
10 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

On the Equivalence of Displacement-Based Third-Order Shear Deformation Plate Theories / Di Sciuva, Marco. - In:
JOURNAL OF ENGINEERING MECHANICS. - ISSN 0733-9399. - ELETTRONICO. - 145:7(2019).
[10.1061/(ASCE)EM.1943-7889.0001616]

Original

On the Equivalence of Displacement-Based Third-Order Shear Deformation Plate Theories

Publisher:

Published
DOI:10.1061/(ASCE)EM.1943-7889.0001616

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2733017 since: 2019-05-13T16:11:41Z

American Society of Civil Engineers (ASCE)



 

EM4708 

   On the Equivalence of Displacement-Based Third-Order Shear Deformation Plate 
Theories 

Marco DI SCIUVA 

Department of Mechanical and Aerospace Engineering-Politecnico di Torino (I) 

Corso Duca degli Abruzzi, 24-10129 Torino (I) 

marco.disciuva@polito.it  

 

 

Abstract 

 

Based on the literature review of the assumed kinematics in the so-called higher-order 

displacement-based shear deformation theories, a generalization of this kinematics is first 

proposed and used to formulate variationally consistent field equations and boundary conditions 

for bending and vibration of a flat plate of rectangular platform. Second, attention is focused on 

the displacement-based polynomial shear deformation plate theories. It is shown that all the 

kinematics of polynomial third-order theories ({3,0}-order polynomial) proposed in the open 

literature are special cases of the present theory. Furthermore, it is concluded that the {3,0}-order 

polynomial kinematics of all the theories is the same when the maximum transverse shear strain 

is used as generalized displacement coordinates. A deep analysis of the static and dynamic 

behavior of simply supported rectangular plates in cylindrical bending is performed in order to 

substantiate the general conclusion that all the {3,0}-order polynomial displacement-based shear 

deformation theories give the same numerical results, i.e., they are kinematically equivalent, 

although not all are statically equivalent.  

DOI: 10.1061/(ASCE)EM.1943-7889.0001616. © 2019 American 
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Introduction 

There is a huge open literature on the single and multilayer beam/plate/shells theories that 

account for transverse shear strains and stresses and provide various degrees of refinement to the 

classical beam/plate/shell theories. These theories are known in the literature as higher-order 

shear deformation theories. The interested reader can usefully refer, among others, the recent 

reviews by Hu et al. 2008, Asadi et al. 2012, Khandan et al. 2012, Viola et al. 2013, Sayyad et al. 

2015, 2017, Abrate et al. 2017. 

Although the open literature has recently registered an increasing interest also on theories 

where the higher-order contribution to the in-plane displacement are given through trigonometric 

or, in general, hyperbolic and exponential functions (see, for example, Viola et al. 2013, Sayyad 

et al. 2015, 2017, Abrate et al. 2017), the polynomial displacement-based theories, are certainly 

still the most used in the open literature. In this paper, the focus is on those displacement-based 

theories which assume  a third-order polynomial expansion for the in-plane displacements and a 

zero-order expansion for the transverse displacement along the thickness, the most commonly 

used in the open literature, Abrate et al. 2017. Hereafter they will be named {3,0}-order 

polynomial displacement-based theories, in order to distinguishe them form other displacement-

based third-order theories where also the transverse displacement is a function of the thickness 

co-ordinate. 



 

Each author generally claims that his proposed theory is a new theory and, obviously, better 

than the other theories.  

With very few exceptions, the kinematics of various displacement-based third-order theories 

are perceived by many researchers as being different from one another and thus giving rise to 

different plate theories.  

To the best author’s knowledge, the first researcher to draw attention on the equivalence 

among various kinematical hypotheses used in the literature has been Jemielita 1990, “To set the 

record straight, I wish to point out that the kinematical hypothesis used by the aforementioned 

authors, as well as by other contributors, was a starting point in the Vlasov’s theory dated from 

1957.” 

 At the same conclusion arrived Reddy 1990 “The displacement field used by all the authors 

is the same, except for the choice of variables. Omissis. Thus, the works of Levinson (1980)*, 

Murthy (1981)*, Bhimarrady and Stevens (1984)*, and Senthilnathan et al (1987)* are 

essentially duplicates of previously existing works.” Kapuria et al 2004, after an accurate 

comparative analysis of the governing equations of two theories concluded “The equations of 

motion and boundary conditions of Ray’s theory, Ray (2003)*, are mathematically equivalent to 

those of the dynamic version of Reddy’s theory.”  Recently, Challamel et al 2013 performed a 

plate buckling analysis of simply supported rectangular flat plate and derived an analytical 

formula for the buckling load that is common to all higher-order shear plate models. They 

concluded “It is shown that cubic-based interpolation models for the displacement field are 

kinematically equivalent, and lead to the same buckling load results. This conclusion concerns 

for instance the plate models of Reddy J [J. appl. Mech. 51(1984) 745] or the one of Shi [Int. J. 

Solids Struct. 44 (2007) 4299] event though these models are statically distinct (leading to 



 

different stress calculation along the cross-section).” More recently, Nguyen et al 2016 

presented a unified approach within the general framework of high-order deformation plate 

theories and assessed the validity of the proposed approach. The authors concluded  “..omissis..In 

the current HSDT framework, the deflection and stresses obtained based on the generalized 

displacement field are not affected by the linear combinations of transverse shear functions. For 

instant, the KPR Model (Kaczkowski 1968, Reissner 1975, Panc 1975)* and LMR (Levinson 

1980, Reddy 1984, Murthy 1981)* are the linear combination of Ambartsumian 1960*..omissis... 

As a consequence, the static results of the three models are exactly identical .. omissis..”. 

Note that the starred references in the quoted sentences refer to those used in the present paper. 

It is apparent from the previous review that there is an interest to substantiate within a general 

framework the conclusions drawn by these researchers on the equivalence of  {3,0}-kinematics 

and the limit of this equivalence, at least to restrict the profileration of claimed new {3,0}-

kinematics.  

The purpose of this article is twofold. First, starting from a fairly general assumed kinematics 

encompassing many of the higher-order shear deformation theories (HSDT) appeared in the open 

literature, derive the equations of motion and the variationally consistent boundary conditions. 

Secondly, with specific reference to the {3,0}-order polynomial theories, substantiate the full 

equivalence of the various kinematics, also those so-called three- and four-variable plate 

theories. For this purpose, a generalized {3,0}-order polynomial kinematics is first formulated 

which contains, as special cases, all  the {3,0}-order polynomial kinematics, and it is shown that 

all of these kinematics satisfying the zero transverse shear strain on the bottom and top surfaces 

of the plate are equivalent when the transverse shear strain in the middle plane of the plate is 

assumed as generalized displacement co-ordinate.  



 

Subsequently, in order to substantiate the general conclusion, the general equations are 

particularized to the cylindrical bending of simply supported plates and it is shown that, at least 

for the two problems investigated (P1) bending under transverse load,  (P2) natural frequencies, 

the results are independent of the parameters entering the generalized {3,0}-order polynomial 

kinematics, i.e., all the theories give the same results.  

 

Geometry and reference frame 

 

We consider a rectangular flat plate of constant thichness, h, length a and width b. The point 

of 3-D plate are referred to a right handed rectangular Cartesian coordinate system,  ( , , )x y z , 

where  ( , )x y  denotes the reference plane of the plate (here selected to coincide with the mid-

surface of the plate), and ,
2 2

h h
z

 
 − 
 

 the thickness coordinate. So, the edges of the plate are 

x=0,a and y=0,b, respectively, and the top and bottom surfaces of the plate are placed at 
2

h
z =   

(see, fig. 1).  

The plate is subjected to a transverse load zp applied on the top surface of the plate, and to 

uniformly distributed in-plane edge loads for unit length, , xx yyP P  and xyP  applied along the 

edges x=0,a and y=0,b, respectively (see, fig. 1). 

In what follows, a comma followed by subscripts is used to denote partial differentiation with 

respect to  the subscripts; for example, 
( ) ( )0 0

, / ,xw w x=   and so on. The overdot indicates 

differentiation with respect to time, t. Unless otherwise stated, Greek indices range fram 1 to 2, 



 

respectively, with 1 ≡ 𝑥 − axis and 2≡ 𝑦 −axis. Furthermore, if not otherwise stated, repeated 

indices imply the summation over the range of variation of those indices. 

 

 

Kinematics 

The displacement field corresponding to the plate theories under consideration may be 

expressed in its general form as follows  

 

( )

(0) ( ) (0) ( )

,

0

( , , ; ) ( , ; ) ( ) ( , ; ) ( ) ( , ; )  ( = , )

( , . ; ) ( , ; )

b s

z

u x y z t u x y t f z w x y t f z g x y t x y

u x y z t w x y t

    = + +

=
   (1) 

 

where ( , ,z; )u x y t  and ( , , ; )zu x y z t  are the displacements along the α- and z− axes, 

respectively, 
(0) ( , ; )u x y t  is the uniform in-plane displacements, 

( )0
( , ; )w x y t  is the deflection, 

( , ; )g x y t  represents a generalized in-plane displacement component; 
( ) ( )bf z   and 

( ) ( )sf z  are 

functions of the thickness coordinate, z . Note that if 
( ) ( )bf z  is a non-linear function of z (more 

precisely, 
( ) ( )bf z z − ), then also 

( )0

, ( , ; )xw x y t  and 
( )0

, ( , ; )yw x y t will contribute to the transverse 

shear deformations, as can be argued from Eq. (2).  

 

Strains 

Corresponding to the displacement field given by Eq. (1) and within the realm of the linear 

plate theory, the following expressions for the components of the strain tensor hold,                                                         

( )(0) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

, ,;       1b b s s b b s s

z zf f f f= + + = + +ε ε ε ε γ γ γ                                                             (2) 



 

where 
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and 
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γ γ
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Stresses 

 

Within the assumptions that (i) the material is linearly elastic and orthotropic, with a plane of 

elastic symmetry parallel to the reference plane, (ii) the transverse normal stress 0z = , the 

constitutive relations in the material principal axes of orthotropy take on the form 

;       = =σ Q ε τ Q γ                                                  (5) 

In expanded form, 

𝑎
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= =         
                

                                                    (6) 



 

 

where σ and τ stand for the normal and shear stress components, ( ), 1, 2,6ijQ i j =  and 

( )4,5iiQ i =  denote the in-plane and transverse shear elastic reduced stiffness coefficients, 

respectively (see, Reddy 2004).   

 

Equations of motion and variationally consistent boundary conditions 

The equations of motion and the variationally consistent boundary conditions for the plate 

under consideration are derived using the D’Alembert’s principle (Variational Equation of 

Dynamics (VED)) (see, Appendix). 

 

Equations of Motion 

( )0 (0) (0) ( ) (0) ( )

, ,

b su N m u m w m g       = + +                                                                                      (7) 

( )0 ( ) (0) (0) ( ) (0) ( ) (0) ( )

, , , ,

b b bb sb

z zw V p m w m u m w m g        − = − + + +                                                        (8) 

( ) ( ) (0) ( ) (0) ( )

, s s bs ss

zg V m u m w m g      − = + +                                                                                    (9) 

where we have posed 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )

, ,;  .b b b s s s

z z z zV R R V R R       = − − = − −                                                                                (10) 

 

Boundary conditions  

The variationally consistent boundary conditions for the present theory are of the form 

Specify, 

 

𝑥 = 0, 𝑎) 



 

                       

( ) ( )

( ) ( )

( ) ( )

0 0

0 0 ( ) (0) ( ) (0) ( )

,

0 0 ( )

, ,

( )

either      or   

              or   0

              or   0

                 or   0

x x

b bb sb

zx x x

b

x

s

x

u u N P
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w w R
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= =

= + + + =

= =

= =

                                                              (11) 

 

𝑦 = 0, 𝑏) 

 

( ) ( )

( ) ( )

( ) ( )

0 0

0 0 ( ) (0) ( ) (0) ( )

,

0 0 ( )

, ,

( )

either      or   

              or   0

              or   0

                 or   0

y y

b bb sb

zy y y

b

y

s

y

u u N P

w w V m v m w m g

w w R

g g R

   

  

  

= =

= + + + =

= =

= =

                                                              (12) 

Equations of motion in terms of generalized displacements 

The above equations of motion are given in terms of force and moment stress resultants. To 

express them in terms of generalized displacements, we use the plate constitutive equations, Eq. 

(97), and the strain-displacement relations, Eqs. (2)-(4). The result is 

( ) ( )( ) ( )0 0(0) (0) (0) ( ) (0) ( )

3 ,) 
b sA B B b su L u L w L g m u m w m g         ++ + = + +                                                         (13) 

( ) ( ) ( ) ( )( )
( ) ( ) ( )0 0 0 0( )

3 6 3 3, 3 , ,

(0) (0) ( ) (0) ( ) (0) ( )

, , ,

) 

                                

b b bsB D D bs

b bb sb

z

w L u L w L g A g w

p m w m u m w m g

        

    

 + + + ++ + − + =

= − + + +

                                             (14) 

( ) ( ) ( ) ( )( ) ( ) ( )0 0 0 0( ) ( )

3 3, 3 , 3, 3

( ) (0) ( ) (0) ( )

,

) 

                                                                  

s bs sB D bb D bs

s bs ss

g L u L w A w L g A g

m u m w m g

           

  

 + + + + ++ − + − =

= + +
                                      (15) 

where the differential operators 𝐿 are defined as follows 
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= + = = + = +

= + + = + +

= + + +

                                    (16) 

On the choice of the functions 
( ) ( )bf z  and

( ) ( )sf z  



 

 In the previous Sections, we derived the equations of motion and the variationally consistent 

boundary condition using as starting point the general unified kinematics given by Eq. (1). As 

stated in the Introduction, this kinematics is very general, i.e., many of the assumed kinematics in 

higher-order shear deformation beam/plate/shell theories actually can be obtained by 

appropriately choosing the functions  𝑓
(𝑏)

(𝑧) and 𝑓
(𝑠)(𝑧).   

    In this Section, we will focuse our attention on the so-called {3,0}-order polynomial 

displacement-based theories, with the aim to show that all these theories satisfying zero 

transverse shear strain on the bottom and top surfaces of the plate are kinematically equivalent.  

For this purpose, let us first compute the zero (mean value) and first-moment (rotation) of the 

in-plane displacement, i.e., 

2

2

1 1
  

h

h
U u u dz

h h
  

+

−
= =                                                                                                        (17) 

2

2

1 1
    

h

h
zu zu dz

h h
  

+

−
= =                                                                                                   (18) 

Substituting Eq. (1) into Eq. (17), yields 

( ) ( ) ( )0(0) ( ) ( )

,

1 1
   b sU u f z w f z g

h h
   = + +                                                                            (19) 

Then, for 
(0) ( , ; )u x y t  be the uniform in-plane displacement components along the x- and y-axis, 

respectively, the following kinematical constraints must be satisfied, 

( ) ( )( ) ( )0;      0b sf z f z= =                                                                                                 (20) 

Let us consider the transverse shearing strain at the top and bottom bounding surfaces of the 

plate. From Eq. (2)-(4), it follows 

( )0( ) ( )

, , ,1
2 2 2

b s

z z z

h h h
f w f g  

      
 = +  +       
      

                                                                                  (21) 



 

So, for the transverse shearing strain (and stress) vanishes on the top and bottom bounding 

surfaces, the following relations must hold  

( ) ( )

, ,1;      0
2 2

b s

z z

h h
f f

   
 = −  =   
   

                                                                                             (22)                                                           

Constraints on the functions 
( ) ( )bf z  and 

( ) ( )sf z  as given by Eqs. (20) and  (22) are listed in the 

first two rows of Table 1. A cursory examination of these constraints  highlights that they allow 

for a very large class of higher-order theories to be built-up all satisfying the free-boundary 

conditions of the transverse shearing stresses on the top and bottom faces. Obviously, in general, 

different choices for these functions will result in different kinematics. As remarked in the 

Introduction, it is quite common belief that these kinematics are different from one another. We 

will discuss this in detail in the next Sections. 

As the commonly used higher-order shear deformation plate theories belong to the  so-called 

{3,0}-order polynomial shear deformation theories, in  the following we will focus our attention 

on this class of theories with the functions 
( ) ( )bf z  and 

( ) ( )sf z  satisfying the constraints listed in 

the first two rows of Table 1. 

 

{3,0}-order polynomial kinematics.  

Let us expand 
( ) ( )bf z  and 

( ) ( )sf z  in a cubic power series of z, i.e., 

( ) ( ) ( ) ( ) 2 ( ) 3

0 1 2 3( )b b b b bf z f f z f z f z= + + +                                                                                       (23) 

( ) ( ) ( ) ( ) 2 ( ) 3

0 1 2 3( )s s s s sf z f f z f z f z= + + +                                                                                        (24) 

By satisfying the constraints listed in the first and second row of Table1, we obtain 

( ) ( ) ( ) 2 (b)

0 2 1 3

3
0,     0,     1

4

b b bf f f h f= = + = −                                                                                  (25) 



 

( ) ( ) ( ) 2 ( )

0 2 1 3

3
0,     0,     0

4

s s s sf f f h f= = + =                                                                                  (26) 

Substituting these results into Eqs. (23) and (24), yields 

 ( ) ( )( ) ( ) 2 3 ( ) 3 ( ) ( ) 3

1 1 1 1 12 2 2

4 4 4
1 (1 )

3 3 3

b b b b bf z f z z z f F z c z f z f z
h h h

 
= − − = − = − + 

 
                                 (27) 

( ) ( )( ) ( ) 2 ( )

1 12

4
1

3

s s sf z f z z f F z
h

 
= − = 

 
                                                                                      (28) 

where, following Reddy 2004, we have posed 

( ) ( )2

11F z z c z= −      with     
1 2

4
.

3
c

h
=                                                                                       (29) 

Substituting Eqs. (27) and (28) into Eq. (1), yields 

( )

( )( ) ( ) ( )

0(0) ( ) 2 3 ( ) 2

1 , 12 2 2

0(0) ( ) 3 ( )

1 1 , 1

4 4 4
1 1

3 3 3

    

b s

b s

u u f z z z w f z z g
h h h

u f F z c z w f F z g

   

  

    
= + − − + −    

    

= + − +

                                                    (30) 

 Table 2 gives a (not exhaustive) list of the explicit expressions for the functions 
( ) ( )bf z  and 

( ) ( )sf z  of well-known {3,0}-order polynomial plate theories. It should be stressed that the 

physical meaning of  ( , )g x y  =  in Table 2 depends on the displacement field employed. 

It is clearly shown that all the listed displacement fields are special cases of that given in Eq. 

(30), i.e., they are obtained from Eq. (30) by giving specific values to the arbitrary parameters 

𝑓1
(𝑏)

 and  𝑓1
(𝑠)

. 

Let us return back to the strain expressions, Eqs. (2)-(4). By taking into account Eqs. (27) and 

(28), we obtain 

( )( ) ( )(0) ( ) ( ) ( ) ( ) (0) ( ) 3 ( ) ( ) ( )

1 1 1

b b s s b b s sf f f F z c z f F z= + + = + − +ε ε ε ε ε ε ε                               (31) 

( ) ( ) ( )( ) ( )0( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

, , , 1 1 ,1 1b b s s b b s s

z z z zf f F z f f Fγ γ γ γ γ γ= + + = + + =                                 (32) 



 

where 

( ) ( ) ( ) ( )0 ( ) ( )

1 11
b sb sf fγ γ γ= + +                                                                        (33) 

is the transverse shear strain on the reference plane, 𝑧 = 0. Table 3 gives the espressions of 𝛾𝛼𝑧
(0)

 

of the considered displacement-based third-order plate theories as special cases of Eq. (33).  

Following many authors, let us re-write Eqs. (31) and (32) as follows,  

( ) ( ) ( )0 1 33z z= + +ε ε ε ε                                                                                                          (34) 

(0) 2 (2)  z= +γ γ γ                                                                                                                 (35) 

A comparison of Eqs. (34) and (35) with Eqs. (31) and (32), yields 

( ) ( )( ) ( )

( )( ) ( )

( ) ( )

0(1) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1 1

0(3) ( ) ( ) ( ) ( )

1 1 1 1

2 0

1

1  =

1

3

b b s s b b s s b b

b b s s

f f f f

c f f c

c

= + = + + −  −

= − + + = − 

= −

ε ε ε ε ε ε γ ε

ε ε ε γ

γ γ

                                   (36) 

with  𝜺
(𝑏)

  and  𝜺
(𝑠)

 given by Eqs. (4) and  

,

,

, ,

(.) 0

0 (.)

(.) (.)

x

y

y x

 
 

 =  
 
 

. 

So, if we take 𝜸
(0)

 as a generalized variable, all the components of the strain will be independent 

from 𝑓1
(𝑏)

 and 𝑓1
(𝑠)

  (see, Table 4). At this point, let us go a step further by making a change of 

the generalized displacement, i.e., substitute ( , ; )g x y t  in Eq. (30) with  
(0) ( , ; )z x y t , using Eq. 

(33). The result is 

( ) ( )0(0) (0)

,( , , ; ) ( , ; ) ( , ; ) ( , ; )zu x y z t u x y t zw x y t F z x y t   = − +                                            (37) 



 

This means that all the {3,0}-order polynomial kinematics given in Table 2 reduce to the one 

given by Eq. (37) when the corresponding 
(0)

z  is used as a generalized displacement. Column 2 

of Table 3 shows in detail this statement.  

Comparing expression (37) with those listed in Table 2, it is concluded that this displacement 

model is that proposed in Reissner 1975, Panc 1975, Bhimaraddi and Stevens 1984, Reddy 1984, 

1990, when g is given the meaning of transverse shearing strain at the reference plane of the 

plate. By taking into account Eq. (33), this is equivalent to imposing the additional constraints 

( ) ( )

1 11,     1.b sf f= − =                                                                                                      (38) 

or, in an equivalent manner, satisfying the additional constraints listed in the third row of Table 

1.  

In summary, all the {3,0}-order polynomial kinematics listed in Table 2 can be reduced to the 

one given by Eq.  (37) with 
(0)

z  given by Eq. (48). This means assuming in Eq. (1) 

( ) ( )( ) ( ) 2

2

4
,        1 ( )

3

b sf z z f z z z F z
h

 
= − = − = 

 
                                                                  (39) 

and 
(0)

z  given by Eq. (33). 

The previous conclusion holds also for another group of {3,0}-order polynomial beam/plate 

theories, the so-called three-variables beams theories and four-variables plates and shells 

theories. In what follows we will consider two of these theories.   

The first one is (Bisplinghoff et al 1957, Krishna Murthy 1984, Senthilnathan et al 1987, 

Benachour et al 2011, Thai et al 2013),  

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0 0 02

, ,2

0 0

1 5
, , ; , ; , ; , ;

4 3

, , ; , ; , ;

b s

z b s

u x y z t u x y t zw x y t z z w x y t
h

u x y z t w x y t w x y t

   

 
= − + − 

 

= +

                                   (40) 



 

where 
( ) ( )0

, ;bw x y t and  
( ) ( )0

, ;sw x y t  are the transverse displacements due to bending strains and 

transverse shearing strains, respectively.  

Let us compute the transverse shearing strain, 

( ) ( ) ( )0 0 02 (0) (0)

, , ,2

5 4 5 4
1          

4 4 5
z s z s s zz w w w

h
       

 
= −  =  = 

 
                                           (41) 

From Eq. (402) we obtain 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 0 0 0 0 0 0

, , , ,

4
      

5
b s b s zw w w w w w w    + =  = − = −                                                     (42) 

Substituting for 
( )0

,sw   and 
( )0

,bw   in Eq. (40) their expression in terms of 
( )0

,w and 
( )0

z , as given 

by Eqs. (41) and (42), yields 

( ) ( )

( )

0 0(0) 2

, 2

0

4
1

3
z

z

u u zw z z
h

u w

   
 

= − + − 
 

=

                                                                               (43) 

that is, exactly the displacement model of Reissner 1975, Panc 1975, Bhimaraddi and Stevens 

1984, Ren and Hinton 1986, Reddy 1990. 

Apparently, Thai et al 2013 do not seem to be aware of this equivalence, although all numerical 

results listed in their tables show that the two theories are perfectly coincident (at least for the 

boundary conditions considered in the paper). 

As a second example, we consider the following displacement field (apparently first proposed 

by Senthilnathan et al 1987), 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0 0 03

, ,2

0 0

4
, , ; , ; , ; , ;     ( , )

3

, , ; , ; , ;

b s

z b s

u x y z t u x y t zw x y t z w x y t x y
h

u x y z t w x y t w x y t

    = − − =

= +

                    (44) 

As before, let us compute the transverse shearing strain, 



 

( ) ( )0 02 (0)

, ,2

4
1     z s z sz w w

h
    

 
= −  = 
 

                                                                            (45) 

From Eq. (44 2), it follows 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 0 0 0 0 0 0

, , , ,    z b s b s zu w w w w w w w    = + =  = − = −                                                 (46) 

Substituting for 
( )0

,sw   and 
( )0

,bw   in Eq. (44) their expression in terms of 
( )0

,w and 
( )0

z , as given 

by Eqs. (45) and (46), yields 

( ) ( ) ( )

( )

0 0 02

, 2

0

4
1

3
z

z

u u zw z z
h

u w

   
 

= − + − 
 

=

                                                                               (47) 

that is, as before, exactly the displacement model of Reissner 1975, Panc 1975, Bhimaraddi and 

Stevens 1984, Ren and Hinton 1986, Reddy 1990 (see, Table 5). 

To this end, refer also to Kant and Swaminathan 2001, 2002. In these papers, the authors 

compare, among the others, Senthilnathan et al 1987 and Reddy 1990 models. As before, 

apparently, the authors appear to be not aware that the two theories should give the same 

numerical results.  

   It should be emphasized that these conclusions hold for the simple support boundary conditions 

investigated in the quoted papers. It is evident that four-variables theories provide at the clamped 

end a nonzero thickness-wise distribution of 𝛾𝛼𝑧  (and, as a consequence, of 𝜏𝛼𝑧 ), unlike the 

classical ones listed in Table 2. It follows that for the case of clamped boundary conditions, these 

theories are cinematically equivalent, but not statically equivalent. In a recent paper by Nguyen 

et al. 2017, a novel three-variable shear deformation plate theory is formulated, starting from the 

four variable Senthilnathan theory, Senthilnathan et al. 1987, and eliminating the variable ( )0

sw . 

Following the approach outlined in this Section, it is easy to show that also this novel kinematics 

reduces to that of Reissner 1975, Panc 1975, Bhimaraddi and Stevens 1984, Ren and Hinton 



 

1986, Reddy 1984, 1990. Obviously, as before, this would not mean that all the five, four and 

three variable kinematics are statically equivalent  and perform in the same way when they are 

used as basis for the formulation of approximate numerical methods, such as finite element 

method, see Nguyen et al. 2017. For example, three and four variable kinematics do not suffer of 

the drawback of estimating  zero transverse shear strain (and stress when evaluated from the 

constitutive equation) at clamped edge.  

 

Cylindrical bending in the (𝑥, 𝑧) −plane 

In this Section an assessment of the general conclusions drawn in the previous Section is 

made. 

 In order to make the problem tractable from an analytical point of view, i.e., to obtain an 

exact closed form solution, and without lack of generality in the conclusions, we will study the 

problem of elastodynamic behavior of a plate extended infinitely along the 𝑦 −axis, that is, the 

problem known as the cylindrical bending in the (𝑥, 𝑧) plane. We consider a monolayer plate 

made of homogeneous and orthotropic material in cylindricasl bending in the (𝑥, 𝑧) plane, of 

length 𝑎 = 𝐿, simple-supported on both the edges 𝑥 = 0, 𝐿. 

We will investigate two problems: 

Problem P1) Elastostatic analysis of the plate subjected to a tranverse sinusoidal load  �̅�𝑧(𝑥; 𝑡) =

�̅�0𝑠𝑖𝑛𝜆𝑥 with 𝜆 =
𝜋

𝐿
.                                                                                    (48) 

Problem P2) Natural frequencies and mode shapes.  

For these cases study, the in-plane behavior is uncoupled from the transverse behavior. So, we 

study only this last one.  



 

      The governing equations and boundary condition are readily derived from the general ones 

and are summarized here below. 

 

Equations of motion 

( ) ( )( ) (0) ( ) (0) ( ) ( )

11 , 44 11 ,x 44, ,

b bb bs bs

xx x x x wxx x
D w A w D g A g RHS− + − =                                                      (49) 

( ) ( )( ) (0) ( ) (0) ( ) ( )

11 , 44 11 , 44,

bs bs s ss

xx x xx x gx
D w A w D g A g RHS− + − =                                                             (50) 

where 

Problem P1) w zRHS p= ;  0gRHS =                                                                                         (51) 

Problem P2) (0) (0) ( ) (0) ( )

, ,

bb sb

w xx x xRHS m w m w m g= − + + ; 
( ) (0) ( )

,

bs ss

g x xRHS m w m g= +                      (52) 

 

Boundary conditions on 𝐱 = 𝟎, 𝐋 

𝑤(0) = 𝑤,𝑥𝑥
(0)

= 𝑔𝑥,𝑥 = 0 on  𝑥 = 0, 𝑥 = 𝐿.                                                                  (53) 

Eqs. (53) follow from Eqs. (26) when Eqs. (14) and (25) are taken into account. 

As a first step in solving the system of equations (49) and (50), we note that we can write 

( ) ( ) ( ) ( )2 ( ) ( ) ( ) ( )

11 11 11 1 11 11 1 11

( ) ( ) ( ) ( ) ( ) ( ) ( )2 ( )

44 44 44 1 44 44 1 44

ˆ ˆ ˆ;       = ;       

ˆ ˆ ˆ;     ;   

 

  

b b s s s bs s bs

bb bb bs s bs ss s ss

D D D f D D f D

A A A f A A f A

= =

= = =
                             (54) 

where the quantities with hat are independent of 𝑓1
(𝑠)

,  



 

( )

( )

( )

( ) ( )2 ( ) ( ) 2

11 1 11 1 1 1 11 1 11

( )

11 11 1 11

( ) ( ) ( )

11 1 11 1 1 11

( ) ( ) 2

44 1 44 1 44

( ) ( )

44 1 44 1 44

( )

44 44 1 44

ˆ (2 )

ˆ  

ˆ 1

ˆ (1 ) 3

ˆ (1 ) 3

ˆ 3

  b b b b

s

bs b b

bb b

bs b

ss

D f f f c c H

D c

D f f c

A f c

A f c

A c

= − + +

= −

= − +

= + −

= + −

= −

D F

D F

D F

A D

A D

A D

                                                                  (55) 

In the same way, we write the inertia terms as  

(0) (0)

0
ˆm I m= =  ;     ( )

( )2 ( ) ( ) 2( ) ( )
1 2 1 1 4 1 6

( ) ( )2 ( )2 ( )

1 2 1 4 1

( ) ( ) ( )( ) ( ) ( ) ( )
11 1 2 1 1 1 4

(2 ) + ˆ

ˆ

ˆ(1 )

b b bbb bb

ss s s ss

bs s bsb s s b

f J f f J c Im m

m f J c J f m

m f mf f J f f c J

 − +   
     

= − =     
     

− +     

                    (56) 

Eqs. (55) and (56) follow from Eqs. (15) and (21) by remembering Eqs. (27) and (28), and taking 

into account the following definitions 

( ) ( )2 3 4 6( ;   ;   ;   ) ;  ;  ;   , 1,2,6ij ij ij ij ijD E F H Q z z z z i j= =                                            (57) 

( ) ( ) ( )2 4,   1;   ;    , 4,5ij ij ijD F Q z z i j= =                                                                     (58) 

( )1 1;        , 1, 2,6ij ij ij ij ij ijD c F F c H i j= − = − =D F                                                  (59) 

( )1 13 ;    3    , 4,5ij ij ij ij ij ijA c D D c F i j= − = − =A D                                                         (60) 

and 

i

iI z=   and 1 2 i i iJ I c I += − .                                                                                   (61)                                                  

So, Eqs. (49) and (50) read 

( ) ( )( ) (0) ( ) (0) ( ) ( ) ( )

11 , 44 1 11 , 44
, ,

ˆ ˆˆ ˆb bb s bs bs

xx x xx x w
xx x

D w A w f D g A g RHS− + − =                                        (62) 

( ) ( )( ) ( ) (0) ( ) (0) ( )2 ( ) ( )

1 11 , 44 1 11 , 44
,

ˆ ˆˆ ˆs bs bs s s ss

xx x xx x g
x

f D w A w f D g A g RHS− + − =                                   (63) 

where for Problem P2 



 

(0) (0) ( ) (0) ( ) ( )

, 1 ,

( ) ( ) (0) ( )2 ( )

1 , 1

ˆ ˆ

ˆ ˆ

bb s sb

w xx x x

s bs s ss

g x x

RHS m w m w f m g

RHS f m w f m g

= − + +

= +
                                                                   (64) 

 

Problem P1: Elastostatic analysis  

The following assumed set of functions will satisfy the boundary conditions (53),         

𝑤(0)(𝑥) = 𝐴𝑤𝑠𝑖𝑛𝜆𝑥,     𝑔𝑥(𝑥) = 𝐴𝑔𝑐𝑜𝑠𝜆𝑥, 𝜆 =
𝜋

𝐿
                                                       (65) 

Sustituting Eqs. (65) into Eqs. (62) and (63), and taking into account Eq. (50), yields 

    K A P=                                                                                                             (66) 

where  

     
2 ( )

1 0

( ) ( )2

1 1

ˆ ˆ
;   ;    

ˆ ˆ 0

s

ww wg w

s s
gwg gg

K f K A p
K A P

Af K f K

 



     
= = =     
     

                                        (67) 

and 

( ) ( )

( ) 2 ( )

11 44

2 ( )2 ( ) ( ) 2 ( ) 2

1 11 1 1 1 11 1 11 1 44 1 44

ˆˆ ˆ

      (2 ) +(1 ) 3  

b bb

ww

b b b b

K D A

f f f c c H f c





= +

= − + + + −D F A D
               (68) 

( )( ) ( )

( ) 2 ( ) 13

11 13

2 ( ) ( ) ( )

1 11 1 1 11 1 44 1 44

ˆˆ ˆ

      1 +(1 ) 3  

bs bs

wg

b b b

K D A

f f c f c





= +

= − + + −D F A D
                                     (69) 

( )

( ) 2 ( )

11 44

2

11 1 11 44 1 44

ˆˆ ˆ

      3

s ss

ggK D A

c c





= +

= − + −D F A D
                                                                             (70) 

In writing Eqs. (68)-(70), we have taken into account relations (55). 

Solving Eqs. (66), we obtain 

( )( ) 2 ( )

11 44

0 02 2

ˆˆˆ1 1

ˆ ˆ

s ss

gg

w

D AK
A p p

DEN DEN



 

+
= =                                                                       (71) 



 

( )( ) 2 ( )

11 44

0 0( ) ( )

1 1

ˆˆˆ1 1

ˆ ˆ

bs bs

wg

g s s

D AK
A p p

f DEN f DEN



 

+
= − = −                                                                (72) 

where 

( )( ) ( )
2

( ) 2 ( ) ( ) 2 ( ) ( ) 2 ( )

11 44 11 44 11 44

ˆ ˆ
ˆ ˆdet[ ] det

ˆ ˆ

ˆ ˆ ˆˆ ˆ ˆ                     =

ww wg

wg gg

b bb s ss bs bs

K K
DEN K

K K

D A D A D A  

 
= = = 

  

+ + − +

           (73) 

Using Eqs. (71) and (72) into Eq. (33), yields 

(0)

0

ˆ1

ˆxz

NUM
p

DEN



=                                                                                                          (74) 

where 

( ) ( )( ) ( ) ( ) 2 ( ) ( ) ( )

1 11 11 1 44 44
ˆ ˆˆ ˆ ˆ(1 ) (1 )b s bs b ss bsNUM f D D f A A= + − + + −                                  (75) 

So, let us calculate 𝐴𝑤 and 𝐴𝑔. Taking into account Eqs. (68) ÷ (70), after some lenghtly but 

straightforward calculations, we obtain 

( )( ) ( )

( )( ) ( )

( ) ( )

4 2 2

1 11 11 1 11 11 11 44 1 44 11

4 2

11 11 1 11 11 11 44 1 44 11

4 2 2

1 11 11 11 11 44 1 44 11

ˆ 3

        3

        3

DEN c H c c D

D c c D

c D H F F c D

 

 

 

= − − + −

= − − + −

= − + −

D F F F A D

D F D D A D

A D

                                    (76) 

2

11N̂UM = D                                                                                                                (77) 

Eqs. (70), (76) and (77) show that the transverse deflection, Eq. (71), and the maximum 

transverse shearing strain, Eq. (72) , are independent from the parameters 𝑓1
(𝑏)

 and 𝑓1
(𝑠)

, that 

appear in the various kinematics (Table 2). In other words, the deflection and the maximum 

transverse shearing strain are the same for all the {3,0}-order polynomial beam/plate models. 

Let us make a step further and calculate the axial and shearing strain (stress) distribution 

along the thickness. Remembering Eqs. (34) ÷ (36),we obtain 



 

( )(1) (3) 3

1( , ) sinxx xx xxx z z c z x   = +                                                                             (78) 

2 (0)

1(1 3 ) cosxz xzc z x  = −                                                                                          (79) 

where  

( ) ( )(1) ( ) ( ) (3) ( ) ( )

1 1 1 1;      (1  )b s b s

xx w g xx w gf A f A f A f A     = − + = + +                                (80) 

By remembering that (see, Eq. (33)) 

(0) ( ) ( )

1 1  (1 ) . b s

xz w gf A f A = + +                                                                                      (81) 

Eqs. (80) read,  

( ) ( )(1) (0) (3) ( ) ( ) (0)

1 1;        (1 )b s

xx xz w xx w g xzA f A f A       = − − = + + =                             (82) 

which confirm the general conclusions given by Eqs. (34)÷(36).  

Eqs. (78) and (79) , when Eqs. (74) and (82) are taken into account, show clearly that also the 

thickness distribution of the transverse shear strain (and stress) and of the axial strain (and 

stress) is the same for all the {3,0}-order polyomial beam/plate models. 

 

Problem P1) Natural frequencies and mode shapes . 

In this case, the solving equation (characteristic equation or frequency equation) is obtained by 

imposing  

   2det 0K M − =                                                                                                  (83) 

where matrix [𝐾] is given by Eq. (67) and 

 
( )

1

( ) ( )2

1 1

ˆ ˆ

ˆ ˆ

s

ww wg

s s

wg gg

M f M
M

f M f M





 
=  
  

                                                                               (84) 

with 



 

(0) ( ) 2 ( ) ( )ˆ ˆ ˆˆ ˆ ˆ ˆ;    ;    bb sb ss

ww wg ggM m m M m M m= + = =                                                        (85) 

and 

(0) (0)

0m̂ m I= = ;    

( ) ( )2 ( ) ( ) 2

1 2 1 1 1 4 1 6

( )

2 1 4

( ) ( ) ( )

1 2 1 1 4

ˆ (2 ) +

ˆ

ˆ (1 )

bb b b b

ss

bs b b

m f J f f c J c I

m J c J

m f J f c J

   − +
   

= −   
   − +   

                             (86) 

First, we note that 

   ( )    

( )( )

2 4 2

(2) 4 2 2 2

1

det det det det det

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ                              det det 2

ww wg ww wg

wg gg wg gg

ww gg ww gg wg wg

K K M M
K M K M

M M K K

f K M K M M K K M

  

   

    
− = + − +     

    

   = + − + −
   

     (87) 

After some lenghtly but straightforward calculations, we obtain the following results, 

( )(0) 2 2 2 2

1 6 2 1 4 1 4
ˆdet M I c I J c J c J    = + − −

                                                      (88) 

( )( )

( ) ( )

2 2 2 2 2

1 11 44 1 44 2 1 4

2 (0) 2

11 1 11 44 1 44 1 6

ˆ ˆ ˆ ˆ ˆ ˆ2 + 3

                                                         3 +

                                            

ww gg ww gg wg wgK M M K K M c H c J c J

c c I c I

   



+ − = − − +

 + − + − +
 

A D

D F A D

( )2 2

1 11 44 1 44 1 4             2 3c c c J  − − −
 

F A D

        (89) 

 

Substitution of the Eqs. (73), (77), (88) and (89) into Eq. (87), yields the frequency equation 

independent of 𝑓1
(𝑏)

 and 𝑓1
(𝑠)

.  This means that also the natural frequencies and mode shapes are 

the same for all the {3,0}-order polyomial beam/plate models. It is worthwile to note that this 

result, here obtained for the specific case of the simply supported beam, is also substantiated by 

the numerical results obtained by Qu et al 2013, tables 7 and 8, for different boundary conditions 

(F-F, F-C. S-S, C-S, C-C; F=free, C=clampled, S=simply supported) , using the kinematics of 

Reissner 1945, and Giavotto 1969 and that of Kaczkowski 1968, Reissner 1975, Panc 1975, etc. 

Table 6 aummarizes the main results obtained in this Section. 



 

In closing this Section, we note that, as observed by one Reviewer, it should be sufficed to write 

the general equations of these two problems in terms of the maximum transverse shear strain to 

show that they do not depend on the polynomial coefficients and thus on the specific kinematics, 

without computing the results. The choice to write the governing equations starting from the 

kinematics in the first natural way (Eq. (1)) , i.e., to derive them as particular case of the general 

equations (28)-(30), was dictated by the aim to use the set of general governing equations in 

which the coefficients 𝑓1
(𝑏)

 

and  𝑓1
(𝑠)

 appear explicitly.

 

 

Concluding remarks 

Based on a few suggestions in the open literature (Jemielita 1990, Reddy 1990, Kapuria et al 

2004, Challamel et al 2013, Nugyen et al 2016), first a generalization of the assumed kinematics 

in the so-called {3,0}-order polynomial displacement-based shear deformation theories is 

derived. Second, based on this general {3,0}-order polynomial displacement-based kinematics, 

the equations of motion and variationally consistent boundary conditions for a rectangular flat 

plate made of orthotropic material are derived. Third, it is shown that all the {3,0}-order 

polynomial theories proposed in the open literature are special cases of the general kinematics 

developed in this paper. Fourth, it is shown that the {3,0}-order polynomial kinematics satisfying 

the zero transverse shear strain on the bottom and top surfaces of the plate is the same when the 

maximum transverse shear strain is used as generalized displacement co-ordinate., also for the 

so-called three- and four-variable plate theories. In other words, they are kinematically 

equivalent. This conclusion apply also to the so-called four and three-variable plate theories. 

Obviously, it does not apply to {3,0}-order polynomial kinematics not satisfying the zero 

transverse shear strain on the bottom and top surfaces of the plate. Fifth, in order to substantiate 



 

the general conclusion that all the {3,0}-order polynomial displacement-based shear deformation 

theories are kinematically equivalent, we performed a deep analysis of the static and dynamic  

behavior of simply supported rectangular plates in cylindrical bending. All the {3,0}-order 

polynomial displacement-based shear deformation theories give the same numerical results. So, 

at least for the investigated problems, all the {3,0}-order polynomial displacement-based shear 

deformation theories are not only kinematically, but also statically equivalent, i.e., they give the 

same numerical results. As quoted in the Introdution, Challamel et al. 2013 using a different 

approach has studied the buckling loads of simply supported rectangular flat plate under uni-

axial compression load using the Reddy 1984 and Shi 2007 theories. The authors reached the 

same conclusions, that is, they found the same buckling loads. Nguyen et al. 2016 studied the 

bending (deflection and stresses) of simply supported laminated plates within the general 

framework of high-order deformation plate theories and found that the static results (deflection 

and stresses ) of KPR model (Kaczkowski 1968, Reissner 1975, Panc 1975), of LMR model  

(Levinson 1980, Reddy 1984, Murthy 1981) and Ambartsumian model (Ambartsumian 1960) are 

exactly identical. 

Of course, this conclusion does not hold in general for the class of kinematics studied in this 

paper: they are kinematically equivalent, altought not all are statically equivalent. 

For example, static equivalence does not hold true for all type of boundary conditions. It is 

well-known that three- and four-variable kinematics do not suffer of the drawback of estimating 

zero transverse shear strain (and stress when evaluated from the constitutive equation) at 

clamped edge. Furthermore, different plate theories behave differently when used as a basis for 

the formulation of numerical approaches, such as the finite element method.  



 

As mentioned in the Introduction, recently the literature has shown a wide interest in theories 

in which the higher-order contribution to the in-plane displacement are given through 

trigonometric or, in general, hyperbolic and exponential functions. Previous conclusions on the 

kinematic equivalence of all the {3,0}-order polynomial theories do not apply to the kinematics 

used in these theories. 

As a concluding comment, the author hopes that the results obtained may stimulate further 

research aimed at establishing the equivalences and differences of the various plate theories of 

which literature is very rich, in order to avoid the proliferation of new theories that could be 

kinematically and statically equivalent to those already existing. 

 

Appendix Derivation of equations of motion and the variationally consistent boundary 

conditions.  

In order to derive the equations of motion and the variationally consistent boundary 

conditions for the plate under consideration, we make use of the D’Alembert’s principle 

(Variational Equation of Dynamics (VED)). 

Let   be the internal virtual work (virtual variation of the strain energy), W  the virtual 

variation of the work done by the applied loads, and inW  the virtual work done by the inertia 

forces, where  denotes the variational operator.   

The Variational Equation of Dynamics (VED) states that 

inW W   − =                                                                                                                    (90)  

where   

0 0

a b
T T dxdy   = +  σ ε τ γ                                                                                               (91) 



 

(0) (0) (0) (0) (0)

0 00 0 0 0

a b a bb a

z xy x yy y xx x xy yW p w dxdy P u P u dx P u P u dy        = + + + +                    (92) 

( )(0) (0)

in
0 0

a b

W u u w w dxdy    = − +                                                                            (93) 

and 

( )
/2

/2
... ...

h

h
dz

+

−
                                                                                                                   (94) 

(. )𝑇 stands for the transpose of a matrix;  is the material mass density of the plate. 

Making use of the assumed displacement field, Eqs. (1), of the strain-displacement relations, 

Eqs. (2)÷(4), and the stress-strain relations, Eq. (5), yields 

(0)

( )

( ) ( ) ( ) ( ) ( )

( )0 0
( )

b
a b

T b T s T b b T s T

s

s

dxdy     

  
   

    = +       
   

  

 

ε
γ

N R R ε R R
γ

ε

                           (95) 

In Eq. (95), the following generalized stress resultants have been introduced 

( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

,  ,  ,  ,  1, ,     

b s

xx xx xx

b s b s b s

yy yy yy

b s

xy xy xy

N R R

N R R f f

N R R

 

      
      

 =      
      
      

N R R σ                           

 (96) 

( ) ( )( )
( ) ( )

( ) ( )

, ,( ) ( )
,  ,  1 ,    

b s

xz xzb s b s

z zb s

yz yz

R R
f f

R R
 

       
 = +            

R R τ  

Substituting in Eq. (96) the stress-strain relation (5) and the strain-displacement relation (2), 

yields the plate constitutive equations 

( ) ( ) (0)
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;   

b s

b bb bs b

b b b bs b

s bs s s

s s bs s s
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N A B B ε
R A A γ

R B D D ε
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R B D D ε

                              (97) 

where, 
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A B D Q B D D Q

A A A Q

            (98) 

are the generalized plate stiffnesses. 

By taking into account Eqs. (4) and (95), a tedious, but straightforward application of the 

Green’s theorem wherever feasible, yields the following expression for the virtual variation of 

the strain energy, 

( ) ( ) ( )
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0 0( ) ( )
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0 0

        

a b a b
b b

z

a b
s s

z

N u dxdy R R w dxdy

R R g dxdy BT

      

   

  

 

 = − − − +

+ − +

   

 
                                       (99) 

with the boundary term  
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                                          (100) 

Moreover, 
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                                                     (101) 

with the boundary term  

 
( )

( )

( ) (0) ( ) (0) ( ) (0)

,
0 0

( ) (0) ( ) (0) ( ) (0)

,
0 0

         

ba
b bb sb

in y y y

ab
b bb sb

x x x

BT m u m w m g w dx

m u m w m g w dy





 = + +
 

 + + +
 




                                                          (102) 

In Eqs. (101) and (102)  

( ) ( )(0) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 ( )2 ( ) ( ),  ,  ,  , , 1, , , , ,b s bb ss bs b s b s b sm m m m m m f f f f f f=                      (103) 

are the generalized inertia resultants. 



 

Upon substitution of the Eqs. (92), (99) and (101) into Eq.(90), using the stationary conditions 

leads to the field equations and the variationally consistent boundary conditions in term of 

generalized force and stress resultants. 
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Table 1. Conditions to be satisfied by 
( ) ( )bf z  and 

( ) ( )sf z . 
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Note: Conditions listed in the first row state that 
(0) ( , ; )u x y t  are the uniform in-plane displacement components;  

those listed in the second row state that the shear strain and stress vanish on the top and bottom bounding surfaces. 

Those listed in the third row state that ( , ; )g x y t in Eq. (1) is 
(0) ( , ; ) ( , )z x y t x y   , the transverse shearing 

strain at the reference plane of the plate. 

 

 

 

 

 

 

 

 

 

 

 

 

  

  



 

Table 2. Relationship of the thickness-wise distribution of the in-plane displacement of well-known 3,0 -order 

polynomial shear-deformation plate theories. 
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                      Table 3. Relation between different kinematic quantities. 
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Table 4. Summary of the main kinematic relations of the present 3,0 -order polynomial plate theory. 
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Table 5. Relations between four variable and five variable {3,0}-order polynomial kinematics. 

 

 

 

 

 

  

Table 5 RelFour-variable kinematics.                               Five-variable 
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Table 6. Summary of the equations for cylindrical bending 
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Figure caption: 

 

Fig. 1 - Plate geometry, coordinate system and in-plane loads. 


