e., the t-parameters, are obtained with reference to
LTE micro-cells through the methodology in [19]; furthermore, it
is assumed that UAVs can communicate with the ordinary network
from all locations.

We consider a set of UAVs of variable cardinality, whose fea-
tures mimic those of lightweight Amazon UAVs [21]. Specifically,
they have an empty weight ofW = 4 kg, and a maximum pay-
load of C = 2.5 kg. They are equipped with a battery of capac-
ity B = 200 Wh, and the energy consumed to fly between locations
is e(l1, l2) = 3.125Wh/km/kg. As a result, the range of an UAV carry-
ing its maximum payload is around B

e(C+W ) = 9.8 km. Interestingly,
such a figure matches the 10-km range envisioned for lightweight
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(a) (b) (c)

Figure 2: Small-scale scenario, optimal decisions: performance (a), payload (b), and used energy (c) yielded by flexible and
fixed payload assignment strategies. Performance is normalized by the total demand, payload by the total capacity C, and
used energy by the battery capacity E.

(a) (b) (c)

Figure 3: Large-scale scenario: performance (a), payload (b), and used energy (c) yielded by the heuristic strategy under different
parameter settings. Performance is normalized by the total demand, payload by the total capacity C, and used energy by the
battery capacity E.

(a) (b) (c)

Figure 4: Small-scale scenario: performance (a), payload (b), and used energy, (c). Performance is normalized by the total
demand, payload by the total capacity C, and used energy by the battery capacity E.

UAVs in [22, Tab. 1]. Finally, we consider |K | = 20 epochs, each
corresponding to 10 minutes, and a time horizon of H = 10 epochs.

6 NUMERICAL ASSESSMENT
First, we seek to assess whether flexibility in the assignment of capa-
bilities to drones, i.e., in deciding whether or not individual drones
should carry a radio or a camera, translates into better performance.
To this end, we consider the small-scale scenario represented by the

shadowed area in Fig. 1 and solve the problem presented in Sec. 3
to the optimum through an off-the-shelf solver. We consider two
cases: (i) “flexible”, where the equipment of drones is chosen by the
optimizer, and (ii) “fixed”, where additional constraints impose that
one third of drones only carry the radio, one third only carry the
camera, and one third carry both.

To this end, Fig. 2(a) reports the fraction of the demand for
coverage and monitoring that can be satisfied, as the number of
available UAVs changes, and it clearly shows that flexibility results
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in substantially better performance. Interestingly, Fig. 2(b) shows
that, in the flexible case, drones are much more likely to carry
both cameras and radios; indeed, recalling that cameras and radios
weight 1 kg each and that themaximumpayload isC =2.5 kg, we can
conclude that drones do virtually always carry both. Additionally, as
shown in Fig. 2(c), the global energy consumption is very similar in
both cases: under the fixed strategy, the few drones equipped with
cameras or radios are forced to take longer trips to provide a lower
performance. This confirms our intuition that flexibly-equipped,
multiservice drones do result in better performance.

Based on the results in Fig. 2, we now configure our heuristic,
described in Sec. 4, to always equip drones with both cameras and
radios and assess its performance against the optimum. In Fig. 3, we
consider the large-scale scenario depicted in Fig. 1, and study how
the heuristic performs under different parameter settings. More
in detail, we consider three settings: α1 = 0,α2 = 0 (save time),
α1 = 1,α2 = 0 (privilege coverage), α1 = 0,α2 = 1 (privilege moni-
toring). As reported in Fig. 3(a), privileging coverage or monitoring
leads to similar overall performance in terms of service satisfaction,
whereas the time saving substantially lowers the amount of offered
coverage and monitoring. Different heuristic approaches have mi-
nor differences in terms of payload (Fig. 3(b)), while the “save time”
approach consumes substantially less energy than its counterparts,
due to the shorter trip it results into.

Based on the above discussed results, wee now focus on the “priv-
ilege coverage” heuristic approach and compare its performance
to the optimal ones, considering again the small-scale scenario
depicted in Fig. 1. As we can see from Fig. 4(a), the performance
yielded by the heuristic is remarkably close to the optimum, a sig-
nificant fact given the heuristic low complexity and high speed.
It is also interesting to observe how the difference between the
coverage and monitoring missions is smaller in the optimum than
in the heuristic: when decisions are made in a greedy fashion, it is
harder to achieve a balance between coverage and monitoring.

Fig. 4(b), presenting the average weight of UAV payloads and the
breakdown thereof, provides an explanation for the performance
difference we can see in Fig. 4(a). Under the optimum strategy, the
payload carried by UAVs is always close to their capacity C; con-
versely, the heuristic tends to leave more free space. It follows that
UAVs can perform more deliveries in the same mission, visiting
more locations on the way. Interestingly, under the optimal strat-
egy UAVs virtually always carry both cameras and radios, which
validates our decision to equip all UAVs with both radio and camera
in the heuristic approach.

Fig. 4(c) shows how the total quantity of used energy, expressed
in battery charges. Such a value is slightly higher under the optimal
strategy than under the heuristic, a confirmation that heuristics
trips tend to be shorter and visit fewer locations, thus performing
fewer coverage and monitoring missions.

7 CONCLUSIONS
We addressed the challenging problem of jointly planning the mis-
sions of multitask UAVs and has applied it to a post-disaster scenario.
In such cases, tasks are expected to be associated with a common
geographical area (i.e., the disaster area), hence UAVs carrying out
such tasks would largely geographically overlap. We show that

assigning multiple, instead of single, tasks to UAVs can lead to
savings in the number of UAVs required to carry out all the tasks,
provided that the problem of jointly planning the multiple tasks is
effectively addressed. To this end, we developed an optimization
formulation and then an heuristic approach that effectively copes
with the computational complexity posed by the scenario. Using a
realistic model of a flooding in the San Francisco area and realistic
parameters for the operational equipment and tasks, we showed
that our heuristic is a good match for the optimum; moreover, the
flexibility obtained by providing all UAVs with the same equipment
translates into better performance.
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