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Abstract The large diversity of unmanned aircraft requires a suitable and
proper risk assessment. In this paper, we propose the use of risk map to define
the risk associated to unmanned aircraft. It is a two-dimensional location-based
map that quantifies the risk to the population on ground of flight operations
over a specified area. The risk map is generated by a probabilistic approach
and it combines several layers, including population density, sheltering factor,
no-fly zones, and obstacles. Each element of the risk map has associated a
risk value that quantifies the risk of flying over a specific location. Risk values
are defined by a risk assessment process using different uncontrolled descent
events, drone parameters, environmental characteristics, as well as uncertain-
ties on parameters. The risk map is able to quantify the risk of large areas,
such as urban environments, and allows for easy identification of which loca-
tions the flight has high and low risk. The map is a tool for informed decision
making, and results report some examples of risk map with different aircraft
in a realistic urban environment.
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1 Introduction

The diversity of Unmanned Aircraft Systems (UASs) in our society is growing.
UASs are used in a wide range of applications, both in military and civil fields.
In particular, the use of UASs in urban environments will increase significantly
in the near future, for instance as described in Smart Cities [44,37].

While the technology of unmanned aircraft is developing rapidly, the safety
associated with their operations is not growing equally fast. At the moment,
the use of a UAS requires the flight authorization from the National aviation
agency, obtained if a certain level of safety is guaranteed. National aviation au-
thorities, such as the ENAC (Ente Nazionale per l’Aviazione Civile) in Italy, or
the FAA (Federal Aviation Administration) of the United States provide par-
ticular rules of lightweight UASs and, at the moment, most of the operations
must be performed in Visual Line-Of-Sight (VLOS). However, they are opening
the possibility to perform Beyond Visual Line-Of-Sight (BVLOS) flight for spe-
cific operations. In particular, the European Aviation Safety Agency (EASA)
publishes a proposal for legislation [26,27] for UASs in the European airspace.
They adopted the Joint Authorities for Rulemaking on Unmanned Systems
(JARUS) proposal, in which three risk-based categories of unmanned aircraft
are identified: open, specific and certified. The importance of a risk-based ap-
proach is recognized by EASA and FAA and, for this reason, it is adopted to
the development of a regulatory framework for unmanned aircraft [25].

Urban areas are a special case and current aviation regulations strongly
limit the use of UASs in these areas. For a full exploitation of UASs in ur-
ban areas, a revision of aviation regulation is necessary. For an analysis of the
worldwide regulation, see [7,54]. Recently, the FAA launched the UAS Inte-
gration Pilot Program (IPP), where BVLOS flight operations are tested in ten
US cities [28].

Urban areas are critical environments because of the high population den-
sity. For this reason, in our risk-adverse society, it is mandatory to assess the
risk to the population on ground. A realistic and detailed risk assessment is
one of the major challenges, because it is not easy to quantify the effective risk
of a particular flight mission. An efficient risk assessment can also help the au-
thorities to quantify the risk level of a particular flight operation, guaranteeing
a realistic level of safety.

1.1 Previous work

In literature, there are several works that aim to quantify and manage the
risk of an unmanned aircraft. Most of them are inspired by manned aviation,
where risk assessments have been conducted for decades [29]. With manned
aviation the risk assessment and requirements are clearly defined ensuring an
”Equivalent Level of Safety” (ELOS) [24]. On the contrary, the risk assessment
and requirements of unmanned aerial vehicles are not defined as well.
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1.1.1 Unmanned aircraft risk assessment

In the last years with the large diversity of the unmanned aerial vehicles,
several works about the risk assessment and mitigation of the risk are con-
ducted. In [10], a safety risk management process is described, discussing the
high level safety criteria, the identification, analysis and evaluation of the risk,
and the effectiveness of the available mitigation strategies. A Barrier Bow Tie
Model (BBTM) is presented in [12] and used for risk assessment and decision-
making activities, while in [58] a Bayesian approach is applied to perform a
risk assessment and decision making processes, in order to certificate UAS ac-
cording to regulation requirements. In [19], a safety architecture based on an
extension of borrow tie diagrams is proposed, whereas in [41] a risk criteria
for UAS is presented, analyzing the safety, hazard and risk metrics. Another
work in [1] presents a real-time risk assessment framework to provide real-time
safety evaluation and tracking.

In [11], the authors describe a risk analysis for UAS, where the risk to
people and property on ground is analyzed. Similarly, in [17] a complete risk
assessment approach is described, analyzing the UAS accidents and their fatal-
ity rate. The authors introduce a model to estimate the probability of fatality
of people exposed to the impact on ground. In [15] the author presents a com-
plete probabilistic risk assessment method, where different descent event types
are considered, as well as uncertainties on the parameters and the wind effect.
In [33] the impact area of a generic descent is studied, considering also a buffer
area, while in [42] a casualty prediction model for UAS operation is described.

The above-mentioned works [11,15,17,42] are based on a common prob-
abilistic risk assessment method, where the risk is defined as the probability
to cause a fatality per flight hours. The probabilistic risk assessment is also
used to quantify the risk related to flight operations. In [4], an high fidelity
approach is used to quantify the risk. In [16], the high fidelity probabilistic
approach is compared with the Specific Operations Risk Assessment (SORA),
proposed by JARUS in [36] and adopted by EASA. For a wide review of the
state of the art about ground risk modeling of unmanned aircraft, see [57].

1.1.2 Descent models

In order to determine the risk of an unmanned aircraft, it is necessary to
estimate the behavior of the aircraft descent. Generally, a fatality occurs after
the uncontrolled impact of the unmanned aircraft on the ground. However,
the type of the vehicle and the descent event type influence the nature of the
impact distribution.

In [15], the author uses four descent event types: ballistic descent, uncon-
trolled glide, parachute descent and fly away. In particular, the same author
in [13] proposes the model of the ballistic descent of small unmanned aircraft.

In [4], the fatality happens after a power failure, then, it assumes the
uncontrolled glide descent.
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The impact area can be estimated also using simulations of the unmanned
aircraft in uncontrolled descent, such as in [34,59]. In [55], trajectories of explo-
sive debris are studied, estimating the impact point given the initial condition.

1.1.3 Risk maps

The risk map is a common tool in the risk assessment. Risk maps are used in
a lot of research areas, such as in medicine to estimate the areas effected by
epidemics [56], to estimate the risk of accidents of nuclear power plants [2], as
well as to quantify and manage the risk in financial and business field [21].

However, there are few works in literature that use the risk map to quantify
the risk of UAS. In [18], a risk map is associated with the ground orography
to minimize the risk of collisions. In [31,48] a risk map quantifies the risk to
the population on ground, in order to compute the minimum risk path.

However, none of the above-mentioned works use the risk assessment method
for generate a city wide map, quantifying the risk of an entire urban area.
Moreover, works in [31,48] compute a ground risk map using the approach
described in [32,33], where the area exposed to the crash is computed only
using the dimension of the aircraft and a fixed glide angle set equal to 45◦

for fixed wing aircraft and 90◦ for multi-rotor. Thus, the impact area is not
estimated considering the traveling distance of the aircraft when the failure
occurs, as well as different descent events and uncertainties are not taken into
account.

1.1.4 Risk-aware path planning

The risk assessment can be used to provide a safe robot navigation. In par-
ticular, risk-aware path planning is a common problem in robotics. In [18,31,
48] a risk-aware path planning seeks for the minimum risk path for unmanned
aircraft based on risk maps. Similarly, in [51] the authors use a bi-objective
optimization method to find low-risk and time solution for UAVs in urban
environments.

A risk-based path planning is also used to seek for a safe landing place [8,
43].

1.2 Current work

In this work, we propose a tool for the risk assessment for ensuring risk-
informed decision making. The main contribution is the definition of a risk
map that quantifies the risk to the population on ground, when the UAS
flies over a specific area. It takes into account the drone parameters and the
environment characteristics, as well as uncertainties on parameters and wind.
The risk is computed using various descent event types, such as the ballistic
descent, the uncontrolled glide, parachute descent and fly away. It includes
also no-fly zones and obstacles at the flight altitude.
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In order to generate a suitable map, a detailed risk analysis is proposed. It is
based on the probabilistic risk assessment method used in [11,15,17]. Inspiring
to [15], it takes into account the drone specifications, the characteristics of the
environment and uncertainties on the model. The descent of the unmanned
aircraft is modeled using the method proposed in [13,15], as well as the wind
effect on the ground impact area. Moreover, unlike [13,15], we consider also
probabilistic assumptions on flight direction and altitude. Thus, based on the
risk analysis, a risk map is generated.

The basic principle of the risk map described in this paper has been intro-
duced in [47], as a part of a Cloud-based framework for risk-aware intelligent
navigation in urban environments. Moreover, as a part of the same project, a
preliminary version of risk map is used in [48] to perform a risk-aware path
planning.

Generally, the probabilistic risk assessment approach in [11,15,17] is used
to quantify the risk of a pre-determined flight mission. On the contrary, the
risk map is a very promising tool, and it can be used in a wide range of
applications. It can be helpful to quantify and show the effective risk of fly
over a specific city. It can be also used to planning a low risk mission or to
modify a flight mission, in order to reduce the risk.

Compared to [31,48], the proposed risk map evaluates different descent
event types, estimating the impact area with the traveled distance by the
vehicle, as well as estimating impact velocities, kinetic energy and the glide
angle at impact considering uncertainties and wind. It is very important to
estimate the aircraft behavior at the descent, because the impact area may be
very far from the position of the aircraft when the failure event occurs.

This paper is organized as follows. In Section 2 the main architecture of the
risk map generation is presented, describing each layer used in the framework.
Section 3 describes the risk assessment approach, describing all the descent
event types considered. In Section 4 the final step for the risk map generation
is described, with the merging layers procedure. Finally, Section 5 describes
numerical results. Then, our conclusions are drawn in Section 6.

2 Risk map generation

The risk map is a cell-based map, in which each cell has a specific risk value.
The risk map covers large predefined areas and takes into account drone spec-
ifications, flight direction and altitude, as well as characteristics of the envi-
ronment and wind. The risk is defined as the probability to cause a casualty,
considering different descent events. In next sections, more details about the
risk map generation are reported.

2.1 Risk map

The risk map is a two-dimensional location based map quantifying the risk
to people on the ground for each cell in the map. Cells are equidistantly dis-
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Fig. 1 Representation of the risk map and the associated notation.

tributed and square and each represents a geographical area. The entire map
is represented by a matrix of size N ×M cells, called R. As such, each cell
R(i, j) is an element called risk value, which is the risk for the associated
geographical area. The discrete coordinates (i, j) represent a georeferenced lo-
cation (x, y) in the Local NED coordinate system defined with respect to the
reference frame located in the center of the map. With a slight of abuse of
notation, in this paper we use the notation R(x, y) to indicate the cell of the
risk map centered in the location (x, y), but corresponding to some discrete
coordinates (i, j) of the matrix R. Figure 1 clarifies the representation of the
risk map. When implementing the risk map computation in C++ code ap-
propriate conversions between geographical (x, y) and matrix indices (i, j) are
necessary. Such conversions are not discussed in this work.

Risk values are defined considering the risk level, no-fly zones and the
presence of obstacles at the flight altitude.

Conceptually, the risk map is generated by combining several layers, where
each layer is itself a location-based map containing the required data. Layers
have the same characteristics as the risk map. In this work, the multilayer
framework is composed by the following layers:

– Population density layer defines the population density distribution in
the map.

– Obstacles layer defines the height of obstacles in the map.
– Sheltering layer defines the sheltering level of each cell of the map.
– No-fly zone layer defines in which zones the flight is not allowed.

The procedure for generating the risk map is illustrated in Figure 2. In
particular, two main steps are executed. First, with the risk assessment, four
maps are generated, one for each descent event taken into account. For sim-
plicity they are called event maps. The inputs of the risk assessment are the
population density and the sheltering factor layers, as well as drone parameters
and environment characteristics. Event maps are preliminary risk maps where
only the risk level associated with the descent event is expressed. Second, the
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Fig. 2 The main architecture of the risk map generation.

final risk map is generated, by combining the event maps with no-fly zone and
obstacles layers.

2.2 Population Density Layer

The population density layer defines the density of the population in the area
interested by the risk map. The population density is one of the most important
element in the risk assessment, because it describes how many people can be
involved in the crash of the vehicle and how they are distributed on the map.
In particular, the population density has effect on the probability to impact
with a person on ground. For this reason, to perform a proper risk assessment,
a population density grid with a reasonably fine resolution is mandatory.

Often the population density and distribution are collected by National
statistical institutes and, especially in big cities, by municipalities. Collecting
all the census data, in [23] the gridded population of the world is created with
a resolution of 1 km2. High resolution map can be obtained via dasymetric
mapping and, in [52], a population density grid map for Europe is generated
with a resolution of 100× 100 m.

In urban areas, the population density can be estimated from Mobile phone
data [38], a promising approach able to trace the dynamic distribution of
people on ground [20]. In fact the population distribution of people in cities
changes a lot in respect of the day of the week and of the times of the day.

Basically, in our framework the population density layer is a 2D location
based map with the same dimension of the risk map, where each cell has
associated a value corresponding to the population density at the relative
position, expressed in people/m2. Similarly to the risk map, it is represented
as a matrix D, with elements D(x, y). In this work a portion of the city of Turin
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(Italy) is considered as example, thus, all the layers and map reported in this
work are related to this area. Figure 3 illustrates the interested area with the
realistic (but not real) population density with a resolution of 50×50 m. Turin
is an interesting city to test the risk map, because it has an high population
density with an average value of 6939 people/km2 [35].

2.3 Obstacles Layer

The obstacles layer defines the height of obstacles in the map, such as buildings.
Taking into account the model of the city, it is quite easy to define the obstacles
layer. Practically, this layer is a location based map and, similarly to the risk
map, it is represented as a matrix O, where each cell O(x, y) quantifies the
maximum height of buildings and/or objects in the associated location. The
obstacles layer is not used in the risk assessment procedure, but it is used
to determine no-flyable areas because of the presence obstacles at the flight
altitude. Then, the probability of collision with obstacles is not taken into
account. Anyway, the obstacles layer is also used to define the sheltering factor
layer by evaluating all obstacles and buildings below the flight altitude.

In this work the obstacles layer is defined using the model of the city of
Turin from OpenStreetMap (OSM) [46]. OSM is an open source map of the
entire world. Using the OSM data, the tridimensional model of the city can be
extracted, then the obstacles layer is generated. An example of the obstacles
layer is illustrated in Figure 5.

2.4 Sheltering Factor Layer

The sheltering factor layer defines the sheltering level for each cell of the map.
The sheltering factor is a positive number that quantifies the level of shelter
to people in the area. It is very important to consider it, because the presence
of buildings and other obstacles in the crash area of the UAS can reduce the
kinetic energy at impact, and subsequently the probability of fatalities. If the
sheltering factor is not evaluated, the resulting risk can be over-conservative,
especially in urban environments where buildings, vehicles and trees protect
the population. While the obstacles layer defines the height of the obstacles
in the map, the sheltering factor layer quantifies the sheltering level of objects
in the map. For instance, a building provides a greater sheltering level then a
tree.

The definition of the sheltering factor used in this work is inspired by [17],
where the sheltering factor is an absolute real number in the range from 0 to
infinite, used as parameter in the Equation (8), that quantifies the probability
to cause fatal injuries to people exposed to the crash. However, according
to [32], it is useless to consider elevate values of the sheltering factor, because,
after a certain value, it is required a huge kinetic energy to cause a casualty.
Thus, according to [32], in this work we define the sheltering factor in the
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Fig. 3 On top the portion of city of Turin from OpenStreetMap [46] used in this work
as example. The area comprises the city center and it has a dimension of about 4.05 ×
3.52 km. Black areas are the imaginary no-fly zones defined in correspondence of the two
main city center squares. Below, the imaginary population density layer used as example
with a resolution of 50 × 50 m.

range from 0 to 10, where 0 corresponds to an area without shelter and 10 to
an area with the maximum sheltering factor, such as an industrial building.
For instance, using the Equation (8), with a kinetic energy of about 250 J and
sheltering factor equal to 2 the probability to have a fatality after the impact
with a person is 0.38. With the sheltering at 10, the probability decreases to
0.025. Table 1 reports the sheltering factor classification defined in this work.

In literature, the sheltering factor is also used to compute the probability
of impact a person Pimpact [15], rather than the probability to cause fatal
injuries. Anyway, it is essential to consider it once, otherwise the contribution
of the sheltering factor in the risk assessment is overestimate.

The sheltering factor layer is a location based map represented with a ma-
trix S, where each element S(x, y) assumes the sheltering factor value related
to the corresponding location. In this work the sheltering factor layer is gener-
ated with a simple method. From the obstacles layer described in Section 2.3,
it is associated a sheltering factor equal to 7.5 to areas occupied by buildings.
Where we have no information about the sheltering, an average value of 2.5
is selected. This is a reasonable value, because, generally, people are sheltered
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Table 1 Sheltering factor classification

Sheltering Area
0 No obstacles

2.5 Sparse trees
5 Vehicles and low buildings

7.5 High buildings
10 Industrial buildings

Fig. 4 Example of no-fly zones around the city of Aalborg, Denmark. The image is from [45],
a website that shows both temporary and permanent restriction areas in Denmark.

by cars, trees and by low buildings. The sheltering factor layer used in this
work is illustrated in Figure 5.

2.5 No-Fly Zone Layer

The no-fly zone layer is a map that identifies all the no-fly zones in the urban
area. No-fly zones are typically determined by:

1. National regulation agencies, i.e. ENAC in Italy and FAA in the United
States. No-fly zones are defined for safety reason and, often, they delimit
airports and military areas.

2. Nature sensitive areas, such as National parks or other protected areas
where the flight is not allowed.

3. Security zones are areas where the flight is not allowed because of generic
safety reason. For instance, crowded zones in urban areas, such as main
squares or areas with public events.

4. Zones defined by the operator as general not open for operations.

Figure 4 shows an example of no-fly zones imposed by the National aviation
agency.

In our framework, the no-fly zone layer is a location-based map, in which
each element can assume two values: 0 where the flight is allowed, and −1
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Fig. 5 On top the obstacles layer of Turin city center with a resolution of 10 × 10 m. The
data are obtained from OSM [46]. Below, the sheltering factor layer with the same resolution
of 10 × 10 m.

where the flight is forbidden. Similarly to the risk map, the no-fly zone layer
is a matrix F as

F(x, y) =

{
− 1 flight is not allowed,

0 flight is allowed.
(1)

In Figure 3, no-fly zones are highlighted over the map of the city, where two
imaginary no-fly zones are defined over the two main city center squares.

3 Risk assessment description

In this work the risk is defined as the risk to the population on ground, when
the UAS flies over a specific area. The risk value is computed with a common
approach widely used in literature [11,15,17,33] and it is expressed in fatalities
per flight hour, a classic measure system used in aviation. This is a probabilistic
approach, where the risk value is the probability in time to have a casualty,
due to a sequence of three conditional events: (i) the loss of control of the
vehicle with uncontrolled crash on ground, (ii) the impact with a person after
the crash, and (iii) the impact results in a fatality. Hence, the probability to
have a casualty Pcasualty is defined as

Pcasualty(x, y) = Pevent · Pimpact(x, y) · Pfatality(x, y), (2)
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with Pevent is the probability that the UAS losses the control with the conse-
quent uncontrolled descent with crash on ground. The behavior of the uncon-
trolled descent event depends on the failure type. In this work, we consider
four descent event types: ballistic descent, uncontrolled glide, parachute de-
scent and fly-away. We assume a different Pevent for each descent event and the
independence between failures. For each descent type a mathematical model
is used to determine the likely impact area, taking into account drone spec-
ifications and initial conditions. The ground impact area is described with a
georeferenced two-dimensional probability density function (2D PDF), able to
estimate the probabilistic impact area in respect to the aircraft position when
the descent event begins. The descent models are described in [13,15]. More
details are given in Sections 3.1 through 3.4.

Pimpact is the probability to impact a person when the UAS crash on ground
after an uncontrolled descent. It is function of the population density and the
area exposed to the crash.

Pfatality is the probability to produce fatal injuries after a person has been
impacted. It depends on the kinetic energy at impact and the sheltering factor.

In order to generate the event maps, Pcasualty is computed for each descent
event type and for every cell of the map. The computation of the risk value
follows a common procedure:

1. Using the model of the descent event type, the two-dimensional PDF is
computed, defining the probabilistic impact area on ground.

2. The PDF is modified by the probabilistic wind. The resulting two-dimensional
PDF is transformed according to the wind speed and direction.

3. The 2D PDF is used to compute the probabilities Pimpact and Pfatality by
combining it with the population density, the sheltering factor layer and
impact velocities.

4. The probability of casualty Pcasualty is computed.

The two-dimensional PDF defines the ground impact area determining the
probabilities to impact on ground. In this work, the 2D PDF is represented as
a georeferenced matrix referring to the aircraft position when the descent event
happens. Each element of the matrix represents a geolocation with associated
the probability of the unmanned aircraft to impact inside the represented area.
Since, the risk map quantifies the risk for large areas, the 2D PDF is computed
for every element in the map, assuming that the descent event begins in the
location (x, y). Also the 2D PDF refers to the risk map frame, defined in the
center of the map.

Each element of the risk map R(x, y) quantifies the risk of the unmanned
aircraft of flying over the location (x, y). However, the exact velocity and di-
rection of the aircraft are unknown. For this reason, the two-dimensional PDF
computed for each descent type uses probabilistic assumptions on velocity and
direction. Any flight direction is taken into account, distributed as a uniform
distribution. Instead, the velocity assumes two possible scenarios, based on
the vehicle type. With fixed wing aircraft the cruise speed is used assuming
uncertainties, modeled as a normal distribution N(µ, σ), with a mean value µ
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Fig. 6 The Heliscope Talon aircraft. Image from [40].

Fig. 7 A two-dimensional PDF of the ballistic descent event with the Talon aircraft. The
red area is with highest probability, whereas the magenta area is with probability equal to
zero. In this example the UAS flies at an altitude given as N(µ = 50, σ = 5) m, with a
heading angle of 0.52 rad. The wind has a direction of −0.52 rad and speed N(10, 2) m/s.
The parameters of Talon aircraft are reported in Table 2.

and a standard deviation σ. With multi rotor configurations, we use values of
velocities between zero and the maximum one, distributed as a uniform distri-
bution U(a, b), where a and b define the range of the distribution. Thus, also
the hovering is taken into account.

In the following sections all steps are described, as well as each descent
event type considered in this work. Moreover, two different commercial aircraft
are used to illustrate the behavior for each descent event: the Heliscope Talon
aircraft and the DJI Phantom 4. The Heliscope Talon, shown in Figure 6, is a
fixed-wing aircraft, while the DJI Phantom 4 [22] is a quadrotor aircraft, one
of the most popular commercial drones. The main parameters are reported in
Table 2.

3.1 Ballistic descent

The ballistic descent happens when the UAS loose most of its lift. As a conse-
quence, the vehicle is subject to a ballistic descent, where the body is affected
solely by gravity and drag force. In this work, the ballistic descent is modeled
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Fig. 8 On the left horizontal velocities of the ballistic descent event with the Talon aircraft,
while on the right vertical velocities. Velocities are computed considering the area interested
by the ballistic descent event, while the area where velocities are not computed are in
magenta. Horizontal velocities are in the range from 8.32 m/s and 29.62 m/s, while the
vertical velocities are in the range from 21.25 m/s to 23.96 m/s. These examples use the
same parameters defined in Figure 7.

according to [13], where the model is based on the standard second order drag
model

mv̇ = mg − c|v|v, (3)

with m is the mass of the UAS, c is the constant that considers the drag coef-
ficient, drag area and the air density, g is the gravitational acceleration and v
is the velocity vector of the vehicle. The ballistic trajectory is approximately
a second order polynomial, taking into account the aerodynamic properties of
the aircraft. The model presented in [13] also considers probabilistic uncer-
tainties, as well as the wind.

The model is used to compute the two-dimensional probability density
function with the probabilities of the UAS impact on ground. The PDF is
computed considering probabilistic uncertainties on the horizontal and vertical
initial velocities, on the drag coefficients, flight altitude and flight direction.

Moreover, according to the PDF, the horizontal and vertical impact veloc-
ities estimated by the model are stored in a 2D matrix. These are useful for
the computation of the probabilities Pimpact and Pfatality.

In Figure 7 an example of the two-dimensional PDF with a specific flight
direction and velocity is illustrated. With the same scenario, Figure 8 reports
impact velocities of the ballistic descent. Figure 9 shows the 2D PDF using
a uniform distribution of all directions with both fixed wing and quad rotor
configurations, used to generate the risk map.

3.2 Uncontrolled Glide

The uncontrolled glide event happens when the UAS enters in an uncontrolled
descent governed by the glide ratio/autorotation descent angle. With a fixed
wing aircraft, this event occurs when there’s a loss of thrust or a loss of power
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Fig. 9 On the left the 2D PDF of the ballistic descent with the Talon aircraft considering
direction U(0, 2π) rad and initial horizontal speed N(18, 2.5) m/s. On the right the 2D PDF
with the Phantom aircraft considering direction U(0, 2π) rad and speed U(0, 15) m/s. In
this example the UAS flies at an altitude given as N(50, 5) m. The wind has a direction of
−0.52 rad and speed N(10, 2) m/s.

for the flight control surfaces. For a single rotorcraft, it happens when there’s
a loss of thrust on the main rotor and the aircraft descent with autopiloted
autorotation descent. Similarly, it could be happen with multi rotor drones,
where a loss of thrust can cause an autopiloted descent.

With the uncontrolled glide event, the horizontal traveled distance is com-
puted with the simple formulation dist(h) = γh, with h is the flight altitude
and γ is the glide ratio, i.e., the ratio between the horizontal traveled distance
and vertical one.

The two-dimensional PDF of the uncontrolled glide event is computed
with probabilistic assumption on the flight altitude, glide ratio, flight direction
and velocities. As a consequence, the 2D PDF is related to the glide ratio
distribution. The dynamics of the glide ratio in the PDF is stored in a 2D
matrix, useful to estimate the impact angle in the probability density function.

Figure 10 illustrates the 2D PDF given a specific flight direction and veloc-
ity, while the glide ratio distribution is reported in Figure 11. Figure 12 shows
the 2D PDFs considering all direction, used to generate the risk map.

3.3 Parachute descent

The parachute descent event happens when the UAS begins a descent with a
fully deployed parachute. In general, a malfunction is detected, thus motors
are turned off and the parachute is opened. However, a short delay is present
between the emergency detection and the fully open of the parachute. The
consequent descent is governed only by the aerodynamic properties of the
parachute, which aims to reduce the vertical velocity. This event is modeled
using the method presented in [15], where it considers the mass of the vehicle,
as well as the physical parameters of the parachute, such as the parachute area
and the parachute drag coefficient.
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Fig. 10 The 2D PDF of the uncontrolled glide event with the Talon aircraft. This example
uses the same parameters defined in Figure 7.

Fig. 11 The glide ratio distribution with the uncontrolled glide event with the Talon air-
craft. The glide ratio is in the range from 8 to 16. In magenta, areas where the glide ratio
is not computed. This example uses the same parameters defined in Figure 7.

Fig. 12 On the left the 2D PDF of the uncontrolled glide event with the Talon aircraft,
while on the right with the Phantom aircraft. These examples use the same parameters
defined in Figure 9.
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Fig. 13 The 2D PDF of the parachute descent with the Talon aircraft. This example uses
the same parameters defined in Figure 7.

Fig. 14 On the left horizontal velocities of the Talon aircraft with the parachute descent,
while on the right vertical velocities. Horizontal velocities are in the range from 2.74 m/s
and 17.65 m/s, while vertical velocities are in the range from 6.15 m/s to 6.82 m/s. In
magenta, areas where the impact velocities are not computed. These examples use the same
parameters defined in Figure 7.

In particular, with this event the effect of wind drastically changes the effect
of the parachute descent, by changing the descent direction and velocity.

The two-dimensional PDF is computed taking into account probabilistic
assumption on the flight altitude, on the parachute drag coefficient, as well
as on initial velocities. Similarly to the ballistic descent event, also the maps
related to the horizontal and vertical velocities are computed and stored in a
2D matrix.

In Figures 13, 14 and 15, results of the parachute descent event are shown.

3.4 Flyaway

The flyaway event happens when there is a complete loss of operator control
authority, while the autopilot on board maintains the vehicle stable. As a
consequence, the UAS may flight in any direction as long as the autonomy
of the vehicle be exhausted or until the UAS crashes on ground. This event
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Fig. 15 On the left the 2D PDF of the parachute descent event with the Talon aircraft,
while on the right with the Phantom aircraft. These examples use the same parameters
defined in Figure 9.

Fig. 16 Example of 2D PDF with the fly away event. On the left with the Talon aircraft,
while on right with the Phantom aircraft. These examples use the same parameters defined
in Figure 7.

is modeled according to [15], where the author proposes a model composed
by two contributions: (i) the probability of the impact on ground decreases
linearly with the distance from the UAS position until the maximum traveled
distance of the vehicle; (ii) the vehicle moves vertically and the probability of
ground impact is greater near the UAS position, then it is modeled as a normal
distribution with the mean value in the UAS position. The two contributions
are linearly combined with a relation factor. In this work, we assume that the
two scenarios contribute with equal probability.

In order to be conservative, we assume that the fly away event terminates
with an uncontrolled glide descent. Unlike the others descent events, the fly
away always considers all direction because of its particular behavior. Figure 16
reports the results of the fly away event.
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3.5 Wind

The wind is a very important factor in this work, because the effect of the
wind changes significantly the two-dimensional PDF.

The features of the wind can be defined using the weather reports. In fact, if
the day and time of the flight mission are known, the risk assessment procedure
is able to consider wind characteristics estimated by the weather reports. Thus,
the wind direction and speed are known and the wind is modeled with a normal
distribution on direction and speed.

The models for the ballistic descent, uncontrolled glide and parachute de-
scent are computed in the wind frame. These models provide a series of drop
times, i.e. the time required by the aircraft to reach the ground given specific
initial conditions. The set of all possible drop times are defined as {tk}k=0,...,n,
where for each drop time a georeferenced PDF is generated, defined as a ma-
trix Mk, where each element is a geolocation with associated the probability of
the aircraft to impact inside the represented area, assuming a purely vertical
drop in the wind frame. The offset caused by the wind is dependent only on
the drop times, because all others parameters are already considered by the
descent model. For this reason, the wind offset is applied to the georeferenced
ground grid of each PDF with an horizontal translation determined as the drop
time times the wind velocity. The drop times are computed with probabilistic
assumptions on parameters, thus, a set of probabilities {pk}k,...,n define the
probability of each drop time. Hence, the final 2D PDF is computed with a
weighted sum of the PDF matrices as

M =

n∑
k=0

pkMk, (4)

where the resulting matrix M is also georeferenced, taking into account the
georeference of each matrix Mk.

Differently, the fly away event is not computed in the wind reference frame,
but directly in the local NED coordinate system in respect to the risk map
reference frame. With the fly away, the wind simply modifies the maximum
range of the distance traveled in different direction by the vehicle.

More details about the wind effect on the four descent events types are
explained in [15].

The effect of the wind is reported in Figures 7, 8, 9, 10, 11, 12, 13, 14, 15
and 16. The effect of the wind is visible especially with the ballistic and
parachute descent events, where the two-dimensional PDF is clearly deformed
by the wind.

3.6 Probability of Impacting a Person

The probability of impact a person Pimpact is the probability that the UAS
hits at least one person after the uncontrolled impact on ground. According
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to several works at the state of the art [17,11], the probability is defined as

Pimpact(x, y) = ρ(x, y) ·Aexp, (5)

where ρ is the population density and Aexp is the area exposed to the crash,
also known as lethal area.

The area exposed to the crash of the UAS on the ground is computed using
the method proposed in [53], considering the dimension of the UAS and of an
average person

Aexp(θ) = 2(rp + ruav)
hp

tan(θ)
+ π(r + rp)2, (6)

with rp and hp are respectively the average radius and height of a person,
ruav is the radius of the vehicle and θ is the impact angle on ground. With
this formula, the computation of the area is conservative, because it uses the
occupation of the vehicle with the maximum radius ruav.

All the parameters of the Equation (6) are constant with the except of the
impact angle θ. In fact the impact angle assumes different values based on the
descent event.

With the ballistic and the parachute descent events the impact angle can
be computed using horizontal and vertical impact velocities. As mentioned in
Sections 3.1 and 3.3, the impact velocities are stored in a 2D matrix according
to the 2D PDF.

Differently, in the uncontrolled glide and fly away events the impact angle
depends directly on the glide ratio, as described in Section 3.2.

Thus, the probability of impact a person Pimpact is computed using the
expected value of the exposed area and the expected value of the population
density in the layer D based on the ground impact PDF

Pimpact(x, y) =
∑
x,y

PDF ·D(x, y) ·Aexp(θ(x, y)), (7)

where Aexp(θ) and D are independent variables.
The expected value is easily computed considering the probabilistic impact

area, with a simple combination between the 2D PDF and layer, both defined
as matrices. However, they have different dimension and resolution, but both
matrices refer to the same risk map reference frame. Thus, each element of the
PDF is combined with the element of the layer at the represented geolocation
(x, y). This procedure is used in Equations (7), (9) and (10).

3.7 Probability of fatality

The probability of fatality Pfatality is the probability that the impact with a
person results in a fatality.

It is not simple to define this probability, because the impact with a person
may occur in several ways. The consequences of the impact depend on the
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properties of the vehicle. Moreover the human body reacts in different ways
according to the hit part of the body and the kinetic energy at impact. In
some works, the probability to have a casualty after an impact with a person
is set equal to one [1,11]. However, this assumption can be over conservative,
especially with small UAS.

For this reason, the definition of a realistic and proper probability of fatality
is a challenge and there are several work in literature [3]. Interesting work
in [14] analyzes the drone-like human injuries, identifying the mass threshold
to consider the drone as an ”harmless” one.

A common and widely used approach are the blunt criterion (BC) [5,9],
but it is not suitable with low impact velocities.

In this work, the probability to have a fatality is computed using the
method proposed in [17], considering the kinetic energy at impact and the
sheltering factor. In particular, it is important to use the sheltering factor, be-
cause the presence of obstacles in the impact area reduces the kinetic energy
at impact. As a consequence, the probability of fatality decreases significantly.

Similarly to the computation of the Pimpact, the two-dimensional PDF is
used to compute the expected value of the sheltering factor and the kinetic
energy at impact for each position (x, y). Hence

Pfatality(x, y) =
1− k

1− 2k +
√

α
β [ β

E[Eimp(x,y)]
]

3
E[S(x,y)]

, (8)

with k = min[1, ( β
E[Eimp(x,y)]

3
E[S(x,y)

]
)]. Where S is the sheltering factor, Eimp

is the kinetic energy at impact, the α parameter is the impact energy for a
fatality probability of 50% when S = 6, and the β parameter is the impact
energy to cause a fatality when S goes to zero. In general, based on the fatality
limit defined in [50], β = 34J . The notation E[·] refers to the expected value.
Hence

E[Eimp(x, y)] =
∑
x,y

PDF · Eimp(x, y), (9)

E[S(x, y)] =
∑
x,y

PDF · S(x, y). (10)

While the sheltering factor is obtained by the sheltering factor layer, the
kinetic energy impact is estimated based on the descent event type.

In the ballistic and parachute descent events, the kinetic energy at impact
is computed by horizontal and vertical impact velocities. Differently, with the
uncontrolled glide and fly away events glide velocities are taken into account.
However, the kinetic energy is computed with a simple formulation

Eimp(x, y) =
1

2
m · vimp(x, y)2, (11)

with m the mass of the vehicle and vimp the impact velocity.
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4 Merging Layers Procedure

After the risk assessment, the resulting event maps are merged with the no-
fly zone and the obstacles layers, in order to have the final risk map. This
procedure performs an element per element combination. Hence

R(x, y) =

{
− 1 if

(
F(x, y) = −1

)
∨
(
O(x, y) ≥ h

)
,

Pcasualty(x, y) otherwise.
(12)

where (x, y) are the coordinates of the element in the map, referred to the
risk map reference frame. Each element of the risk map has a value R(x, y)
equal to −1 if the flight is forbidden because of no-fly zones or obstacles at
the flight altitude h, otherwise, it corresponds to the sum of the risk levels of
each descent event

Pcasualty(x, y) = P bal
casualty(x, y)+P ug

casualty(x, y)+P par
casualty(x, y)+P fa

casualty(x, y).
(13)

Since we assume the independence between descent events, the probabilities
are simply added. The resulting Pcausalty(x, y) quantifies the risk involved by
the aircraft when it flies over the element in the location (x, y).

After this procedure the risk map is generated. The resulting map quantifies
the risk to the population considering a specified area, taking into account the
flight altitude and the vehicle specifications. Moreover, it defines in which
elements the flight is forbidden, because of no-fly zone or the presence of
obstacles at the flight altitude.

5 Results and discussion

5.1 Implementation

The risk map generation procedure introduced in this paper is implemented
in C++ as an executable process in the Robot Operating System (ROS) [49].
The multilayer framework is generated using Grid Map [30], a C++ library
interfaced with ROS able to manage two-dimensional grid maps with multiple
data layers. The computation of each two-dimensional PDF is performed using
the OpenCV library [6], able to provide fast matrix computation. Moreover,
the compatibility between OpenCV and GridMap allows an easy combination
of the 2D PDF, defined as a OpenCV matrix, with layers and event maps,
defined as GridMap layers, i.e. matrices.

In order to generate a realistic risk map, we consider a portion of the city of
Turin, Italy. Then, each layer is generated as described in Section 2. Figures 3
and 5 show the portion of the city considered and the related layers.

In order to demonstrate how the risk changes with the vehicle charac-
teristics, different aircraft types are taken into consideration, which differ on
vehicle configuration type, mass and dimensions. Table 2 reports the vehicles
with the main features and parameters used in the risk map generation. The
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Table 2 Parameters of the aircraft used as example.

Specific Talon DJI Phantom 4 DJI Inspire 2 Parrot Disco DJI Mavic Parrot Bepop
Type Fixed wing Quad rotor Quad rotor Fixed wing Quad rotor Quad rotor

Mass (kg) 3.75 1.4 4.25 0.75 0.7 0.5
Front area (m2) 0.1 0.02 0.04 0.07 0.02 0.02

Radius (m) 0.88 0.2 0.4 0.575 0.2 0.25
Maximum
flight time

1.25 h 20 min 25 min 45 min 20 min 25 min

Drag coefficient
at ballistic descent

N(0.9, 0.2) N(0.7, 0.2) N(0.7, 0.2) N(0.9, 0.2) N(0.7, 0.2) N(0.7, 0.2)

Initial horizontal
speed (m/s)

N(18, 2.5) U(0, 15) U(0, 20) N(15, 2.5) U(0, 15) U(0, 15)

Initial vertical
speed (m/s)

N(0, 1) N(0, 1) N(0, 1) N(0, 1) N(0, 1) N(0, 1)

Glide speed (m/s) 16 7.5 10.0 12.0 7.5 7.5
Glide ratio N(12, 2) N(2.7, 0.8) N(2.7, 0.8) N(12, 2) N(2.7, 0.8) N(2.7, 0.8)

Drag coefficient
at parachute descent

N(1.3, 0.2) N(0.9, 0.2) N(1.3, 0.2) N(1.3, 0.2) N(0.5, 0.2) N(0.3, 0.2)

Parachute area (m2) 1 0.5 1 0.5 0.5 0.5
Parachute deployment

time (s)
2 2 2 2 2 2

Table 3 The event probabilities.

Ballistic UG Parachute Fly away
Event probability (per flight hour) 1/200 1/200 1/100 1/250

event probabilities assumed to compute the results are defined in Table 3. In
order to demonstrate how the risk differs with the aircraft specifications, the
event probabilities are the same for every vehicle type.

5.2 Talon aircraft

The first vehicle taken into account is the Heliscope Talon, a fixed wing aircraft.
The risk map and event maps for each descent event type are illustrated in
Figure 17, while the maximum, minimum and average risk values for each
descent event type are reported in Table 8.

It can be noted how risk-values are effected by the population density.
In fact the highest risk-values are located in the most populated area, while
the south-east area is poorly populated and it is the area with minimum risk
values. With the Talon aircraft predominant risk values are determined by
ballistic and the uncontrolled glide events. The main reasons are the mass
of the vehicle, the high cruise speed assumed as the initial speed and the
high glide speed. With the parachute descent event the risk is reduced, but it
remains considerable because of the mass of the vehicle and the effect of the
wind. In fact the wind increases the horizontal velocity during the descent of
the vehicle and, as a consequence, the kinetic energy at impact increases, as
well as the probability of fatality. Risk values of the fly away event are equal
in all the map. This happens because the 2D PDF covers a wide area and
the resulting values of expected population density and sheltering factor are
the same for each element of the map. However, the risk value of the fly away
event contributes to define the minimum risk level in the risk map.

In order to ensure an appropriate level of safety, the risk of a flight oper-
ation should be lower than a maximum acceptable risk. According to [17,31],
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a suitable and conservative ”Equivalent Level of Safety” is 1 · 10−6 h−1. As a
consequence, the Talon aircraft is not appropriate to perform flight operations
in urban environments because of the high risk level. In fact, the minimum
risk value in the risk map is 4.409 · 10−5 h−1, then, there are no area where
the flight is allowed.

As already mentioned, the risk map can be used to generate safe flight op-
erations. In order to demonstrate it, in this work, we generate a minimum risk
path, taking into account the risk map. The minimum risk path is computed
using the Optimal Rapidly-exploring Random Tree (RRT*) [39] algorithm.
RRT* is a sample-based algorithm that explores the search space with an
incremental tree, minimizing the motion cost. In order to search for the mini-
mum risk path, in this test, RRT* minimizes risk-values in the risk map. The
resulting path is illustrated on the risk map of Figure 17, while Figure 18 re-
ports the evolution of the risk along the path. The average risk value of the
path confirms that the Talon is not suitable to perform flight operations in
this area.

5.3 Phantom aircraft

The second vehicle is the DJI Phantom 4, a quad rotor aircraft. The risk map
and the event maps for each descent event type are illustrated in Figure 19,
while numerical results are reported in Table 4.

With the Phantom aircraft the resulting risk level is lower than the Talon
one. Risk values of the ballistic descent are a decade lower, because of the
lower mass and the dimension of the vehicle. The risk level associated to the
uncontrolled glide event is drastically reduced. The main reason is the dif-
ferent behavior of the quad rotor configuration compared to the fixed wing
one. The glide velocity is lower, as well as the glide angle in the uncontrolled
glide descent. With the parachute descent event the risk is null. This happens
because the kinetic energy at impact is lower than the threshold imposed by
the Equation (8). In particular, due to the mass of the vehicle, the resulting
descent speed of the vehicle is very low. With the parachute descent, the risk
can be increased only by the wind speed. In fact, with high values of the wind
speed, the kinetic energy at impact increases, exceeding the fatality threshold.
The fly away event assumes low values of risk. With the Phantom aircraft
the area involved by the PDF of the fly away event is smaller than the Talon
aircraft one. For this reason the resulting risk level is variable in the map.

The risk map of Figure 19 shows that with the Phantom aircraft the re-
sulting risk is governed by the ballistic descent event. However, the average
risk value is still greater than the maximum acceptable risk and, considering
the risk map, the flight is allowed only in little areas, i.e. where there are low
values of population density.
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Fig. 17 Event maps and the risk map with the Talon aircraft. The event map of the fly
away event is not reported because all elements have a constant value. On the risk map
is also reported the minimum risk path computed to demonstrate the potential of the risk
map. In all examples the flight altitude is N(50, 5) m and wind with direction of −0.52 rad
and speed N(5, 1) m/s. Parameters of Talon aircraft are reported in Table 2.
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Fig. 18 The distribution of the probability of casualty Pcasualty along the minimum risk
path with the Talon aircraft. The probability for each descent event type and the risk map
are reported. The fly away event is not reported and has a constant value of 1.215·10−5 h−1.

5.4 Other vehicles

In order to demonstrate the different behavior of the risk map, also other
vehicles are considered: the DJI Inspire 2, the Parrot Disco, the DJI Mavic
and the Parrot Bepop. Numerical results are reported in Table 4.

The DJI Inspire 2 is a quad rotor aircraft widely used by professional
operators, because of its versatility and payload capacity. Due to the mass
and dimensions, this aircraft is not suitable to fly in urban areas, because the
resulting risk is always over the ELOS threshold.

The Parrot Disco is a fixed wing aircraft. Due to the low mass, the risk with
the ballistic descent is low, as well as the null risk with the parachute descent.
However, because of the high glide speed, the risk with the uncontrolled glide
event is significantly.

The Mavic and the Bepop are quad rotor aircraft. With both vehicles the
risk values of the risk map are defined only by the ballistic descent event,
because with the other descent event types the risk is null. In both risk maps,
there are a some areas where the risk is lower than 1 · 10−6, thus, the fight is
allowed. To demonstrate it, we compute the minimum risk path considering
the Parrot Bepop aircraft. The risk map with the computed path is reported
in Figure 20, while the evolution of the risk along the path is illustrated in
Figure 21. The minimum risk path is also compared with the line of sight path
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Fig. 19 Event maps and the risk map with the Phantom aircraft. The parachute descent
is not reported because the risk is null for all elements in the map. In all examples the
flight altitude is N(50, 5) m and wind with direction of −0.52 rad and speed N(5, 1) m/s.
Parameters of Phantom aircraft are reported in Table 2.
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Fig. 20 The risk map with the Bepop aircraft. On the risk map is also illustrated the
minimum risk path.

Fig. 21 The distribution of the probability of casualty along the minimum risk path of
Figure 20 with the Bepop aircraft.

from the start to the target position. This test shows that with the Bepop
aircraft the flight is safe, because the average risk is about 5 ·10−7, lower than
the Equivalent Level of Safety required by the National aviation agencies.

5.5 Discussion

The presented results show that the risk map is able to quantify the risk to the
population of a wide urban area. In particular, the risk value computed for each
element Pcasualty(x, y) in the map considers the risk of flight over the location
(x, y). The proposed method assumes the failure happens in (x, y), then, it
estimates the impact area using drone parameters and taking into account
four descent event types, as well as uncertainties and the wind. Differently, the
risk maps presented in [31,48] compute the risk to the population assuming
that the aircraft impacts in the location associated to the risk map element,
without consider the behavior of the vehicle during the descent.

The proposed risk map can be used for ensuring risk-informed decision
making. As illustrated in results, the risk map is able to detect the area where
the flight is allowed or not, assuming a particular aircraft and its charac-
teristics. For instance, taking into account the ELOS of 1 · 10−6 h−1, only
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Table 4 Probabilities of casualty per flight hours for all risk maps.

Vehicle Ballistic
Uncontrolled

glide
Parachute Fly away Final risk

min 7.668 · 10−7 2.009 · 10−7 2.994 · 10−7 1.216 · 10−5 4.409 · 10−5

Talon max 2.007 · 10−4 1.382 · 10−4 6.971 · 10−5 1.216 · 10−5 3.791 · 10−4

av 1.124 · 10−5 8.840 · 10−5 1.001 · 10−5 1.216 · 10−5 1.318 · 10−4

min 9.468 · 10−8 1.642 · 10−8 0 1.863 · 10−8 1.410 · 10−7

Phantom max 2.699 · 10−5 6.556 · 10−7 0 4.409 · 10−8 2.758 · 10−5

av 3.054 · 10−6 2.270 · 10−7 0 2.939 · 10−8 3.310 · 10−6

min 4.515 · 10−7 6.670 · 10−7 1.502 · 10−7 8.519 · 10−7 2.390 · 10−6

Inspire max 1.125 · 10−4 2.473 · 10−5 3.785 · 10−5 1.291 · 10−6 1.661 · 10−4

av 1.220 · 10−5 7.372 · 10−6 5.141 · 10−6 1.007 · 10−6 2.572 · 10−5

min 2.867 · 10−8 9.254 · 10−7 0 4.941 · 10−7 1.846 · 10−6

Disco max 8.506 · 10−6 9.085 · 10−6 0 1.096 · 10−6 1.738 · 10−5

av 1.294 · 10−6 6.104 · 10−6 0 6.693 · 10−7 8.079 · 10−6

min 4.068 · 10−8 0 0 0 4.068 · 10−8

Mavic max 1.089 · 10−5 0 0 0 1.089 · 10−5

av 1.402 · 10−6 0 0 0 1.402 · 10−6

min 2.609 · 10−8 0 0 0 2.609 · 10−8

Bepop max 6.897 · 10−6 0 0 0 6.897 · 10−6

av 9.714 · 10−7 0 0 0 9.714 · 10−7

lightweight and small aircraft are allowed to fly in the city center of Turin.
Moreover, results show that the fixed wing configuration involves more risk
because of the high speed during the uncontrolled glide descent.

For this reason, the risk map can be used by operators to define or modify
the flight mission of unmanned aircraft in urban areas. On the contrary, the
proposed approach can be used by National aviation agencies as a tool to
assess the risk of a particular flight operation and to provide the permission to
fly. In order to meet requirements of National aviation authorities, the risk can
be computed assuming the worst flight conditions, such as maximum velocities
and altitude. The resulting risk may be conservative, but it guarantees that the
ELOS requirement is satisfied. Moreover, according to [16], the probabilistic
risk assessment approach seems to be largely in agreement with the SORA
approach adopted by EASA.

The risk map can be used by a risk-aware path planning algorithm to seek
for a low risk path. As showed, considering a particular flight operation, the
Talon aircraft does not guaranteed the ELOS. On the contrary, considering
the same start and goal positions, the Bepop aircraft is suitable to perform
the flight mission, guaranteeing an average risk lower than 1 · 10−6 h−1. The
risk-aware path planning is able to minimize the risk of a flight mission. In
fact, the minimum risk path in Figure 20 involves lower risk than the line of
sight path. The combination of risk map and risk-aware path planner allows
a safe path to be planned.
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6 Conclusions

In this paper, we propose the use of risk map in order to define the risk asso-
ciated to unmanned aircraft in urban areas. The risk map is able to quantify
the risk to the population on ground, when the UAS flies over a specified area.

The risk value is computed with a probabilistic risk assessment approach,
taking into account drone specifications, environmental characteristic, as well
as uncertainties on parameters ad wind. It considers different descent event
types, such as ballistic descent, uncontrolled glide, parachute descent and fly
away. Using the descent models, the probabilistic impact area is computed.

The risk map is generated combining several layers, containing specific
information about the urban environment, such as the population density and
the sheltering factor layer. It is also able to identify areas where the flight is
forbidden because of no-fly zones forced by the National aviation agencies or
the presence of obstacle at the flight altitude.

The simulation results show some examples of risk maps considering various
vehicle models. The resulting map is able to quantify the risk over an entire
urban area and with a desired resolution. Moreover, as demonstrated in the
results, the risk map helps to search for the minimum risk path defining the
expected risk of the flight mission.

The risk map is a tool for ensuring risk-informed decision making. It can
be used to quantify the risk of a specific drone, determining if it is suitable to
perform safe flight operations over urban areas.

In this paper, the risk map quantifies the ground risk. However, also the
risk related to mid-air collision can be included in the risk-map. Future works
include the improvement of the method, considering more descent events, as
well as more types of aircraft.
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