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Abstract.  

The paper presents a numerical assessment of the performance of the Refined Zigzag Theory (RZT) to the analysis of 

bending (deflection and stress distributions) and free vibration of functionally graded materials (FGM) plates, 

monolayer and sandwich, under a set of different boundary conditions. The numerical assessment is performed 

comparing results from RZT using Ritz method with those from 3-D, quasi 3-D and 2-D theories and finite element 

method (FEM).  In the framework of 2D theories, equivalent single layer theories (ESL) of different order (sinusoidal, 

hyperbolic, inverse- hyperbolic, third-order (TSDT), first-order (FSDT) and classical (CPT)) have been used to 

investigate deformation, stresses, and free vibration and compared with results from the RZT.  

After validating the convergence characteristics and the numerical accuracy of the developed approach using 

orthogonal admissible functions, a detailed parametric numerical investigation is carried out. Bending under 

transverse pressure and  free vibration of FGM  square and rectangular plates of different aspect ratio under various 

combinations of geometry (core-to-face sheet thickness ratio and plate to thickness ratio), boundary conditions and law 

of variation of volume fraction constituent in the thickness direction  (power-law (P-FGM), exponential law (E-FGM) 

and sigmoidal-law (S-FGM)) is studied. Monolayer and sandwich plates with homogeneous core and functionally 

graded face-sheets are considered for the assessment. It is concluded that the RZT generally predicts the global 

(deflection and frequencies) and local (displacement and stress distributions) response of FGM sandwich plates, more 

accurately than first-order (FSDT) and third-order (TSDT) shear deformation theories, while retaining its simplicity. 

 
Keywords: Composite multilayer and sandwich plates; functionally graded materials; Refined Zigzag Theory; bending; 

vibration; Ritz method. 
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1. Introduction 

 

Thanks to their superior characteristics of specific stiffness and strength, as well as high damping and good fatigue 

properties compared to traditional metallic materials, glass or carbon fibers reinforced polymer matrix (FRP) 

composites have registered in the last decades sustained and increased application to military and civilian aircraft, 

aerospace vehicles, automotive, naval, and civil structures. Alongside their interesting features, the FRP-composites 

suffer from some weaknesses. As it is well known, FRP-composite structures are produced by bonded unidirectional or 

woven layers with angles of orientation of the fibers generally varying from layer to layer. Thus, a through-the-

thickness piecewise constant distribution of mechanical and thermal properties takes place.  The abrupt change in 

mechanical and thermal properties from one layer to the adjacent one generally causes a stress concentration at the layer 

interface that can initiate delamination. Another weakness concerns the imperfect bonding of the layers and the 

imperfect adherence between fibers and matrix. All this leads to a more or less severe degradation of the actual 

mechanical characteristics compared to the nominal ones of the FRP-composites [1]. For the same reasons, classical 

sandwich constructions which usually consist of a thick low strength core and two thin stiff outer face sheets, suffer the 

same weaknesses. 

Developed during 1980s at the Japanese Aerospace Laboratory under the impulse of Japanese national space research 

program of reusable rocket engines for space plane [2, 3], the functionally graded materials (FGMs) are advanced 

composite materials made by two or more phases mixed together in order to obtain a synergic combination of their 

mechanical and thermal properties. Without loss of generality, FGMs are particular composites in which the fraction 

volume of the two or more phases varies along the grading  direction according to an appropriate law, aimed to tailor in 

that direction the distribution of those features (such as Young's modulus, shear modulus, Poisson's ratio, thermal 

expansion coefficients, material density)  significant for the specific application (spacecraft heat shields, flywheels, 

nuclear components for fusion reactors, high temperature thermal barrier coatings, heat exchanger tubes, biomedical 

implants, etc), [4–7].  

Contrary to the FRP-composites, the FGMs feature a continuous and smooth variation of the properties along the 

grading direction, typically the thickness in plate/shell like structures. Thanks to the smooth continuous distribution of 

properties along the thickness of each layer, the FGMs can either reduce or remove the discontinuity at layer interfaces 

and core-face sheets interfaces in classical sandwich constructions, thus enhancing the delamination resistance.  Other 

advantages of FGMs over to the traditional FRP-composites pertain the reduction of the in-plane stresses, an 

enhancement of residual stresses and thermal properties, an increase of fracture toughness and a reduction of the stress 

intensity factors, Birman [8].  
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FGMs, like FRP-composites, are considered macroscopically heterogeneous materials whose effective mechanical and 

thermal characteristics are derived by means of appropriate homogenization techniques. The choice of an 

homogenization scheme should be made carefully since it may affect the response predictions, [9–16].   

As an alternative to the micromechanics-based homogenization techniques, Mori-Tanaka approach or Halpin-Tsai 

model [17–26], the rule of mixtures (Voigt model) is the most popular and commonly used model to estimate the 

distribution of the effective mechanical and thermal characteristics along the grading direction, [16, 27–37]. Three laws 

of distribution are commonly used: a power-law (P-FGM), an exponential law (E-FGM) and a sigmoidal-law (S-FGM), 

[36–43]. The shape of these laws is tuned by a coefficient, referred in the literature as either grading index or power law 

index. Acting on this index, one could tailor the FGM properties and optimize the material for its specific application.    

Sandwich constructions appear to be the natural candidates to the introduction of advanced composite materials [44]. 

Sandwich beams, plates and shells with FGMs face-sheets or cores have been extensively studied in the last two 

decades [8, 45, 46], both using 3D, quasi-3D and 2D approaches, coupled with various analytical and numerical 

methods. 3D elasticity solutions have been obtained in Refs. [47–52]. Quasi-3D higher-order, sinusoidal and hyperbolic 

theories have been used in Refs. [53–58] to study FGMs plates.  In the framework of 2D approaches, equivalent single 

layer theories (see, [59, 60]) of different order (sinusoidal, hyperbolic, n-order, third-order shear deformation (TSDT), 

first-order shear deformation (FSDT and classical (CPT) plate theories, [20–24, 28, 30, 31, 37, 43, 47, 61–81], layer-

wise [26, 32, 34, 82] and zigzag theories [29, 81, 83–86] have been used to investigate deformation, stresses, free 

vibration, buckling and post-buckling, of FGMs sandwich plates. For a recent review on this topic the reader is 

encouraged to refer to Thai et al [45]. Concerning the solution methods, the Ritz method in conjunction with Chebyshev 

polynomials as coordinate functions multiplied by appropriate boundary functions in order to satisfy the geometric 

boundary conditions has been used to perform a three-dimensional analysis of the displacements and stresses of fully 

clamped functionally graded plates subjected to a uniform load on the top surface by Elishakoff et al [87], and to 

investigate the  vibration of P-FGM  sandwich plates, both simply supported and clamped by Li et al  [50]. Iurlaro et al 

[86] employed the Refined zigzag theory with Navier solution and the Ritz method.  Rayleigh-Ritz method and P-FGM 

has been used by Pradhan et al [66] in investigating the free-vibration of Euler and Timoshenko FGM beams. Kumar 

[88] performed the analysis of free vibration of two-directional FGMs annular plates using Chebyshev collocation 

technique and Differential Quadrature Method (DQM). Das et al [89] developed a triangular plate element for the 

thermo-mechanic analysis of sandwich plates with functionally graded core based on an higher-order model. Based on a 

nth-order shear deformation theory, Xiang et al. [69, 90, 91] investigated the behavior of free vibration of sandwich 

plates with functionally graded face-sheets and homogeneous core by using the meshless global radial basis function 

collocation method based on the thin plate spline radial basis function and nth-order shear deformation theory. Zhao et 
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al [92] used the FSDT and the element-free kp-Ritz method to study the free vibration of FGM plates with different 

boundary conditions. Zuo et al [93] used the wavelet finite element method to investigate free vibration and buckling of 

functionally graded plates. Based on the first-order shear deformation theory (FSDT), Reddy [47] and Srividhya et al 

[16] developed a four-node 𝐶0 plate element. Gupta et al [94–96] developed a nine node with eight nodal degrees of 

freedom  𝐶0 element. Natarajan et al [83] investigated the bending and the free flexural vibration behaviour of sandwich 

functionally graded material (FGM) plates using QUAD-8 shear flexible element developed based on higher order zig-

zag theory. The thermal effect on the response of FGMs structures has been investigated by many researchers. For a 

critical review on this topic, the interested reader is encouraged to refer to Swaminathan et al [6]. The impact response 

and wave propagation have been studied in [79, 97, 98]. For a literature review on thermal stability analysis of plates 

with functionally graded coefficient of thermal expansion, see Bousahla et al [99].    

Reviews concerning modeling and analysis of FGM sandwich beams can be found in Refs [46, 100]; for cylindrical 

structures with an emphasis on coupled mechanics, including thermo-elastic coupling, multi-physic fields coupling, 

structure–foundation coupling and fluid–solid coupling, see Dai et al [101]. 

From the previous literature survey, though by no means exhaustive, it appears that a large number of ESL theories 

were used in the analysis of the thermo-structural behavior of FGMs beams, plates and shells. There are few papers that 

have made use of layer-wise and zigzag plate theories. Regarding solution methods, in addition to the classical methods 

(Navier and finite element method), an increasing number of researchers used the Rayleigh-Ritz method, [102, 103].  

In the framework of zigzag theories, Tessler et al. formulated the Refined Zigzag Theory (RZT), a zigzag model 

suitable for the analysis of traditional multilayered composite and sandwich beams, [104–106], plates [107, 108] and 

shells [109]. The kinematics is comprised of two contributions: the global kinematics given by the FSDT, enriched by 

adding a through the thickness piecewise linear (local kinematics) zigzag function in the in-plane displacements. The 

resulting kinematics has a fixed number of kinematic unknowns, regardless of the number of layers, and does not 

require any shear correction factor. 

Numerical tests on bending, free vibrations and buckling of rectangular sandwich plates subjected to several 

combinations of loads and boundary conditions have shown the remarkable accuracy of the RZT, also for laminates and 

sandwich with weak external layers, [86, 110–112]. From a numerical point of view, RZT allows for the formulation of 

𝐶0 continuity finite elements, [112–122].   

The previous bibliographic survey shows that to date there has not yet been a thorough numerical assessment of the 

performance of the Refined Zigzag Theory (RZT) to the analysis of bending (deflection and stress distributions) and 

free vibration of functionally graded materials (FGM) plates, laminated composite and sandwich, under a set of 

different boundary conditions. The purpose of the present work is to fill this gap.  
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It should be noted that the dependence of the elastic moduli on the thickness co-ordinate in FGM layers make the 

standard RZT not applicable in a straight-forward manner. Iurlaro et al [86] have been used the RZT for the analysis of 

composite and sandwich structures with FGM layers.  

The present work is organized as follows. 

In Sect. 2, the general theory and the governing equations are derived. First, the RZT is presented; based on the RZT 

kinematics, the discrete governing equations for bending and free vibration analysis of functionally graded multilayered 

composite and sandwich plates are derived directly from the principle of virtual work.  

The effective material properties (Young’s moduli and mass density) of the FGMs in the 𝑥3-direction are derived using 

the extended rule of moistures. Three laws of variation of volume fraction in the thickness direction are used: power-

law (P-FGM), exponential law (E-FGM) and sigmoidal-law (S-FGM). 

Sect. 3 presents numerical studies.  

First, convergence analysis results of the Ritz method in conjunctions with orthogonal admissible functions are 

presented and discussed.  

Subsequently, in order to validate the predictive capability of the RZT for the problems at hand, comparative numerical 

studies are performed using 3D elasticity, whenever available, First-order Shear Deformation Theory-FSDT (using 

standard and ad-hoc transverse shear correction factors) and Third-order Shear Deformation Theory-TSDT, and non-

polynomial theories.   

It is concluded that the RZT generally predicts the global (deflection and frequencies) and local (displacement and 

stress distributions) response of FGM sandwich plates, more accurately than first-order (FSDT) and third-order (TSDT) 

shear deformation theories, while retaining its simplicity. 

 In Sect.4, some conclusions are presented based on the numerical investigations performed. 

In Appendix, the assumed orthogonal trial functions used in the Ritz method are discussed, in conjunction with the 

Gram-Schmidt orthogonalization method. 

 

2 Governing equations 

 

2.1 Geometrical preliminaries 

 

We consider a rectangular multilayered flat plate made of a finite number N of perfectly bonded layers. V is the volume 

of the plate, h the thickness, a the length and b the width. The thickness of each layer, as well as of the whole plate, is 

assumed to be constant, and the material of each layer is assumed to be linearly elastic and orthotropic with a plane of 

elastic symmetry parallel to the reference surface and whose principal orthotropy directions are arbitrarily oriented with 

respect to the reference frame. The points of the plate are referred to an orthogonal Cartesian co-ordinate system 
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 ( 1,2,3)jx jX , where  ( 1,2)xx is the set of in-plane co-ordinates on the reference plane, here chosen 

to be the middle plane of the plate, and 𝑥3 ≡ 𝑧 is the co-ordinate normal to the reference plane (Fig. 1); the origin of the 

reference frame is fixed at the center of the middle-plane of the plate, so that, 𝑥1  is defined in the range 𝑥1 ∈ [−
𝑎

2
, +

𝑎

2
], 

𝑥2 in the range 𝑥2 ∈ [−
𝑏

2
, +

𝑏

2
], and 𝑥3 in the range 𝑥3 ∈ [−

ℎ

2
, +

ℎ

2
]. In the body of paper, also the following 

nondimensional co-ordinates will be adopted (𝜉1, 𝜉2) = (
2𝑥1

𝑎
,

2𝑥2

𝑏
) ∈ [−1, +1].  

If not otherwise stated, in the paper the superscript (k) is used to indicate quantities corresponding to the kth layer 

(k=1,N), whereas the subscript (k) defines quantities corresponding to the kth interface (k=1,N-1) between the k and 

(k+1) layer. So, in the following, the symbol ( )(.) k stands for (.) valued at 3 ( )kx z= , i.e., at the k-th interface. Also, we 

use the subscript b and t to indicate the top and bottom surfaces of the plate; specifically,  
(0) bz z  and 

( )N tz z denote 

the co-ordinates of the bottom and top surfaces of the whole plate; thus, 
t bh z z is the plate thickness and 

( )

( ) ( 1)  ( 1,2,..., )k

k kh z z k N ,  the thickness of the kth layer (see Figure 1). 

The plate is subjected to a transverse load zp  applied on the top surface of the plate, and to uniformly distributed in-

plane edge loads for unit length ( , xx yyP P , xyP ) and boundary transverse loads ( 13 23, P P ), applied along the edges 𝑥1 =

±
𝑎

2
  and 𝑥2 = ±

𝑏

2
, respectively (see, Figure 1). 

The symbol ,

( )
( ) i

ix
 refer to the derivative of the function ( )  with respect to the coordinate ix , i.e., ,

( )
( ) .i

ix
  

In the paper, if not otherwise specified, the Einstenian summation convention over repeated indices is adopted, with 

Latin indices ranging from 1 to 3, and Greek indices ranging from 1 to 2. 
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2.2 Homogenization of material properties 

It is assumed that the functionally graded layers are made from a mixture of two phases. The effective material 

properties of the two-phase layer can be estimated according to the Mori–Tanaka scheme or the Voigt model (rule of 

mixtures (ROM)), Refs. [13, 14, 47, 61]. Due to its simplicity, in the present study the ROM is used to obtain the 

equivalent properties of the FGMs.  

As we said, there are three different types of law of variation of the properties through the thickness of the layer in the 

literature, [36–43]: exponential (E-FGM), power series (P-FGM) and sigmoidal law (S-FGM). In this study, all of these 

laws are considered.  

Table 1 gives the three law of variation of the property 𝑃(𝑘)(𝑧)  within the layer kth as a function of the z-coordinate;  

( ) ( ) ( )k k k

t bh z z= − and 

( ) ( )
( )

2

k k
k t b

M

z z
z

+
=  are the thickness and the co-ordinate of the middle plane of the kth layer 

here assumed as reference plane). p, the volume fraction exponent, also referred to as the gradient (power-law) index in 

the literature, is a non-negative variable parameter, 𝑝 ≥ 0. It dictates the material variation profile through the 

thickness. Moreover, 

Fig. 1. General plate notation (a) 

plate geometry and co-ordinate 

system, (b) layer numbering, and (c) 

in-plane loads (c). 
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( )
( )

( )

1

2

p
k

k M
t k

z z
V

h

 −
= + 
 

                                                                                       (1) 

is the volume fraction of the property on the top surface, 𝑃𝑡
(𝑘)

 . 

Note that  ( ) ( ) 1k k

b tV V+ = , so 

( )
( )

( )

1
1

2

p
k

k M
b k

z z
V

h

 −
= − + 

 

                                                                                (2) 

 is the volume fraction of the property on the bottom surface, 𝑃𝑏
(𝑘)

 . 

Note also that  

( ) (

21

) ( )   for ( .)  ( ) 1= = =k k k

tf zf V pz                                                                      (3) 

So, S-FGM law is the same as P-FGM law for p=1. 

Table 1.  Variation laws as a function of the z-coordinate (layer kth of thickness ℎ(𝑘); reference plane is the middle 

plane). 

P-FGM ( ) ( ) ( ) ( ) ( )
( )     0

k k k k k
P z P V P p

t
P

b t b
 

− + 
 

=     

E-FGM 

 

( )
( )

( )
ln

)) (( ( )

k
kt

tk
bk

P
V

Pk

bz eP P

 
 
 
 =  

S-FGM 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) 1     for ( ) ( )  z

1
  z  

1
z z

k k k k k k k
P z f P f P z

t b M t
 = + −   
 

 

( )( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2( ) ( )( ) 1     for    z z  k k k k k k k

t b b MP z f z zP f P z= + −    

( ) ( )( ) ( )

( ) ( )

2 ( )1 ( )
 ; 

1 1
( ) 1 1 2 ( ) 1

2
    2

2

p p
k k

M Mk k

k k

z z z
f f

h

z
z

h
z

   
   
  

− −
= − − =


  

+



 

 

 

2.3 Kinematics 

 

In this paper, the kinematics of the Refined Zigzag Theory proposed by Tessler et al [104–108] and adopted by 

Iurlaro et al [86] to take into account layers made up of  functionally graded materials, is adopted. The theory is based 
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on the superposition of a global (G) first–order kinematics (that of Mindlin’s plate theory, FSDT) and a local (L) layer-

wise correction of the in-plane displacements. Thus, the displacement field at time t is written as 

1 1 1

2 2 2

3 3

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , ) 0

G L

j j j

G L

j j j

G

j j

u x t u x t u x t

u x t u x t u x t

u x t u x t

     
     

= +     
     
     

                                                          (4) 

where 

 

1 1 1

2 2 2

3

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) 0( , )

G

j

G

j

G

j

u x t u x t x t

u x t u x t z x t

u x w x tt

 

 







     
     

= +     
     
     

                                                      (5) 

 

gives the contribution which is continuous with its first derivatives with respect to the z-coordinate and 

( )

1 1

( )

1

( )

2 2

( )

3

( )

2

( , ) ( )

( , ) ( )

( , )

( , )

( , )

0

kL k

j

kL k

j

L k

j

u x t z

u

x t

x t z

u x

x

t

t





 

 

   
   

=   
   
   

                                                            (6) 

 

gives the contribution to the in-plane displacement which is continuous with respect to 3x , but with jumps in the first 

derivative at the interfaces between adjacent layers. 

In compact matrix format, 

 

3 3( , )

( , ) (

)

,

(

, ( )

,

)G L

j j j

G

j ju x t u x t

x t x t x tu u u= +

=
                                                            (4a) 

 

3 (

( , ) ( , ) ( , )

( , ) , )

G

j

G

j

x t x t z x t

u x t w x t

u u θ 

=

= +

                                                           (5a) 

 

 
( ) ( )( , ) ( ) ( , )L k k

jx t z x tu ψ =                                                               (6a) 

 

In the previous equations, 𝑢1 and 𝑢2  are the displacements along the 𝑥1 − and 𝑥2 − axis of a  point belonging to the 

middle plane of the plate; 𝜃1  and 𝜃2 are the bending rotation of the normal to the middle surface along the directions 

+𝑥2 and −𝑥1, respectively, and w is the transverse deflection, assumed to be constant along the thickness.  𝜓1  and  𝜓2 

represent the spatial amplitudes of the zigzag functions 𝜙1
(𝑘)

 and  𝜙2
(𝑘)

, respectively. It should be noted that FSDT is a 

special case of the RZT, i.e., RZT reduces to FSDT for 𝒖
𝐿(𝑘)

= 𝟎 (see, Eqs. (4) and (5)). 
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2.4 Strain-displacement relations 

The linear strain expressions associated with the displacement field in Eq. (4) are: 

1,1( )

1,1 1,1 1,1

2,1( )

2,2 2,2 2,2

1,2(

( )

11 1

22

) ( )

1,2 2,1 1,2 2,1 1,2 2,1

2,2

2

12 2 1

0 0 0

0 0 0

0 0

k

k

k

k k

u u

u u z

u u u u


 


 


   








 
          
          

= = + +          
          + + +          

 

                  (7) 

( )( )

1 11,3 ,1

( ) ( )
,1 1,3 113

2 22,3 ,2 2 2,

1,1 1,3

( ) ( )
,2,2 2,33 223

0

0

k k

k

kk

k

wu w w

wu w w

    

    





     +   + +         
= = = +   

+

+
       

++ +                  
                               (8) 

In compact matrix format, 

m bzε ε ε Φε= + +                                                                               (7a) 

(0)

,3 γ γ= +                                                                                   (8a) 

For the 𝑘th layer of thickness ℎ𝛼
(𝑘)

 , the following expressions hold for the refined zigzag functions, [86], 

1

4( ) ( 1)4 4

( ) ( )
2

1

44 4

( )

( ) ( 1)5 5 5

( ) ( 1) ( )
255 55 55

4 44

2

( ) 1
2

( )
( ) ( ) ( )

( )
( ) ( ) (

(
)

) 1
2

k
k q

k q k
q

k
k q

k q k
q

G G Gh
z h

Q Q Q

G G Gh
z h

z

Q

z
z z

z
z z Q zQ





−

−
=

−

−
=

 
= + − + − 

 

 
= + − +

 
 
 

 
 





−
 




  (𝑘 = 1, … , 𝑁)                 (9) 

 

where 

 

 

( )

( )

1

( )
1

1

( )

k
t

k
b

N z

j kz
k jj

dz
G

h Q z

−

=

 
=  
 
 
      𝑗 = 4,5                                                           (10) 

and 𝑄̅𝑗𝑗
(𝑘)

(𝑧) is the transformed transverse shear stiffness modulus of the kth layer (see Section 2.4).    

It is noted that the refined zigzag functions 𝜙𝛼
(𝑘)

 are piecewise continuous functions of the thickness co-ordinate and 

vanish on the bottom (𝑧 = −ℎ/2) and top (𝑧 = +ℎ/2) surfaces of the plate. They are a priori known, in that they 

depend only on the law of distribution of the transverse shear moduli of each layer, on the number of layers and on their 

thickness.   

Note that, contrary to what happens for the traditional multilayered composite and sandwich structures where  𝜙𝛼
(𝑘)

 is a 

piecewise linear function of the z-coordinate [104–108], for multilayered structures with layers made of functionally 

graded materials, 𝜙𝛼
(𝑘)

 is a piecewise-non-linear function whose shape is regulated by the grading law of the transverse 

shear stiffness, [86]. Thus, the transverse shear strains 𝛾𝛼3
(𝑘)

 are nonlinear functions of the thickness co-ordinate within 

each layer (see, Eq. 8a). 

 



11 
 

2.5 Stress-strain relations 

The constitutive equations for a functionally graded layer are2 

 

( )( ) ( )

11 11 12 16 11

22 12 22 26 22

12 16 26 66 12

kk k

Q Q Q

Q Q Q

Q Q Q

    
    

=    
    
    

 

 

 

                                                            (11) 

( )( ) ( )

13 1344 45

23 2345 55

kk k

Q Q

Q Q

       
=    

       

 

 
                                                                 (12) 

 

In compact matrix format, 

 

( ) ( ) ( )k k k

p p pσ Q ε=                                                                            (11a) 

( ) ( ) ( )k k k

t t =σ Q                                                                           (12a) 

where 𝑄̅𝑖𝑗
(𝑘)

(𝑧) (i,j=1,2,6) and and 𝑄̅𝑖𝑗
(𝑘)(𝑧) (i,j=4,5) are the plane stress transformed stiffness moduli of the kth layer, 

that are functions of the z-coordinate. 

2.6 Discrete equations of motion 

 
The discretized equations of motion can be derived using the dynamic version of the principle of virtual 

displacements (D’Alembert principle) 

 ext inU W W− =                (13) 

where  

 

2 2

1 2
2 2

 
a b

T T

p p ta b
U dx dx

+ +

− −
= +  ε σ γ σ                                                          (14) 

 

is the virtual variation of the work given by the internal forces (stress); 

 

( )2 2

3 3 1 2
2 2

 
a b

T

in a b
W u u dx dx

+ +

− −
= − +  u u                                                           (15) 

is the virtual work of the inertia forces, and exW is the virtual work of the applied forces, 

 

0exW =                                                                                        (16) 

   

for free vibration; 

 

                                                 
2 In the present plate theory it is assumed 𝜎33 = 0.  
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2 2

3 1 2
2 2

2

23 1 1 1 1 1
2

2

2 2 13 2 2 2
2

            ( , , ) ( , , ) ( , , ) ( , , )
2 2 2 2

           ( , , ) ( , , ) ( , , ) ( , , )
2 2 2 2

a b

ex a b

a

a

b

b

W p wdx dx

b b b b
T x t w x t x t w x t dx

a a a a
x t w x t T x t w x t dx

+ +

− −

+

−

+

−

= +

 
+ − − + + 

 

 
+ − − + 

 

 





 

 

 

                                (17) 

In writing Eq. (17) it is assumed that the plate is subjected to a transverse load 
3p applied on the top surface of the 

plate, and to a boundary transverse loads per unit length   
3  ( 1,2)T =   applied on the edge parallel to 𝑥𝛼-axis.  

In the previous equations, 3( )x  is the material mass density; the overdot indicates differentiation with respect to the 

time, and an overbar the prescribed value of a quantity. All other symbols have been defined above. Moreover, 

3

3

( )

3
( 1)

1

( )
N x s

x s
s

dx
−

=

• = •       

 

and  is the variational operator.  

 

Substitution of Eqs. (4)-(8) and (11) and (12) into Eqs. (14) and (15), yields  

 

2 2

1 2
2 2

 
a b

T

a b
U dx dx

+ +

− −
=   e R                                                                          (18) 

 

where  

 

( )T ( )T T T T T

b
 =  R N M M T T

                                                                   (19) 

 

(0)T T T T T T

m b  =  e ε ε ε γ                                                                    (20) 

 

In Eq. (19) the following force and moment stress resultants for unit length have been introduced 

 

( )

( ) ( )

11 1

11 11 11( ) ( )

( ) 21 2

22 22 22( ) ( )

12 1

12 12 12( ) ( )

22 2

0 0

0 0
, , , , 1, ,

0 0

0 0

k

k

b k

k

M

M
z

M

M

      
           
          = =           
                            

N M M











  


  


  



                                     (21) 

 

( )
( )( )

1,3( ) 131 1

( )( )

2,3 232 2

0
, , 1,

0

k

k

T T

T T






 

 

             
= =                      

T T                                                       (22) 

 

The plate constitutive relations are derived by using Eqs. (7) and (8) with Eqs. (10) and (11) into Eqs. (21) and (22), 

and integrating over the plate thickness. In matrix format they read 
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=R Se                                                                                     (23) 

 

where 

 

T T

t t

T

t t

 
 
 
 =
 
 
 
 

A B A 0 0

B D B 0 0

S A B D 0 0

0 0 0 A B

0 0 0 B D





  



 

                                                                     (24) 

 

( ) ( ) ( )

( ) ( )

2

( ) ( )T ( )

,3 ,3 ,3

, , (1, , ) ,  , , 1, ,

, 1, ,  

T

p p

k k k

t t t t t

z z z

  

= =

= =

A B D Q A B D Φ Q Φ

A B Q D Q

  

                                           (25) 

 

For the virtual work of inertia forces, we obtain 

 

( )2 2 2 2

1 2 3 3 1 2
2 2 2 2

2 2

1 2
2 2

        

a b a b
T T

in i ia b a b

a b
T

a b

W u u dx dx u u dx dx

dx dx

+ + + +

− − − −

+ +

− −

= − = − +

= −

   

 

u u

d md

    



                                (26) 

where 

 

(0) (1) (0)

11

(0) (1) (0)

22

(1) (2) (1)

11

(1) (2) (1)

22

(0) (1) (2)

1 1 11

(0) (1) (2)

1 2 22

(0)

0 0 0 0

0 0 0 0

0 0 0 0

;   0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0 0

m m mu

m m mu

m m m

m m m

m m m

m m m

mw









  
  
  
  
  

= =   
   
   
   
   
   

d m                                           (27) 

 

( ) ( )(0) (1) (2) (0) (1) (2) 2 ( ) ( ) ( )2, , , , , 1, , , , ,k k km m m m m m z z z z=                                                (28) 

 

Due to difficulty to obtain closed form solutions, we search for an approximate solution transforming the differential 

problem in an algebraic problem. In order to do this, in the following the discretization is accomplished directly in the 

D’Alembert principle previously stated using the Ritz method [102, 103]. 

Let us expand the unknown functions in the form, 

( ) ( )( ) ( ) ( ) ( )

1 2 1 2

( )

1

ˆ ( ), , ,
M f

m

f f f T f

m mf C tt g
=

= = Cg                                                            (29) 
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where ( )1 2, ,ˆ tf    stands for ( )1 2, ,û t   , ( )1 2, ,ˆ tw   , ( )1 2,ˆ , t   and ( )1 2,ˆ ,t    ( 1,2= ), respectively. In Eq. 

(29), ( )( )f

mC t are unknown coefficients (generalized coordinates) to be varied, and  ( )( )

1 2,f

mg   are the approximating 

functions. In the Ritz method, these functions are required to be a complete set at least linearly independent and 

satisfying the geometric (prescribed, kinematic) boundary conditions (these functions are named admissible functions in 

the literature).  

Appendix A gives details of the admissible functions used in this work.  

Thus, by taking into account Eqs. (7), (8) and (20) 

1 1

2
2

1

1

2

2

1

1

2

2

1

2

1

2

1

2

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

u T u

u T
u

T

w

T

T

T

wT

u

u

w

 
    
    
    
    
    

= =    
    
    
    
    
      

g

g

g

g

g

g

g

C
0 0 0 0 0 0

C0 0 0 0 0 0

C0 0 0 0 0 0

d C0 0

0 0 C

0 0 C

0
C























                                              (30) 

 

1

2

2 1

1

2

1 2

1

2

1

2

1

2

,1

,2

,2 ,1

,1

,2

,2 ,1

,1

,1(0)

,2

,2

,1

,2

ˆ

ˆ

ˆ

ˆ

u T

u T

u T u T

T

T

T T

T

T

T

T

T wT

T w

m

b

T



 
 
 
 

= = 
 
 
  

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
ε

0 0 0 0 0
ε

0 0 0 0 0 0
e ε

0 0 0 0 0 0
γ

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0

g

g

g g

g

g

g g

g

g

g

g

g g

g g

g0 0





 

















1

2

1

2

1

2

1

2

u

u

T

T

w

 
 
 
 
 

  
  
  
  
  
    

   
   
   
   
     
 
 
 
 
 

C

C

C

C

C

C

C

0 0

0 0g0 0 0 0











                                              (31) 

 

 

In compact matrix format, 

 

 

=d GC                                                                                     (30a) 

 

=e G C                                                                                   (31a) 

 

Substituting this relation into Eqs. (18), (26) and (16), yields 
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2 2

1 2
2 2

 
a b

T T T

a b

t t

t t

U dx dx  
+ +

 
− −

  
  
  
  = =
  
  
  

  

 

A B A 0 0

B D B 0 0

C G G C KCA B D 0 0

0 0 0 A B

0 0 0 B D





  



 

                       (32) 

 

2 2

1 2
2 2

 =
a b

T T T

in a b
W dx dx

+ +

− −

 
= − − 

 
 C G mG C C MC                                             (33) 

 

with 

 

 

2 2

1 2
2 2

a b
T

a b

t t

t t

dx dx
+ +

 
− −

 
 
 
 =
 
 
 
 

 

A B A 0 0

B D B 0 0

K G GA B D 0 0

0 0 0 A B

0 0 0 B D





  



 

                                             (34) 

 

2 2

1 2
2 2

a b
T

a b
dx dx

+ +

− −
=  M G mG                                                                  (35) 

 
T

exW = C P                                                                               (36) 

where 

P = 0                                                                                     (37) 

for free vibration;  

2 2

3 1 2 3
2 2

  0 0 0 0 0 0 0 0 0 0 0 0

p

a b
T

a b
p dx dx T d

+ +

− −


  = +      P G G                       (38) 

and 

( )

2

3 23 1 1 23 1 1 1
2

2

13 2 2 13 2 2 2
2

1

23 23
1

( , ) ( , ) ( , ) ( , )
2 2 2 2

                 ( , ) ( , ) ( , ) ( , )
2 2 2 2

                ( , 1) ( , 1) ( ,1) ( ,1)
2

p

a
w w

a

b
w w

b

w w

b b b b
T d T x x T x x dx

a a a a
T x x T x x dx

a
T T d

+

−


+

−

+

−

 
 = − − + + 

 

 
+ − − + 

 

= − − +

 





G g g

g g

g g   

( )
1

13 13
1

                   ( 1, ) ( 1, ) (1, ) (1, )
2

w wb
T T d

+

−

+

+ − − + g g



    

                                          (39) 

Substitution of Eqs. (32), (33) and (36) into Eq. (13), taking into account that the virtual variation are arbitrary 

independent variations yields the following approximate discretized equations of motion 

                                               + =MC KC P                                                                                 (40) 
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3 Numerical results and discussion 

In this Section, numerical results on bending and free vibration of different functionally graded plates are presented.  

First, to assess the capabilities of the proposed Refined Zigzag Theory in conjunction with the Ritz method with 

orthogonal polynomials in predicting both global (i.e., deflection, natural frequencies and mode shapes) and local (i.e., 

through-the-thickness distribution of in-plane displacements and stresses) responses of functionally graded plates with 

Ceramic/Metal phases and sandwich plates under various boundary conditions, are considered. All the results of 

transverse shear stresses are computed by integration of the local three-dimensional equilibrium equations.  Two types 

of plates are taken into consideration (see Figure 2): a monolayer functionally graded plate (Figure 2-a) and a sandwich 

plate with functionally graded face-sheet and homogeneous core (Figure 2-b).  

Mechanical material properties for monolayer and sandwich plate are listed in Table 2. The materials indicated in Table 

2 are for the most isotropic, except only one, called “orthotropic”, has the mechanical properties different along the 

principal directions. The stacking sequence for the various plate considered later are exposed in Table 3. In column 

“Lamina Materials” of Table 3 the abbreviation of FG indicates that the layer considered is a functionally graded layer 

with the materials shown by the letters in brackets. 

Table 2.  Mechanical properties of isotropic and orthotropic materials used. 

Material 𝐸1 [𝐺𝑃𝑎] 𝐸2 [𝐺𝑃𝑎] 𝐸3 [𝐺𝑃𝑎] 𝜈12 𝜈13 𝜈23 𝐺12 [𝐺𝑃𝑎] 𝐺13 [𝐺𝑃𝑎] 𝐺23 [𝐺𝑃𝑎] 𝜌 [
𝑘𝑔

𝑚3
] 

Al (A1) 70 70 70 0.3 0.3 0.3 26.923 26.923 26.923 2707 

Al (A2) 70 70 70 0.3 0.3 0.3 26.923 26.923 26.923 2702 

Al2O3 (B) 380 380 380 0.3 0.3 0.3 146.154 146.154 146.154 3800 

ZrO2 (C) 200 200 200 0.3 0.3 0.3 76.92 76.92 76.92 5700 

Orthotropic 

(O) 
174.6 6.89 6.89 0.25 0.25 0.25 3.5 3.5 1.4 1000 

 

 

Table 3.  Laminate stacking sequences (from bottom to top surface) for monolayer and sandwich plate. 

Laminate Normalized lamina thickness ℎ(𝑘)/ℎ Lamina Materials Lamina Orientation [°] 

L1 (0.3333/0.3333/0.3333) FG (O)/O/FG (O) (0/Core/0) 

L2 Monolayer FG (A2/B) (0) 

L3 (0.25/0.5/0.25) FG (A1/B)/B/FG(B/A1) (0/Core/0) 

L4 (0.25/0.5/0.25) FG(B/A1)/A1/FG(A1/B) (0/Core/0) 

L5 (0.25/0.5/0.25) FG (O)/O/FG(O) (0/Core/0) 

L6 Monolayer FG (A2/C) (0) 

L7 Variable (see, Table 13) FG(B/A1)/A1/FG(A1/B) (0/Core/0) 

 

For the assessment, 3D and 2D analytical and FEM results are used. 
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Fig. 2.  Configuration of functionally graded plates: (a) functionally graded monolayer plate; (b) sandwich plate with 

functionally graded face-sheets and homogeneous core. 

 

3.1 Convergence study  

 

In order to assess the accuracy of the RZT and the convergence characteristics of the Ritz method using orthogonal 

polynomials, a simply supported sandwich square plate with functionally graded face-sheet (L1) (Figure 2-b), under bi-

sinusoidal pressure is considered. According to Iurlaro et al [86],  the assumed exponential (E-FGM) grading law for 

the mechanical properties (Young moduli, shear moduli and mass density) of orthotropic material (Table 2, material O) 

is, in this example, 𝑙𝑛
𝑃𝑡

(3)

𝑃𝑏
(3) = 5  (see, Table 1). As the effective Poisson’s ratio depends weakly on position, in this study 

it is assumed constant along the thickness.  

The convergence results for increasing number of the orthogonal polynomials (N1 in the x1-direction and N2 in the x2-

direction) for simply supported sandwich square plate (L1) are given in Table 4. In Table 4, and in the following body 

of paper, the non-dimensional quantities are defined as: 

 

( ) ( ) ( ) ( )

22

22

2

11 22 12 11 22 12 13 23 23

3 3 31
1 33 3

0 0

0 0

2 13

10                                           10

, , , ,            , ,

h E uh E u
u u

q a q a

h h

q a q a
         

= =

= =

   (41) 
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Table 4. Convergence results for bending of simply supported sandwich square plate (L1), ln 5t

b

P

P
= and a/h=8 under bi-

sinusoidal transverse load. For non-dimensional quantities 𝐸2 = 𝐸2𝑐𝑜𝑟𝑒
. 

 

 𝑢̅3(0,0) 𝑢̅1 (−
𝑎

2
, 0,

ℎ

2
) 𝜎11 (0,0,

ℎ

2
) 𝜎22 (0,0,

ℎ

2
) 𝜏1̅2 (−

𝑎

2
, −

𝑏

2
,
ℎ

2
) 𝜏1̅3 (−

𝑎

2
, 0,0) 𝜏2̅3 (0, −

𝑏

2
, 0) 

3D solution 9.685 -0.3093 3.652 0.3343 -0.221 0.2116 0.0687 

RZT [86] 9.6344 -0.3034 3.5428 0.3344 -0.2215 0.2101 0.0680 

RZT 

𝑁1 = 𝑁2 𝑢̅3(0,0) 𝑢̅1 (−
𝑎

2
, 0,

ℎ

2
) 𝜎11 (0,0,

ℎ

2
) 𝜎22 (0,0,

ℎ

2
) 𝜏1̅2 (−

𝑎

2
, −

𝑏

2
,
ℎ

2
) 𝜏1̅3 (−

𝑎

2
, 0,0) 𝜏2̅3 (0, −

𝑏

2
, 0) 

1 0.8233 0 0 0 0 0 0 

2 8.4835 -0.3253 2.444 0.2277 -0.3025 0.02874 0.0214 

3 8.5564 -0.3296 2.476 0.2326 -0.2714 0.02536 0.0244 

4 9.6025 -0.3028 3.51 0.3315 -0.2219 0.2633 0.0805 

5 9.6041 -0.303 3.512 0.3317 -0.2234 0.2641 0.0809 

6 9.6336 -0.3033 3.579 0.3378 -0.2239 0.2071 0.0673 

7 9.6336 -0.3033 3.579 0.3378 -0.2238 0.2071 0.0673 

8 9.6339 -0.3033 3.58 0.338 -0.2238 0.2102 0.0680 

9 9.6339 -0.3033 3.58 0.338 -0.2238 0.2102 0.0680 

 

 

Results in Table 4 are compared with RZT analytical solutions obtained by Iurlaro et al [86] and 3D solution using 

Pagano approach [123]. It is concluded that there is a good agreement between two results. It is observed that using 8 

orthogonal polynomials in both the directions guarantees the convergence of the Ritz results to the correct results for 

both global and local values of displacements and stresses. 

To show the convergence of the Ritz method for free vibration problem, in Table 5 the first eight non-dimensional 

frequencies (𝑓̅ =
𝜔𝑎2

2𝜋ℎ √
𝜌𝑐𝑜𝑟𝑒

𝐸2𝑐𝑜𝑟𝑒

)  of the same sandwich plate clamped on the side 𝑥1 = −
𝑎

2
 and free on the other sides are 

presented for increasing  number of orthogonal polynomials. 
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Table 5. Convergence analysis for free vibration problem of cantilevered sandwich square plate (L1), ln 5t

b

P

P
= and 

a/h=8. 

 

RZT 

𝑁1 = 𝑁2 1 2 3 4 5 6 7 8 

1 0.8715 - - - - - - - 

2 0.5749 0.6510 - - - - - - 

3 0.4785 0.5542 1.2070 1.3944 2.0575 2.1374 2.4694 3.3969 

4 0.4667 0.5351 1.1745 1.3578 1.6423 1.7198 2.0429 2.0941 

5 0.4663 0.5345 1.0473 1.3570 1.6184 1.6955 1.9625 2.0109 

6 0.4662 0.5336 1.0450 1.3477 1.6163 1.6450 1.6988 1.9594 

7 0.4662 0.5336 1.0367 1.3476 1.6163 1.6387 1.6981 1.9515 

8 0.4662 0.5334 1.0366 1.3452 1.6052 1.6162 1.6961 1.9514 

9 0.4662 0.5334 1.0365 1.3451 1.6051 1.6162 1.6961 1.9511 

3D (FEM) [86] 0.465 0.531 1.034 1.345 1.593 1.598 1.673 1.926 

 

 

It is concluded that a good approximation for the first eight frequencies is obtained with 9 orthogonal polynomials. 

Unless otherwise specified, it is understood that the numerical results presented below were obtained using the Ritz 

method with 8 orthogonal polynomials in the 𝑥1 and 𝑥2 directions.  Furthermore, if not explicitly stated, the acronym 

TSDT is used to indicate numerical results obtained using Reddy third-order shear deformation theory [124] and 3D 

those obtained using 3D Pagano exact solution [123].   

 

3.2 Bending problem 

In this first analysis, a simply supported square plate Ceramic/Metal (L2) with span-to-thickness ratio (𝑎/ℎ =

10) under bi-sinusoidal transverse pressure is considered. The grading law for mechanical properties is the power law 

(see, Table 1); two values of the grading index are considered: p=0.2 and 1. 

Table 6 gives the non-dimensional transverse displacement and the non-dimensional in-plane and transverse shear 

stresses computed using different theories (CPT, FSDT, TSDT, RZT). For comparison, 3D results obtained using 

Pagano exact solution [123] and those obtained by Redddy et al. [73]  using Higher-Order Shear Deformation Theory 

are shown. For p=1, results obtained by Thai et al [84] are also quoted. 

As known, in order to obtain more accurate results, FSDT need the use of shear correction factors. In this study, in 

addition to the classical ones (𝑘1
2 = 𝑘2

2 = 1; 
5

6
;  

2

3
;  

𝜋2

12
), also ad hoc computed shear correction factors, Raman et al  

[125] have been used. 
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Table 6. Comparison of non-dimensional displacement and stresses for simply supported square (L2) FG 

Ceramic/Metal plate (a/h= 10). In the non-dimensional quantities 𝐸𝑐 = 𝐸2 of ceramic phase. 

 

p Theory 𝑢̅3(0,0,0) 𝜎11 (0,0,
ℎ

2
) 𝜎22 (0,0,

ℎ

3
) 𝜏1̅2 (−

𝑎

2
, −

𝑏

2
, −

ℎ

3
) 𝜏1̅3 (−

𝑎

2
, 0,0) 𝜏2̅3 (0, −

𝑏

2
,
ℎ

6
) 

0.2 

CPT 341.6178 0.2235 0.1393 0.07211 0.2426 0.2255 

FSDT 

𝑘1
2 = 𝑘2

2

= 1 
356.8597 0.2235 0.1393 0.07211 0.2426 0.2255 

𝑘1
2 = 𝑘2

2 =
5

6
 359.9081 0.2235 0.1393 0.07211 0.2426 0.2255 

𝑘1
2 = 𝑘2

2 =
2

3
 364.4807 0.2235 0.1393 0.07211 0.2426 0.2255 

𝑘1
2 = 𝑘2

2 =
𝜋2

12
 360.1498 0.2235 0.1393 0.07211 0.2426 0.2255 

𝑘1
2 = 0.84375 

𝑘2
2 = 0.84375 

359.6823 0.2235 0.1393 0.07211 0.2426 0.2255 

TSDT 359.6707 0.2256 0.1388 0.07192 0.2421 0.2253 

Redddy et al [73] 359.9 0.2259 0.1387 0.07206 0.2423 0.2254 

RZT 357.0589 0.2231 0.1392 0.07214 0.2426 0.2253 

3D  357.9103 0.2266 0.1404 0.07206 0.2422 0.2254 

1 

CPT 562.2550 0.3041 0.1500 0.06101 0.2388 0.2509 

FSDT 

𝑘1
2 = 𝑘2

2 = 1 584.5006 0.3041 0.1500 0.06101 0.2388 0.2509 

𝑘1
2 = 𝑘2

2 =
5

6
 588.9498 0.3041 0.1500 0.06101 0.2388 0.2509 

𝑘1
2 = 𝑘2

2 =
2

3
 595.6235 0.3041 0.1500 0.06101 0.2388 0.2509 

𝑘1
2 = 𝑘2

2 =
𝜋2

12
 589.3025 0.3041 0.1500 0.06101 0.2388 0.2509 

𝑘1
2 = 0.8304 

𝑘2
2 = 0.8304 

589.0446 0.3041 0.1500 0.06101 0.2388 0.2509 

TSDT 588.9317 0.3072 0.1493 0.06088 0.2382 0.2507 

Redddy et al [73] 589.0 0.3088 0.1490 0.06107 0.2384 0.2547 

Thai et al [84] 588.9 0.3087 0.1489 0.06110 0.2462 0.2622 

RZT 584.6298 0.3044 0.1501 0.06092 0.2388 0.2509 

3D 587.5220 0.3085 0.1510 0.06089 0.2383 0.2509 

 

 

Results collected in Table 6 show that in this case classical plate theory (CPT) and first-order shear deformation plate 

theory (FSDT) with various shear correction factors, produce for the non-dimensional stresses indistinguishable results. 

Similar conclusions are reached by Reddy [47]. In general, with respect to Pagano solution, these theories under-

estimate the central displacement. The effect of transverse shear is more evident considering Reddy third-order shear 

deformation plate theory (TSDT) and RZT. Both theories for this problem are capable of predict, with a good accuracy, 

the local behavior. The maximum transverse displacement for 𝑝 = 0.2 computed using the RZT is closer to the 3D 

solution than those computed using TSDT: there is 0.5% of difference between TSDT and the 3D solution and only the 

0.224% of difference between the 3D solution and RZT. The RZT results for the transverse displacement are more 

accurate than those obtained in Ref. [73] using third-order shear deformation plate theory. The authors consider a cubic 



21 
 

kinematics for in-plane displacements and constant transverse displacement in the thickness-wise direction, thus the 

adopted model has 9 unknown generalized displacements, while RZT has only 7 unknown generalized displacements. 

In general, considering the distribution through the thickness of in-plane displacement and stresses, for a P-FGM with 

p=0.2 and 1 there is not evident difference between the predictions of various theories.  

Now, we consider a simply supported sandwich square plate (L3) with Ceramic/Metal P-FGM face-sheets under bi-

sinusoidal pressure. Results for non-dimensional in-plane and transverse displacements and in-plane and transverse 

shear stresses considering different theories and different span-to-thickness ratios are collected in Table 7. In this case, 

for comparison purpose, the non-dimensional displacements are taken: 

2 3

4

3 3

3

0 0

10       10core coreh E u h E w
u w

q a q a
= =                                                       (42) 

The exponent used for the power law is 𝑝 = 0.5 The present results are also compared with those obtained by Natarajan 

et al. [83] using FEM based on FSDT (FSDT5 results) and zig-zag TSDT (HSDT13 results) theories. 

From Table 7 we observe that for thin plate (a/h=100) all theories considered (CPT, FSDT using Raman’s shear 

correction factors, Reddy TSDT and RZT) produce the same results of Pagano 3D solution. For thick and moderately 

thick sandwich plates, the RZT results are closer than those computed with other theories. Although the RZT is, as said, 

the best theory (in the sense that it represents the best compromise between accuracy and computational cost) to study 

the behavior of thick plates, it is also very well indicated to study thin plates, producing the same results of the CPT. 

The RZT results are also very close to 3D Pagano solution than those obtained by Natarajan et al [83] using a FEM 

solution based on FSDT and HSDT.  

In Figure 3 are plotted the thickness-wise distributions of non-dimensional in-plane and transverse displacements and 

non-dimensional in-plane and transverse shear stresses for a simply supported sandwich plate (L4) with P-FGM face-

sheet (with power law exponent 𝑝 = 10) under bi-sinusoidal transverse pressure. The core-to-face thickness ratio 

ℎ𝑐/ℎ𝑓 = 2 and the span to thickness ratio a/h=5 (thick plate). To assess the present formulation, Table 8 shows the most 

relevant values from Figure 3 computed with the RZT with the results present in literature, Nguyen et al [76], where the 

author considered a refined higher-order hyperbolic shear deformation theory. The non-dimensional values of the 

displacements given by (41) are computed using the Young modulus of ceramic phase. 
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Table 7. Comparison of local and global behavior for a simply supported sandwich square plate (L3) with P-FGM face-

sheets (p=0.5) under bi-sinusoidal pressure. Core-to-face thickness ratio  
ℎ𝑐

ℎ𝑓
= 2.  

 

a/h Theory 𝑢̅3(0,0) 𝑢̅1 (−
𝑎

2
, 0, −

ℎ

2
) 𝜎11 (0,0, −

ℎ

2
) 𝜏1̅2 (−

𝑎

2
, −

𝑏

2
, −

ℎ

2
) 𝜏1̅3 (−

𝑎

2
, 0,0) 

5 

CPT 40.0382 62.8919 -0.0683 0.0368 0.2623 

FSDT 

𝑘1
2 = 𝑘2

2 = 1 46.1359 62.8919 -0.0683 0.0368 0.2623 

𝑘1
2 = 𝑘2

2 =
5

6
 47.3554 62.8919 -0.0683 0.0368 0.2623 

𝑘1
2 = 𝑘2

2 =
2

3
 49.1847 62.8919 -0.0683 0.0368 0.2623 

𝑘1
2 = 𝑘2

2 =
𝜋2

12
 47.4521 62.8919 -0.0683 0.0368 0.2623 

𝑘1
2 = 0.8793 

𝑘2
2 = 0.8793 

46.9727 62.8919 -0.0683 0.0368 0.2623 

TSDT 46.9524 64.9883 -0.0706 0.0380 0.2605 

FSDT5 [83] 47.3860 62.9280 -0.0527 0.0284 0.2616 

HSDT13 [83] 44.0040 63.7260 -0.0547 0.0287 0.2601 

RZT 46.6627 64.5437 -0.0701 0.0377 0.2617 

3D 45.8241 63.7018 -0.0692 0.0372 0.2602 

10 

CPT 40.0382 62.8919 -0.0683 0.0368 0.2623 

FSDT 

𝑘1
2 = 𝑘2

2 = 1 41.5626 62.8919 -0.0683 0.0368 0.2623 

𝑘1
2 = 𝑘2

2 =
5

6
 41.8675 62.8919 -0.0683 0.0368 0.2623 

𝑘1
2 = 𝑘2

2 =
2

3
 42.3248 62.8919 -0.0683 0.0368 0.2623 

𝑘1
2 = 𝑘2

2 =
𝜋2

12
 41.8917 62.8919 -0.0683 0.0368 0.2623 

𝑘1
2 = 0.8793 

𝑘2
2 = 0.8793 

41.7719 62.8919 -0.0683 0.0368 0.2623 

TSDT 41.7692 63.4168 -0.0689 0.0371 0.2618 

FSDT5 [83] 41.8760 62.9280 -0.0527 0.0284 0.2616 

HSDT13 [83] 41.0780 63.1560 -0.0532 0.0285 0.2615 

RZT 41.6949 63.3065 -0.0687 0.0370 0.2621 

3D 41.4913 63.1219 -0.0685 0.0369 0.2617 

100 

CPT 40.0382 62.8919 -0.0683 0.0368 0.2623 

FSDT 

𝑘1
2 = 𝑘2

2 = 1 40.0535 62.8919 -0.0683 0.0368 0.2623 

𝑘1
2 = 𝑘2

2 =
5

6
 40.0565 62.8919 -0.0683 0.0368 0.2623 

𝑘1
2 = 𝑘2

2 =
2

3
 40.0611 62.8919 -0.0683 0.0368 0.2623 

𝑘1
2 = 𝑘2

2 =
𝜋2

12
 40.0568 62.8919 -0.0683 0.0368 0.2623 

𝑘1
2 = 0.8793 

𝑘2
2 = 0.8793 

40.0556 62.8919 -0.0683 0.0368 0.2623 

TSDT 40.0556 62.8972 -0.0683 0.0368 0.2623 

FSDT5 [83] 40.0520 62.8900 -0.0527 0.0284 0.2622 

HSDT13 [83] 40.0520 62.8900 -0.0527 0.0284 0.2626 

RZT 40.0548 62.8961 -0.0683 0.0368 0.2623 

3D 40.0528 62.8943 -0.0683 0.0368 0.2622 
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Figure 3.  Non-dimensional displacement and stresses for a simply supported sandwich plate (L4) under bi-sinusoidal 

transverse pressure (a/h=5; p=10). a) non-dimensional in-plane displacement, 𝑢̅1; b) non-dimensional transverse 

displacement, 𝑢̅3; c) non-dimensional in-plane stress, 𝜎11; d) non-dimensional transverse shear stress, 𝜏1̅3. Comparison 

between different theories. 

 

Figure 3 shows that there is a good agreement between the RZT solution for in-plane and transverse shear stresses and 

the exact solution computed using Pagano solution. The small differences are due to a compressive along transverse 

direction of sandwich plate not considered in RZT and other 2D theories. The superior capability of RZT, over the other 

2D theories, to estimate the central deflection is shown in Figure 3-b. FSDT is not capable to reproduce the correct 

distribution of the in-plane displacement of sandwich plate, Figure 3-a. In particular, the core displacements are 

completely wrong. Reddy TSDT improves the matching for in-plane displacement but near the interface there are strong 

differences. Although it does not consider the effect of 𝜎𝑧𝑧, RZT can match very well also near the interfaces. For 

transverse shear stresses computed integrating the local equilibrium equation, only RZT has a good matching with 3D 

Pagano solution. Considering the in-plane stresses the RZT shows superior capabilities to predict the stress distribution 

along the thickness. Near the external surface the other theories loss their capability to predict the correct behavior. 
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Although for a non-sandwich FG plate the differences between the theories are not so evident (Table 6), from Figure 3 

it is argued that the RZT is the better theory, with his formulation without using a shear correction factor and only linear 

zigzag functions, than the most used Reddy TSDT to describe the global and local behavior of FGM plate in general. 

 

Table 8. Comparison of global and local non-dimensional quantities for a simply supported sandwich square plate (L4) 

with FG face-sheet under bi-sinusoidal load.  

 

a/h Theory 𝑢̅3(0,0) 𝑢̅1 (−
𝑎

2
, 0, −

ℎ

2
) 𝜎11 (0,0, −

ℎ

2
) 𝜏1̅3 (−

𝑎

2
, 0,0) 

5 

FSDT 𝑘1
2 = 𝑘2

2 = 1 0.0276 -0.0067 2.2830 0.2086 

TSDT 0.0336 -0.0073 2.4730 0.2059 

Nguyen et al [76] 0.0358 NA 2.5492 0.1870 

RZT 0.0378 -0.0077 2.6150 0.2021 

3D 0.0374 -0.0073 2.6510 0.2033 

 

To assess RZT with orthotropic material, a simply supported rectangular (𝑏 = 2𝑎) sandwich plate (L5) with S-FGM 

face-sheet under bi-sinusoidal transverse pressure is considered. The solution for non-dimensional displacement and 

stresses of FSDT (using ad hoc shear correction factor, Raman et al [125]), Reddy TSDT and RZT are compared with 

the 3D Pagano approach. The grading law is the S-FGM (see, Table 1) where the external properties are ten times the 

internal properties, except the value of Poisson’s ratio is assumed constant, the value for the exponent 𝑝 is assumed to 

be 0.5. In Figure 4 are shown the distribution of non-dimensional displacement and stresses given by (41) are computed 

using the 𝐸2 of core material. 
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Figure 4. Non-dimensional displacement and stresses for a rectangular SSSS (b=2a)  sandwich orthotropic plate (L5) 

with S-FGM (𝑝 = 0.5) face-sheet and soft core under bi-sinusoidal transverse pressure. The shear correction factor for 

FSDT are 𝑘1
2 = 0.143677 and 𝑘2

2 = 0.897983. 

 

The plotted results clearly show the superior capability of RZT over the other 2D theories to predict the global and local 

behavior through the thickness for displacement and stresses if compared with the 3D Pagano solution [123]. 

The same previous L5 rectangular (𝑏 = 2𝑎) plate with S-FG face-sheet is now considered fully clamped under constant 

uniform pressure. In Figure 5 are compared the results using the FSDT with Raman’s shear correction factor, the Reddy 

TSDT and the present RZT with those obtained using MSC/MD-NASTRAN using 3D FEM solution. The model is 

discretized using the HEXA8 linear element. The core is built up with 16000 solid elements and for each sub-layer of 

face-sheet (each face-sheet is divided into 20 sublayers) has 3200 elements. Each node of the four edges are constrained 

with the clamped condition. The total number of nodes is 152766. The FEM model in this case is stiffer than the 2D 

theories.  
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Figure 5. Non-dimensional displacement and stresses for a rectangular CCCC (b=2a) sandwich orthotropic plate (L5) 

with S-FGM (𝑝 = 0.5) under bi-sinusoidal transverse pressure. The shear correction factor [125] for FSDT are 𝑘1
2 =

0.1438 and 𝑘2
2 = 0.8986.  

 

From Figure 5, although there isn’t a perfect matching with the plots of 3D FEM, among the theories considered only 

the RZT can predict the displacement and the stresses with a good accuracy near the interfaces. 

Now let us investigate the effect of grading law on the response. To do this, we consider a fully clamped rectangular 

(𝑏 = 3𝑎) sandwich plate (L4) with different type of ceramic/metal FGM face-sheet under uniform load. The types of 

FGM analyzed are P-FGM, E-FGM and S-FGM (see, Table 1) with three values of exponent 𝑝 = 0.5, 1.0, 1.5. The 

core-to-face-sheet thickness ratio is ℎ𝑐/ℎ𝑓 = 2  and the span to thickness ratio is 𝑎/ℎ = 5 (thick sandwich plate).  

 

 



27 
 

Table 9. Comparison of non-dimensional central deflection 𝑢̅3 =
𝑢3𝐸2ℎ2

𝑞0𝑎3  (𝐸2 is the young modulus of Ceramic phase) 

for a rectangular (𝑏 = 3𝑎) fully clamped (CCCC) sandwich plate (L4) with different FGM for face-sheets. 10 

orthogonal polynomials for x1 and x2 directions. 

 

Theory 
P-FGM E-FGM S-FGM 

𝑝 = 0.5 𝑝 = 1.0 𝑝 = 1.5 𝑝 = 0.5 𝑝 = 1.0 𝑝 = 1.5 𝑝 = 0.5 𝑝 = 1.0 𝑝 = 1.5 

CPT 2.9488 2.3180 2.0672 3.7696 2.7512 2.3484 2.4016 2.3180 2.2724 

FSDT 

𝑘1
2 = 𝑘2

2 = 1 5.0084 4.0128 3.6100 6.2244 47.2948 4.0964 4.1040 4.0128 3.9672 

𝑘1
2 = 𝑘2

2

= 5/6 
5.4188 4.3548 3.9140 6.7184 5.1224 4.4384 4.4384 4.3548 4.3092 

𝑘1
2 = 𝑘2

2 =

ℎ𝑜𝑐* 
6.4372 5.6544 5.3580 7.4328 6.2092 5.7228 5.7228 5.6544 5.6468 

TSDT 6.1864 5.2744 4.8640 7.2428 5.9584 5.3808 5.2668 5.2744 5.2896 

RZT 6.2472 5.4112 5.0768 7.2732 6.0116 54.8872 5.4568 5.4112 5.4112 

*Shear correction factors [125]: P-FGM 𝑘1
2 = 𝑘2

2 = 0.5895 for 𝑝 = 0.5; 𝑘1
2 = 𝑘2

2 = 0.5071 for 𝑝 = 1.0; 𝑘1
2 = 𝑘2

2 =
0.4664 for 𝑝 = 1.5. E-FGM 𝑘1

2 = 𝑘2
2 = 0.6701 for 𝑝 = 0.5; 𝑘1

2 = 𝑘2
2 = 0.5711 for 𝑝 = 1.0;  𝑘1

2 = 𝑘2
2 = 0.5162 for 

𝑝 = 1.5; S-FGM 𝑘1
2 = 𝑘2

2 = 0.5107 for 𝑝 = 0.5; 𝑘1
2 = 𝑘2

2 = 0.5071 for 𝑝 = 1.0; 𝑘1
2 = 𝑘2

2 = 0.5017 fo 𝑝 = 1.5. 

 

In Table 9 the effect of law of variation of properties along the thickness and the exponent 𝑝 used in the grading law for 

the central deflection using different theories is shown.  

Increasing the value of exponent 𝑝 means, for this sandwich type, an increase of ceramic phase near the core interfaces. 

Low values of 𝑝 produce face-sheets with ceramic phase only in a limited area near the external surfaces. This material 

effect is expressed by a variation of the flexural stiffness. Increasing the value for 𝑝 decreases the stiffness of the 

sandwich plate. 

As previously noted (Table 1), for 𝑝 = 1, P-FGM and S-FGM give rise to the same law of distribution; so, they give the 

same results.  

Results in Table 9 confirms what is well known. CPT under-estimates the central deflection; accuracy of FSDT is 

strongly related to the use of ad hoc shear correction factors, such as Raman’s shear correction factor [125]. TSDT and 

RZT give comparable numerical results, with RZT being less computationally expensive, especially when FEM 

formulation is taken into account, [112–122].  

3.3 Free vibration 

In this section the free vibration of square and rectangular P-FGM and S-FGM plates is considered. 

In the following tables, the subscript “c” and “m” indicate, respectively, the ceramic and metal mechanical properties 

of the plate considered.  

Table 10 compares results for the first three non-dimensional circular frequencies of simply-supported (SSSS) square 

plates (L2) with span-to-thickness ratio 𝑎/ℎ = 5, obtained using different plate theories (CPT, FSDT with different 

shear correction factors, TSDT, RZT) with those obtained by Zhang et al [126]  with the 3D-FEM solution. Results for 

different values of index p are shown. 
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Table 10 shows a good matching of the RZT results with the 3D FEM results. The CPT over-estimates the value of 

frequencies. The FSDT without considering the shear correction factor increase the transverse deformability but is still 

too stiff if compared with the 3D FEM solution. Using an appropriate shear correction factor, the frequencies are under-

estimated. With TSDT does not require a shear correction factor but the RZT results match very well with the 3D FEM 

for all cases without introducing any shear correction factor or using third order functions to describe the kinematics.  

To assess the RZT with other boundary conditions, a rectangular (𝑏 = 2𝑎) P-FGM plate (L6) is considered. The 

boundary conditions considered are: SSSS, SCSC, SCSF, SSSC and SSSF. Two values of exponent 𝑝 are considered. 

Table 11 shows results for the fundamental frequency obtained using CPT, FSDT ad hoc shear correction factor [125], 

TSDT and the present RZT are compared with the 3D FEM solution computed by Zhang et al [126]. 

Table 11 shows the non-dimensional frequencies computed using different theories and, for comparison, those obtained 

by Zhang et al [126] using 3D FEM approach. As can be seen, CPT over-estimates the frequencies for all type of BCs, 

except for SCSC case. Using FSDT with an appropriate shear correction factor the frequencies decrease. Better results, 

when compared with 3D FEM results, are obtained using TSDT and RZT; furthermore, RZT generally provides better 

results than TSDT. It should be noted that all theories give the same numerical results for SCSF and SSSF. This is 

explained by analysing the corresponding modal shapes: the first natural frequency is relative to a membrane mode, as 

can be argued by plotting the corresponding modal shape.  
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Table 10. Comparison of circular frequencies parameters (𝜔̅ =
𝜔

ℎ
√

𝜌𝑐

𝐸𝑐
) for different theories of a simply supported 

(SSSS) P-FGM square plate (L2) (𝑎/ℎ = 5) with different values of 𝑝.  

 

Mode Theories 
P-FGM 

𝑝 = 0.5 𝑝 = 1 𝑝 = 4 𝑝 = 10 

(1,1) 

CPT 0.1959 0.1761 0.1522 0.1466 

FSDT 

𝑘1
2 = 𝑘2

2 = 1 0.1828 0.1650 0.1415 0.1344 

𝑘1
2 = 𝑘2

2 =
5

6
 0.1805 0.1630 0.1396 0.1323 

𝑘1
2 = 𝑘2

2 =
2

3
 0.1771 0.1602 0.1368 0.1292 

𝑘1
2 = 𝑘2

2 =
𝜋2

12
 0.1803 0.1629 0.1394 0.1321 

𝑘1
2 = 𝑘2

2 = ℎ𝑜𝑐 * 0.1807 0.1630 0.1373 0.1297 

TSDT 0.1807 0.1631 0.1377 0.1294 

RZT 0.1828 0.1650 0.1397 0.1318 

3D FEM [126] 0.1818 0.1640 0.1383 0.1307 

(1,2) 

CPT 0.4681 0.4196 0.3601 0.3478 

FSDT 

𝑘1
2 = 𝑘2

2 = 1 0.4075 0.3687 0.3124 0.2938 

𝑘1
2 = 𝑘2

2 =
5

6
 0.3977 0.3602 0.3046 0.2854 

𝑘1
2 = 𝑘2

2 =
2

3
 0.3841 0.3485 0.2939 0.2739 

𝑘1
2 = 𝑘2

2 =
𝜋2

12
 0.3970 0.3596 0.3041 0.2847 

𝑘1
2 = 𝑘2

2 = ℎ𝑜𝑐 * 0.39856 0.3601 0.2956 0.2757 

TSDT  0.3988 0.3605 0.2977 0.2768 

RZT 0.4074 0.3686 0.3057 0.2840 

3D FEM [126] 0.4033 0.3647 0.3002 0.2796 

(2,2) 

CPT 0.7183 0.6421 0.5473 0.5301 

FSDT 

𝑘1
2 = 𝑘2

2 = 1 0.5966 0.5404 04548 0.4249 

𝑘1
2 = 𝑘2

2 =
5

6
 0.5778 0.5243 0.4402 0.4093 

𝑘1
2 = 𝑘2

2 =
2

3
 0.5523 0.5023 0.4204 0.3886 

𝑘1
2 = 𝑘2

2 =
𝜋2

12
 0.5764 0.5231 0.4391 0.4081 

𝑘1
2 = 𝑘2

2 = ℎ𝑜𝑐 * 0.5794 0.5240 0.4236 0.3919 

TSDT  0.5802 0.5252 0.4281 0.3945 

RZT 0.5962 0.5404 0.4430 0.4073 

3D FEM [126] 0.5885 0.5333 0.4329 0.3994 

*Shear correction factor [125]: 𝑘1
2 = 𝑘2

2 = 0.8459 for 𝑝 = 0.5; 𝑘1
2 = 𝑘2

2 = 0.8304 for 𝑝 = 1; 

𝑘1
2 = 𝑘2

2 = 0.6901 for 𝑝 = 4; 𝑘1
2 = 𝑘2

2 = 0.6899 for 𝑝 = 10. 
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Table 11. Comparison of fundamental circular frequencies parameters 𝜔̅ =
𝜔

ℎ
√

𝜌𝑚

𝐸𝑚
 of rectangular (𝑏 = 2𝑎) (L6) 

Al/ZrO2 P-FG plate (𝑎/ℎ = 5)  with different boundary conditions for different theories. Between parenthesis the 

number of orthogonal polynomials used in the Ritz method. 

 

 
SSSS 

(𝑁1 = 𝑁2 = 8) 

SCSC 

(
𝑁1 = 8

𝑁2 = 10
) 

SCSF 

(
𝑁1 = 8 
𝑁2 = 10

) 

SSSC 

(
𝑁1 = 8

𝑁2 = 10
) 

SSSF 

(𝑁1 = 𝑁2 = 8) 

Theory 𝑝 = 1 𝑝 = 5 𝑝 = 1 𝑝 = 5 𝑝 = 1 𝑝 = 5 𝑝 = 1 𝑝 = 5 𝑝 = 1 𝑝 = 5 

CPT 0.1567 0.1599 0.1570 0.1602 0.1085 0.1024 0.1569 0.1600 0.1085 0.1024 

FSDT  

(𝑘1
2 = 𝑘2

2 = 1) 
0.1494 0.1513 0.1621 0.1637 0.1085 0.1024 0.1550 0.1568 0.1085 0.1024 

FSDT  

(𝑘1
2 = 𝑘2

2 =

ℎ𝑜𝑐)* 

0.1480 0.1487 0.1600 0.1600 0.1085 0.1024 0.1534 0.1538 0.1085 0.1024 

TSDT 0.1480 0.1488 0.1571 0.1565 0.1085 0.1024 0.1522 0.1524 0.1085 0.1024 

RZT 0.1493 0.1502 0.1620 0.1622 0.1085 0.1024 0.1550 0.1556 0.1085 0.1024 

3D-FEM       

[52, 126] 
0.1484 0.1493 0.1609 0.1611 0.1085 0.1024 0.1540 0.1545 0.1085 0.1024 

* Shear correction factor [125]: 𝑘1
2 = 𝑘2

2 = 0.8310 for 𝑝 = 1; 𝑘1
2 = 𝑘2

2 = 0.7558 for 𝑝 = 5. 

 

All theories capture the effect of changing the exponent 𝑝 for P-FGM: increasing the value of the exponent, the region 

of metal rich increases, the global density of the plate decreases and the frequencies for the case with 𝑝 = 5 are higher 

than those with 𝑝 = 1.  

For a simply supported (SSSS) square sandwich plate (L3) with S-FGM (Al/Al2O3) face-sheets and hard ceramic core, 

Table 12 collects results of the non-dimensional fundamental frequencies for different span-to-thickness ratio and 

exponent 𝑝 for sigmoidal law (S-FGM). Results computed using CPT, FSDT with different values of shear correction 

factors, TSDT and RZT are compared with results computed by Singh et al [43] using a kinematic based on non-

polynomial higher-order shear deformation plate theory (HOSDT) with inverse hyperbolic shape function. The 

comparison confirms the high accuracy of RZT.  

Table 13 shows results for the fundamental frequencies of a fully clamped (CCCC) sandwich square plate (L7) with P-

FGM (Al/Al2O3) face-sheet and metal (Al) soft core, for different values of power index p and face-to-core thickness 

ratios.  Results computed using FSDT with two values of shear correction factors, TSDT and RZT are compared with 

results of 3D Ritz solution of Li et al [50]. The comparison shows a very good matching between RZT and 3D results, 

also for low values of  ℎ𝑐/ℎ𝑓 ratio.  
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Table 12. Comparison of non-dimensional fundamental circular frequencies  𝜔̅ =
𝜔𝑎2

ℎ
√

𝜌𝑚

𝐸𝑚
 for a (SSSS) sandwich plate 

(L3) with S-FGM face-sheets and hard ceramic (Al2O3) core.  

 

ℎ𝑐/ℎ𝑓 = 2 𝑝 = 1 𝑝 = 4 𝑝 = 10 

a/h 5 10 100 5 10 100 5 10 100 

CPT 8.9145 9.1102 9.1776 8.6736 8.8617 8.9264 8.6263 8.8128 8.8771 

FSDT  

(𝑘1
2 = 𝑘1

2 = 1) 
8.4240 8.9657 9.1761 8.2197 8.7285 8.9250 8.1794 8.6818 8.8757 

FSDT  

(𝑘1
2 = 𝑘1

2 = ℎ𝑜𝑐)* 
8.3750 8.9504 9.1759 8.1624 8.7106 8.9248 8.1187 8.6630 8.8755 

TSDT 8.3754 8.9508 9.1760 8.1671 8.7126 8.9249 8.1261 8.6657 8.8755 

RZT 8.3936 8.9564 9.1760 8.2037 8.7238 8.9250 8.1685 8.6787 8.8757 

HOSDT [36] 8.3753 8.9507 9.1759 8.1677 8.7126 8.9248 8.1261 8.6657 8.8755 

*Shear correction factor [125]: 𝑘1
2 = 𝑘2

2 = 0.9016 for 𝑝 = 1; 𝑘1
2 = 𝑘2

2 = 0.8791 for 𝑝 = 4; 𝑘1
2 = 𝑘2

2 = 0.8714 for 𝑝 =
10. 
 

Table 13. Comparison of non-dimensional frequencies 𝜔̅ =
𝜔𝑎2

ℎ
√

𝜌𝑚

𝐸𝑚
 for fully clamped (CCCC) thick (a/h=5) square 

sandwich (L7) with P-FG (Al/Al2O3) face-sheet and metal (Al) soft core. 10 orthogonal polynomials for x1 and x2 

directions. 

 

a/h=5 𝑝 = 0.5 𝑝 = 1 𝑝 = 5 

(
ℎ𝑓

ℎ𝑓

−
ℎ𝑐

ℎ𝑓

−
ℎ𝑓

ℎ𝑓

) 1-1-1 1-2-1 1-8-1 1-1-1 1-2-1 1-8-1 1-1-1 1-2-1 1-8-1 

FSDT (𝑘1
2 =

𝑘2
2 = 1) 

14.9766 11.9595 10.2617 16.4689 13.1383 11.0083 17.2047 13.7252 11.4078 

FSDT  

(𝑘1
2 = 𝑘2

2 =

ℎ𝑜𝑐)* 

12.2361 10.4082 9.48371 12.6612 10.8769 9.90075 12.8059 11.0474 10.0893 

TSDT 19.4884 10.7027 9.68056 21.0519 11.3707 10.1463 21.5762 11.714 10.3644 

RZT 12.7870 10.5894 9.58501 13.4844 11.1526 10.0071 13.7985 11.3839 10.2027 

3D Ritz solution 

[50] 
11.15126 10.68654 9.642492 11.83599 11.2635 10.08594 12.84633 11.91534 10.68051 

*Shear correction factor [125]: for 𝑝 = 0.5 (1-1-1) 𝑘1
2 = 𝑘2

2 = 0.5630, (1-2-1) 𝑘1
2 = 𝑘2

2 = 0.5895, (1-8-1) 𝑘1
2 = 𝑘2

2 =
0.7192; for 𝑝 = 1 (1-1-1) 𝑘1

2 = 𝑘2
2 = 0.4837, (1-2-1) 𝑘1

2 = 𝑘2
2 = 0.5071, (1-8-1) 𝑘1

2 = 𝑘2
2 = 0.6595; 𝑝 = 1.5 (1-1-1) 

𝑘1
2 = 𝑘2

2 = 0.4458, (1-2-1) 𝑘1
2 = 𝑘2

2 = 0.4664, (1-8-1) 𝑘1
2 = 𝑘2

2 = 0.6263. 

 

Table 14. Comparison of non-dimensional frequencies 𝜔̅ =
𝜔𝑎2

ℎ √
𝜌𝑐𝑜𝑟𝑒

𝐸2𝑐𝑜𝑟𝑒

 for a CCCC rectangular (𝑏 = 2𝑎) sandwich  

plate (L5)  (ℎ𝑐 ℎ𝑓⁄ = 2)  with orthotropic S-FGM.  

 

 Mode 

Theory (1,1) (1,2) (1,3) (1,4) (2,1) (2,2) 

TSDT 9.0841 9.6909 10.8412 12.4611 19.2055 19.5508 

RZT 8.7279 9.2844 10.3369 11.8292 18.1328 18.4569 

3D FEM 9.1327 9.6420 10.6304 12.0501 18.6548 18.9359 
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In closing this assessment, the free vibration of a thick (span-to-thickness ratio, a/h=5) fully clamped (CCCC) 

rectangular (𝑏 = 2𝑎) sandwich S-FGM (exponent 𝑝 = 0.5) (L5) with orthotropic material (Table 2, material O) is 

investigated., using TSDT, RZT and NASTRAN/PATRAN 3D FEM model used for the static analysis. The first 6 non-

dimensional frequencies are computed and compared in Table 14.  

Also for the free vibration case the sandwich plate (L5) has a stiffer behavior.  

 

4. Conclusions 

In this paper an assessment of the Refined Zigzag Theory (RZT) for bending and free vibration problem of functionally 

graded rectangular plates has been presented. 

After exposing the functionally graded law for monolayer and sandwich plates the equations of motion have been 

derived using the D’Alembert Principle. 

The Ritz method has been used here to solve the bending and the free vibration problem of simply supported and fully 

clamped square and rectangular plate. 

Numerical analyses have been performed in order to assess the reliability of RZT to compute the maximum deflection, 

natural frequencies and local responses. The influence of FGM law type, type of load, span-to-thickness ratio, aspect 

ratio, core-to-face thickness ratio, materials has been taken in consideration. Other theories such as CPT, First Order 

Shear Deformation Theory (FSDT) with different shear correction factor, Reddy TSDT, 3D exact solution of Pagano, 

3D FEM solution and other results obtained by current literature have been considered for comparison purpose. Firstly, 

the numerical studies showed the accuracy of approximate Ritz method to compute the maximum deflection, local 

stresses and frequencies for an E-FGM orthotropic sandwich plate. Several numerical studies for bending problem have 

been performed and the superior accuracy of RZT to predict the global response (maximum deflection and frequencies) 

and local quantities (distribution of in-plane displacement, in-plane and transverse shear stresses through the thickness) 

of FGM sandwich plates has been shown. The RZT although uses only linear function without any shear correction 

factor gives more accurate results if compared with the exact solution and 3D FEM results. Using an appropriate shear 

correction factor for FSDT based on energy consideration [125] over-estimates the deflection and under-estimates the 

frequencies. The Reddy TSDT, typically used in literature to describe the behavior of FGM structures, is not capable 

like the RZT to catch the distribution of local response for an orthotropic FGM sandwich plate.  

It is concluded that the RZT generally predicts the global (deflection and frequencies) and local (displacement and 

stress distributions) response of FGM sandwich plates, more accurately than first-order (FSDT) and third-order (TSDT) 

shear deformation theories, while retaining its simplicity. 
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In concluding this assessment, from a computational cost point of view, it is of interest to note that FEM formulations 

based on RZT require only C0 shape functions, like FSDT based finite elements.  

 

Appendix A 

 

The Ritz method-Assumed trial functions 

As we said, in the Ritz method the trial functions (also known as generalized functions) must be linearly independent 

and individually satisfy at least the kinematic boundary conditions, i.e., they must be admissible functions. The choice 

of the admissible functions is a very important step because the convergence rate of the approximate solution depends 

on them. Commonly used admissible functions are polynomials, although there are examples where other types of 

admissible functions have been used; for example, characteristic (modal shapes) functions of problem of low order, i.e., 

modes of beam for the analysis of vibration of plates and so on.  

In this research, the Gram-Schmidt polynomials are used as generalized Ritz functions. The Gram-Schmidt polynomials 

can accommodate various kinematic boundary conditions. Compared to other polynomial admissible functions they 

present fast convergence characteristics in our experience. Moreover, being orthogonal, they yield a diagonal mass 

matrix Here below a brief description of the procedure for constructing such polynomials is initially established for one-

dimensional problem, whereas for two-dimensional applications simple product of one-dimensional polynomial are 

used, using the variable separation technique.   

Let ( )g  be the one-dimensional Gram-Schmidt polynomial with [ 1,1]  − ; the recurrence formula is  

( ) ( ) ( ) ( )1 1m m mm mg A g B g+ − − −                 (m=1,2,…)                                               (A.1) 

 

with   

 

( )

( )

( )

( )

1 1
2 2

1
1 1

1 1
2 2

1
1 1

,     m m

m m

m m

g gd d

d
A B

g g d

+ +

+
− −

+ +

−
− −

 
 

 

    

   
                                                              (A.2) 

 

 

and 

 

( ) ( ) ( ) ( )1 2

0 1 1 20;         g g b b
 

= =                                                                   (A.3) 

 

 

where in general 

 

 ( ) 0ib =                                                                                            (A.4) 

 

 

is the equation of the edge ith. For the one-dimensional problem at the hand, 

 

( )1 1b = +     and   ( )2 1 .b = −                                                                         (A.5) 
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In Eq. (A.3) the values of the exponents depend on the boundary conditions: 0 if the function does not vanish, 1 if the 

function vanishes (for the problem at hand, see Table A.2).  

As we said, the two dimensional admissible functions are written as product of one-dimensional Gram-Schmidt 

polynomials. Thus for the general unknown function (33), we write 

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1 1

1 2 1 2 1 2
ˆ ( ), , ,( )

P f R f M f
f f f f f

r m mpr

p r m

pf C t C tt g g g
= = =

= =                                               (A.6) 

with 

 

  ( ) ( )1m p R f r= − +                                                                                    (A.7) 

  

The first basis function is given by  

 

 ( ) ( )
( )

( )

1 1 2

1

1 2, ,
fl

j

j

n

j

fg
=



 =                                                                               (A.8) 

 

where 𝑛𝑙 gives the number of the plate edges (for quadrilateral plate, 𝑛𝑙 = 4), 𝜒𝑗(𝜉1, 𝜉2) = 0 is the equations of the jth 

edge of the plate, the exponents Ω𝑗 are chosen such that the geometric (prescribed) boundary condition on the edge for 

the function ( )1 2, ,ˆ tf    be satisfied. 

For example, for the square plate shown in Fig. 1, the functions 𝜒𝑗(𝜉1, 𝜉2) are: 

 

 ( ) ( )1 1 2 1, 1= +    , ( ) ( )1 2 22 , 1= +    , ( ) ( )1 2 13 , 1= −    , ( ) ( )1 2 24 , 1= −     

The prescribed (geometric) boundary condition are given in Table A.1 (see, Tessler et al [107, 108]). 

 

Table A.1. Prescribed (geometric) boundary conditions of RZT. 

                                                                                     

Edge F ,  ,  ,  u w     free 

Edge 1 1=  SS  1 1 1 0;u w= = = =   
2 2 2,  ,  u    free 

Edge 2 1=  SS 2 2 2 0;u w= = = =   
1 1 1,  ,  u    free 

Edge C 0u w= = = =     

F=free, C= clamped, SS=simply supported  

 

 

The exponents Ω𝑗
(𝑓)

for the classical geometric boundary condition of RZT are given in Table A.2. 
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Table A.2. Exponents for the classical geometric boundary conditions. 

 

edge 
1 1=  SS  Ω𝑗

𝑢1 = Ω𝑗
𝜃1 = Ω𝑗

ψ1 = 0 

Ω𝑗
𝑢2 = Ω𝑗

𝜃2 = Ω𝑗
ψ2 = 1 

edge 
2 1=  SS Ω𝑗

𝑢1 = Ω𝑗
𝜃1 = Ω𝑗

ψ1 = 1 

Ω𝑗
𝑢2 = Ω𝑗

𝜃2 = Ω𝑗
ψ2 = 0 

edge SS Ω𝑗
𝑤 = 1 

edge F Ω𝑗
𝑓

= 0 

edge C Ω𝑗
𝑓

= 1 
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