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Highlights

• Unsupervised near-duplicate image detection requires high specificity up
to 10�6 � 10�9

• Empirical comparison of CNN-based descriptors for near-duplicate image
detection

• Validated, principled methodology to estimate sensitivity and estimate
false alarms

• Fine-tuning CNNs for retrieval is beneficial but may su↵er in specificity

• New set of annotations released for near-duplicate detection benchmarking
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Benchmarking unsupervised near-duplicate image
detection

Lia Morraa,⇤, Fabrizio Lambertia

aDepartment of Control and Computer Engineering, Politecnico di Torino, Torino, Italy

Abstract

Unsupervised near-duplicate detection has many practical applications ranging
from social media analysis and web-scale retrieval, to digital image forensics.
It entails running a threshold-limited query on a set of descriptors extracted
from the images, with the goal of identifying all possible near-duplicates, while
limiting the false positives due to visually similar images. Since the rate of false
alarms grows with the dataset size, a very high specificity is thus required, up
to 1� 10�9 for realistic use cases; this important requirement, however, is often
overlooked in literature. In recent years, descriptors based on deep convolutional
neural networks have matched or surpassed traditional feature extraction meth-
ods in content-based image retrieval tasks. To the best of our knowledge, ours
is the first attempt to establish the performance range of deep learning-based
descriptors for unsupervised near-duplicate detection on a range of datasets,
encompassing a broad spectrum of near-duplicate definitions. We leverage both
established and new benchmarks, such as the Mir-Flick Near-Duplicate (MFND)
dataset, in which a known ground truth is provided for all possible pairs over
a general, large scale image collection. To compare the specificity of di↵erent
descriptors, we reduce the problem of unsupervised detection in arbitrarily sized
datasets to that of binary classification of near-duplicate vs. not-near-duplicate
images. The latter can be conveniently characterized using Receiver Operating
Curve (ROC). Our findings in general favor the choice of fine-tuning deep con-
volutional networks, as opposed to using o↵-the-shelf features, but di↵erences
at high specificity settings depend on the specific dataset and are often small.
The best performance was observed on the MFND benchmark, achieving 96%
sensitivity at a false positive rate of 1.43⇥ 10�6.

Keywords: Near-duplicate detection, convolutional neural networks,
instance-level retrieval, unsupervised detection, performance analysis, image
forensics
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1. Introduction

Near-duplicate (ND)image detection or discovery entails finding altered or
alternative versions of the same image or scene in a large scale collection. This
technique has plenty of practical applications, ranging from social media analy-
sis and web-scale retrieval, to digital image forensics. Our work was motivated5

in particular by applications in the latter domain, as detecting the re–use of
photographic material is a key component of several passive image forensics
techniques. Examples of such applications include detection of copyright in-
fringements (Zhou et al., 2017c; Chiu et al., 2012; Ke et al., 2004), digital forgery
attacks such as cut-and-paste, copy-move and splicing (Chennamma et al., 2009;10

Hirano et al., 2006), analysis of media devices seized during criminal investiga-
tions (Connor & Cardillo, 2016; Battiato et al., 2014), tracing the online origin
of sequestered content (de Oliveira et al., 2016; Amerini et al., 2017), and fraud
detection (Li et al., 2018; Cicconet et al., 2018).

In all the above-mentioned applications, we cannot resort to standard hash-15

ing techniques, given that even minimal alterations would make di↵erent copies
untraceable. Similarly, it is not possible to rely on associated text, tags or tax-
onomies for retrieval, as done for instance in (Gonçalves et al., 2018), since they
would likely change in di↵erent sites or devices where content is used. Images
may be subject to digital forgery, with parts of one or more existing images com-20

bined to create fake ones. Therefore, it is imperative to resort to content-based
image retrieval techniques for the task of locating near-duplicates.

Let us consider, as a motivating example, the case of fraud detection. Many
companies, like insurance ones, are relying on user-supplied photographic evi-
dence to support business processes (Li et al., 2018). Photos of the same object25

or scene may be re-used multiple times to obtain an unfair advantage: such
frauds are unlikely to be detected unless a largely automatic image analysis
system is in place.

It should be noticed that we are adopting a very broad definition of ND,
encompassing all images of the same object or scene, whereas many papers in30

literature restrict the definition to copies of the same digital sources that have
been digitally manipulated (Connor et al., 2015; Foo & Sinha, 2007). Naturally
occurring NDs, such as images of the same scene or object acquired at di↵er-
ent times or from di↵erent viewpoints, are often more challenging to detect.
However, in emerging applications such as fraud detection, which motivate our35

work, we do not wish to restrict ourselves to either definition: as a matter of
fact, we have no reason to assume that, when constructing fraudulent claims,
digital content manipulation is more likely than simply acquiring di↵erent shots
of the same scene. This broad definition brings ND detection closer to the
task of instance-level image retrieval, which is abundantly studied in the liter-40

ature, but with a crucial di↵erence: while the latter is usually formulated as a
human-guided supervised search, the former needs as little human supervision
as possible. To achieve this goal, we need to re-frame the problem from a super-
vised K–nearest neighbors search to an unsupervised threshold-limited search,
where the distance is used as a classification function to distinguish ND from45
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non-ND pairs.
Realistic datasets in image forensics and fraud detection range between 105–

107 images (Connor & Cardillo, 2016). Since the number of possible pairs grows
quadratically with the dataset size, a very low false positive rate (or conversely,
a high specificity) is needed to obtain a tractable number of false alarms and50

therefore be acceptable by the end user. For a dataset of 106 images, a false
positive rate of 10�9, which would be considered exceptionally low in many
applications, would still translate to 500 false alarms.

In recent years, deep convolutional neural networks (CNNs) have shown
unprecedented performance in many computer vision tasks, and content-based55

image retrieval is no exception. To the best of our knowledge, very few pa-
pers have exploited CNNs-based descriptor for ND detection, but if we look at
the closely related task of instance-level retrieval, a consistent body of research
has emerged in recent years favoring the adoption of CNN-based representation
over traditional SIFT-based methods (Zheng et al., 2017). Experimental results60

on several benchmark datasets show that they achieve better performance, use
more compact representations and are faster to compute (Zheng et al., 2017).
However, given the need to re-frame the problem as an unsupervised threshold-
limited search (where the overall performance is dominated by specificity rather
than sensitivity), it is not straightforward to evaluate whether unsupervised65

near-duplicate search lies within the grasp of the current state-of-the-art. To
the best of our knowledge, only Connor & Cardillo (2016) have previously ad-
dressed the issue of quantifying the performance of unsupervised near-duplicate
detection (Connor & Cardillo, 2016), and ours is the first contribution to specif-
ically characterize deep learning descriptors on a wide range of ND categories.70

One of the underlying reasons for is certainly the lack of suitably annotated
benchmark datasets, as well as of an established methodology to measure a
descriptor’s performance. It is crucial that benchmarks for ND detection include
a su�ciently large number of negative queries, i.e., images for which the absence
of NDs has been established, in order to assess both specificity and sensitivity.75

In some cases, we can resort to digital transformations to simulate NDs, but
this is not applicable to all transformations.

Instance-level retrieval benchmarks, such as the Oxford5k, Ukbench and Hol-
idays datasets, comprise a variety of naturally occurring and challenging NDs,
but are rather small scale and include only clusters of related images (Zheng80

et al., 2017). Recently, a new benchmark has become available to address the
specific needs of ND detection: the Mir-Flickr Near Duplicate (MFND) dataset,
based on the pre-existing MIR-Flickr collection (Connor et al., 2015). In this
benchmark, a large number of NDs were mined using a semi-automatic proce-
dure, so that the remaining images can be assumed to be negative queries; how-85

ever, in their initial search Connor and colleagues focused on specific subclasses
of NDs that limit the representativeness of this benchmark for applications such
as fraud detection. Connor & Cardillo (2016) showed that the problem of unsu-
pervised detection could thus be characterized as a binary classification problem,
and we build upon their contribution for our experimental methodology.90

The overarching objective of this study is to evaluate the performance of
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state-of-the-art deep learning descriptors and establish a baseline against which
future research can be compared. A thorough experimental comparison includes
a wide range of established and emerging public benchmarks, as well as data
from a real-life fraud detection case study. Our contributions can be summarized95

as follows:

• we compare the performance of CNN-based descriptors on the task of
unsupervised near-duplicate detection, and show empirically on a variety
of datasets that specificity has a large impact on the relative ranking of
di↵erent descriptors;100

• we extend considerably the available annotations for the MFND bench-
mark to obtain a large-scale benchmark which supports a wide range of
ND definitions and use cases;

• finally, we extend previous work by Connor & Cardillo (2016) towards a
principled evaluation methodology that captures the performance require-105

ments of unsupervised ND discovery; we show analytically and experimen-
tally that by using hard negative mining, we can approximate the Area
under the ROC curve (AUC) that can be used to rank the performance
di↵erent descriptors.

The rest of the paper is organized as follows: in Section 2, related work110

on instance retrieval and ND detection is reviewed. Section 3 introduces the
datasets that are considered in the experiments. The evaluation methodology is
presented in Section 4, whereas the experimental setup is described in Section
5. Results are presented and discussed in Sections 6 and 7, respectively.

2. Related work115

2.1. Content-based image retrieval and instance-level retrieval

Content-based image retrieval systems (CBIR) are designed to retrieve se-
mantically similar images within a database based on a specific query (e.g., by
providing another image). This problem can be decomposed in two main chal-
lenges: describing image content in terms of visual features, and conducting120

an exact or approximate nearest neighbor search based on a distance measure
(Zheng et al., 2017; Bay et al., 2008). Such features can be hand-crafted, or
learned from data by using deep CNNs. In this section, we will review feature
extraction techniques, and refer to existing surveys for the challenges related to
feature aggregation, quantization, indexing and distance measures (Zheng et al.,125

2017; Zhou et al., 2017b).

2.1.1. Hand-crafted features
Global features based on the characteristics of the entire image (color, shape,

texture, histogram, etc..) were extensively used in early CBIR systems. In the
early 2000s, local feature extraction emerged as a more e↵ective alternative,130

which generally involves two key steps: key interest point detection and local
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region description. In the first step, key salient features in the image are iden-
tified with high repeatability, using dense sampling or but more commonly by
detecting local extrema in the scale-space domain (e.g. Di↵erence of Gaussians,
Hessian matrix, etc.). One or multiple descriptors are then extracted from the135

local region centered at each interest point, usually designed to be invariant to
rotation changes and robust to a�ne distortions, addition of noise, illumination
changes, etc. The most popular local feature descriptors are SIFT and SURF
(Zheng et al., 2017). SIFT-based approaches generally yield very large feature
sets, in the order of the thousands per image. The Bag of Visual Word (BoVW)140

is the most common approach for feature reduction and quantization in CBIR
and instance retrieval.

2.1.2. Deep learning approaches
Since 2015, deep learning has become the state of the art approach to CBIR

(Wan et al., 2014; Gordo et al., 2016; Balntas et al., 2016; Babenko & Lempitsky,145

2015; Zagoruyko & Komodakis, 2015). Deep CNNs have the distinct advantage
of learning hierarchical, high-level abstractions close to the human cognition
processes. Similarly to SIFT, CNNs can be trained to extract features from lo-
cal regions of interests (patches), after detecting key interest points, which are
then quantized e.g., using the BoVW (Zagoruyko & Komodakis, 2015; Balntas150

et al., 2016). Alternatively, it is possible to extract semantic-aware features
from the activations of top convolutional layers in an image: it can be shown
that such feature vectors can be interpreted as an approximate many-to-many
region matching, without the need to explicitly extract key points, and with the
advantage of obtaining faster and more compact representations. To this aim,155

two fundamental approaches are available. In the first approach, feature extrac-
tion is based on pre-trained models, like the VGG network trained for object
recognition, alone or in combination with traditional visual features (Babenko
& Lempitsky, 2015; Wan et al., 2014). In the second one, a CNN can be trained
to learn a ranking function in an end-to-end fashion, mapping the input space160

to a target latent space such that the Euclidean distance in latent space ap-
proximates visual similarity (Gordo et al., 2016; Wang et al., 2014). In order
to optimize a ranking loss, a special architecture called a Siamese network is
used (Wang et al., 2014; Gordo et al., 2016, 2017). Usually, descriptors are pre-
trained on ImageNet to learn image semantics, and then fine-tuned on a second165

training set with relevance information (Wang et al., 2014; Gordo et al., 2016).

2.2. Near-duplicate image detection

Several works have focused on near-duplicate image detection as a distinct
application from content-based image retrieval (Chennamma et al., 2009; Foo &
Sinha, 2007; Chum et al., 2008; Li et al., 2015; Xie et al., 2014; Hu et al., 2009;170

Liu et al., 2015; Xu et al., 2010; Kim et al., 2015; Battiato et al., 2014; Zhou
et al., 2017c; Cicconet et al., 2018; Chen et al., 2017; Connor & Cardillo, 2016).

In order to frame our contribution with respect to previous literature, a
more precise working definition of near-duplicate is needed. Given the range

7



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIPT

of potential applications, it comes as no surprise that the definition of near-175

duplicate image is indeed quite varied. Starting from the work by Foo & Sinha
(2007), two main sources of near-duplicates have been identified in the literature,
namely identical and non-identical near duplicates (Foo & Sinha, 2007; Connor
et al., 2015; Jinda-Apiraksa et al., 2013; Chen et al., 2017). Identical near-
duplicates (INDs) are derived from the same digital source after applying some180

transformations, including cropping and rescaling, changes in image format,
thumbnail resizing, insertion of logos or watermarks, or cosmetic changes (black
& white conversion, image enhancement and so forth).

Non-identical near-duplicates (NINDs), on the contrary, are defined as im-
ages that share the same content (i.e., they depict the same scene or object),185

but with di↵erent illuminations, subject movement, viewpoint changes, occlu-
sions, etc. (Foo & Sinha, 2007; Jinda-Apiraksa et al., 2013) Detecting NINDs
is deemed more challenging than INDs, and their definition is more subjec-
tive (Jinda-Apiraksa et al., 2013); for these reasons, many authors have mostly
targeted INDs.190

Depending on the type of ND targeted and the level of transformation in-
volved, most papers in literature have either focused on global features or on
SIFT features combined with BoWV quantization. Global features have been
mostly used for IND detection (Connor & Cardillo, 2016; Chen et al., 2017; Li
et al., 2015). Local descriptors, such as SIFT features combined with BoVW195

quantization, allow detecting more aggressive alterations (including NINDs),
sub-image retrieval or image forgery (e.g. copy-move attacks). Local descrip-
tors are prone to false positive matches, as they do not take into account spatial
coherence; to reduce false alarms, some authors have proposed pruning tech-
niques to improve specificity and scalability (Foo & Sinha, 2007; Liu et al.,200

2015), whereas other authors have focused on post-query verification (Zhou
et al., 2017c; Hu et al., 2009; Xu et al., 2010).

From an evaluation point of view, many papers framed the problem of ND
detection as a supervised K�nearest neighbor search, and few papers have
addressed the issue of quantifying the specificity of descriptors when performing205

unsupervised, threshold-limited near-duplicate discovery (Connor & Cardillo,
2016; Chen et al., 2017; Kim et al., 2015). The most relevant prior work is
that by Connor et al, who proposed a method to evaluate the specificity of
ND detectors and choosing the optimal distance threshold, based on Receiver
Operating Curve (ROC) analysis (Connor & Cardillo, 2016). A more in-depth210

analysis of this methodology, and the extensions that we propose, is available
in Section 4. Other authors have used small test sets to establish the optimal
threshold, that was subsequently applied to a larger dataset (Chen et al., 2017).
For instance, Chen et al. used bloom filtering and range queries to detect
duplicate images under scaling, watermarking and format change transformation215

(Chen et al., 2017); for evaluation purposes, they estimated the percentage of
false and correct rejections, as well as precision and recall curves, on a smaller
case dataset.
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MFNDCLAIMS California-ND Holidays

IND Collection

Difficulty level 2

Difficulty level 3

Difficulty level 1

NIND Collection

Agreement 100%

Agreement 50%

Agreement 30%

Figure 1: Examples of near duplicates pairs of varying complexity from the four datasets

included in the comparison. For the CLAIMS dataset, di�culty was evaluated subjectively

by one rater, whereas for the California-ND, it was established based on the agreement between

10 independent raters.

Dataset Size IND clusters (pairs) NIND clusters (pairs)
CLAIMS 201,961 NA 1037 (1,475)
MFND 1,000,000 3,825 (4,672) 10,454 (18,299)

California-ND 701 NA 107 (4,609)
Holidays 1,491 NA 500 (2,072)

Table 1: Comparison of the benchmark datasets. Related IND or NIND pairs were grouped

into clusters; the average number of images per cluster ranges from 2.07 to 6.55. IND and

NIND pairs are counted separately, where applicable.

3. Datasets

The experimental results presented in this paper were based on four image220

collections, including a private dataset (Section 3.1) and three publicly available
benchmarks (Sections 3.2, 3.3 and 3.4). The CLAIMS dataset was collected for
insurance purposes, and therefore constitutes a realistic case study for fraud
detection applications. The MFND dataset (Connor et al., 2015), based on
the MIR-Flickr image retrieval benchmark (Huiskes & Lew, 2008), contains a225

variety of both INDs and NINDs. Both the California-ND and Holidays datasets
contain personal holiday photos and, while much smaller in size, include several
challenging NIND examples (Jegou et al., 2008; Jinda-Apiraksa et al., 2013).
Examples of ND pairs of di↵erent complexity from the various databases are
given in Fig. 1, whereas a summary of the datasets characteristics is reported230

in Table 1.

3.1. CLAIMS dataset

The CLAIMS dataset includes a variety of indoor and outdoor scenes, mostly
from residential and commercial buildings. It contains a total of 201,961 images

9
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coming from 22,327 claims. Image subsets that are associated with a given claim235

generally include images of the same scenes or objects, representing a source of
relatively rapidly identifiable NINDs. More infrequently, images from di↵erent
claims may also represent the same scene or object. This dataset contains both
IND (e.g. insertion of small captions or logos, changes in aspect ratio, format
change, compression, etc.) and NIND clusters (e.g. sequential snapshots of the240

same scene, viewpoint changes, etc.).
The collection was annotated to generate both positive queries (i.e., with

known NDs) and negative queries (i.e., for which absence of NDs was confirmed).
NDs were annotated following a semi-manual procedure, in which a set of claims
was randomly selected. For each claim, all potential image pairs were generated245

and the ND pairs were manually selected. Connected pairs of NDs from the
same claim were grouped to form clusters.

Non-near duplicate (NND) pairs were randomly extracted following a hard
negative mining strategy (see Section 4.1 for details). The results were visually
inspected obtaining additional 103 near-duplicate pairs. The final annotated set250

included 1,475 ND pairs, forming 1,037 distinct clusters; the average number of
images per cluster is 2.2.

3.2. MirFlickr Near Duplicate

The MIR-Flickr Near Duplicate (MFND) collection is a recent revisitation
of the MIR-Flickr image retrieval benchmark (Huiskes & Lew, 2008). Con-255

nor and colleagues observed a significant number of NDs in this one million
image collection, which were semi-automatically retrieved using di↵erent ND
finders (Connor et al., 2015). We have expanded their annotations by adopting
a broader definition of ND, as well as using di↵erent descriptors.

The first MFND annotation was generated using a set of four global de-260

scriptors (based on MPEG-7 and perceptual Hashing global features) and five
distance measures, which were combined to form di↵erent similarity functions
(Connor et al., 2015). A threshold-limited nearest-neighbor search was con-
ducted using approximated metric search techniques, yielding a few thousand
potential ND pairs for every function. We have expanded this annotation by265

using the three CNN-based descriptors included in this study, and the Eu-
clidean distance. Several threshold-limited, K-nearest neighbor searches were
performed (with K=5 and K=1), yielding a few hundred thousands potential
ND pairs which were visually inspected. Exact duplicates were eliminated based
on the MD5 hash.270

Each of the resulting image pairs was manually assigned to one of three cat-
egories, IND, NIND or other, following the categorization illustrated in Section
2.2 (Connor et al., 2015). The strength of this methodology is that it minimizes
biases with respect to the images in the collection, as well as to the method
with which the near-duplicates have been detected. We assumed, as in previous275

work (Connor et al., 2015), that both IND and NIND relations are transitive,
allowing the identification of clusters of images that share the same content.
The resulting clusters were also visually inspected for consistency.

10
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As for the CLAIMS collection, NND pairs were generated through a hard
negative mining procedure; results were visually inspected identifying 120 addi-280

tional NIND pairs.
The available annotations were thus substantially extended from 1,958 to

3,825 IND clusters (4,672 vs. 2,407 pairs) and from 379 to 10,454 NIND clus-
ters (18,299 pairs). Many new IND pairs detected were subject to digital content
manipulations, cropping or color alterations; we found that CNN-based descrip-285

tors were particularly robust to colorization techniques. A total of 30,925 images
were found to have at least one IND or NIND in the collection, with a mean
cluster size of 2.2.

3.3. California-ND

The California-ND collection comprises 701 photos taken from a real user’s290

personal photo collection (Jinda-Apiraksa et al., 2013). It includes many chal-
lenging NIND cases, without resorting to artificial image transformations. To
account for the intrinsic ambiguity of NIND definition, the collection was man-
ually annotated by 10 di↵erent observers, including the photographer himself.
Instructions such as “If any two (or more) images look similar in visual ap-295

pearance, or convey similar concepts to you, label them as near-duplicates.”
were given to the raters. Out of 245,350 unique possible combinations, 4,609
image pairs were identified as ND by at least one subject; notably, in 82% of
the cases raters disagreed to some extent on whether or not a pair of images
should be considered ND. The image pairs form 107 clusters of NIND images,300

where each cluster contains on average 6.55 images; the ND pairs were grouped
assuming that the ND relationship is transitive (which is not generally the case,
but seemed reasonable in this particular situation).

3.4. Holidays

The INRIA Holidays dataset (Jegou et al., 2008), a popular benchmark for305

instance retrieval, is mainly composed by the authors’ personal holidays photos.
The images, all high resolution, include a large variety of scene types (natural,
man-made, water and fire e↵ects, etc). Images were grouped by the authors in
500 disjoint image clusters, each representing a distinct scene or object, for a
total of 1,491 images and an average cluster size of 2.98 images. From the 500310

clusters, a total of 2,072 ND pairs, mostly NIND, can be identified.

4. Performance evaluation

In this section, we illustrate the performance metrics and protocol used to
evaluate the specificity and sensitivity of unsupervised ND detection. In the
first battery of test, we extended the work of Connor and colleagues (Connor315

& Cardillo, 2016), reducing the problem of unsupervised discovery to that of
binary classification; ROC analysis can be used to measure the ability of a ND
detector to distinguish ND pairs from visually similar examples, as detailed in
Section 4.1. The second battery of test involves estimating the average false
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positive rates generated by a negative query, and is explained in Section 4.3;320

the relationship between these two performance measures is also explored. An
overview of the methodology is presented in Fig. 2.

Semi-automated discovery

Not Near-Duplicate (negative) pairs

Near-Duplicate (positive) pairs

❶

❷

❹

❸

Distance

Distance distribution
Threshold

Neg
Pos

Hard negative mining

Query level analysis
❺

ROC analysis and threshold selection

High sens

High spec

Figure 2: Methodology employed to calculate the performance on the MFND benchmark.

First, all near-duplicate pairs are discovered through a semi-supervised search technique (step

1). On the remainder of the collection, hard negative mining is used to identify hard samples of

visually similar, but not near-duplicate pairs (step 2); crucially, this step needs to be repeated

for each descriptor. Using the distance as a classification function (step 3), ROC analysis can

be used to characterize the ability of the descriptor to distinguish near-duplicates from not-

near duplicate pairs. From ROC analysis, suitable thresholds on the distance can be selected

based on the application requirements. Performance at query time can be thus be reliably

estimated (step 5).

4.1. ROC analysis

As suggested by Connor & Cardillo (2016), a near-duplicate finder can be
modeled as a positive numeric function D over any two image descriptors x and
y, where normally D will be a proper distance metric. To run an unsupervised
search, it is necessary to use D as a classification function over images pairs,
which without loss of generality can be achieved by choosing a threshold t:

Dt (x, y) = D (x, y) < t (1)

The problem of unsupervised discovery can be characterized as finding the near-
duplicate intersection of two image sets X \ND Y , that is the set of pairs of
images from sets X and Y that satisfy the conceptual near-duplicate relation
ND (Connor & Cardillo, 2016). If Sens (t) and Spec (t) are the sensitivity and
specificity of Dt (x, y), the number of true positive (TP) matches will be

TP (t) = Sens (t) |X \ND Y | (2)

12
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and the number of false positives (FP) will be

FP (t) = (1� Spec (t)) |X| |Y | (3)

assuming that |X \ND Y | << |Y |. In our setting, |X| = K is the number of
query images and |Y | = M is the size of the collection. Another useful figure to
define is the number of false positives / query image, which can be computed
as

FPq (t) = (1� Spec (t))M (4)

Given a set of ND and NND pairs, the sensitivity (or recall) and the speci-
ficity of a ND detector can be estimated as follows:

Sens (t) =
No. of correctly identified ND pairs

Total no. of ND pairs
(5)

Spec (t) =
No. of correctly identified NND pairs

Total no. of NND pairs
(6)

Both quantities are function of the threshold t, and the overall performance
can be characterized by ROC analysis.325

4.2. Hard negative mining

In a realistic dataset the pool of NND images is very large, compared to
the number of ND pairs - it is not feasible to evaluate all possible pairs. Hard
negative mining extracts a compact set of NND from a large image collection,
starting from a subset of randomly selected query images, for which we can330

assume that a near-duplicate match does not exist in the collection. For each
query image, the pairwise distances between the query images and all the other
images in the collection are calculated, and the most ”di�cult” examples are
selected.

Starting from a random sample of query images, two hard negative mining335

strategies were considered:

• the nearest neighbor for each query is selected (hn1 );

• the K�nearest neighbors for all queries are retrieved and sorted; the most
di�cult pairs (i.e., those with the smallest distances) are then selected
(hn2 ).340

Notably, the hard negative mining procedure depends on the relative ranking
of the images, and hence has to be repeated for each descriptor and for each
distance formulation.

The distances of the hard negatives are among the smallest of the K ⇥ M

distances measured, where K is the number of query images and M is the di-345

mension of the dataset: if a distance threshold exists such that all the “dif-
ficult” pairs are successfully identified, then we can assume that all poten-
tial NND pairs in the collection will be identified as well. For instance, for
the CLAIMS dataset K = 4400 and M = 80, 000, yielding a specificity of
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1� 1/353, 000, 000 = 1� 2.83⇥ 10�9, which is the smallest possible sensitivity350

that can be measured in this setting.
The specificity measured on the hard negative samples can be used to ap-

proximate the true specificity that would be observed at large. For instance, a
.9 specificity (.1 FP rate), would allow to successfully discard 0.9M NND pairs;
however, it would also fail to discard at least 0.1K NND pairs, and hence would355

correspond to a specificity of at most 1 � 1.25 ⇥ 10�6. In this way, it is possi-
ble to estimate a lower bound on the amount of FPs generated on datasets of
arbitrary size.

4.2.1. Area under the ROC curve
The AUC is a common summary metrics that quantifies the global perfor-360

mance of a classifier (Bradley, 1997). We estimated the AUC for each descriptor
and 95% confidence intervals were calculated under the normal assumption ac-
cording to Hanley & McNeil (1982).

Since the ROC is calculated on a subset of all possible negative pairs, the
resulting AUC will be an approximation of the true AUC if all pairs were taken365

into account. We will refer in the following to AUChn1 and AUChn2 to denote
the AUC calculated on pairs extracted using hard negative mining strategies
hn1 and hn2, respectively.

Let p1, ..., pN+ be ND pairs (i.e., positive samples) and n1, ..., nN� be all the
NND pairs (i.e., negative samples), where in our case N

� = K ⇥M . The AUC
can be expressed as a sum of indicator functions (Hanley & McNeil, 1982):

AUC =
1

N+N�

N
+X

i=1

N
�X

j=1

1f(pi)>(nj) (7)

where f(·) is a scoring function which, in our case, is the distance between the
descriptors of the two images in the pair 1. For simplicity, we omit f(·) from370

the notation in the rest of the paper.
Let nl, ..., nH� be the hard negative NND pairs, where H

� ⌧ N
�. The

estimated AUC can be expressed as follows:

AUChn =
1

N+H�

N
+X

i=1

H
�X

l=1

1pi>nl
(8)

Since in general

1pi>nj
 1pi>nl

8nj 2 N
� � H

� 8nl 2 H
� (9)

it can be demonstrated that for both hard negative mining strategies AUChn is
an upper bound for the true AUC. It follows that the most appropriate choice

1
We follow here the notation normally used in ROC literature where the positive samples

are expected to be scored higher than negative samples, whereas in our case the scoring

function is a distance and pairs with lower distance would be scored higher
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would be to use the strategy that provides the tighter bound. Analytical proof
is provided in Appendix A.375

4.3. Range query performance

ROC analysis does not directly represent the observed system performance,
which also depends on the distribution of the type of images, the size of the clus-
ters, and so forth. We analyzed an alternative performance measure, obtained
by simulating the case of a single query image x compared against a collection of380

images Y , which is a special case of the general problem of near-duplicate detec-
tion described in Section 4.1. An unsupervised, threshold-limited range search
is conducted to retrieve a list of potential near-duplicates, and used to estimate
the number of FPs/query or FPq (t). In practice, it is convenient to restrict the
search to the K–nearest neighbors in order to cap the number of FPs/query to385

a reasonable number. The proposed experimental setup executes a number of
positive queries (i.e., images with one or more known ND), and negative queries
(i.e., images that have no expected NDs), over a dataset constructed as follows:

• positive queries were derived from the clusters of ND images, where the
first image are used as queries and the rest are inserted in the database,390

as normally done for Holidays and other image retrieval benchmarks;

• negative query images were selected from the NND pairs, and a set of dis-
tractors are used to evaluate specificity; in practice, we use for convenience
the same image pool used for hard negative mining.

For varying values of the threshold t = Ti on the distance measure, we395

compared the average recall, calculated over all positive queries, and the average
number of FPs/query, calculated over all negative queries. Note that average
recall is di↵erent from pair-wise sensitivity used in ROC analysis, as each query
may contain multiple pairs of varying “di�culty”. The FPs/query depend on
the size of the dataset and the specificity as predicted by Equation 3.400

5. Experimental setup

In this section, a detailed analysis of the experimental setup is given con-
cerning the descriptors selection, their implementation, and the hard negative
mining parameters.

5.1. Descriptors405

Two sets of descriptors were compared in this work: global descriptors, and
CNN-based descriptors; for the latter, we compared examples of the two main
approaches (aggregation of raw deep convolutional features without embedding
and Siamese networks) described in Section 2.

Among global descriptors, GIST (Oliva & Torralba, 2001) was selected based410

on previous results on the MFND collection (Connor & Cardillo, 2016). The
GIST, or spatial envelope, is a bio-inspired feature that simulates human visual
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perception to extract rough but concise context information (Oliva & Torralba,
2001). The input image is decomposed using spatial pyramid into N blocks,
filtered by a number of multi-scale, multi-orientation Gabor filters (4 scales,415

8 orientations per scale), and then summarized by a feature extractor that
captures the ”gist” of the image, handling translational, angular, scale and
illumination changes. We experimented with perceptual Hashing, however the
results are not reported as they were generally very poor.

The SPoC (Sum-Pooled Convolutional) descriptor was initially proposed by420

Babenko & Lempitsky (2015). The features are extracted from the top convolu-
tional layer of a pre-trained neural network and spatially aggregated using sum
pooling. The length of the feature vector will thus be equal to the depth of the
final convolutional layer (usually in the order of the hundreds). Best results were
obtained extracting features after ReLU activation, confirming previous findings425

(Babenko & Lempitsky, 2015). PCA whitening and compression is applied, and
the vectors are normalized to unit length (L2 normalization).

The R-MAC architecture, proposed by Tolias et al. (2015) builds a com-
pact feature vectors by encoding several image regions in a single pass. First,
sub-regions are defined using a fixed grid over a range of progressively finer430

scales l ranging from 1 to L; then, max-pooling is used to extract features
from each individual region. Each region feature vector is post-processed with
PCA-whitening and L2 normalization. Finally, the regional feature vectors are
summed into a single image vector, which is again L2 normalized.

The DeepRetrieval architecture, proposed by Gordo et al. (2016), employs a
Siamese network to learn a ranking function based on the triplet loss function.
Let Iq be a query image with descriptor q, I+ be a relevant image with descriptor
d+, and I� be a non-relevant image with descriptor d�. The ranking triplet loss
is defined as

L (Iq, I+, I�) =
1

2
max(0,m+ kq � d+k2 � kq � d�k2) (10)

where m is a scalar that controls the margin. At test time, the features are ex-435

tracted from the top convolutional layer and aggregated using sum-pooling and
normalization. The Deep Retrieval architecture includes an additional proposal
network, similar to the R-MAC grid network, so that the features are calcu-
lated on several potential regions of interest, as opposed to the entire image.
The Deep Retrieval network is pre-trained on the Landmarks dataset (Babenko440

et al., 2014).

5.2. Implementation
The tested descriptors, and related parameters, are summarized in Table

2. For SPoC and GIST, images were resized to 512 ⇥ 512, whereas for Deep
Retrieval images were rescaled so that the longest side is equal to S.445

A Python re-implementation of the original Matlab code by Olive and Tor-
ralba was used for GIST, after converting images to grayscale2. The SPoC

2
http://people.csail.mit.edu/torralba/code/spatialenvelope/
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descriptor was computed from pre-trained networks architectures such as VGG
(Simonyan & Zisserman, 2014) and Residual Networks (He et al., 2016). We
included both models pre-trained on ImageNet (Deng et al., 2009), as well as on450

the Places205 or Places365 datasets (Zhou et al., 2014, 2017a), and on a hybrid
dataset including images from both ImageNet and Places. The R-MAC descrip-
tor was re-implemented in Python based on the original Matlab implementation
by the authors3; R-MAC was calculated only for the ResNet101 architecture.
All networks were available in Ca↵e; pre-trained models were downloaded from455

the Ca↵e Model Zoo4, or were made available by the authors for the Places
dataset5,6.

We trained the PCA parameters, without reducing the number of features,
on a representative set of the collection (95,230 for CLAIMS and 100,000 for
MFND), which was not used in testing. The parameters trained on the MFND460

collection were also used for the Holidays and California-ND collection; although
the image characteristics in the two datasets is di↵erent, this is consistent with
previous works in literature (Jegou et al., 2008).

The FAISS library (Johnson et al., 2017), specifically the flat index with L2
exact search, was used to index the collection and perform range queries. All ex-465

periments were run on a system with a i7-7700 CPU @3.60GHz and GTX1080Ti
nVIDIA GPU.

Descriptor Label Size Parameters

GIST (Oliva & Torralba, 2001) GIST4 512 number of blocks = 4
GIST (Oliva & Torralba, 2001) GIST8 512 number of blocks = 8

Deep Retrieval (Gordo et al., 2016) DeepRet800 2048 ResNet101, Fine-tuned on Landmarks dataset, S = 800, no multiresolution
Deep Retrieval (Gordo et al., 2016) DeepRet500 2048 ResNet101, Fine-tuned on Landmarks dataset, S = 500, no multiresolution
Deep Retrieval (Gordo et al., 2016) DeepRet500MR 2048 ResNet101, Fine-tuned on Landmarks dataset, S = 500, multiresolution (2)
SPOC (Babenko & Lempitsky, 2015) SP VGG19IN 512 VGG19, Trained on ImageNet
SPOC (Babenko & Lempitsky, 2015) SP VGG16PL 512 VGG16, Trained on Places205
aSPOC (Babenko & Lempitsky, 2015) SP VGG16HY 512 VGG16, Trained on Hybrid (Places205 & ImageNet) dataset
SPOC (Babenko & Lempitsky, 2015) SP ResNet101IM 2048 ResNet101, Trained on ImageNet dataset
SPOC (Babenko & Lempitsky, 2015) SP ResNet152IM 2048 ResNet152, Trained on ImageNet dataset
SPOC (Babenko & Lempitsky, 2015) SP ResNet152HY 2048 ResNet152, Trained on Hybrid (Places365 & ImageNet) dataset

R-MAC Tolias et al. (2015) RMAC 2048 ResNet101, Trained on ImageNet dataset, L=2

Table 2: Synthetic description of the descriptors used.

5.3. Hard negative mining

For each dataset (CLAIMS and MFND), we randomly selected a set of neg-
ative query images (4,500 and 5,000, respectively), and a larger pool for mining470

(80,000 and 70,000 images, respectively), after excluding IND or NIND pairs
and images used to train the PCA parameters. The two hard negative min-
ing strategies introduced in Section 4.2, were compared: in hn2, the 10 nearest
neighbors were found for each query images, and then the 10,000 most di�cult
pairs were selected. The number of samples was increased for hn2 to account for475

3
https://github.com/gtolias/rmac

4
https://github.com/BVLC/ca↵e/wiki/Model-Zoo

5
https://github.com/CSAILVision/places365

6
http://www.europe.naverlabs.com/Research/Computer-Vision/Learning-Visual-

Representations/Deep-Image-Retrieval
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images that belong to more than one pair, which we observed experimentally,
and ensure su�cient diversity. For GIST and Deep Retrieval, the hard negative
mining procedure was calculated for one parameter set, to reduce the compu-
tational cost. For the Holidays and California-ND datasets, we used the NND
pairs mined for MFND; this is consistent with previous works that have used480

the same collection as distractors for large scale retrieval testing (Jegou et al.,
2008). For both datasets, the hard negative mining procedure was repeated for
a large number of descriptors (8 for MFND, and 13 for the CLAIMS dataset),
and the results were visually inspected for the presence of near duplicates. A
total of 101 (2.2%) and 121 (2.4%) ND pairs were found for the CLAIMS and485

MFND datasets, respectively, and their labels were changed accordingly.

6. Results

In this section, results of the ROC analysis are compared across di↵erent
descriptors (Section 6.1) and di↵erent datasets (Section 6.2). Finally, the per-
formance obtained from random queries is analyzed and compared with that490

predicted by ROC analysis in Section 6.3.

Descriptor CLAIMS MFND California-ND Holidays
AUROC AUROC-IND AUROC-all AUROC AUROC

GIST4 0.397 ( 0.381 – 0.413) 0.808 ( 0.799 – 0.817) 0.5 ( 0.491 – 0.509) 0.598 ( 0.587 – 0.610) 0.365 ( 0.351 – 0.378)
GIST8 0.45 ( 0.433 – 0.467) 0.854 ( 0.847 – 0.862) 0.561 ( 0.552 – 0.569) 0.696 ( 0.685 – 0.706) 0.493 ( 0.478 – 0.508)

DeepRet800 0.891 ( 0.88 – 0.903) 0.994 ( 0.993 – 0.996) 0.983 ( 0.981 – 0.984) 0.929 ( 0.924 – 0.934) 0.744 ( 0.731 – 0.758)
DeepRet500 0.88 ( 0.868 – 0.892) 0.992 ( 0.991 – 0.994) 0.979 ( 0.978 – 0.981) 0.917 ( 0.911 – 0.923) 0.748 ( 0.734 – 0.761)

DeepRet500MR 0.891 ( 0.88 – 0.903) 0.992 ( 0.99 – 0.994) 0.983 ( 0.982 – 0.984) 0.938 ( 0.933 – 0.943) 0.789 ( 0.777 – 0.802)
SP VGG19 IM 0.391 ( 0.375 – 0.407) 0.934 ( 0.929 – 0.940) 0.904 ( 0.901 – 0.908) 0.88 ( 0.873 – 0.887) 0.671 ( 0.656 – 0.685)
SP VGG16 PL 0.446 ( 0.429 – 0.463) 0.907 ( 0.901 – 0.914) 0.881 ( 0.877 – 0.886) 0.909 ( 0.903 – 0.915) 0.675 ( 0.66 – 0.689)
SP VGG16 HY 0.418 ( 0.401 – 0.434) 0.929 ( 0.923 – 0.934) 0.906 ( 0.903 – 0.910) 0.896 ( 0.89 – 0.903) 0.697 ( 0.683 – 0.711)
SP ResNet101IM 0.518 ( 0.501 – 0.536) 0.961 ( 0.957 – 0.965) 0.941 ( 0.938 – 0.943) 0.93 ( 0.925 – 0.936) 0.776 ( 0.763 – 0.789)
SP ResNet512IM 0.522 ( 0.505 – 0.540) 0.963 ( 0.959 – 0.967) 0.944 ( 0.941 – 0.946) 0.921 ( 0.916 – 0.927) 0.78 ( 0.767 – 0.793)
SP ResNet512HY 0.459 ( 0.442 – 0.476) 0.924 ( 0.918 – 0.930) 0.916 ( 0.913 – 0.920) 0.866 ( 0.859 – 0.874) 0.737 ( 0.723 – 0.751)

RMAC 0.323 ( 0.308 – 0.338) 0.99 ( 0.988 – 0.992) 0.945 ( 0.942 – 0.947) 0.88 ( 0.873 – 0.888) 0.737 ( 0.723 – 0.751)
Average 0.549 0.937 0.870 0.863 0.684

Table 3: Area under the ROC curve (AUC) with 95% confidence intervals. The NND pairs

are extracted using the first hard negative mining strategy (hn1 ). For the MFND dataset, the

AUC is calculated separately for both IND and NIND pairs (AUROC-all), and for IND pairs

vs. NND pairs; in the latter case, NIND are not counted as either FP or TP. The average

AUC across all descriptors provides a semi-quantitative estimate of the ”di�culty” of each

dataset.

6.1. ROC analysis

The Area under the ROC curve (AUC) for all descriptors, along with 95%
confidence intervals, is reported in Tables 3 and 4. There is a large di↵erence in
estimated performance depending on the hard negative mining technique em-495

ployed, with hn1 yielding optimistically biased estimates. This is most evident
for the CLAIMS dataset, which contains a larger number of visually similar,
but not duplicate images.

For IND detection, the di↵erence between global features and deep learning
based features is less pronounced. The results are lower than previously reported500

in literature, because the IND dataset has been significantly expanded, and the
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Descriptor CLAIMS MFND California-ND Holidays
AUROC AUROC-IND AUROC-all AUROC AUROC

GIST4 0.108 ( 0.101 – 0.114) 0.706 ( 0.696 – 0.715) 0.317 ( 0.31 – 0.323) 0.398 ( 0.389 – 0.408) 0.178 ( 0.17 – 0.186)
GIST8 0.121 ( 0.114 – 0.128) 0.756 ( 0.747 – 0.765) 0.346 ( 0.339 – 0.352) 0.462 ( 0.452 – 0.472) 0.243 ( 0.234 – 0.253)

DeepRet800 0.381 ( 0.366 – 0.395) 0.99 ( 0.988 – 0.992) 0.969 ( 0.967 – 0.970) 0.929 ( 0.924 – 0.934) 0.628 ( 0.614 – 0.642)
DeepRet500 0.428 ( 0.412 – 0.443) 0.987 ( 0.985 – 0.989) 0.962 ( 0.96 – 0.964) 0.917 ( 0.911 – 0.923) 0.614 ( 0.6 – 0.628)

DeepRet500MR 0.46 ( 0.444 – 0.476) 0.987 ( 0.985 – 0.989) 0.97 ( 0.968 – 0.971) 0.938 ( 0.933 – 0.943) 0.676 ( 0.663 – 0.690)
SP VGG19 IM 0.24 ( 0.229 – 0.251) 0.882 ( 0.876 – 0.889) 0.82 ( 0.816 – 0.825) 0.787 ( 0.779 – 0.796) 0.52 ( 0.507 – 0.534)
SP VGG16 PL 0.288 ( 0.274 – 0.302) 0.866 ( 0.859 – 0.873) 0.821 ( 0.817 – 0.826) 0.859 ( 0.851 – 0.866) 0.577 ( 0.563 – 0.591)
SP VGG16 HY 0.267 ( 0.255 – 0.279) 0.881 ( 0.874 – 0.887) 0.834 ( 0.83 – 0.838) 0.814 ( 0.806 – 0.822) 0.563 ( 0.55 – 0.577)
SP ResNet101IM 0.397 ( 0.382 – 0.412) 0.943 ( 0.939 – 0.948) 0.911 ( 0.908 – 0.914) 0.892 ( 0.885 – 0.898) 0.685 ( 0.671 – 0.698)
SP ResNet512IM 0.396 ( 0.381 – 0.411) 0.947 ( 0.943 – 0.952) 0.917 ( 0.914 – 0.920) 0.885 ( 0.878 – 0.891) 0.694 ( 0.68 – 0.707)
SP ResNet512HY 0.327 ( 0.313 – 0.340) 0.881 ( 0.874 – 0.887) 0.866 ( 0.862 – 0.870) 0.784 ( 0.776 – 0.793) 0.627 ( 0.613 – 0.641)

RMAC 0.336 ( 0.322 – 0.350) 0.985 ( 0.983 – 0.988) 0.917 ( 0.914 – 0.920) 0.825 ( 0.817 – 0.833) 0.641 ( 0.627 – 0.655)
Average 0.312 0.901 0.804 0.791 0.554

Table 4: Area under the ROC curve (AUC) with 95% confidence intervals. The NND pairs

are extracted using the second hard negative mining strategy (hn2 ). For the MFND dataset,

the AUC is calculated separately for both IND and NIND pairs (AUROC-all), and for IND

pairs vs. NND pairs; in the latter case, NIND are not counted as either FP or TP. The average

AUC across all descriptors provides a semi-quantitative estimate of the ”di�culty” of each

dataset.

new pairs include transformations to which previous descriptors were less robust.
The DeepRetrieval architecture generally outperforms SPoC for all datasets,
despite being trained on a di↵erent dataset (Landmarks) with no fine-tuning.
The actual gap in performance is very low for the MFND dataset, and increases505

for other datasets, with CLAIMS exhibiting the highest gap. It is worth noting,
however, that DeepRetrieval is also more prone to FPs due to visually similar
images, and the performance estimates are more sensitive than for SPoC to the
hard negative mining strategy. The R-MAC descriptor performs slightly better
than SPoC for the MFND dataset, and slightly worse for the other datasets.510

The performance of the SPoC descriptor strongly depends on the network
architecture, with Residual Networks consistently outperforming VGG on all
datasets. The dataset on which the network was trained has instead a limited
impact, possibly due to the e↵ect of PCA whitening. ROC curves for selected
descriptors and datasets are reported in Fig. 3. The remaining ROC curves515

are available as supplementary material. On the MFND collection, the best
performance is obtained by the DeepRet descriptor, retrieving 96% of the true
positives at a FP rate of 1.43⇥ 10�6.

6.2. Dataset comparison

In order to better highlight di↵erences between the datasets, we computed520

the false FP and TP rate w.r.t. the distance threshold for each dataset and for
each of the two best performing descriptors, as detailed in Fig. 4.

Not surprisingly, INDs are more easily detected than NINDs. The CLAIMS
dataset contains the most challenging near duplicates, closely followed by the
Holidays dataset. Given the annotation procedure followed for the MFND525

benchmark, it is possible that the NIND examples are skewed towards examples
that are more easily detected using the present descriptors, and future exper-
iments will likely find new examples. Examples of ND pairs that were poorly
scored are reported in Fig. 5; empirically, large changes in viewpoint appear
among the most challenging di↵erences.530
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3: ROC curves for the Deep Retrieval descriptors for hard negative mining strategy

hn1 (a-d) and hn2 (e-h) respectively. A logarithmic scale was used for the FP rate axis to

highlight low values in the 0.01 – 0.1 range. Since the NND pairs were extracted using a hard

negative mining strategy, a 0.1 FP rate corresponds to a projected minimum FP of 1.25⇥10
�6

and 1.43⇥ 10
�6

for the CLAIMS and MFND datasets, respectively.

We also compared FP rates on the MFND and CLAIMS datasets with the
two hard negative mining strategies. For hn1, MFND appears to be more dif-
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(a) (b)

(c) (d)

Figure 4: Comparison of TP rate and FP rates across di↵erent datasets for selected descriptors:

SP ResNet101 ImageNet (a-b), and DeepRet800 (c-d). For FPs, pairs selected with both hard

negative mining strategies hn1 and hn2 are separately plotted.

ficult than CLAIMS, whereas for hn2 the two datasets are quite comparable
for both descriptors. Given a random query image, it is more likely to find a
similar image for MFND than CLAIMS, but CLAIMS contains larger clusters535

of images that are both semantically and visually similar, as is likely going to
be the case for any dataset that comes from a focused domain. Examples of
hard negatives (hn2 ) for both datasets are reported in Fig. 5.

6.3. Query performance analysis

In this section, the two best performing descriptors at ROC analysis were540

compared: DeepRet800 and SP ResNet152IN, using the experimental setup de-
tailed in Section 4.3.

We performed threshold-limited queries at thresholds T corresponding to a
FP rate in the [0.01 – 0.1] range, and a maximum number of results/query K

between 2 and 10.545

The results are plotted in Fig. 6. Since we are using the same dataset for
both hard negative mining and estimating query performance, it can be easily
shown from Eq. 4 that a FP rate of 0.1 should correspond to an average number
of FPs/query of 0.1 as well. Estimates based on hn1 have larger deviations from
expected values, especially for the DeepRet descriptor on the CLAIMS dataset,550

which is a 20x larger than expected. For hn2, actual measured FPs/query are
usually slightly lower than predicted. Since we limit the maximum number of
images retrieved by each query, this factor may explain the discrepancy, which
is higher for the CLAIMS dataset where images are more tightly clustered in
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5: Examples of challenging image pairs for unsupervised near-duplicate detection.

Examples (a-e) are challenging negative examples which, despite high semantic and visual

similarity, are not near duplicates. Examples derived from CLAIMS (a-c) are related to

image types that are particularly common this collection, whereas examples from MFND (d-

e) are mostly of subjects which are particularly popular on Internet, such as sunsets and cats.

Examples (g-h) are challenging near-duplicates from the CLAIMS dataset which were given

low similarity scores by all descriptors; common patterns that are di�cult to detect include

drastic changes in viewpoint, or one of the two images in the pair represents a detail of a

larger scene.

feature space. It should also be noticed that in Eq. 4 the specificity depends555

only on the threshold, and not on the query image; our experiments, however,
suggest that this does not hold true in practice, and that certain types of images
are more prone to false positives.

7. Discussion

7.1. Dataset and methodology560

Our contributions are a crucial step towards a principled evaluation method-
ology through which estimating the specificity of unsupervised detection in arbi-
trarily sized datasets is reduced to the simpler problem of binary classification of
ND vs. NND pairs; a tractable number of NND pairs can be extracted through
hard negative mining strategies. In the simplest implementation, hard negatives565

can be mined by finding the nearest neighbors in the dataset, using exact or
approximate search depending on the size.

We established the first benchmark for unsupervised NIND detection, an ex-
tension of the MFND benchmark comprising more than 20,000 pairs of INDs or
NINDs. We followed a semi-automatic procedure that potentially could locate570

almost all pairs of NDs in the dataset (Connor et al., 2015). In our experiments,
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occasionally hard negatives mined may still contain a small percentage (1-2%)
of NDs: hence, annotation of the MFND benchmark should be regarded as an
ongoing process, that will grow as new descriptors will be tested. For compar-
ison, in an initial experiment performed before extending the dataset (Connor575

et al., 2015), roughly 8% of the hard negative mined were either NIND or IND
pairs. Our experimental comparison on state-of-the-art descriptors suggests
that, when compared with a real-life dataset representative of a fraud detec-
tion application, MFND is a surprisingly realistic benchmark for estimating the
specificity. On the contrary, NIND samples in MFND are on average slightly580

easier to detect than other datasets, albeit the di↵erence is much reduced com-
pared to IND samples. The presented methodology builds upon previous results
from Connor & Cardillo (2016) on IND detection; we proved that the accuracy
of the estimated specificity crucially depends on choosing a proper hard negative
mining strategy. We provide two additional contributions that strengthen the585

adoption of this methodology: first, we show analytically that the AUC of the
ROC obtained on the hard negative subset is an upper bound of the true AUC.
Secondly, we show experimentally that, starting from the experimental ROC,
we are able to predict quite accurately the false positive rate per query, which
is an indirect proof that the ROC is indeed a good approximation of the true590

curve. For this experimental comparison, we used the same dataset for hard
negative mining and performance evaluation, but in principle, it would be more
convenient to perform the hard negative mining on a smaller dataset. Future
work is needed to determine whether the false positive rate can be extrapolated
to a larger dataset.595

An alternative, more intuitive, figure of merit would be the average recall and
FPs/query as a function of the distance threshold t. This curve is less practical
to use as it depends on the size of the dataset and, being unbounded, defin-
ing summary performance measures such as the Area under the ROC curve is
not straightforward. It closely resembles the Free-Response Receiver Operating600

Characteristics (FROC), an extension of ROC analysis used for many diagnostic
tasks where the observer (human or machine) can identify the location of an ar-
bitrary number of potential abnormalities, as opposed to the binary prediction
task of determining whether an abnormality is present or not (Petrick et al.,
2013). In that context, alternatives to the AUC have been proposed and could605

be extended to our use case.

7.2. Performance comparison

To the best of our knowledge, this the first attempt to evaluate deep learning
descriptors on unsupervised discovery of non-identical near duplicates.

Connor & Cardillo (2016) argued that global descriptors are su�cient for610

IND detection. Our experience on the GIST descriptor, which obtained the
highest performance in the previous comparison, suggests that CNN-based de-
scriptors o↵er significant advantages also in this case, and compare favorably in
terms of execution time.

We have included in our comparison three widely used architecture: SPoC,615

R-MAC and DeepRetrieval. Note that the DeepRetrieval architecture includes
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region pooling (like R-MAC), but unlike other descriptors the features are fine-
tuned on the Landmarks dataset for the retrieval task using a Siamese network.
Confirming previous results on instance-level image retrieval benchmarks, nicely
summarized by Zheng et al. (2017), our experimental results overall favor the620

choice of fine-tuning the representation for retrieval, as opposed to using o↵-
the-shelf features trained using classification loss (Gordo et al., 2016). The
actual performance gap, however, strongly depends on factors related to both
the network architecture, the chosen trade-o↵ between specificity and sensitivity,
and the underlying dataset structure.625

The Holidays dataset has been extensively used to benchmark instance-level
retrieval tasks, and all descriptors analyzed in this paper were also previously
tested on this dataset, albeit using a di↵erent approach for performance as-
sessment. The performance (mean Average Precision) is reported in previous
literature as follows: 75.9 (SPoC), 85.2 (R-MAC) and 86.7 (DeepRetrieval)630

(Gordo et al., 2016). For the Holidays near-duplicate detection task, the best
results for the three descriptors are 0.641 (R-MAC), 0.694 (SPoC) and 0.676
(DeepRetrieval), suggesting that SPoC may outperform architectures that are
significantly more complex to train and deploy. We should note that none of
the descriptors were trained on the Holidays dataset, but the PCA for SPoC635

and R-MAC was trained on the MFND dataset, which is used as distractors for
the near-duplicate detection task.

First, the task is di↵erent, not only because the performance measure is dif-
ferent, but also because in our experimental setting, images from the MFND
collection are used as negative samples; this is needed to evaluate specificity,640

which is di�cult to do directly on Holidays due to the small size of the dataset
and the absence of distractor images. We found experimentally that in many
cases the increase in sensitivity is counterbalanced by a corresponding increase
in the false positive rate. This is especially evident for the R-MAC descriptor,
for which the overall performance decreases in all datasets except MFND. Sec-645

ondly, each descriptor has many parameters, and the best combination is dataset
dependent. While exploring all possible combinations is a daunting task, our ex-
periments provide some useful insights. We found that the backbone depth and
architecture were the single most important factor a↵ecting performance. The
original SPoC paper, and many subsequent comparisons (Babenko & Lempitsky,650

2015; Gordo et al., 2016; Zheng et al., 2017), employed the VGG architecture
as backbone, but we found a major boost in performance by using Residual
Networks; the DeepRetrieval architecture, on the contrary, uses ResNet101 as
backbone (Gordo et al., 2017). In our experiments, the depth of the architecture
appears a more relevant factor than the specific feature training, and this an655

important consideration that should be kept in mind by practitioners.
When compared on the same backbone architecture (Resnet101), the Deep-

Retrieval outperformed SPoC on CLAIMS and MFND, but not on Holidays.
The Holidays dataset contains a lot of outdoors and natural scenes imagery,
which may not su�ciently covered by the Landmarks dataset. We expected660

that SPoC features extracted from networks trained on a scene recognition
task, for instance on the Places dataset, or a mixture of Places and ImageNet,
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could perform better for near-duplicate detection, since many near-duplicates
include complex scenes. However, we did not find consistent advantages, espe-
cially when using Residual Networks as the backbone architecture. In a high665

specificity setting, the di↵erence between pre-trained and fine-tuned networks is
further reduced, as visually similar images tend to generate many false positives.
Future work will be dedicated to training a specific descriptor for unsupervised
near-duplicate detection, incorporating specificity requirements at training time
as well as test time. In literature, feature weighting schemes have also been pro-670

posed (Mohedano et al., 2018; Kalantidis et al., 2016); such descriptors could be
trained in an unsupervised fashion, or do not require any training at all. The
performance of such schemes from the point of view of specificity is another
direction worth exploring.

In this work, we have used the same descriptor and distance function for675

all images, regarding of their content. Notably, images are not uniformly dis-
tributed in the embedded feature space, and the specificity is largely a↵ected
by the presence of clusters of images that are very similar from a semantic and
visual point of view. This behaviour is observed in both CLAIMS and MFND
datasets, despite their di↵erent origin. Exploiting this underlying structure to680

improve the performance of ND discovery is an important avenue for future
research.

8. Conclusions

Unsupervised discovery of near-duplicate detection is an important problem
in digital forensics and fraud detection. As the number of false alarms grows685

quadratically with the size of the input dataset, practical applications require a
very high specificity, or conversely low false positive rate, often in the range of
10�7–10�10. Hard negative mining can be used to select a subset of the dataset,
on which ROC analysis can be used to evaluate the performance.

We have evaluated a selection of descriptors based on Convolutional Neural690

Networks following the proposed methodology. While the task of NIND detec-
tion is conceptually similar to instance-level image retrieval, we experimentally
found that the same descriptors may be ranked di↵erently, as the Area under
the ROC curve depends more strongly on specificity than the mean Average
Precision. This strengthens the need for a dedicated benchmark, targeting ap-695

plications where unsupervised search is required. Our findings in general favor
the choice of fine-tuning deep convolutional networks, as opposed to using o↵-
the-shelf features, but di↵erences at high specificity settings strongly depend
on the specific dataset and are often small. On the MFND collection, promis-
ing performance is obtained by the DeepRet descriptor, retrieving 96% of the700

true positives at a FP rate of 1.43 ⇥ 10�6. However, further improvement in
specificity would benefit many applications, especially in the forensics domain.
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Appendix A. Hard negative mining provides an upper bound for the
AUC

In this section, proof that the AUC calculated using either hard negative705

mining strategies is an upper bound for the true AUC is provided.

Proposition 1. When using hard negative mining strategy hn2, the resulting
AUChn2 is an upper bound for the true AUC.

Proof. Hard negative mining strategy hn2 ensures that the selected nl pairs are
the most di�cult pairs within the set N

�; it follows that:

f(nj)  f(nl) 8nj 2 N
� � H

� 8nl 2 H
� (A.1)

and consequently:

1pi>nj
 1pi>nl

8nj 2 N
� � H

� 8nl 2 H
� (A.2)

The AUC can be decomposed in two terms

AUC =
1
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where the first term is known and is proportional to AUChn2 from Eq. 8, and the
second term is the contribution of the negative samples that are not observed.
However, we can substitute the second term by replicating the hard negative
samples
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Proposition 2. When using hard negative mining strategy hn1, the resulting710

AUChn1 is an upper bound for the true AUC.

Proof. Again, let us decompose the AUC as the sum of two terms, where the
first term is known and is proportional to AUChn1, and the second term is the
contribution of the negative samples that are not observed, as detailed in Eq.
A.3.715

Each sample nj consists of a pair of images (xk, ym), where xk 2 X and
ym 2 Y ; in other terms, N� = {(xk, ym), k = 1, ...K, m = 1, ...,M}. Then
according to the definition of hn1,

H
� = {(xk, ym⇤) | m⇤ = argmax

m

f(xk, ym)} (A.4)
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The sum over l = 1, ..., H� and j = 1, ..., N� in Eq. A.3 can be decomposed in
terms of k = 1, ...,K and m = 1, ...,M as follows:

AUC =
1

N+N�

 N
+X

i=1

KX

k=1

1pi>(xk,ym⇤ ) +
N

+X

i=1

KX

k=1

MX

m=1,m 6=m⇤

1pi>(xk,ym)

�
(A.5)

where N
� = KM , and according to the definition of hn1 there are exactly K

hard negative pairs.
By definition, f(xk, ym)  f(xk, ym⇤) and thus

1pi>(xk,ym)  1pi>(xk,ym⇤ ) 8k = 1, ...,K 8m 6= m
⇤ (A.6)

Combining Eqs. A.5 and A.6, we conclude that:
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Figure 6: Average recall vs. FPs/query for the CLAIMS (a-b, e-f) and MFND dataset (c-

d, g-h), with thresholds calculated using hard negative mining hn1 (top row, a-d) and hn2
(bottow row, e-h). Performance is measured at fixed thresholds (dots in the above curves),

bars indicate the standard error. The maximum number of images retrieved by each query is

limited to K = 2, 4, 6, 8, 10, results are plotted as separate curves.
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