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KINETIC-CONTROLLED HYDRODYNAMICS FOR TRAFFIC
MODELS WITH DRIVER-ASSIST VEHICLES\ast 

ANDREA TOSIN\dagger AND MATTIA ZANELLA\dagger 

Abstract. We develop a hierarchical description of traffic flow control by means of driver-
assist vehicles aimed at the mitigation of speed-dependent road risk factors. Microscopic feedback
control strategies are designed at the level of vehicle-to-vehicle interactions and then upscaled to
the global flow via a kinetic approach based on a Boltzmann-type equation. Then first and second
order hydrodynamic traffic models, which naturally embed the microscopic control strategies, are
consistently derived from the kinetic-controlled framework via suitable closure methods. Several
numerical examples illustrate the effectiveness of such a hierarchical approach at the various scales.
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1. Introduction. In the last two decades, the legacy of the classical kinetic
theory has emerged as a sound mathematical paradigm for the description of collective
phenomena involving a large number of agents, such as socioeconomic [42, 46] and
traffic [2, 24, 26, 32, 33, 35, 38, 50, 60] dynamics. In particular, the mathematical
modeling of vehicular traffic by methods of the kinetic theory has a quite long history,
dating back to the pioneering works [47, 49]. One of the main reasons for such
success is the multiscale flexibility of the kinetic equations, which organically bridge
the gap between the microscopic, often unobservable, scale of the individual agents,
where elementary fundamental dynamics take place, and the macroscopic scale of the
observable collective manifestations. This confers on the kinetic approach a great
explanatory power about the way in which multiagent systems behave. At the same
time, the possibility to derive hydrodynamic descriptions of those systems consistent
with microscopic interaction dynamics is of paramount importance for designing fast
numerical methods, which possibly help decision-making tasks.

Euler or Navier--Stokes-type equations are classically obtained from collisional ki-
netic equations by means of suitable closures based on the relaxation of the system
towards its equilibria. For instance, in the context of rarefied gas dynamics, they are
derived taking advantage of the microscopic conservations of mass, momentum, and
energy in the binary collisions between gas molecules, which allow one to identify the
asymptotic distribution (Maxwellian); see, e.g., [7, 14]. The derivation of hydrody-
namic equations in the nonclassical setting of multiagent systems is instead a currently
underexplored topic due to the general lack of information about the asymptotic sta-
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KINETIC-CONTROLLED HYDRODYNAMICS 717

tistical trends of the system. Some recent works in this direction are [13, 22, 30]. In
this work, we focus on the case of vehicular traffic, in which only the total mass of
the vehicles is conserved by the microscopic interactions.

In recent times, the challenge of vehicular automation has posed new and exciting
questions about traffic management and governance, which in turn has boosted broad
developments in the technology for intelligent intersections and driver-assist and self-
driving vehicles [52, 55]. One of the main goals of such technologies is the enhancement
of driver safety through the mitigation of road risk factors, which, as reported in [61],
are largely linked to the heterogeneity of individual driving behavior. Among others,
here we recall in particular those related to the variability of the speed in the traffic
flow: large differences in the speeds of the vehicles within the traffic stream appear to
be responsible for a sensible increase in the crash risk. The idea which is progressively
gaining ground in this context is to exploit the possibility to control a few automated
vehicles in order to induce a regularization of the whole traffic flow [54], which should
then mitigate the aforesaid risk factors.

The control of multiagent systems has been recently investigated as a natural
follow-up issue in the description and modeling of their self-organization ability. Con-
tributions are available for mean field and kinetic equations [3, 4, 8, 25] as well as for
macroscopic conservation laws [6, 15, 16]. In this paper, we address the instantaneous
control of driver-assist vehicles associated with the minimization of some cost func-
tionals recently proposed in [57] which provide measures of the driving risk in terms
of the speed difference between pairs of vehicles. We observe that an instantaneous
control is consistent with the instantaneous nature of the binary interactions between
pairs of vehicles, which characterize the kinetic approach to vehicular traffic exactly
as the collisions between pairs of molecules in the classical Boltzmann equation char-
acterize the dynamics of a gas. In particular, our instantaneous control is active each
time a driver-assist vehicle interacts with a leading vehicle. Interestingly, this leads
mathematically to a binary control problem, which can be solved explicitly. The re-
sult is a feedback control given in terms of the microscopic states of the interacting
vehicles, which can be embedded in a Boltzmann-type kinetic description. Further-
more, our kinetic approach allows us to take into account the so-called penetration
rate at the aggregate level, which corresponds to the probability that a randomly
chosen vehicle is equipped with driver-assist technologies. Therefore, we may glob-
ally consider also the realistic scenario in which only a small percentage of vehicles is
actually controlled.

The main novelty that we propose in this paper is the organic multiscale derivation
of aggregate kinetic and hydrodynamic equations of traffic flow from the closed-loop
microscopic description of an instantaneous control representing the action of driver-
assist vehicles. Such a derivation is grounded in the sound mathematical-physical
principles of statistical mechanics, which has constantly served as a reference paradigm
for the multiscale description of numerous physical phenomena. In this respect, it is
worth pointing out that most of the current literature on driver-assist/autonomous
vehicles is concerned with either purely microscopic models [44, 58] or macroscopic
models [18, 19] in which, however, the aspects of vehicle automation are heuristically
included at the aggregate level by means of additional terms postulated in the flux
equations. Our multiscale derivation stresses instead the actual ``bottom-up"" role
played by the automated vehicles in the control of the traffic stream. Indeed, it makes
it clear that what is being controlled are neither the kinetic nor the hydrodynamic
equations themselves, which would correspond to a ``top-down"" control strategy, but
rather the microscopic interactions ruling the speed changes of pairs of vehicles.
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718 ANDREA TOSIN AND MATTIA ZANELLA

In more detail, the paper is organized as follows. In section 2, we introduce a
space homogeneous kinetic model of human-manned traffic able to explain how fun-
damental diagrams and statistical speed distributions consistent with the empirical
observations are generated by simple microscopic interactions between pairs of vehi-
cles. The analysis of this case provides insights into the normal flow of uncontrolled
vehicles, thereby constituting the reference for all the subsequent developments. In
section 3, we design and solve the binary control problem for driver-assist vehicles,
taking into account their penetration rate into the traffic stream, and we repeat the
space homogeneous kinetic analysis so as to assess the effectiveness of the control
strategies in reducing the road risk with respect to the previous case of fully human-
manned vehicles. In section 4, we consider a space inhomogeneous kinetic description,
whence we consistently derive first and second order hydrodynamic traffic equations
with embedded microscopic control via the local equilibrium closure and the monoki-
netic assumption, respectively. In section 5, we extensively investigate the solutions
produced by the kinetic and hydrodynamic models by means of numerical simulations
specifically focused on the collective impact of the control strategies and on the influ-
ence of the penetration rate of the driver-assist technology. Finally, in section 6, we
summarize the highlights of the work and draw some conclusions.

2. Homogeneous kinetic modeling of traffic flow. In this section, we study
interactive vehicle dynamics which explain how typical speed distributions and traffic
diagrams arise in stationary flow conditions. This will be the basis for constructing
later control strategies for driver-assist vehicles aimed at making traffic flow more
uniform by essentially reducing the speed variance among the vehicles.

The literature nowadays accounts for a number of empirical and theoretical in-
vestigations of the so-called speed and fundamental diagrams of traffic. These are
relationships linking the mean speed V and the macroscopic flux \rho V of the vehicles to
the traffic density \rho in stationary homogeneous conditions along the main longitudinal
direction of the flow. From the empirical point of view, the common observation to
all measured traffic diagrams is that the mean speed is nearly constant and close to
the maximum speed in the free flow regime, i.e., for \rho sufficiently small; conversely,
it decreases steeply to zero in the congested flow regime, i.e., for \rho approaching the
maximum possible density \rho max > 0. In turn, the macroscopic flux grows almost
linearly with the density in the free flow regime, and then it decreases nonlinearly to
zero in the congested flow regime. The two traffic regimes are separated by a critical
value of \rho , called the density at capacity, where the macroscopic flux is maximum; see,
e.g., [39]. A further intermediate regime might exist, called the synchronized traffic
regime, in which vehicles tend to travel all at the same speed; cf. [37]. From the
theoretical point of view, a few mathematical models have been able to explain the
emergence of such large scale characteristics of traffic from a microscopic description of
vehicle interactions [23, 29]. In some cases, models have also successfully investigated
the origin of the data scattering typically seen in measured traffic diagrams [50, 60].
Finally, very recently, diagrams in the transversal direction of the flow produced by
the lateral displacements of lane-changing vehicles have started to be measured and
their origin investigated by means of statistical physics tools [34].

Far less studied is the statistical distribution of the microscopic speeds of the
vehicles in similar stationary homogeneous conditions. This information is nonethe-
less fundamental for assessing traffic features correlated with the road safety, such as,
e.g., the dispersion of the speeds of the vehicles, which has been reported as one of
the major causes of the increase in crash risk [48, 61]. Moreover, speed distribution
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KINETIC-CONTROLLED HYDRODYNAMICS 719

at equilibrium may play a role analogous to that of Maxwellian distribution in the
kinetic theory of gases for the theoretical derivation of macroscopic hydrodynamic
traffic models consistent with microscopic models of vehicle interactions. A typical
claim in the literature is that the speed in highway-like traffic can be approximated by
a Gaussian distribution [9]. Some studies suggest in particular that this may be valid
in free and congested traffic regimes, while in the intermediate regime the approxi-
mation by means of a log-normal distribution performs better [1]. Other studies have
found that bimodal distributions may be more appropriate to describe the speeds in a
mixture of different categories of vehicles [21]. A drawback of the Gaussian distribu-
tion is that it is not compactly supported, whereas vehicle speeds normally vary in an
interval of the form [0, vmax], where vmax > 0 is some maximum speed. Consequently,
if, on one hand, the Gaussian curve can be a healthy empirical approximation, on the
other hand more accurate distributions need to be sought from the theoretical point
of view. In [41, 43] the authors find a good agreement between empirical traffic speed
curves and beta distributions. In the following we demonstrate that beta distributions
can indeed be obtained as equilibrium distributions of a kinetic traffic model, starting
from simple and very reasonable assumptions on the interactions between pairs of
vehicles. Interestingly, our approach allows us to recover the relevant parameters of
such distributions in terms of the traffic density \rho . This provides organically average
statistical quantities parametrized by \rho , such as the mean speed and the macroscopic
flux, which turn out to compare qualitatively well with the experimental diagrams of
traffic described above.

2.1. Boltzmann-type model and traffic diagrams. Inspired by classical
methods of kinetic theory, we introduce the distribution function f = f(t, v) such
that f(t, v) dv is the fraction of vehicles which, at time t > 0, are traveling at a speed
between v and v+dv. We understand all variables as dimensionless, and in particular
we set v, \rho \in [0, 1], meaning that we have normalized the speed and the density by
their maximum values vmax, \rho max, respectively.

In the Boltzmann-type kinetic approach, one assumes that the time evolution of f
is determined by microscopic stochastic processes consisting in binary (i.e., pairwise)
interactions responsible for speed changes. If v, v\ast are the preinteraction speeds of any
two representative vehicles and v\prime , v\prime \ast their postinteraction speeds, a binary interaction
takes the form of a rule expressing v\prime , v\prime \ast as functions of v, v\ast :

v\prime = v + \gamma I(v, v\ast ; \rho ) +D(v; \rho )\eta ,

v\prime \ast = v\ast .
(1)

Consistently with a microscopic follow-the-leader approach [28], we assume that a
vehicle of the pair, in this case the one with speed v\ast , plays the role of the leading
vehicle. Since, in vehicular traffic, interactions are mainly anisotropic, and particu-
larly frontal, the leading vehicle is unaffected by the rear vehicle, which here is the
one with speed v. In contrast, the rear vehicle may change speed according to the
interaction function I(v, v\ast ; \rho ), which may depend on the traffic density \rho because
traffic congestion may affect acceleration and deceleration. In addition to that, in
the equation for v\prime the constant \gamma > 0 is a proportionality parameter and \eta \in \BbbR is
a centered random variable, i.e., one with mean \langle \eta \rangle = 0, modeling stochastic fluctu-
ations of the postinteraction speed v\prime . The variance of \eta is set to

\bigl\langle 
\eta 2
\bigr\rangle 
=: \sigma 2 > 0,

while the intensity of the stochastic fluctuation is tuned by the function D(v; \rho ) \geq 0
representing the local relevance of the diffusion.

In order to write a Boltzmann-type equation ruling the evolution of f we argue as
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720 ANDREA TOSIN AND MATTIA ZANELLA
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Fig. 1. The probability of accelerating P (\rho ) given in (4) plotted for various \mu .

in [46]. If \varphi = \varphi (v) is any observable quantity which can be expressed as a function
of the speed v, then the time variation of the expectation of \varphi (v) is due, on average,
to the variation of \varphi in a binary interaction. In formulas this writes as

d

dt

\int 1

0

\varphi (v)f(t, v) dv

=
1

2

\biggl\langle \int 1

0

\int 1

0

(\varphi (v\prime ) - \varphi (v) + \varphi (v\prime \ast ) - \varphi (v\ast ))f(t, v)f(t, v\ast ) dv dv\ast 

\biggr\rangle 
,

(2)

where the coefficient 1
2 at the right-hand side is used to average the variations \varphi (v\prime ) - 

\varphi (v) and \varphi (v\prime \ast ) - \varphi (v\ast ) in a binary interaction (notice from (1) that actually \varphi (v\prime \ast ) - 
\varphi (v\ast ) = 0) and \langle \cdot \rangle denotes the expectation with respect to the probability distribution
of \eta .

We discuss now in more detail the structure of the functions I, D in (1). The
interaction function I has often been modeled in the literature by separately consider-
ing the cases v \leq v\ast , which would induce an acceleration of the v-vehicle, and v > v\ast ,
which instead would induce a deceleration; see, e.g., [20, 33, 50]. Here we propose a
simpler form, which has the merit of making the whole model more tractable ana-
lytically while giving rise to many interesting physical consequences. Specifically, we
set

(3) I(v, v\ast ; \rho ) := P (\rho )(1 - v) + (1 - P (\rho ))(P (\rho )v\ast  - v),

where

(4) P (\rho ) := (1 - \rho )\mu , \mu > 0,

is the probability of accelerating; see Figure 1. This interaction function says that
in light traffic, i.e., for \rho small, the v-vehicle basically relaxes its speed towards the
maximum possible one; cf. the first term on the right-hand side of (3). When \rho 
increases, the v-vehicle starts to adapt its speed also to a fraction P (\rho ) of the speed v\ast 
of the leading vehicle; cf. the second term on the right-hand side of (3). The fraction is
expressed by the function P (\rho ) itself in such a way that the more congested the traffic
the smaller the target speed P (\rho )v\ast towards which the v-vehicle relaxes. In heavy
traffic, i.e., for \rho large, this mechanism typically leads to the v-vehicle decelerating.

The choice of the function D, instead, has to be made, taking into account the
necessity of guaranteeing that the postinteraction speed v\prime in (1) complies with the
bounds 0 \leq v\prime \leq 1. Concerning this, we establish first of all the following result.
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KINETIC-CONTROLLED HYDRODYNAMICS 721

Proposition 2.1. In (1), let \gamma \in [0, 1] and I(v, v\ast ; \rho ) be given by (3). If there
exists c > 0 such that\Biggl\{ 

| \eta | \leq c(1 - \gamma ),

cD(v; \rho ) \leq min\{ v, 1 - v\} \forall v, \rho \in [0, 1],

then v\prime \in [0, 1] for every pair of preinteraction speeds v, v\ast \in [0, 1] and every \rho \in 
[0, 1].

Proof. To prove that v\prime \geq 0 we observe that, since \gamma P (\rho ), P (\rho )v\ast \geq 0, it is enough
to show that v - \gamma (P (\rho )v+(1 - P (\rho ))v)+D(v; \rho )\eta \geq 0, i.e., that (1 - \gamma )v+D(v; \rho )\eta \geq 0.
Since, by assumption, \eta \geq c(\gamma  - 1), with \gamma  - 1 \leq 0, and D(v; \rho ) \leq v

c , we discover
that (1 - \gamma )v +D(v; \rho )\eta \geq (1 - \gamma )v + v

c c(\gamma  - 1) = 0, and we have the result.
Conversely, to prove that v\prime \leq 1 we observe that, since P (\rho )v\ast \leq 1, it is sufficient

to establish that v + \gamma (P (\rho )(1  - v) + (1  - P (\rho ))(1  - v)) + D(v; \rho )\eta \leq 1, i.e., that
(\gamma  - 1)(1  - v) + D(v; \rho )\eta \leq 0. But (\gamma  - 1)(1  - v) + D(v; \rho )\eta \leq (\gamma  - 1)(1  - v) +
1 - v
c c(1 - \gamma ) = 0; thus we are done.

Conditions posed by Proposition 2.1 imply that \eta is a compactly supported ran-
dom variable in the interval [ - c(1  - \gamma ), c(1  - \gamma )], which is in particular compatible
with the fact that \langle \eta \rangle = 0, and that D(0; \rho ) = D(1; \rho ) = 0 for all \rho \in [0, 1]. We defer
to section 2.2 a more specific choice of D.

For the moment we observe that by choosing \varphi (v) = 1 in (2) we obtain

d

dt

\int 1

0

f(t, v) dv = 0.

This implies that if the initial speed distribution f0(v) := f(0, v) fulfills the normal-

ization condition
\int 1

0
f0(v) dv = 1, then f is a probability density function for all t > 0.

Choosing instead \varphi (v) = v in (2) and using the interaction rules (1), (3), we discover
that the mean speed

V (t) :=

\int 1

0

vf(t, v) dv

satisfies the equation

(5)
dV

dt
=

\gamma 

2
\{ P (\rho ) [1 + (1 - P (\rho ))V ] - V \} ,

whose solution writes as

(6) V (t) = V0e
 - \gamma 

2 [P (\rho )+(1 - P (\rho ))2]t +
P (\rho )

P (\rho ) + (1 - P (\rho ))2

\Bigl( 
1 - e - 

\gamma 
2 [P (\rho )+(1 - P (\rho ))2]t

\Bigr) 
with V0 :=

\int 1

0
vf0(v) dv the mean speed at the initial time. For t \rightarrow +\infty , V approaches

exponentially the asymptotic value

(7) V\infty (\rho ) :=
P (\rho )

P (\rho ) + (1 - P (\rho ))2
,

which defines the speed diagram of traffic. The mapping \rho \mapsto \rightarrow \rho V\infty (\rho ) defines instead
the fundamental diagram. Figure 2 shows that these curves agree well with the
qualitative empirical characteristics of the traffic diagrams discussed at the beginning
of section 2, especially for \mu > 1 in the expression (4) of P (\rho ).
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Fig. 2. Traffic diagrams plotted from (7) with different choices of the exponent \mu in (4).

2.2. Asymptotic speed distribution. In order to compute the equilibrium
speed distribution in homogeneous conditions, one should find the asymptotic solu-
tions of the Boltzmann-type equation (2), namely the probability density functions
f\infty = f\infty (v) independent of t which make the right-hand side of (2) vanish. They
correspond to speed distributions which create an equilibrium of the binary interac-
tions.

Unfortunately, although (2) is suited to investigate the statistical moments of
the distribution function f , it is in general not easy to obtain from it a pointwise
description of f itself and of its asymptotic trends. The reason is that (2) is a high-
resolution equation in time, i.e., one which catches the detail of every single binary
interaction. The large-time trends of f , however, may be successfully recovered by
means of asymptotic procedures, which transform (2) in simpler kinetic equations
whose solutions approximate well the steady profiles of the asymptotic distributions
of (2). One such procedure is the quasi-invariant interaction limit introduced in [56],
which is reminiscent of the grazing collision limit of the classical kinetic theory of
gases [59] and which leads to Fokker--Planck-type asymptotic equations. Here is how
the procedure works.

Assume that we consider the binary interactions (1) on a time scale \tau much larger
than their characteristic time scale t. Then on the \tau -scale the contribution of a single
interaction (1) is small (i.e., interactions are quasi-invariant), but, at the same time,
interactions are quite frequent. This can be formalized by defining \tau := \gamma 

2 t and
then assuming that \gamma and \sigma 2 (the variance of \eta ) are small in (1). Notice that if the
characteristic frequency of a binary interaction is 1/t = O(1) in the t-scale, then it
becomes 1/\tau = O(1/\gamma ) \gg 1 in the \tau -scale.

Let us introduce now the scaled distribution function \~f(\tau , v) := f(2\tau /\gamma , v). We
observe that, for every fixed \tau > 0, \gamma small implies t = 2\tau /\gamma large; hence the limit
\gamma \rightarrow 0+ describes the large-time trend of f . On the other hand, since for \tau \rightarrow +\infty 
it results also that t \rightarrow +\infty , the asymptotic trend of \~f approximates well that of f .
The idea is then to find from (2) an equation satisfied by \~f in the quasi-invariant
interaction limit \gamma , \sigma 2 \rightarrow 0+, whence to study the asymptotic trend of \~f .

Noting that \partial \tau \~f = 2
\gamma \partial tf , we see that on the \tau -scale (2) becomes

(8)
d

d\tau 

\int 1

0

\varphi (v) \~f(\tau , v) dv =
1

\gamma 

\biggl\langle \int 1

0

\int 1

0

(\varphi (v\prime ) - \varphi (v)) \~f(\tau , v) \~f(\tau , v\ast ) dv dv\ast 

\biggr\rangle 
,

where we have already taken into account that \varphi (v\prime \ast ) = \varphi (v\ast ) in view of the second rule
in (1). Since for \gamma , \sigma 2 small the postinteraction speed v\prime is close to the preinteraction
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KINETIC-CONTROLLED HYDRODYNAMICS 723

speed v, if we assume that \varphi is sufficiently smooth, namely \varphi \in C3([0, 1]), we can
perform the following Taylor expansion:

\varphi (v\prime ) - \varphi (v) = \varphi \prime (v)(v\prime  - v) +
1

2
\varphi \prime \prime (v)(v\prime  - v)2 +

1

6
\varphi \prime \prime \prime (\=v)(v\prime  - v)3,

where \=v \in (min\{ v, v\prime \} , max\{ v, v\prime \} ) is used to express the Lagrange remainder. Writ-
ing v\prime  - v = \gamma I(v, v\ast ; \rho ) +D(v; \rho )\eta from the first rule in (1) and plugging it into (8),
we deduce that

d

d\tau 

\int 1

0

\varphi (v) \~f(\tau , v) dv =

\int 1

0

\int 1

0

\varphi \prime (v)I(v, v\ast ; \rho ) \~f(\tau , v) \~f(\tau , v\ast ) dv dv\ast 

+
\sigma 2

2\gamma 

\int 1

0

\varphi \prime \prime (v)D2(v; \rho ) \~f(\tau , v) dv +R\varphi ( \~f, \~f),(9)

where R\varphi ( \~f, \~f) denotes the following remainder:

R\varphi ( \~f, \~f) :=
\gamma 

2

\int 1

0

\int 1

0

\varphi \prime \prime (v)I2(v, v\ast ; \rho ) \~f(\tau , v) \~f(\tau , v\ast ) dv dv\ast 

+
1

6\gamma 

\biggl\langle \int 1

0

\int 1

0

\varphi \prime \prime \prime (\=v) (\gamma I(v, v\ast ; \rho ) +D(v; \rho )\eta )
3 \~f(\tau , v) \~f(\tau , v\ast ) dv dv\ast 

\biggr\rangle 
.

From (3) we check that | I(v, v\ast ; \rho )| \leq 1 for all v, v\ast , \rho \in [0, 1], and, in addition to
this, from Proposition 2.1 we infer also that D(v; \rho ) has to be bounded. Moreover, \varphi 
and its derivatives are in turn bounded in [0, 1] because of the assumed smoothness.

Finally, if we assume that \eta has the third order moment bounded, i.e., \langle | \eta | 3\rangle < +\infty ,

then we can write \eta =
\surd 
\sigma 2\~\eta , where \~\eta is a random variable such that \langle \~\eta \rangle = 0, \langle \~\eta 2\rangle = 1,

and \langle | \~\eta | 3\rangle < +\infty , so that \langle | \eta | 3\rangle \sim (\sigma 2)3/2. As a result, we estimate1

(10)
\bigm| \bigm| \bigm| R\varphi ( \~f, \~f)

\bigm| \bigm| \bigm| \lesssim \gamma + \gamma 2 + \sigma 2 +
\sigma 2

\gamma 

\surd 
\sigma 2.

At this point, in taking the quasi-invariant interaction limit \gamma , \sigma 2 \rightarrow 0+, we need to
specify the behavior of the ratio \sigma 2/\gamma . Assuming that \sigma 2/\gamma \rightarrow \lambda > 0, so that the
effects of the interactions and of the stochastic fluctuations balance asymptotically,
we get R\varphi ( \~f, \~f) \rightarrow 0 from (10), and consequently from (9)

d

d\tau 

\int 1

0

\varphi (v) \~f(\tau , v) dv =

\int 1

0

\varphi \prime (v)

\biggl( \int 1

0

I(v, v\ast ; \rho ) \~f(\tau , v\ast ) dv\ast 

\biggr) 
\~f(\tau , v) dv

+
\lambda 

2

\int 1

0

\varphi \prime \prime (v)D2(v; \rho ) \~f(\tau , v) dv.(11)

In view of the smoothness of \varphi , integrating back by parts the terms on the right-
hand side, this can be recognized as a weak form of the Fokker--Planck equation

(12) \partial \tau \~f =
\lambda 

2
\partial 2
v(D

2(v; \rho ) \~f) - \partial v

\biggl( \biggl( \int 1

0

I(v, v\ast ; \rho ) \~f(\tau , v\ast ) dv\ast 

\biggr) 
\~f

\biggr) 
provided the following boundary conditions are satisfied:\biggl( \int 1

0

I(v, v\ast ; \rho ) \~f(\tau , v\ast ) dv\ast 

\biggr) 
\~f(\tau , v) +

\lambda 

2
\partial v

\Bigl( 
D2(v; \rho ) \~f(\tau , v)

\Bigr) 
= 0,

D2(v; \rho ) \~f(\tau , v) = 0

(13)

1We use the notation a \lesssim b to mean that there exists a constant C > 0 such that a \leq Cb.
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724 ANDREA TOSIN AND MATTIA ZANELLA

for v = 0, 1 and all \tau > 0. In particular, substituting into (12) the interaction function
I given in (3) yields

\partial \tau \~f =
\lambda 

2
\partial 2
v(D

2(v; \rho ) \~f) - \partial v

\biggl( \Bigl( 
P (\rho )

\bigl( 
1 + (1 - P (\rho )) \~V

\bigr) 
 - v

\Bigr) 
\~f

\biggr) 
,

where \~V (\tau ) := V (2\tau /\gamma ) and V is the mean speed (6). For \tau \rightarrow +\infty the term \~V
converges to V\infty (\rho ) given in (7); hence the asymptotic distribution \~f\infty satisfies the
equation

\lambda 

2
\partial 2
v(D

2(v; \rho ) \~f\infty ) - \partial v

\biggl( \Bigl( 
P (\rho )

\bigl( 
1 + (1 - P (\rho ))V\infty (\rho )

\bigr) 
 - v

\Bigr) 
\~f\infty 

\biggr) 
= 0.

Since P (\rho )(1 + (1  - P (\rho ))V\infty (\rho )) = V\infty (\rho ), as can be immediately checked from (5)
or by a direct calculation using (7), this further simplifies to

\lambda 

2
\partial 2
v(D

2(v; \rho ) \~f\infty ) - \partial v((V\infty (\rho ) - v) \~f\infty ) = 0,

whose solution reads

(14) \~f\infty (v) =
C

D2(v; \rho )
exp

\biggl( 
2

\lambda 

\int 
V\infty (\rho ) - v

D2(v; \rho )
dv

\biggr) 
,

where C > 0 is a constant to ensure the normalization
\int 1

0
\~f\infty (v) dv = 1.

In order to obtain from (14) a more explicit expression of \~f\infty , we need to specify
the diffusion coefficient D(v; \rho ). Choosing in particular

(15) D(v; \rho ) := a(\rho )
\sqrt{} 
v(1 - v), a(\rho ) \geq 0,

we get

(16) \~f\infty (v) =
v

2V\infty (\rho )

\lambda a2(\rho )
 - 1

(1 - v)
2(1 - V\infty (\rho ))

\lambda a2(\rho )
 - 1

B
\Bigl( 

2V\infty (\rho )
\lambda a2(\rho ) ,

2(1 - V\infty (\rho ))
\lambda a2(\rho )

\Bigr) ,

where B(x, y) :=
\int 1

0
tx - 1(1 - t)y - 1 dt is the beta function. It can be checked that this

function satisfies the boundary conditions (13) if, e.g.,

(17) a2(\rho ) \leq 1

\lambda 
min\{ V\infty (\rho ), 1 - V\infty (\rho )\} ;

indeed, in such a case both \~f\infty and \partial v \~f\infty vanish at v = 0, 1.
We notice that (16) is a beta probability density function with parameters

\alpha :=
2V\infty (\rho )

\lambda a2(\rho )
, \beta :=

2(1 - V\infty (\rho ))

\lambda a2(\rho )
,

whence the mean and variance of the random variable X \sim \~f\infty describing the vehicle
speed at equilibrium are respectively

\BbbE (X) =
\alpha 

\alpha + \beta 
= V\infty (\rho ),

Var(X) =
\alpha \beta 

(\alpha + \beta )
2
(\alpha + \beta + 1)

=
\lambda a2(\rho )

2 + \lambda a2(\rho )
V\infty (\rho )(1 - V\infty (\rho )).(18)
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KINETIC-CONTROLLED HYDRODYNAMICS 725

Fig. 3. The asymptotic speed distribution (16) for various traffic densities \rho \in [0, 1] with
V\infty (\rho ) given in (7), P (\rho ) like in (4) with \mu = 2, \lambda = 1, and a(\rho ) = \rho (1  - \rho ), which fulfills the
constraint (17).

Owing to the discussion set forth at the beginning of section 2, (16) is a good
model for the speed distribution at equilibrium. Nevertheless the choice (15) of the
diffusion coefficient leading to it has to be justified more carefully, because that func-
tion actually does not satisfy the assumptions of Proposition 2.1. Precisely, there does
not exist any c > 0 such that cD(v; \rho ) \leq min\{ v, 1  - v\} for all v \in [0, 1] due to the
vertical tangents at v = 0 and v = 1 of the function (15). To obviate this difficulty it
is sufficient to consider preliminarily in (1) the truncated diffusion coefficient

D\gamma (v; \rho ) := a(\rho )

\sqrt{} \Bigl( 
(1 + \gamma )v(1 - v) - \gamma 

4

\Bigr) 
+
,

where (\cdot )+ := max\{ 0, \cdot \} denotes the positive part. This coefficient satisfies Proposi-

tion 2.1 with c = 1
a(\rho )

\sqrt{} 
\gamma 

1+\gamma and for \gamma \rightarrow 0+ converges uniformly to (15). Hence, in

the quasi-invariant limit, from (9) with D\gamma (v; \rho ) we obtain (12) with D(v; \rho ).
In Figure 3 we show the asymptotic distribution (16) for \lambda = 1, a(\rho ) = \rho (1 - \rho ).

Such a choice of a(\rho ) produces a vanishing diffusion when both \rho = 0 and \rho = 1. The
asymptotic distributions to which (16) converges in these cases are \~f\infty (v) = \delta (v - 1),
\~f\infty (v) = \delta (v), respectively, i.e., the Dirac deltas centered at v = 1 and v = 0.

3. Microscopic binary control for road risk mitigation. As mentioned
in the introduction, the transportation literature acknowledges the speed variability
within the stream of vehicles as one of the major sources of road risk [48, 61]. Hence,
a conceivable goal of driver-assist cars would be to collectively mitigate the road risk
through a reduction of the speed variance (18). In this section, we aim to investigate
to what extent this is possible by taking advantage of the ability of such cars to
respond locally to the actions of their drivers, thanks to the automatic technologies
they are equipped with.

It is worth mentioning that another compelling goal, in terms of road safety, is the
prevention of the collisions among the trajectories of the vehicles, which are evidently
associated with the crash risk. This issue is indeed considered in the literature on
autonomous vehicles; see, e.g., [36]. Clearly, any mathematical model aiming at an
aggregate description of the traffic, such as, indeed, kinetic and macroscopic models,
is hardly able to deal with vehicle trajectories because these are a chiefly microscopic
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726 ANDREA TOSIN AND MATTIA ZANELLA

characteristic of the system. Therefore, we mostly need to recast the problem of road
risk mitigation in a context describable by means of more aggregate concepts, such
as, indeed, the statistics of the speed distribution. Nevertheless, we observe that
our control strategy, which, as we will see in a moment, is based on reducing the
speed variability between pairs of vehicles, or, in other words, on aligning the speeds
of pairs of vehicles, induces, as a byproduct, a form of collision avoidance, at least
in our one-dimensional framework. Indeed, two successive vehicles which align their
speeds reduce simultaneously the risk of collision, because their relative speed tends
to zero. Therefore, we claim that the collision avoidance is conceptually present in
our control strategy in connection with the use of driver-assist vehicles.

Let us reconsider the interaction rules (1), and let us modify them as follows:

v\prime = v + \gamma (I(v, v\ast ; \rho ) + \Theta u) +D(v; \rho )\eta ,

v\prime \ast = v\ast ,
(19)

where u is a control representing the instantaneous correction of the ``natural"" inter-
action I operated by the driver-assist vehicle and \Theta \in \{ 0, 1\} is a Bernoulli random
variable expressing the fact that a randomly chosen vehicle may be equipped with
driver-assist technology with a certain probability p \in [0, 1]. Hence \Theta \sim Bernoulli(p),
and p gives the fraction of driver-assist vehicles present in the traffic stream, i.e., the
so-called penetration rate.

The optimal control u\ast is chosen so as to optimize the value of a certain binary
cost functional J = J(v\prime , u), whose minimization is supposed to be linked locally to
the mitigation of the road risk:

u\ast := argmin
u\in \scrU 

J(v\prime , u),

subject to (19), where \scrU is a set of admissible controls. Aiming at the reduction of
the global speed variance of the flow of vehicles, a possible form of the cost functional
in a single binary interaction is

(20) J(v\prime , u) =
1

2

\bigl\langle 
(v\prime \ast  - v\prime )2 + \nu u2

\bigr\rangle 
,

where 1
2 (v

\prime 
\ast  - v\prime )2 is the binary variance of the speeds of the two vehicles after the

interaction, \nu 
2u

2 is a penalization of large controls with penalization coefficient \nu > 0,
and finally \langle \cdot \rangle denotes, as usual, the average with respect to the distribution of the
stochastic fluctuation \eta . Another option is to minimize the gap between the speed
of the vehicles and a certain desired speed vd \in [0, 1], possibly vd = vd(\rho ), which
may be thought of as a speed limit or as a recommended speed communicated to the
equipped vehicles by some external monitoring devices. In this case we consider the
binary cost functional

(21) J(v\prime , u) =
1

2

\bigl\langle 
(vd(\rho ) - v\prime )2 + \nu u2

\bigr\rangle 
.

Notice that (20), (21) are special cases of the general cost functional

(22) J(v\prime , u) =
1

2

\bigl\langle 
(Vd(v

\prime 
\ast , \rho ) - v\prime )2 + \nu u2

\bigr\rangle 
with either Vd(v

\prime 
\ast , \rho ) = v\prime \ast or Vd(v

\prime 
\ast , \rho ) = vd(\rho ).
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The minimization of (22) constrained to (19) can be done by forming the La-
grangian

\scrL (v\prime , u, \lambda ) := J(v\prime , u) + \lambda \langle v\prime  - v  - \gamma (I(v, v\ast ; \rho ) + \Theta u) - D(v; \rho )\eta \rangle ,

where \lambda \in \BbbR is the Lagrange multiplier associated to the constraint (19), and then by
computing \Biggl\{ 

\partial u\scrL = \nu u - \gamma \Theta \lambda = 0,

\partial v\prime \scrL = \langle v\prime  - Vd(v
\prime 
\ast , \rho )\rangle + \lambda = 0.

This yields the optimal control

u\ast =
\gamma 

\nu 
\Theta \langle Vd(v

\prime 
\ast , \rho ) - v\prime \rangle ,

which, using the binary interactions (19), can be expressed in feedback form as a
function of the preinteraction speeds v, v\ast :

(23) u\ast =
\gamma \Theta 

\nu + \gamma 2\Theta 2
(Vd(v\ast ; \rho ) - v) - \gamma 2\Theta 

\nu + \gamma 2\Theta 2
I(v, v\ast ; \rho ).

Plugging (23) into (19), we finally obtain the feedback controlled microscopic rules in
the form

v\prime = v +
\nu \gamma 

\nu + \gamma 2\Theta 2
I(v, v\ast ; \rho ) +

\gamma 2\Theta 2

\nu + \gamma 2\Theta 2
(Vd(v\ast ; \rho ) - v) +D(v; \rho )\eta ,

v\prime \ast = v\ast .

(24)

Notice that these binary interactions are formally identical to (1) up to introducing
the new interaction function

\scrI (v, v\ast ; \rho ) :=
\nu 

\nu + \gamma 2\Theta 2
I(v, v\ast ; \rho ) +

\gamma \Theta 2

\nu + \gamma 2\Theta 2
(Vd(v\ast ; \rho ) - v) .

In particular, we can establish the following result.

Proposition 3.1. In (24), let \gamma \in [0, 1], \nu > 0, and I(v, v\ast ; \rho ) be given by (3).
If there exists c > 0 such that\left\{     | \eta | \leq c

\biggl( 
1 - \nu + \gamma 

\nu 
\gamma 

\biggr) 
,

cD(v; \rho ) \leq min\{ v, 1 - v\} \forall v, \rho \in [0, 1],

then v\prime \in [0, 1] for every pair of preinteraction speeds v, v\ast \in [0, 1] and every \rho \in 
[0, 1].

Proof. The proof that v\prime \geq 0 is entirely analogous to the corresponding proof of
Proposition 2.1 upon observing that P (\rho ), P (\rho )v\ast , Vd(v\ast ; \rho ) \geq 0 imply

v + \gamma \scrI (v, v\ast ; \rho ) +D(v; \rho )\eta \geq 
\biggl( 
1 - \nu + \gamma \Theta 2

\nu + \gamma 2\Theta 2
\gamma 

\biggr) 
v +D(v; \rho )\eta 

\geq 
\biggl( 
1 - \nu + \gamma 

\nu 
\gamma 

\biggr) 
v +D(v; \rho )\eta 
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728 ANDREA TOSIN AND MATTIA ZANELLA

and then using the new assumptions on \eta , D(v; \rho ). Likewise, the proof that v\prime \leq 1
follows the very same lines as the corresponding proof in Proposition 2.1, considering
that now it results that

v + \gamma \scrI (v, v\ast ; \rho ) +D(v; \rho )\eta \leq v +
\nu + \gamma \Theta 2

\nu + \gamma 2\Theta 2
\gamma (1 - v) +D(v; \rho )\eta 

\leq v +
\nu + \gamma 

\nu 
\gamma (1 - v) +D(v; \rho )\eta 

because P (\rho )v\ast , Vd(v\ast ; \rho ) \leq 1.

Remark 3.2. From the assumptions of Proposition 3.1, we see that if \nu \rightarrow +\infty ,
i.e., if the control is so penalized that the only possible one is u\ast = 0 (cf. (23)), then
we recover the same condition on \eta as the one of Proposition 2.1.

On the other hand, in order for the assumption of Proposition 3.1 on \eta to be

physically admissible, it is necessary that \nu +\gamma 
\nu \gamma < 1, which implies \nu > \gamma 2

1 - \gamma . Such
a lower bound on the penalization coefficient translates the idea that actually the
control cannot be arbitrarily cheap.

3.1. Fundamental diagrams. With the new controlled binary interactions (24)
the Boltzmann-type equation for the distribution function f writes as

d

dt

\int 1

0

\varphi (v)f\ast (t, v) dv

=
1

2
\BbbE \Theta 

\biggl[ \biggl\langle \int 1

0

\int 1

0

(\varphi (v\prime ) - \varphi (v)) f\ast (t, v)f\ast (t, v\ast ) dv dv\ast 

\biggr\rangle \biggr] 
,

(25)

where the superscript \ast on the distribution function f recalls that we are considering
the statistical evolution of the system subject to the optimal binary control u\ast (23),
whose contribution is taken into account in v\prime . Furthermore, \BbbE \Theta denotes the ex-
pectation with respect to the random variable \Theta appearing in (24). In particular,
considering that \Theta 2 \sim Bernoulli(p), the evolution of the mean speed V \ast , obtained
from (25) with \varphi (v) = v, is now given by the equation

dV \ast 

dt
=

\gamma 

2

\biggl\{ 
\nu + (1 - p)\gamma 2

\nu + \gamma 2

\Bigl( 
P (\rho )[1 + (1 - P (\rho ))V \ast ] - V \ast 

\Bigr) 
+

\gamma p

\nu + \gamma 2

\biggl( \int 1

0

Vd(v\ast ; \rho )f
\ast (t, v\ast ) dv\ast  - V \ast 

\biggr) \biggr\} 
.(26)

We immediately notice that if p = 0, i.e., if no car is actually equipped with
driver-assist technologies, this equation reduces to (5) consistently with the fact that
the whole model collapses onto the one considered in section 2 (in fact, in such a case
we have \Theta = 0 almost surely in (19)). The same conclusion holds also if \nu \rightarrow +\infty , for
then the cost for applying a driver-assist control is so high that the optimal strategy
turns out to be not to apply any control. If conversely \nu \rightarrow 0+, i.e., the cost of the
driver-assist control is negligible, and p = 1, i.e., all cars in the traffic stream are
equipped with driver-assist technologies, then the evolution of V is fully dominated
by the second term on the right-hand side of (26), which results from the action of
the control; whereas if 0 < p < 1, then the spontaneous (viz. uncontrolled) dynamics
(cf. the first term on the right-hand side of (26)) still play a role.

We now discuss in more detail the consequences of (26) in the cases 0 < p < 1,
0 < \nu < +\infty for a generic target speed Vd(v\ast ; \rho ). In order to reduce the analyt-
ical complexity due to the number of microscopic parameters in (26) and to pre-
serve simultaneously the qualitative large-time behavior of the system, we refer to
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Fig. 4. Speed and fundamental diagrams from (28) with vd(\rho ) = 1 - \rho and P (\rho ) like in (4) with
\mu = 2 for various effective penetration rates p\ast . The case p\ast = 0 corresponds to the uncontrolled
scenario.

the quasi-invariant interaction regime. In particular, similarly to what we have done
in section 2.2, we consider the limit \gamma , \nu \rightarrow 0+, and we assume that \nu /\gamma \rightarrow \kappa > 0,
so that we can observe asymptotically a balanced contribution of the interactions
and of the control. Under the scaling \tau := \gamma 

2 t,
\~f\ast (\tau , v\ast ) := f\ast (2\tau /\gamma , v\ast ), and

\~V \ast (\tau ) := V \ast (2\tau /\gamma ) =
\int 1

0
v \~f\ast (\tau , v) dv we obtain from (26)

d \~V \ast 

d\tau 
= P (\rho )[1 + (1 - P (\rho )) \~V \ast ] + p\ast 

\int 1

0

Vd(v\ast ; \rho ) \~f
\ast (\tau , v\ast ) dv\ast  - (1 + p\ast ) \~V \ast ,

where
p\ast :=

p

\kappa 

can be understood as an effective penetration rate taking into account not only the
actual percentage p of vehicles equipped with driver-assist technologies but also the
relative penalization \kappa of the in-vehicle control. Thus the asymptotic value V \ast 

\infty that
the mean speed approaches as \tau \rightarrow +\infty satisfies

(27) P (\rho ) [1 + (1 - P (\rho ))V \ast 
\infty ] + p\ast 

\int 1

0

Vd(v\ast ; \rho ) \~f
\ast 
\infty (v\ast ) dv\ast = (1 + p\ast )V \ast 

\infty .

With Vd(v\ast ; \rho ) = v\ast , i.e., when the driver-assist control seeks to minimize the
binary variance of the speeds of the two interacting vehicles, (27) gives for V \ast 

\infty the
same as (6); hence there are apparently no differences with respect to the uncontrolled
case. However, we anticipate that a more accurate investigation of the asymptotic
statistical properties of the flow of vehicles (cf. section 3.2) will reveal that the driver-
assist control actually succeeds in reducing the asymptotic variance of the microscopic
speeds, which is at the heart of the risk mitigation issues.

Conversely, with Vd(v\ast ; \rho ) = vd(\rho ), i.e., when the driver-assist control tries to
align the car speed to a possibly traffic-dependent desired speed, from (27) we deduce

(28) V \ast 
\infty (\rho ) =

P (\rho ) + p\ast vd(\rho )

P (\rho ) + (1 - P (\rho ))
2
+ p\ast 

.

As a general fact, we notice that now for p\ast small the speed and fundamental diagrams
of traffic are close to those found in the uncontrolled case; cf. (7) and Figure 2. On
the contrary, for p\ast large they get closer and closer to vd(\rho ), \rho vd(\rho ), respectively;

D
ow

nl
oa

de
d 

05
/0

9/
19

 to
 1

30
.7

0.
8.

13
1.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

730 ANDREA TOSIN AND MATTIA ZANELLA

cf. Figure 4. Nevertheless, also in this case a more accurate characterization of the
global effect of the driver-assist control on road risk mitigation can be obtained by
studying in more detail the statistical properties of the flow at equilibrium; cf. section
3.2.

3.2. Asymptotic speed variance and risk mitigation. As claimed at the
beginning of section 3, an indicator of the road risk and of the effectiveness of in-
vehicle driver-assist control strategies for its mitigation is the variance of the speed
distribution. It is therefore interesting to investigate such a statistical property of the
flow of vehicles at equilibrium in the case of the controlled binary interactions (24),
taking advantage of the analytical procedure illustrated in section 2.2.

As already set forth in section 3.1, in order to study the quasi-invariant interaction
regime of the Boltzmann-type equation (25), we consider the limit \gamma , \nu , \sigma 2 \rightarrow 0+ and
assume \sigma 2/\gamma \rightarrow \lambda > 0, \nu /\gamma \rightarrow \kappa > 0, implying that both diffusive and control
contributions balance asymptotically with interactions. Under the time scaling \tau :=
\gamma 
2 t we obtain the Fokker--Planck equation

\partial \tau \~f\ast =
\lambda 

2
\partial 2
v(D

2(v; \rho ) \~f\ast )

 - \partial v

\biggl[ \biggl( \int 1

0

(I(v, v\ast ; \rho ) + p\ast Vd(v\ast ; \rho )) \~f\ast (\tau , v\ast ) dv\ast  - p\ast v

\biggr) 
\~f\ast 
\biggr] 
,

(29)

where \~f\ast is required to satisfy boundary conditions similar to (13). In particular,
such conditions are met if \~f\ast (\tau , v) = \partial v \~f

\ast (\tau , v) = 0 for v = 0, 1 and all \tau > 0.
Using the expression (3) of I and taking (27) into account, we have that the

asymptotic speed distribution \~f\ast 
\infty (v) that the system approaches for \tau \rightarrow +\infty solves

(30)
\lambda 

2
\partial 2
v(D

2(v; \rho ) \~f\ast 
\infty ) - (1 + p\ast )\partial v

\Bigl( 
(V \ast 

\infty (\rho ) - v) \~f\ast 
\infty 
\Bigr) 
= 0,

where V \ast 
\infty (\rho ) is either (7) or (28) depending on the chosen target speed Vd. For

D(v; \rho ) like in (15) the solution to (30) reads

(31) \~f\ast 
\infty (v) =

v
2(1+p\ast )

\lambda a2(\rho )
V \ast 
\infty (\rho ) - 1

(1 - v)
2(1+p\ast )

\lambda a2(\rho )
(1 - V \ast 

\infty (\rho )) - 1

B
\Bigl( 

2(1+p\ast )
\lambda a2(\rho ) V

\ast \infty (\rho ), 2(1+p\ast )
\lambda a2(\rho ) (1 - V \ast \infty (\rho ))

\Bigr) ,

and \~f\ast 
\infty , \partial v \~f

\ast 
\infty vanish at v = 0, 1 if

(32) a2(\rho ) \leq 1 + p\ast 

\lambda 
min \{ V \ast 

\infty (\rho ), 1 - V \ast 
\infty (\rho )\} .

On the whole, the random variable X\ast \sim \~f\ast 
\infty describing the controlled vehicle speed

at equilibrium is again distributed according to a beta probability density function,
but now its variance is

(33) Var(X\ast ) =
\lambda a2(\rho )

2 + \lambda a2(\rho ) + 2p\ast 
V \ast 
\infty (\rho ) (1 - V \ast 

\infty (\rho )) .

Let us assume Vd(v\ast ; \rho ) = v\ast , so that V \ast 
\infty (\rho ) is the same as V\infty (\rho ) in (7). Then

a direct comparison between (18) and (33) shows that Var(X\ast ) is invariably smaller
than Var(X) for all \rho \in [0, 1] provided p\ast > 0, meaning that an in-vehicle driver-
assist system designed to reduce the binary speed variance can effectively mitigate
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qmax 1

1

Risk mitigation
achievable

Risk
mitigation

not achievable

q

p

0 0.2 0.4 0.6 0.8 1
0

2

4

6

·10−3

ρ
V
ar
(X

∗ )

p∗ = 0

p∗ = 1
2

p∗ = 1
p∗ = 5

Fig. 5. Left: Relationship between the target risk mitigation q and the penetration rate p with
the binary speed variance control strategy; cf. (34), (35). Right: Var(X\ast ) as a function of the traffic
density \rho (cf. (33)) in the case of the desired speed control strategy. Here V\infty (\rho ) is given by (28)
with vd(\rho ) = 1  - \rho ; moreover, we have set \lambda = 1, a(\rho ) = \rho (1  - \rho ), P (\rho ) like in (4) with \mu = 2. It
can be checked that these choices comply with condition (32) for all p\ast = p

\kappa 
\geq 0.

the collective driving risk. We stress that instead a purely macroscopic analysis of
the traffic flow based on more standard tools, such as the traffic diagrams, is unable
to catch any difference with respect to the uncontrolled case.

The relative reduction of the speed variance at equilibrium representing the risk
mitigation factor, say q, with respect to the uncontrolled scenario is

q :=
Var(X) - Var(X\ast )

Var(X)
=

p\ast 

1 + \lambda 
2a

2(\rho ) + p\ast 
,

whence the minimum penetration rate p necessary to achieve a given risk mitigation
factor can be computed as

(34) p \geq \kappa 

\biggl( 
1 +

\lambda 

2
a2(\rho )

\biggr) 
q

1 - q
.

Considering that the penetration rate can be at most p = 1 when all vehicles in the
traffic stream are equipped with driver-assist technologies, from (34) we also infer
that the maximum achievable risk mitigation, say qmax, is

(35) qmax =
1

1 + \kappa 
\bigl( 
1 + \lambda 

2a
2(\rho )

\bigr) ;
see Figure 5 (left).

Conversely, if we assume Vd(v\ast ; \rho ) = vd(\rho ), then V \ast 
\infty (\rho ) is given by (28), and

a comparison of (33) with the uncontrolled case (18) is now less straightforward.
From (28) we have that V \ast 

\infty (\rho ) \rightarrow vd(\rho ) when p\ast \rightarrow +\infty , i.e., \kappa \rightarrow 0+; in the same
limit, from (33) we also find Var(X\ast ) \rightarrow 0. Thus the rationale behind this control
strategy is to mitigate the driving risk by inducing the synchronization of the traffic
flow around a traffic-dependent recommended speed. However, since vd(\rho ) may be
chosen independently of the ``spontaneous"" mean speed (7), we observe that in general
this control strategy does not guarantee that the speed variance Var(X\ast ) for p\ast > 0
is always strictly lower than Var(X) for p\ast = 0; see Figure 5 (right).
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732 ANDREA TOSIN AND MATTIA ZANELLA

We conclude this section by generalizing the results discussed so far to sufficiently
arbitrary interaction functions I and diffusion coefficients D. For this it is convenient
to introduce the concept of energy of the system, which is defined as

\~E(\tau ) :=

\int 1

0

v2 \~f(\tau , v) dv.

Notice that the speed variance at every time \tau \geq 0 can then be computed as \~E(\tau ) - 
\~V 2(\tau ).

Theorem 3.3 (Binary variance control). In (24), let Vd(v\ast ; \rho ) = v\ast , and further-
more let I be a linear-affine function in v, v\ast ,

I(v, v\ast ; \rho ) = A(\rho )v +B(\rho )v\ast + C(\rho ),

and let D be given by (15). Assume that initially the mean speed and the energy of
the controlled and uncontrolled models are the same, i.e., \~V \ast (0) = \~V (0) and \~E\ast (0) =
\~E(0). Then

\~V \ast (\tau ) = \~V (\tau ),

\~E\ast (\tau ) - ( \~V \ast (\tau ))2 \leq \~E(\tau ) - \~V 2(\tau )

for all \tau > 0.

Proof. Letting \varphi (v) = v in (11) gives, in the uncontrolled case,

d \~V

d\tau 
= (A(\rho ) +B(\rho )) \~V + C(\rho ).

Likewise, multiplying (29) by v and integrating by parts on [0, 1] with the proper
boundary conditions on \~f\ast produces, in the controlled case with Vd(v\ast ; \rho ) = v\ast ,

d \~V \ast 

d\tau 
= (A(\rho ) +B(\rho )) \~V \ast + C(\rho );

thus d
d\tau (

\~V \ast  - \~V ) = (A(\rho ) +B(\rho )) ( \~V \ast  - \~V ), and finally \~V \ast (\tau ) = \~V (\tau ) for all \tau > 0

as \~V \ast (0) = \~V (0).
Letting now \varphi (v) = v2 with D(v; \rho ) = a(\rho )

\sqrt{} 
v(1 - v) in (11) yields, in the

uncontrolled case,

d \~E

d\tau 
= 2

\Bigl( 
A(\rho ) \~E +B(\rho ) \~V 2 + C(\rho ) \~V

\Bigr) 
+ \lambda a2(\rho )

\Bigl( 
\~V  - \~E

\Bigr) 
.

On the other hand, multiplying (29) by v2 and integrating on [0, 1], we discover, in
the controlled case,

d \~E\ast 

d\tau 
= 2

\Bigl( 
A(\rho ) \~E\ast +B(\rho )( \~V \ast )2 + C(\rho ) \~V \ast 

\Bigr) 
+ \lambda a2(\rho )

\Bigl( 
\~V \ast  - \~E\ast 

\Bigr) 
+ 2p\ast 

\Bigl( 
( \~V \ast )2  - \~E\ast 

\Bigr) 
.

Since \~V \ast = \~V while ( \~V \ast )2  - \~E\ast \leq 0, because it is the opposite of the variance of \~f\ast ,
this further implies

d \~E\ast 

d\tau 
\leq 2

\Bigl( 
A(\rho ) \~E\ast +B(\rho ) \~V 2 + C(\rho ) \~V

\Bigr) 
+ \lambda a2(\rho )

\Bigl( 
\~V  - \~E\ast 

\Bigr) 
,
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whence by difference d
d\tau (

\~E\ast  - \~E) \leq (2A(\rho )  - \lambda a2(\rho ))( \~E\ast  - \~E) and finally \~E\ast (\tau )  - 
\~E(\tau ) \leq 0 for all \tau > 0 because \~E\ast (0) = \~E(0). Then

\~E\ast (\tau ) - ( \~V \ast (\tau ))2 = \~E\ast (\tau ) - \~V 2(\tau ) \leq \~E(\tau ) - \~V 2(\tau ),

and the thesis follows.

Theorem 3.4 (Desired speed control). In (24), let Vd(v\ast ; \rho ) = vd(\rho ), and let
I, D be bounded for all v, v\ast , \rho \in [0, 1]. Then

| V \ast 
\infty (\rho ) - vd(\rho )| \lesssim 

1

p\ast 
,

\bigm| \bigm| E\ast 
\infty (\rho ) - v2d(\rho )

\bigm| \bigm| \lesssim 1

p\ast 
,

and, in particular,

E\ast 
\infty (\rho ) - (V \ast 

\infty (\rho ))
2 \lesssim 

1

p\ast 
.

Proof. Multiplying the Fokker--Planck equation (29) by v and integrating on [0, 1]
gives

d \~V \ast 

d\tau 
=

\int 1

0

\int 1

0

I(v, v\ast ; \rho ) \~f
\ast (\tau , v) \~f\ast (\tau , v\ast ) dv dv\ast + p\ast (vd(\rho ) - \~V \ast ).

Writing d \~V \ast 

d\tau = d
d\tau (

\~V \ast  - vd(\rho )) because vd(\rho ) is constant we obtain

\~V \ast (\tau ) - vd(\rho )

= e - p\ast \tau ( \~V \ast (0) - vd(\rho )) +

\int \tau 

0

e - p\ast (\tau  - s)

\int 1

0

\int 1

0

I(v, v\ast ; \rho ) \~f
\ast (\tau , v) \~f\ast (\tau , v\ast ) dv dv\ast 

whence, since I is bounded, say | I(v, v\ast ; \rho )| \leq Imax for all v, v\ast , \rho \in [0, 1],\bigm| \bigm| \bigm| \~V \ast (\tau ) - vd(\rho )
\bigm| \bigm| \bigm| \leq e - p\ast \tau 

\bigm| \bigm| \bigm| \~V \ast (0) - vd(\rho )
\bigm| \bigm| \bigm| + Imax

p\ast 

\Bigl( 
1 - e - p\ast \tau 

\Bigr) 
,

which asymptotically (\tau \rightarrow +\infty ) yields | V \ast 
\infty  - vd(\rho )| \leq Imax

p\ast .

Now multiplying (29) by v2 and integrating on [0, 1] produces

d \~E\ast 

d\tau 
= 2

\int 1

0

\int 1

0

vI(v, v\ast ; \rho ) \~f
\ast (\tau , v) \~f\ast (\tau , v\ast ) dv dv\ast 

+ 2p\ast 
\Bigl( 
vd(\rho ) \~V

\ast (\tau ) - \~E\ast (\tau )
\Bigr) 
+ \lambda 

\int 1

0

D2(v; \rho ) \~f\ast (\tau , v) dv.

The asymptotic behavior of the energy (\tau \rightarrow +\infty ) is found by setting the left-hand
side to zero, whence

E\ast 
\infty = vd(\rho )V

\ast 
\infty +

1

p\ast 

\int 1

0

\int 1

0

vI(v, v\ast ; \rho ) \~f
\ast 
\infty (v) \~f\ast 

\infty (v\ast ) dv dv\ast +
\lambda 

2p\ast 

\int 1

0

D2(v; \rho ) \~f\ast 
\infty (v) dv.

From here, subtracting v2d(\rho ) from both sides and using the boundedness of I, D
(with, say, D(v; \rho ) \leq Dmax for all v, \rho \in [0, 1]) and the previous result on V \ast 

\infty , we
obtain \bigm| \bigm| E\ast 

\infty  - v2d(\rho )
\bigm| \bigm| \leq vd(\rho ) | V \ast 

\infty  - vd(\rho )| +
\biggl( 
Imax +

\lambda D2
max

2

\biggr) 
1

p\ast 
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734 ANDREA TOSIN AND MATTIA ZANELLA

\leq 
\biggl( 
vd(\rho )Imax + Imax +

\lambda D2
max

2

\biggr) 
1

p\ast 

\leq 
\biggl( 
2Imax +

\lambda D2
max

2

\biggr) 
1

p\ast 
.

Finally, the speed variance at equilibrium is

E\ast 
\infty  - (V \ast 

\infty )
2
= E\ast 

\infty  - v2d(\rho ) + v2d(\rho ) - (V \ast 
\infty )

2

\leq 
\bigm| \bigm| E\ast 

\infty  - v2d(\rho )
\bigm| \bigm| + | (vd(\rho ) + V \ast 

\infty )(vd(\rho ) - V \ast 
\infty )| 

\leq 
\bigm| \bigm| E\ast 

\infty  - v2d(\rho )
\bigm| \bigm| + 2 | vd(\rho ) - V \ast 

\infty | 

\leq 
\biggl( 
4Imax +

\lambda D2
max

2

\biggr) 
1

p\ast 
.

4. Hydrodynamic models. The homogeneous kinetic equations studied in the
previous sections are the basis from which to derive hydrodynamic traffic models
incorporating the microscopic control strategies of driver-assist vehicles.

The kinetic framework to obtain hydrodynamic models is provided by the inhomo-
geneous Boltzmann equation, which with the controlled binary interaction rules (24)
reads

\partial t

\int 1

0

\varphi (v)f\ast (t, x, v) dv + \partial x

\int 1

0

v\varphi (v)f\ast (t, x, v) dv

=
1

2
\BbbE \Theta 

\biggl[ \biggl\langle \int 1

0

\int 1

0

(\varphi (v\prime ) - \varphi (v)) f\ast (t, x, v)f\ast (t, x, v\ast ) dv dv\ast 

\biggr\rangle \biggr] 
.(36)

Notice that this is the spatially inhomogeneous counterpart of (25), with x \in \BbbR 
denoting the space position of the vehicles. On the whole, the microscopic state
of the vehicles is now defined by the position-speed pair (x, v) \in \BbbR \times [0, 1] and
f\ast = f\ast (t, x, v) is its probability density at time t \geq 0. In particular,\int 

\BbbR 

\int 1

0

f\ast (t, x, v) dv dx = 1 \forall t \geq 0

while

\rho (t, x) :=

\int 1

0

f\ast (t, x, v) dv

is the vehicle density at time t in the point x, which, unlike the homogeneous model,
is in general no longer constant in time due to the transport dynamics in space (cf. the
second term on the left-hand side in (36)).

4.1. Local equilibrium closure. Transport models at the macroscopic scale
can be recovered from (36) by means of a hyperbolic scaling of time and space,

\tau := \epsilon t, \xi := \epsilon x (0 < \epsilon \ll 1),

which defines the hydrodynamic temporal and spatial scales, respectively. After in-
troducing the scaled distribution function \~f\ast (\tau , \xi , v) := f\ast (\tau /\epsilon , \xi /\epsilon , v) and noticing
that \partial \tau \~f\ast = 1

\epsilon \partial tf
\ast , \partial \xi \~f\ast = 1

\epsilon \partial xf
\ast , this yields

\partial \tau 

\int 1

0

\varphi (v) \~f\ast (\tau , \xi , v) dv + \partial \xi 

\int 1

0

v\varphi (v) \~f\ast (\tau , \xi , v) dv

=
1

2\epsilon 
\BbbE \Theta 

\biggl[ \biggl\langle \int 1

0

\int 1

0

(\varphi (v\prime ) - \varphi (v)) \~f\ast (\tau , \xi , v) \~f\ast (\tau , \xi , v\ast ) dv dv\ast 

\biggr\rangle \biggr] 
.(37)
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If \epsilon is small, then vehicle interactions (right-hand side) dominate over the advection
of the distribution function \~f\ast (left-hand side). Inspired by [22], we can then split
the dynamics on two well-separated time scales as follows: we consider a ``slow"" pure
transport

(38) \partial \tau 

\int 1

0

\varphi (v) \~f\ast (\tau , \xi , v) dv + \partial \xi 

\int 1

0

v\varphi (v) \~f\ast (\tau , \xi , v) dv = 0

and parallelly ``quick"" interactions

\partial \tau 

\int 1

0

\varphi (v) \~f\ast (\tau , \xi , v) dv

=
1

2\epsilon 
\BbbE \Theta 

\biggl[ \biggl\langle \int 1

0

\int 1

0

(\varphi (v\prime ) - \varphi (v)) \~f\ast (\tau , \xi , v) \~f\ast (\tau , \xi , v\ast ) dv dv\ast 

\biggr\rangle \biggr] (39)

which produce a local redistribution of the speeds. Notice that (39) is actually
an equation parametrized by \xi on the original t-scale; in fact, setting g(t, \xi , v) :=
\~f\ast (\epsilon t, \xi , v), we have

\partial t

\int 1

0

\varphi (v)g(t, \xi , v) dv

=
1

2
\BbbE \Theta 

\biggl[ \biggl\langle \int 1

0

\int 1

0

(\varphi (v\prime ) - \varphi (v)) g(t, \xi , v)g(t, \xi , v\ast ) dv dv\ast 

\biggr\rangle \biggr] 
.

(40)

For fixed \tau > 0, if \epsilon \rightarrow 0+, then t \rightarrow +\infty , whence we deduce that the solution
\~f\ast to (39) at time \tau with \epsilon small is close to the local stationary solution g\infty (\xi , v)
to (40). On the other hand, (40) is virtually (25) for every fixed \xi \in \BbbR but with\int 1

0
g(t, \xi , v) dv = \rho (\tau , \xi ) for all t > 0. In fact, setting \varphi (v) = 1 in (40), we obtain

that the v-integral of g is constant in time; moreover, by definition of g, it has to
be equal to that of \~f\ast at time \tau . In conclusion, g\infty can be consistently written as
g\infty (\xi , v) \approx \rho (\tau , \xi ) \~f\ast 

\infty (v), where \~f\ast 
\infty is the Fokker--Planck approximation (31) of the

equilibrium solution to (25), and finally

\~f\ast (\tau , \xi , v) \approx \rho (\tau , \xi ) \~f\ast 
\infty (v),

which provides the local equilibrium closure (in classical terms, the local ``Maxwellian""
function) to be plugged into (38) to obtain macroscopic conservation laws for the
hydrodynamic parameters:

\partial \tau 

\biggl( 
\rho 

\int 1

0

\varphi (v) \~f\ast 
\infty (v) dv

\biggr) 
+ \partial \xi 

\biggl( 
\rho 

\int 1

0

v\varphi (v) \~f\ast 
\infty (v) dv

\biggr) 
= 0.

Since the microscopic interactions (24) conserve only the zeroth moment of the
kinetic distribution function, a closed hydrodynamic equation is consistently obtained
in terms of \rho alone by choosing \varphi (v) = 1:

(41) \partial \tau \rho + \partial \xi (\rho V
\ast 
\infty (\rho )) = 0.

This is a first order hydrodynamic traffic model with flux \rho V \ast 
\infty (\rho ), which is not nec-

essarily concave for all \rho \in [0, 1] (cf. Figure 4 (right)), as happens more commonly
in classical macroscopic models of vehicular traffic. Moreover, the flux depends ulti-
mately on the microscopic control strategy implemented on the driver-assist vehicles.
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736 ANDREA TOSIN AND MATTIA ZANELLA

If one chooses the binary variance control, then V \ast 
\infty (\rho ) is actually given by (7) and no

macroscopic impact on the vehicle density is observed with respect to the uncontrolled
case:

(42) \partial \tau \rho + \partial \xi 

\biggl( 
\rho P (\rho )

P (\rho ) + (1 - P (\rho ))2

\biggr) 
= 0,

where P (\rho ) is given by (4). Conversely, if one chooses the desired speed control, then
V \ast 
\infty (\rho ) is given by (28) and in the hydrodynamic limit we have

(43) \partial \tau \rho + \partial \xi 

\biggl( 
\rho (P (\rho ) + p\ast vd(\rho ))

P (\rho ) + (1 - P (\rho ))2 + p\ast 

\biggr) 
= 0.

Notice that now the concavity of the flux may depend strongly on the effective pene-
tration rate p\ast = p

\kappa of the driver-assist vehicles and on the choice of the recommended
speed vd(\rho ).

4.2. Monokinetic closure. A quite different procedure to obtain hydrody-
namic models from (36), which does not use the idea of local equilibrium of the
interactions, consists in making the following ansatz on the solution f\ast to (36):

(44) f\ast (t, x, v) = \rho (t, x)\delta (v  - u(t, x)),

where \rho , u are the hydrodynamic parameters denoting the vehicle density and the
mean speed, respectively, and \delta is the Dirac delta distribution. Such an ansatz is called
a monokinetic closure because it corresponds to assuming that locally all vehicles
travel at the same speed or, in other words, that the kinetic distribution function has
locally zero speed variance.

Plugging (44) into (36) with \varphi (v) = 1 yields

\partial t\rho + \partial x(\rho u) = 0,

namely the continuity equation stating the conservation of the mass of vehicles. Since
in the monokinetic closure the hydrodynamic parameters \rho , u are assumed to be
independent, another macroscopic equation is needed in order to get a self-consistent
hydrodynamic model. This is obtained from (36) with (44) and \varphi (v) = v, which gives
the momentum balance equation

\partial t(\rho u) + \partial x(\rho u
2) =

\gamma 

2
\rho 2

\biggl( 
\nu + (1 - p)\gamma 2

\nu + \gamma 2
I(u, u; \rho ) +

\gamma p

\nu + \gamma 2
(Vd(u; \rho ) - u)

\biggr) 
.

From these equations, passing to the hydrodynamic temporal and spatial scales \tau :=
\gamma 
2 t, \xi := \gamma 

2x and taking the quasi-invariant interaction limit \gamma , \nu \rightarrow 0+ with \nu /\gamma \rightarrow 
\kappa > 0, we finally obtain the pressureless second order hydrodynamic traffic model

(45)

\Biggl\{ 
\partial \tau \rho + \partial \xi (\rho u) = 0,

\partial \tau (\rho u) + \partial \xi (\rho u
2) = \rho 2 [I(u, u; \rho ) + p\ast (Vd(u; \rho ) - u)] .

Using the function I in (3), we can derive from (45) two specific models depending
on the choice of the control strategy. In the case of the binary variance control, i.e.,
for Vd(v\ast ; \rho ) = v\ast , we have

(46)

\Biggl\{ 
\partial \tau \rho + \partial \xi (\rho u) = 0,

\partial \tau (\rho u) + \partial \xi (\rho u
2) = \rho 2

\bigl[ 
P (\rho ) - 

\bigl( 
P (\rho ) + (1 - P (\rho ))2

\bigr) 
u
\bigr] 
.
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KINETIC-CONTROLLED HYDRODYNAMICS 737

Notice that here the control has actually no effect at all consistently with the monoki-
netic ansatz, which indeed postulates a locally null speed variance. The right-hand
side of the momentum equation turns out to be a relaxation of the mean speed u to-
wards the local equilibrium V\infty (\rho (t, x)), where V\infty (\rho ) is the uncontrolled asymptotic
speed (7), which actually coincides with the controlled asymptotic speed; cf. section
3.1 and Theorem 3.3. Conversely, in the case of the desired speed control, i.e., for
Vd(v\ast ; \rho ) = vd(\rho ), we have

(47)

\Biggl\{ 
\partial \tau \rho + \partial \xi (\rho u) = 0,

\partial \tau (\rho u) + \partial \xi (\rho u
2) = \rho 2

\bigl[ 
P (\rho ) - 

\bigl( 
P (\rho ) + (1 - P (\rho ))2

\bigr) 
u+ p\ast (vd(\rho ) - u)

\bigr] 
.

Now the right-hand side of the momentum equation expresses a relaxation of u to-
wards the local equilibrium V \ast 

\infty (\rho (t, x)), where V \ast 
\infty (\rho ) is the controlled asymptotic

speed (28).

Remark 4.1 (Hyperbolicity of system (45)). It can be easily checked that the two
eigenvalues of the Jacobian matrix of the flux of system (45) are both equal to u. In
particular, they satisfy the property that no characteristic speed be higher than the
flow speed, a fact related to the anisotropy of the interactions between any two vehicles
which has become a consistency requirement for all second order hydrodynamic traffic
models since the celebrated papers [5, 17].

It is worth pointing out that such a requirement is instead inevitably violated if
one attempts to obtain second order models from a local equilibrium closure. In this

case typically one defines (\rho u)(t, x) :=
\int 1

0
vf(t, x, v) dv and lets \varphi (v) = 1, v in (36)

to get\left\{     
\partial t\rho + \partial x(\rho u) = 0,

\partial t(\rho u) + \partial x(\rho u
2 + \scrP ) =

1

2
\BbbE \Theta 

\biggl[ \biggl\langle \int 1

0

\int 1

0

(v\prime  - v)f\ast (t, x, v)f\ast (t, x, v\ast ) dv dv\ast 

\biggr\rangle \biggr] 
,

where \scrP :=
\int 1

0
(v  - u)2f\ast (t, x, v) dv is the traffic pressure. Then in order to close

the momentum equation one forces the ansatz f\ast (t, x, v) = \rho (t, x) \~f\ast 
\infty (v) and simul-

taneously replaces u with V \ast 
\infty (\rho ) in \scrP . As a result, since the asymptotic distribution

function \~f\ast 
\infty is parametrized only by \rho , the traffic pressure becomes a function of \rho 

alone, i.e., \scrP = \scrP (\rho ), and the hydrodynamic model finally reads\left\{     
\partial t\rho + \partial x(\rho u) = 0,

\partial t(\rho u) + \partial x(\rho u
2 + \scrP (\rho )) =

\rho 2

2
\BbbE \Theta 

\biggl[ \biggl\langle \int 1

0

\int 1

0

(v\prime  - v) \~f\ast 
\infty (v) \~f\ast 

\infty (v\ast ) dv dv\ast 

\biggr\rangle \biggr] 
.

Now the eigenvalues of the Jacobian matrix of the flux are u\pm 
\sqrt{} 
\scrP \prime (\rho ); thus the system

is hyperbolic if and only if \scrP \prime (\rho ) \geq 0. Notice that if \scrP \prime (\rho ) = 0, i.e., if \scrP is independent
of \rho , then f\ast ought to be the monokinetic distribution function, which however is
incompatible with the closure with \~f\ast 

\infty . Then it has to be that \scrP \prime (\rho ) > 0, which
nevertheless implies u +

\sqrt{} 
\scrP \prime (\rho ) > u, thereby violating the consistency requirement

previously recalled.
The splitting procedure of section 4.1 suggests why the local equilibrium closure

may not be suited to the derivation of second order macroscopic traffic models. In
fact, the procedure shows that such a closure is justified if there is a clear separation
between the time scale of the microscopic interactions (39) and the space-time scale of
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738 ANDREA TOSIN AND MATTIA ZANELLA

a conservative transport of the moments of the local ``Maxwellian"" distribution (38)
which provide the hydrodynamic quantities of interest for the macroscopic model.
Consistently, such moments need to be conserved by the microscopic interactions (in
classical terms, they need to be ``collision"" invariants). In traffic models, however,
the mean speed is not conserved by the microscopic interactions, so neither is the
momentum. The only conserved hydrodynamic quantity is the traffic density, which
makes the continuity equation (41) straightforwardly closed in terms of \rho alone. Con-
sequently, it is neither necessary nor possible to join to it a second equation for the
momentum.

5. Numerical tests. In this section we present several numerical tests which
highlight the main features of the proposed control strategies for a speed-dependent
risk mitigation at both the kinetic and the hydrodynamic levels. In particular, we give
some insights into the Boltzmann-type controlled kinetic model and the corresponding
hydrodynamic approximations for various choices of the penetration rate p of driver-
assist vehicles in the traffic stream.

We adopt a Monte Carlo approach for the numerical solution of the Boltzmann-
type equation in the quasi-invariant interaction limit; see [45, 46] for an introduction.
We use instead finite volume weighted essentially nonoscillatory (WENO) schemes to
tackle the macroscopic conservation laws with nonconvex fluxes; see [53] and references
therein. In all tests we consider the function P (\rho ) given in (4) with \mu = 2 and the
recommended speed vd(\rho ) = 1 - \rho . Other relevant parameters will be specified from
case to case.

5.1. Inhomogeneous kinetic model. We begin by rewriting the inhomoge-
neous Boltzmann-type model (37) in strong form, which is more suited to numerical
purposes. This reads

(48) \partial \tau \~f(\tau , \xi , v) + v\partial \xi \~f(\tau , \xi , v) =
1

\epsilon 
Q( \~f, \~f)(\tau , \xi , v),

where Q on the right-hand side is the binary interaction operator (in classical terms,
the ``collision"" operator) defined as

Q( \~f, \~f)(\tau , \xi , v) =
1

2
\BbbE \Theta 

\biggl[ \biggl\langle \int 1

0

\biggl( 
1
\prime J

\~f(\tau , \xi , \prime v) \~f(\tau , \xi , \prime v\ast ) - \~f(\tau , \xi , v) \~f(\tau , \xi , v\ast )

\biggr) 
dv\ast 

\biggr\rangle \biggr] 
,

where (\prime v, \prime v\ast ) are the preinteraction speeds which generate the postinteraction speeds
(v, v\ast ) according to the interaction rules (24) and \prime J is the Jacobian of the transfor-
mation from (\prime v, \prime v\ast ) to (v, v\ast ).

We now briefly account for the numerical scheme by which we solve (48). After
fixing \epsilon = 10 - 3 and introducing a time discretization \tau n := n\Delta \tau , with \Delta \tau > 0 and
n \in \BbbN , we adopt a splitting approach.
Interaction step. Starting from \tau n, we first integrate the interactions in a single

time step and in all space positions \xi ,

(49)

\left\{   \partial \tau F (\tau , \xi , v) =
1

\epsilon 
Q(F, F )(\tau , \xi , v), \tau \in (\tau n, \tau n+1/2],

F (\tau n, \xi , v) = \~f(\tau n, \xi , v),

using the Nanbu algorithm for Maxwellian molecules; see, e.g., [10]. In partic-

ular, fixing \xi = \xi i and setting Fi(\tau , v) := F (\tau , \xi i, v), \rho i(\tau ) :=
\int 1

0
Fi(\tau , v) dv,
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(a) \tau = 0 (b) \tau = 0.25 (c) \tau = 0.5

Fig. 6. (a) Initial distribution (52) with \rho L = 0.8, \rho R = 0.2. (b)--(c) Evolution of the kinetic
distribution \~f(\tau , \xi , v) for 0 < \tau \leq 0.5 in the case of zero penetration rate p (namely, no vehicle of
the system is influenced by the action of the control).

we observe that (49) can be rewritten as

(50) \partial \tau Fi(\tau , v) =
1

\epsilon 
Q+(Fi, Fi)(\tau , v) - 

\rho i(\tau )

2\epsilon 
Fi(\tau , v),

where Q+ denotes the gain part of the binary interaction operator Q, i.e.,

Q+(Fi, Fi)(\tau , v) :=
1

2
\BbbE \Theta 

\biggl[ \biggl\langle \int 1

0

1
\prime J
Fi(\tau ,

\prime v)Fi(\tau ,
\prime v\ast ) dv\ast 

\biggr\rangle \biggr] 
.

Discretizing (50) in time through the forward Euler scheme yields, whenever
\rho i \not = 0,

(51) F
n+1/2
i =

\biggl( 
1 - \rho i\Delta \tau 

2\epsilon 

\biggr) 
Fn
i +

\rho i\Delta \tau 

2\epsilon 
\cdot 2Q

+(Fn
i , F

n
i )

\rho i
,

whence, from
\int 1

0
Fn
i (v) dv = 2

\rho i

\int 1

0
Q+(Fn

i , F
n
i )(v) dv = \rho i, we see that also

F
n+1/2
i has mass \rho i, i.e., the numerical scheme preserves the vehicle density in

a single interaction step, provided \rho i\Delta \tau 
2\epsilon \leq 1. Under such a restriction, (51) has

the following interpretation: in a single binary interaction a vehicle with speed
v in the position \xi i either does not change speed with probability 1  - \rho i\Delta \tau 

2\epsilon 

or changes it according to the rules encoded in Q+ with probability \rho i\Delta \tau 
2\epsilon .

Transport step. Subsequently we take the output of the interactions as the input
of a pure transport step towards the next time \tau n+1:\Biggl\{ 

\partial \tau \~f(\tau , \xi , v) + v\partial \xi \~f(\tau , \xi , v) = 0, \tau \in (\tau n+1/2, \tau n+1],

\~f(\tau n+1/2, \xi , v) = F (\tau n+1/2, \xi , v).

On the whole, we consider (48) in the bounded domain (\xi , v) \in [ - 2, 2] \times [0, 1]
with periodic boundary conditions on the space variable \xi . As initial condition we
prescribe the following distribution:

(52) \~f0(\xi , v) =

\left\{     
\rho L for (\xi , v) \in [ - 1, 0)\times [0, 1],

\rho R for (\xi , v) \in [0, 1]\times [0, 1],

0 otherwise,
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(a) p = 1
2
, \tau = 0.25 (b) p = 1

2
, \tau = 0.5

(c) p = 1, \tau = 0.25 (d) p = 1, \tau = 0.5

Fig. 7. Binary variance control. Evolution of the kinetic distribution \~f(\tau , \xi , v) starting from
the initial condition depicted in Figure 6(a) and with \kappa = 5 \cdot 10 - 2, \lambda = 10 - 3. First row (a), (b):
Penetration rate p = 1

2
. Second row (c), (d): Penetration rate p = 1.

which is piecewise constant in \xi and uniform in v for all fixed \xi \in [ - 1, 1]. The
constants \rho L, \rho R > 0 represent the vehicle density to the left and to the right, re-
spectively, of the position \xi = 0 and are chosen in such a way that the total mass of
vehicles is normalized to 1, i.e.,

\rho L + \rho R =

\int 1

0

\int 2

 - 2

\~f0(\xi , v) d\xi dv = 1;

see Figure 6(a) for a particular case.
Figures 6(b),(c) show the evolution of the distribution function \~f at two successive

times in the case p = 0, i.e., for a null penetration rate meaning that no vehicle in
the traffic stream is equipped with driver-assist technologies. We clearly observe that
the vehicle speeds are highly dispersed at the final time and hence that the associated
driving risk does not tend to decrease spontaneously.

Figures 7 and 8 show instead the evolution of \~f under the action of a driver-
assist control which seeks to minimize either the binary variance of the speeds in each
pairwise interaction or the difference with the congestion-dependent recommended
speed vd(\rho ) = 1  - \rho , respectively. In both cases we consider the scenarios with
either 50\% or 100\% of vehicles equipped with driver-assist technologies in the traffic
stream, corresponding to penetration rates p = 1

2 and p = 1, respectively, for a fixed
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(a) p = 1
2
, \tau = 0.25 (b) p = 1

2
, \tau = 0.5

(c) p = 1, \tau = 0.25 (d) p = 1, \tau = 0.5

Fig. 8. Desired speed control. Evolution of the kinetic distribution \~f(\tau , \xi , v) starting from the
initial condition depicted in Figure 6(a), with \kappa = 5 \cdot 10 - 2, \lambda = 10 - 3, and vd(\rho ) = 1 - \rho . First row
(a), (b): Penetration rate p = 1

2
. Second row (c), (d): Penetration rate p = 1.

-2 -1 0 1 2

0

0.2

0.4

0.6

0.8

1

Fig. 9. Solution to (42) at times \tau = 0 (initial condition) and \tau = 0.5, 1.

control penalization \kappa = 5 \cdot 10 - 2. The numerical results show that both control
strategies manage to reduce the global speed variance. Indeed, at the final time
the distribution function \~f clearly approaches Dirac delta-like distributions in the
v-variable, particularly for p = 1.
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5.2. First order hydrodynamic model. We already observed that the flux
function \scrF (\rho ) := \rho V \ast 

\infty (\rho ) in the conservation law (41) is in general neither strictly
convex nor strictly concave (cf. in particular (42), (43)) because \scrF \prime \prime (\rho ) may change
sign for \rho \in (0, 1). Hence the solution to a Riemann problem is expected to be a
combination of shock and rarefaction waves, sometimes called a compound wave. The
unique entropy solution can be built taking advantage of a convex-hull reconstruction;
see, e.g., [40] for an introduction.

At the numerical level, it is quite challenging to prove the convergence of high-
order schemes to the entropy solution despite the good numerical performances of such
schemes in many regimes. In the nonconvex case counterexamples exist for Godunov
and Lax--Friedrichs numerical fluxes under the usual CFL condition. In the following
we use a WENO finite volume scheme [53] with Lax--Friedrichs numerical flux. In
order to enforce the convergence towards the correct entropy solution, we adopt the
first order monotone modification proposed in [51]. The resulting method is high-
order accurate in smooth regions, whereas near a nonconvex discontinuity region it
uses a discontinuity indicator which is O(1).

To discretize equations (42) and (43) we introduce a uniform mesh in the space
domain [ - 2, 2] made of N\xi = 80 grid points, which implies a mesh parameter \Delta \xi =
5\cdot 10 - 2. Furthermore, we choose the time step \Delta \tau > 0 according to the CFL condition,

max
\xi \in [ - 2, 2]

| \scrF \prime (\rho )| \cdot \Delta \tau 

\Delta \xi 
= CFL \leq 1,

fixing CFL = 0.5.
In all the tests of this section we prescribe the following initial condition for the

vehicle density:

\rho 0(\xi ) =

\Biggl\{ 
1 for \xi \leq 0,

0 for \xi > 0,

which reproduces the classic example of a queue upstream from a traffic light placed
in \xi = 0 which turns to green at time \tau = 0. Figure 9 shows such an initial condition
(dashed red line) and the evolution of the vehicle density \rho at two successive times
ruled by (42). Notice that this problem is representative at once of three different
scenarios: (i) the case of completely uncontrolled dynamics; (ii) the case of binary
variance control with any penetration rate, which, as already observed, has no visible
impact on the purely macroscopic stream of vehicles; (iii) the case of desired speed
control with zero penetration rate---for then (43) reduces to (42). Since we fixed
\mu = 2 in (4), the flux of (42) is nonconcave; hence the solution is a combination
of a backward propagating shock and a rarefaction wave modeling vehicles which
progressively depart at the green light.

Figure 10 shows instead the solution to (43), namely the first order hydrodynamic
model with desired speed control, for three different penetration rates (p = 1

4 ,
1
2 , 1)

and two choices of the penalization coefficient (\kappa = 10 - 1, 1). As already stated,
the recommended speed is set to vd(\rho ) = 1  - \rho ; therefore, in the limit \kappa \rightarrow 0+

(nonpenalized control) the flux of (43) tends to the classical Greenshield's parabolic
flux \rho (1  - \rho ), which gives a pure rarefaction wave as solution to the traffic light
problem. From the second row of Figure 10 we clearly observe that for \kappa = 10 - 1

(weakly penalized control) the density profile indeed approaches the expected one: the
higher the penetration rate p, the more the shock visible in Figure 9 is absorbed by the
action of the control, so that the whole evolution is consistent with pure rarefaction
dynamics. We stress that the shock is instead still present in case of a more strongly
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(f) \kappa = 10 - 1, p = 1

Fig. 10. Desired speed control. First row: Solution to (43) at times \tau = 0 (initial condition)
and \tau = 0.5, 1 for the three penetration rates p = 1

4
, 1

2
, 1 in the case \kappa = 1 (strongly penalized

control). Second row: Same solution in the case \kappa = 10 - 1 (weakly penalized control).

penalized control; see the first row of Figure 10, where \kappa = 1. Nevertheless, it is
slightly smoothed with respect to Figure 9 for a sufficiently high penetration rate p.
Obviously, the aforementioned choice of vd(\rho ) is just a possible example. It can be
replaced by other more elaborate forms of the recommended speed, such as, e.g., those
proposed in [27, 31] for a similar problem.

5.3. Second order hydrodynamic model. The second order hydrodynamic
models derived in section 4.2 consist in pressureless and isothermal Euler-type equa-
tions, with a reaction term describing a relaxation towards the local equilibrium speed
predicted by the kinetic model (cf. (46)), plus possibly a further relaxation towards the
speed induced by the microscopic control (cf. (47)). Pressureless systems of balance
laws have been studied at both the theoretical and the numerical levels by several
authors in recent years, including [11, 12] and the references therein. One of the
typical difficulties is that pressureless systems are weakly hyperbolic, which, in the
absence of source terms, causes the emergence of vacuum states in a finite time. As a
consequence, in order to guarantee the stability, the numerical methods would require
a time step tending to zero.

In the following, we solve numerically systems (46) and (47) by means of an
operator splitting approach in the space domain [ - 2, 2] discretized by means of N\xi =
80 grid points, which implies a mesh parameter \Delta \xi = 5 \cdot 10 - 2. We impose CFL =
0.5 for the choice of the time step \Delta \tau . Moreover, we observe that, for a vanishing
penalization coefficient \kappa , the source term in the second equation of (47) becomes
stiff, thereby leading to additional constraints on the choice of the time step.
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Fig. 11. Top row: Solution to (46) at times \tau = 0 (initial condition) and \tau = 0.1, 0.5, 1.
Bottom row: Comparison of the solutions obtained at time \tau = 1 from either the Boltzmann-type
equation (37) with \epsilon = 10 - 2, \epsilon = 10 - 3 or the corresponding macroscopic approximation with the
monokinetic closure (46).

We consider as initial condition the following density-speed pair:

(53) \rho 0(\xi ) =

\Biggl\{ 
0.8 for \xi \leq 0,

0.2 for \xi > 0,
u0(\xi ) =

\Biggl\{ 
0.125 for \xi \leq 0,

0.5 for \xi > 0,

which mimics the fact that more densely packed vehicles are slower on average than
less densely packed ones. The top row of Figure 11 shows the evolution of \rho and
u predicted by model (46), which, as already observed in section 4.2, represents si-
multaneously the hydrodynamic limit in the case of no control of any vehicle in the
traffic stream and of binary variance control with arbitrary effective penetration rate
p\ast > 0. We observe that vacuum naturally tends to form (see the vehicle density in
the left panel), as expected from pressureless dynamics with fast vehicles preceding
slow ones. The bottom row of Figure 11 shows a comparison between the solution
of the inhomogeneous Boltzmann-type equation (37) for small \epsilon , which mimics a hy-
drodynamic regime, and the solution to (46). It is evident that the solution provided
by the macroscopic system of balance laws is consistent, in the limit \epsilon \rightarrow 0+, with
the ``original"" solution of the kinetic model. For completeness, we mention that we
solved the inhomogeneous Boltzmann-type equation (37) via a standard Monte Carlo
method, prescribing an initial condition consistent with (53).

The macroscopic action of the control is instead clearly visible in Figure 12. There,
we display the evolution of \rho and u predicted by model (47), which implements the
microscopic desired speed control towards the recommended speed vd(\rho ) = 1 - \rho . We
fix in particular p = 1, corresponding to 100\% penetration of the driver-assist technol-
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(d) u(\tau , \xi ) with \kappa = 10 - 3

Fig. 12. Desired speed control. Solution to (47) at times \tau = 0 (initial condition) and \tau =
0.1, 0.5, 1 with penetration rate p = 1 and control penalization \kappa = 1 (weak control, top row) and
\kappa = 10 - 3 (strong control, bottom row).

ogy in the traffic stream, and we vary the control penalization from \kappa = 1 (strongly
penalized control) to \kappa = 10 - 3 (weakly penalized control). The numerical results
show that in the first case a vacuum still tends to form (Figure 12a) as a consequence
of the pressureless dynamics, although in the long run (\tau = 1) the control slightly
perturbs the speed profile (Figure 12b) with respect to the case illustrated in Fig-
ure 11. In the second case, instead, the stronger action of the control dominates the
speed dynamics, which, according to the second equation in (47), become essentially a
quick local relaxation of u towards vd(\rho ) (cf. also Figure 12(d)). The evolution of the
corresponding density profile follows very closely a pure rarefaction wave between the
left state \rho L = 0.8 and the right state \rho R = 0.2 (Figure 12(c)), which is actually the
expected solution to the first order hydrodynamic model with flux \scrF (\rho ) = \rho vd(\rho ). On
the whole, then, we find that if the control is sufficiently strong, namely if p\ast = p

\kappa \gg 1,
the solution to the second order hydrodynamic model (47) collapses onto that of the
first order model (43), which remarkably implies no more vacuum formation (compare
Figures 12(a),(c). Also in this case, we compare the solution to the inhomogeneous
Boltzmann-type equation with \kappa = 10 - 3 and \epsilon = 10 - 3 (hydrodynamic regime) with
that of the macroscopic model (47); see Figure 13. Again, we observe that the dy-
namics depicted by the system of balance laws are fully consistent with the ``original""
kinetic description in the regime \epsilon \rightarrow 0+. Like before, we solved the inhomogeneous
Boltzmann-type equation (37) via a standard Monte Carlo method with initial con-
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Fig. 13. Desired speed control. Comparison of the density and the mean speed at time \tau = 0.5
obtained from either the Boltzmann-type equation (37) with vd-controlled binary interactions (\kappa =
10 - 3, \epsilon = 10 - 3) or the corresponding macroscopic approximation with the monokinetic closure (47).

ditions consistent with (53).

6. Summary and conclusions. In this paper, we have developed a hierarchical
approach to the control of traffic flow based on the current increasingly popular idea
that automated vehicles can be profitably used as inner controllers in a bottom-up
control perspective. The general goal is to regularize the stream of vehicles from the
inside; in particular, in this work we have considered control actions aimed at the
mitigation of road risk. First we have proposed a model of stochastic microscopic
binary interactions among the vehicles, which include probabilistically the presence
of driver-assist vehicles in the traffic flow. Such interactions produce speed variations
through accelerations and decelerations, but when they involve a driver-assist vehicle,
they are further controlled in such a way that the speed variance of the interacting
vehicles is reduced. Indeed, reports of the World Health Organization [48, 61] have
stressed that speed differences from vehicle to vehicle are among the major causes
of increased levels of crash risk. It is worth noticing that our probabilistic approach
easily allows us to consider both large and small percentages of driver-assist vehi-
cles in the traffic stream, the so-called penetration rate. Then we have upscaled
these interactions to the level of the global flow by means of a space homogeneous
kinetic Boltzmann-type equation. The analysis of such an equation, in particular of
its asymptotic solutions, has provided us with detailed insights into the impact of the
microscopic control strategies on the observable aggregate behavior of the system. In-
terestingly, the results have revealed that some control strategies successfully reduce
the speed-dependent road risk factors, although they do not modify the macroscopic
flow. From a purely macroscopic point of view, they may therefore erroneously seem
to be uninfluential. At last, we have reformulated the kinetic equation in a space inho-
mogeneous setting, and we have used it to derive first and second order hydrodynamic
traffic models consistent with the original microscopic controlled interactions among
the vehicles. To this purpose, we have taken advantage of closure methods, which
rely strongly on the ability of our kinetic model to provide explicit information on the
speed distribution at equilibrium (the equivalent of the Maxwellian distribution in
classical gas dynamics). The resulting equations for the density and the mean speed
of the vehicles constitute original macroscopic traffic models, in which the action of
the control is directly embedded from the microscopic scale (bottom-up) rather than
being imposed through a control problem of the macroscopic equations themselves
(top-down).
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