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Summary

This thesis focuses on the multiscale modelling and simulation of the formation
process of particulate colloidal systems. In particular, the focus is on the self-assembly
of polymer molecules in solution, leading to the formation of polymer nanoparticles
(NP).The process is also known as flash nano-precipitation (FNP). In FNP, NP formation
is induced by solvent displacement: by mixing a good solvent (i.e., acetone) containing
polymer molecules (poly-𝜀-caprolactone, PCL, in this study) with a bad solvent (i.e.,
water) their self-assembly in molecular clusters, or NP, is induced. It usually takes place
in very small devices and here the confined impinging jets mixer (CIJM) is considered.
It consists of a cylindrical axial symmetric chamber with two inlets on the sides and
one outlet at the bottom. NP production finds a wide range of applications; among the
others it is worthwhile to mention drug delivery systems, in which NP are responsible
for carrying a drug inside the human body, with the specific aim of attacking an ill
site (e.g., cancer cells). As drug nano-carriers, control of mean NP size, together with
particle size distribution (or, equally, the cluster mass distribution), becomes a crucial
aspect in modelling and simulating such complex systems.

Due the complexity of the phenomena involved in this process, three different scales
are then investigated: the atomistic scale, by means of molecular dynamics (MD) and
coarse-grainedmolecular dynamics (CGMD); the cluster scale, bymeans of a population
balance model (PBM); the vessel scale, in which fluid dynamics effects on NP formation
are investigated through computational fluid dynamics (CFD). These three scales are
interconnected with each other: the PBM is implemented and coupled into a CFD code
and it is, in turn, built up fromMD simulations. One of the several advantages in using a
multiscale method is that, sometimes, one scale turns out to be useful in understanding
or further investigating some peculiar behaviours that cannot be captured at just one
level of description.

More specifically, in this work, full-atom MD is used to study the mixing behaviour
at the atomistic scale of acetone-water mixtures. MD calculations of acetone-water
mixtures exhibit a strong phase separation (with most of the standard all-atom
force fields), despite the well-known experimental fact that acetone is miscible with
water in any proportion at room temperature. The strong de-mixing behaviour
(particularly stressed at low acetone molar fractions) is demonstrated to be caused by
a bad polarization response of the classical all-atom force fields, usually employed to
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simulate such liquid systems. Therefore, the de-mixing of acetone-water mixtures is
here overcome at the molecular scale by means of a Charge-on-Particle model (COP),
in which a pseudo-polarizable approach is used. A charge displacement is introduced
on the carbonyl group of the acetone molecule, and suitably modified in function of
the acetone molar fraction in order to get the desired polarization response. Thanks
to the COP model, the dipole moment is shown to increase together with the content
of water and de-mixing vanishes. Other dynamical properties, such as viscosity or
diffusivity, are also shown to have a better profile with respect to the original all-atom
force field, in terms of agreement with experimental trends.

Modelling of long PCL chains in solution at molecular level is also investigated by
means of coarse-grained molecular dynamics (CGMD). More specifically, the MARTINI
CG force field is used, in which both thermodynamics and structural parametrizations
are employed to optimise the CG model. It is a four-to-one mapping method, namely
four heavy atoms are grouped in one CG bead. The main advantage in using a CG
procedure is the possibility of simulating much larger systems than the one explored
with all-atom simulations, saving computational time. Non-bonded Lennard-Jones
parameters are chosen as tuning functions, for the optimization procedure. The single
CG bead types are set up by matching the solvation free energies of the corresponding
atomistic compounds, by means of the Bennett’s Acceptance Ratio method. The
non-bonded intrachain interactions are then optimised by matching the radius of
gyration of the corresponding atomic chains. Although the CG model developed here
shows the typical limitations of the CG approaches (e.g., the sharp globule-to-coil
transition at medium mixture concentrations range), results are quite satisfactory and
self-assembly dynamics of several PCL CG chains in solution can be investigated by
using this CG model. Both the all-atom and CGMD simulations are carried out by
means of the GROMACS simulation package.

Going to the cluster scale, a PBM is developed, in order to describe the evolution of
the cluster mass distribution (CMD, i.e., the number of polymer molecules that belong
to a NP) thanks to a suitable governing equation (i.e., population balance equation)
and, at the same time, to predict the final mean NP size at the mixer outlet. Particle
size is described in terms of the mean radius of gyration, by using the Flory’s theory.
The whole PBM is treated with quadrature-based moments methods (QBMM). The
advantage of solving the problem in terms of the moments of the CMD is twofold:
on one hand, moments are scalars that correspond to known physical properties; on
the other hand, much less equations need to be solved and so the computational cost
is lowered. Being FNP an extremely fast process, the effect of turbulent fluctuations
(also known as micro-mixing) must be accounted for. Turbulent fluctuation effects
on NP formation is then considered in the PBM in the context of the Favre-averaged
Navier-Stokes equation approach, thanks to the direct quadrature method of moments
coupled together with the interaction-and-exchange with the mean (DQMOM-IEM)
method. The rate at which two polymer clusters collide and aggregate is modelled by
means of aggregation kernels, built up fromMD calculations, and suitably implemented
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in the PBM. Finally, the effect of fluid dynamics on NP formation (in terms of influence
on both CMD and final radius of gyration), is studied by CFD, proving that kinetics
effects are one of the key parameters in controlling the mean NP size. The model
referring to the latter two scales are coupled together in a simple computational tool,
by means of proper user-defined function (UDF) of a CFD code.

The multiscale model is eventually exploited to simulate the effect of different good
solvents on the NP formation process with a particular focus on the effect on particle
size. Acetonitrile and THF have been studied and the key parameters, responsible for
the different NP size have been successfully identified, thanks to both empirical and
theoretical (i.e., Flory-Huggins solubility theory) approaches. This fully-predictive
model is validated against experiments. Modelling predictions are in a good agreement
with experiments, especially for medium and high initial supersaturation ratios (i.e.,
local PCL to equilibrium PCL concentration ratio). At low supersaturations the model
still shows a gap with experiments. Further investigations are required to figure out
the key phenomena at low solute concentration, but the multiscale model yields very
interesting insights into the solvent effects.

As alternative mathematical framework for the population dynamics scale, the
conditional quadrature method of moments is developed here and implemented in an
open-source tool, OpenQBMM. PBM and CFD simulations are performed with both
commercial (ANSYS Fluent) and open-source (OpenFOAM) packages. Concluding, the
achievements of this work can be summarised as follows:

• De-mixing issues in MD simulations of acetone-water mixtures was overcome
thanks to a charge-on-particle model, at the atomistic scale;

• A coarse-grained model was developed to properly describe the thermodynamics
and the structural behaviour of long polymer chains in binarymixtures, bymeans
of the MARTINI force field.

• A novel population balance model (with different modelling approaches) for FNP
is employed in which the number of the polymer molecules that belong to a
cluster was used for the first time as internal coordinate of the PBE. This allowed
also a better understanding on the different good solvents effects in FNP.

Future investigations can focus on:

• Considering the presence of the active principle or drug (together with the
carrier/polymer);

• Using the CG model to achieve a better insight into the key phenomena of the
dynamics of the self-assembly at the molecular scale, to be eventually passed to
the PBM scale;
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• Investigating the different good solvent effects at the atomistic scale.
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Chapter 1

Introduction

Research efforts in nanotechnology are becoming more and more popular in the
last years, thanks to the wide range of applications that characterize the nano-world.
Among the others, one of the most famous is the production of nanoparticles (NP).
Macromolecule self-assembly into NP ormolecular clusters is being widely investigated
with both experimental and modelling approaches in the last decade (Celasco et al.,
2014; Valente, Stella, et al., 2012) and due to their wide range of applications, polymer
NP are becoming more and more important. The application fields spread out on a wide
spectrum, such as medicine, cosmetics, pharmaceuticals and textile industry. In the
latter one, for example, NP are produced in order to carry an active agent responsible of
antimicrobial or antibacterial actions (Ferri et al., 2017); in the pharmaceutical field, the
most common and investigated area is the NP production as a method for drug delivery
systems inside the human body, in which NP behave as drug nano-carriers. Polymer NP
can in fact carry a drug entrapped in them throughout the blood stream and, thanks to
their degradation time, the polymer degrades releasing the drug and making it attack
a specific ill site inside the human body (e.g. cancer cells). Drug releasing action is
not the only technique employed nowadays in drug delivery systems; other techniques
are also followed and tested as well, such as the UV-light activated metal NP (Ancona
et al., 2018), but polymer NP represent surely a well-established and one of the most
investigated approaches, pointing itself out as a solid alternative to the more aggressive
and dangerous chemotherapy for the cure of cancer.

Polymer NP can be classified in nanospheres and nanocapsules (Valente, Celasco,
et al., 2012): nanospheres have a monolithic matrix in which drugs are dispersed or
absorbed on the surfaces or in the particles; on the other hand, nanocapsules consist
of a layer-based structure, resulting in a vesicular system with an inner solid or liquid
core surrounded by a polymeric membrane (the drug in this case is dissolved in the
liquid core). In this work, nanospheres will be considered, referring to them with the
generic term nanoparticles (NP). As drug delivery systems, mean NP size and particle
size distribution are of paramount importance, being both of them related to the bead
circulation time. The circulation time is, in turn, related to the reachability of the
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targeted area without escaping too soon or too late from the blood stream (Moghimi
et al., 2001). First of all, NP size cannot exceed 1𝜇m in order to freely circulate in the
human blood stream and, at the same time, even if below this upmost limit, it has been
proven that NP dimensions below 300 nm can increase the circulation time. Therefore,
it is clear how the control of NP dimension and their size distribution play a key role
in drug delivery systems (Maeda, 2001).

One of the numerous advantages in using drug delivery nano-carriers consists not
only in the ability of reaching a targeted area (ill site inside the human body, e.g.
cancer cells) but also the ability to carry water-insoluble drugs (hydrophobic molecules)
that otherwise would face several problems in their use. For instance, the low-water
insolubility causes the poor absorption and low bioavailability of the drugs (Lipinski
et al., 2001); moreover, the attitude of this kind of drugs to lead aggregation phenomena
might represent a serious risk for human health, since they may lead to embolism
(Torchilin, 2007). Also these issues can be easily overcome by using polymer NP as
pharmaceutical nano-carriers.

It is therefore straightforward that a biocompatible polymer must be used in order
to avoid undesirable side effects for human health. In this work the interesting case of
poly-𝜀-caprolactone (PCL) is considered. PCL is a saturated aliphatic polyester with
hexanoate repeated units employed in a wide range of applications, ranging from
biomedical devices to controlled drug-delivery systems. Its popularity is due to its
biocompatibility with the human body (Maeda, 2001), as well as to the harmlessness of
the degradation products, the main of which is the 6-hydroxycaproic acid that can be
expelled out of the human body by metabolism (Who et al., 2000). The methodology
developed and tested in this work has however a wider range of applications, as
it can be used also to describe the self-assembly and aggregation of other colloidal
and “soft systems”, such as surfactants, liquid crystals, proteins, DNA, and many
more (Bockstaller et al., 2005), involved in the production of cosmetic, electronic,
pharmaceutical and food products (Cohen et al., 2011; Collins et al., 2004; Ferrone et al.,
1985; Knowles et al., 2009; Oosawa and Asakura, 1975; Oosawa and Kasai, 1962; Zhou
and Ferrone, 1990).

Several techniques can be employed in order to induce self-assembly in solution.
One of the most used techniques is represented by flash nano-precipitation (FNP) via
solvent displacement. It usually takes place in very small mixers (order of magnitude of
millimeters) and consists in mixing two or more inlet streams, of which at least one is
made by a solvent in which a solute (the polymer in this case) is completely dissolved
(for this reason called good solvent) and at least another one is made by another solvent
completely miscible with the previous one, but incompatible with the solute (for this
reason called antisolvent or non-solvent or bad solvent). As soon as the streams of good
solvent/solute and antisolvent mix together, the antisolvent destabilises the mixture
inducing the solutemolecules (Jones, 2002) to aggregate and formNP.This phenomenon
is called solvent displacement and is driven by the excess of concentration of the solute
(i.e., polymer) in the final mixture. This excess is labelled as supersaturation.
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Since supersaturation is crucial in NP formation by solvent displacement, a key role
is played by mixing at all scales. Mixing is then a critical point in controlling NP mean
size, as well as their distribution, since NP formation is a very rapid process (Johnson
and Prud’homme, 2003b). Special mixers must be used to achieve the desired degree of
mixing (mixing efficiency). In the last years several devices have been employed, tested
and simulated and they can be classified mainly in two categories. The first one is the
family of the so-called active mixers, namely a complete and rapid mixing obtained
through an external energy input (e.g. electrospraying, Chan and Kwok, 2011). The
second one consists of the so-called passive mixers that has the advantage to not require
an energy input to induce mixing, and, on the other hand, the only power consumption
needed is for the pumps that feed the inlet streams. Among them, the most used in the
NP production field are: the vortex mixer (VM, Marchisio, Omegna, and Barresi, 2009;
Marchisio, Omegna, Barresi, and Bowen, 2008), the multi-inlet vortex mixer (MIVM,
Liu, C. Cheng, et al., 2008), the T-mixer (Gradl et al., 2006), the Y-mixer (Choi et al.,
2005) and the confined impinging jets mixer (CIJM, Johnson and Prud’homme, 2003a).

This work focuses on FNP inside the CIJM. It is a mixer made by a cylindrical
chamber with two inlets on the opposite sides and one outlet in the bottom. A sketch
of the CIJM is reported in Figure 1.1. Looking at Figure 1.1, on the left side there is the
good solvent inlet (acetone in this work), with the PCL dissolved in it. The presence of
the drug has been neglected. On the right side, the antisolvent inlet is made by water.

Due to the several phenomena involved in FNP, a multiscale modeling approach
is here presented and validated in which three different scales are investigated and
interconnected between themselves:

• Atomistic-scale: by means of molecular dynamics (MD, all-atom and coarse-
grained);

• Clusters/NP-scale: by means of a population balance model (PBM);

• Vessel-scale: by means of computational fluid dynamics (CFD).

The multiscale framework is depicted in Figure 1.2. Each scale is, in turn,
investigated by means of different models and methods. In this work, the atomistic-
scale is studied by both atomistic models such as all-atom molecular dynamics (MD),
concerning small systems, and by mesoscopic models (i. e., coarse-grained molecular
dynamics, CGMD), in order to characterise larger systems, such as long polymer
chains in solution. Continuum models are employed to investigate the clusters- and
vessel-scales. This is schematically reported in Figure 1.3. For each model, it is also
reported the physics which the model itself is based on and represents (atoms, beads,
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Figure 1.1: Sketch of CIJM. Acetone, with PCL dissolved, and water flow respectively
from left and right. Black arrows show the flux lines. There may be also organic
molecules (e.g. drug, light blue beads in the figure). The mixing leads to supersaturation
and to precipitation of polymeric clusters in micellar structures that may contain the
organic molecules. In this work the presence of the drug is neglected.
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etc.) together with the main equations and the materials relations, namely the set of
information necessary to close the mathematical model.

More specifically, all-atom MD is here employed to investigate the intimate mixing
properties of good and bad solvent in mixture (acetone and water in this work),
addressing and overcoming the well-known issue of de-mixing of acetone-water
mixtures, by means of a charge-on-particle model. Also the interactions and behaviour
of short polymer chains with the solvents are analysed, by using the most common
all-atom force fields for liquid systems (e.g., OPLS-AA, SPC/E). Coarse-grained
molecular dynamics (CGMD) is used instead to investigate the behaviour of longer
polymer chains in solution, developing a coarse-grained model based on the MARTINI
force field. This CG model can be used in the future to get a better insight into the
self-assembly phenomenon of multiple polymer chains in mixture, that otherwise
would not be possible to evaluate by all-atom MD, due to the too high associated
computational cost. All-atom MD and CGMD simulations are carried out by using the
GROMACS simulation package (open-source tool).

All the information achieved via MD (all-atom and coarse-grained) at the atomistic-
scale can be passed to the upper scale, namely the clusters-scale, investigated by a
suitable PBM. The aim of the PBM is to study the evolution of the cluster mass
distribution (CMD, i.e., the number of polymer molecules that form a NP) and, at the
same time, the mean NP size at the CIJM outlet in terms of mean radius of gyration,
thanks to the Flory’s theory of real polymer chains (Flory, 1953). A novel approach is
here proposed, in which the number of molecules that form a cluster (or, NP) is used as
internal coordinate of the PBM, overcoming in this way the usual distinction between
nucleation, molecular growth and aggregation. Thanks to this modelling strategy, for
the first time the aggregation kernels are built upon MD simulations, in which the
functional forms of Flory’s parameters are fitted directly from such atomistic models,
as function of the good solvent molar fraction. Turbulent fluctuations on NP formation
is taken into account by means of the direct quadrature method of moments coupled
together with the interaction and exchange with the mean method (DQMOM-IEM) and
by solving the Favre-averaged Navier-Stokes equation. The 𝑘 − 𝜀 standard turbulence
model is used and the quantities transported in it are directly implemented into
the aggregation kernels of the PBM, representing another important link between
the clusters and vessel scales. In the flow field context, all the properties are Favre-
averaged, in order to take into account the density fluctuations in CFD analysis. The
whole PBM is treated with a quadrature-based method of moments approach (QBMM,
Marchisio and Fox, 2013). Two nodes in the quadrature approximation are considered
for both mixing and aggregation, since it is a good compromise in terms of accuracy of
the method and computational cost. Moreover, two different modelling approaches are
presented, following the QMOM procedure: the first one consists in keeping mixing
and aggregation separated into two different univariate PBEs, in which mixing is
treated with the DQMOM-IEM formalism; the second one is a new approach in which
aggregation and mixing are solved together in a unique bivariate PBE, applying the
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conditional quadrature method of moments (CQMOM) and closing the micro-mixing
term with the IEM model. The main novelty of this new procedure is the use of pure
moments in aggregation as internal coordinates of the bivariate PBE. Finally, at these
length scales, the effect of different good solvents in NP production (CMD and mean
NP size) was evaluated, investigating acetonitrile and THF besides acetone. By using
the continuummodels presented here, together with a computational fitting procedure,
new functional forms for the Flory’s law were extrapolated and validated against
experiments.

The latter two scales (clusters- and vessel scales) are coupled together in a unique
tool in the CFD code. Both commercial (ANSYS Fluent) and open-source (OpenFOAM)
packages are employed to carry out the simulations related to clusters- and vessels
scales. A fully predictive model is then developed and presented in this work and the
way in which the different models interact with each other is schematically summarized
in Figure 1.4.

This work is structured in three main parts: in Part I there is a general description of
the main theoretical backgrounds behind the three scales investigated here: a general
overview on statistical mechanics is reported in Chapt. 2; theoretical backgrounds of
all-atom MD is presented in Chapt. 3, the coarse-grained general theory in Chapt. 4
and the theory of continuum modeling is reported in Chapt. 5. Part II is focused on the
computational details concerning the three different scales always in the same order:
a closer overview on the main algorithms and computational tools are presented in
Chapt. 6 for all-atom MD, in Chapt. 7 to depict the specific technique used in this work
(MARTINI force field) concerning the CGMD and in Chapt. 8 the QBMM used to solve
PBM-CFD scale is presented. Part III deals with the results of this multiscale modelling
approach, in which different topics and goals have been analyzed and hugely discussed:
Chapt. 9 deals with the de-mixing issue of acetone-water mixtures in MD simulations,
in which a new pseudo-polarizable model is presented and validated; a MARTINI CG
model is developed and validated for PCL in acetone/water mixtures in Chapt. 10 and
PBM-CFD approach is used to study FNP in Chapt. 11. Final considerations and future
developments are finally reported in Chapt. 12.
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Figure 1.2: Multiscale framework adopted in this work. From left to right all the
investigated scales are reported: atomistic scale for a range up to 100 nm of
characteristic length scale, clusters scale in the range of 100 nm - 1 𝜇m, and the vessel
scale that considers phenomena regarding length scales up to millimeters order of
magnitude.
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Figure 1.3: Models used in this work: atomistic models (i.e., all-atom molecular
dynamics), mesoscopic models (e.g., coarse-grained molecular dynamics) and
continuum models (population balance model and computational fluid dynamics). For
each model, the corresponding physics representation, the main physics equations and
the materials relation (e.g., the set of information needed to close the mathematical
model) are reported.
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Figure 1.4: Fully predictive modelling approach adopted in this work.
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Chapter 2

Statistical Mechanics

This second chapter is meant to give a theoretical background, necessary for a
deeper insight into atomistic modelling. A brief introduction concerning statistical
mechanics is here reported, jumping over the quantum derivation and showing the
results of its classical limit, being this one the basis of classical molecular simulations.

2.1 Introduction to StatisticalMechanics forAtomistic
Modelling

In this first section a general overview on statistical mechanics is presented, being
this area the base of molecular simulations. Molecular simulation was developed in
order to analyse aspects that with a practical experiment are not possible to discern.
For instance, in MD simulations of liquid water it is possible to measure instantaneous
velocities and positions of each atom and molecule; on the other hand, these kinds of
information cannot be directly tracked during experiments and, therefore, no direct
comparison is possible with them. Experiments are then able to measure averaged
properties, namely properties measured in a given volume that contains a given number
of particles in some given physical conditions and, more importantly, in a given time
interval. Basically, it is possible to infer that experiments give back a measurement of
both ensemble- and time-averaged properties.

How can molecular simulations be used then to obtain results directly comparable
to experiments? Or, in other terms, how can microscopic properties (directly evaluated
by molecular simulation) be related to the macroscopic state (properties measured
experimentally) of a system? The answer to this question is the statistical mechanics,
which can be interpreted as the language needed to link molecular simulations results
in terms of particles trajectories to averaged results. In fact, since a system is made by a
huge number of molecules, it would be impossible to track the motion of each particle
and, therefore, statistical methods turn out to be more effective. From an historical
point of view, statistical mechanics appears for the first time in the scientific panorama
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during the last decades of 1800 thanks to the kinetic theory of gases developed by
Maxwell and Boltzmann, even if at the time quantum mechanics was not discovered
yet and, consequently, the first results were not too much accurate in some cases. Once
quantum theory was developed, the suitable modifications have been made.

Let us start with some important definitions, passing then to the concept of
ensemble average and the classical limit of statistical mechanics as powerful tool on
which all MD is built upon. Let us define thermodynamic state of a given system as
the values of macroscopic parameters that characterise a given system. For example,
we might have a system made by 28 g of nitrogen at 40 ℃ and 3.5 atm. A quantum
state of a system is all the set of equations needed to solve all the possible energy
states of the Schrödinger equation related to a system of 6𝑥1023 particles that are at 40
℃ and 3.5 atm. For each time instant the system is, in a univocally defined quantum
state, characterized by a given wave function (result of Schröedinger equation) and
a given energy level characterized, in turn, by specific quantum numbers. Another
important distinction to make is between micro- and macro-state. The latter is the
thermodynamic state of a system. The former is instead the quantum state of a system.
Different micro-states may correspond to the same macro-state. The macro-state is
experimentally measurable and can be defined by giving thermodynamic variables
such as temperature, pressure and number of particles (or other combination with
three thermodynamic properties such as temperature, volume and number of particles,
or even the energy instead of the temperature). The micro-state, on the other hand,
is univocally specified by giving the quantum numbers that, in turn, define the wave
function related to that specific particle. Now the question is: what is the link between
micro- and macro-state? The answer is the statistical ensemble. In a classical scenario,
which classical MD is based on, the microscopic state of the system is expressed
in its classical limit. More specifically, a classical system made by 𝑁 particles that
evolves in space x and time 𝑡, each particle with its own trajectory, is characterised
by a probability density function (PDF), 𝑓𝑁𝑝

(𝑡,x, v), that expresses the probability
of finding the system in a specific configuration, namely in a specific infinitesimal
interval of phase space [x,x+ 𝑑x], where x = (x1, ...,x𝑖, ...,x𝑁), and [v, v+ 𝑑v], where
v = (v1, ..., v𝑖, ..., v𝑁) are the particles velocity, to which a specific infinitesimal energy
configuration corresponds. This continuous energy configuration is the Hamiltonian
of the system, that corresponds to the total energy (summation of kinetic and potential
energies) and it is formally defined in the following chapter, in Eq. (3.8).

Therefore, each generic macroscopic property 𝐴 can be averaged on the ensemble
behaviour (ensemble-average) by using the PDF as weight of the average itself:

⟨𝐴⟩ = ∫ 𝐴𝑓𝑁𝑝
(𝑡,x, v)𝑑x𝑑v. (2.1)

As in the quantum approach the average behaviour is weighted on the discrete
quantum states and the probability of finding the system in a quantum state is a
discrete probability, in the classical limit that probability becomes a continuous
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function, namely the PDF, 𝑓𝑁𝑝
, and the weight of the average is not related anymore

to the discrete energy corresponding to that specific quantum state, but to the
Hamiltonian of the system, that in this case is a continuous function. In either
cases (discrete and continuous), this probability (the PDF in the classical limit) is
proportional to a function that accounts for all the possible configurations (states
in quantum approach) and expresses how these configurations are distributed or
”partitioned” in the system: this is the so-called partition function. It takes different
forms depending on the ensemble, and represents the way to give ensemble-averages of
macroscopic properties, starting from the microscopic (molecular) state of the system.
In the next section the different statistical ensembles will be presented, together with
the corresponding partition functions in their classical limit forms.

2.2 Statistical Ensembles
In this section the different statistical ensembles will be described, namely the

different ways to relate the macrostate to all the possible corresponding microstates for
a given system, showing their final classical-limit expression. The most used ensembles
are: the microcanonical one, that is at constant number of particles 𝑁, volume 𝑉
and total energy 𝐸 (𝑁𝑉 𝐸), the canonical ensemble (𝑁𝑉 𝑇), the isothermal-isobaric
ensemble (𝑁𝑃 𝑇), and the grand-canonical ensemble 𝜇𝑉 𝑇.

2.2.1 Microcanonical Ensemble
The PDF for a microcanonical ensemble 𝑁𝑉 𝐸 is proportional to 𝛿(ℋ (Γ) − 𝐸),

with Γ representing the phase space coordinates (positions and momenta), ℋ is the
Hamiltonian of the system. 𝛿 is the Dirac delta function for continuous representation
(Kronecker delta for finite discrete representation). The 𝑁𝑉 𝐸 quasi-classical partition
function reads as follows:

𝑄𝑁𝑉 𝐸 = 1
𝑁!ℎ3𝑁 ∫ 𝛿(ℋ (q, p) − 𝐸)dqdp. (2.2)

The relationship to macroscopic thermodynamic variables is usually summarized in
the following expression:

𝑆/𝑘𝐵 = ln𝑄𝑁𝑉 𝐸 , (2.3)

where 𝑆 indicates the entropy of the system and 𝑘𝐵 is the Boltzmann constant.

2.2.2 Canonical Ensemble
Concerning the canonical ensemble𝑁𝑉 𝑇, its PDF is proportional to exp(−ℋ (Γ)/𝑘𝐵𝑇 ),

and the classical limit of its partition function in the continuous form is
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𝑄𝑁𝑉 𝑇 = 1
𝑁!ℎ3𝑁 ∫ exp (−ℋ (q, p)/𝑘𝐵𝑇 )dqdp. (2.4)

The correspondence to thermodynamic macroscopic variables is generally
formulated in terms of the Helmholtz free energy 𝐴:

𝐴/𝑘𝐵𝑇 = − ln𝑄𝑁𝑉 𝑇 . (2.5)

Remembering the definition of Hamiltonian Eq. (3.8) of a system, then Eq. (2.5)
can be factorized into two terms, the first one corresponding to the ideal contribution
(kinetic), the second one corresponding to the excess contribution, or configurational
contribution (potential):

𝑄𝑁𝑉 𝑇 = 1
𝑁!ℎ3𝑁 ∫ exp (−ℋ (q, p)/𝑘𝐵𝑇 )dqdp =

= 1
𝑁!ℎ3𝑁 ∫ exp (−𝒦(p)/𝑘𝐵𝑇 )dp∫ exp (−𝒱 (q)/𝑘𝐵𝑇 )dq. (2.6)

This possibility to split Eq. (2.4) in two different contributions turns out to be a
crucial feature in molecular simulations, in particular for Monte Carlo methods (Allen
and Tildesley, 1987).

2.2.3 NPT Ensemble
The isothermal-isobaric 𝑁𝑃 𝑇 ensemble PDF is proportional to exp(−(ℋ (q, p) +

𝑃 𝑉 )/𝑘𝐵𝑇 ), where the averaged quantity appearing in the exponent numerator results
to be the thermodynamic enthalpy (𝐻 = ⟨ℋ ⟩ + 𝑃 ⟨𝑉 ⟩). The classical limit of 𝑁𝑃 𝑇
partition function is

𝑄𝑁𝑃 𝑇 = 1
𝑁!ℎ3𝑁

1
𝑉0 ∫ d𝑉 ∫ exp (−(ℋ (q, p) + 𝑃 𝑉 )/𝑘𝐵𝑇 )dqdp. (2.7)

Notice now that also the volume 𝑉 has become a microscopic quantity that,
therefore, needs to be integrated. Obviously, the dimensions of the basic volume
unit 𝑉0 must be chosen in order to guarantee 𝑄𝑁𝑃 𝑇 to be dimensionless. The related
thermodynamic function is correlated to the Gibbs free energy 𝐺 through

𝐺/𝑘𝐵𝑇 = − ln𝑄𝑁𝑃 𝑇 . (2.8)

2.2.4 Grand Canonical Ensemble
The PDF corresponding to the grand canonical system 𝜇𝑃 𝑇 is exp(−(ℋ (q, p) −

𝜇𝑁)/𝑘𝐵𝑇 ) in which the chemical potential 𝜇 appears. The quasi-classical 𝜇𝑃 𝑇 partition
function reads as follows
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𝑄𝜇𝑃 𝑇 = ∑
𝑁

1
𝑁!ℎ3𝑁 exp (𝜇𝑁/𝑘𝐵𝑇 ) ∫ exp (−ℋ (q, p)/𝑘𝐵𝑇 )dqdp. (2.9)

Note that now also the number of particles 𝑁 is a variable of the partition function.
Despite the continuous form of the latter, in many applications it turns out to be more
useful to keep the discrete form, that is a finite summation over 𝑁. Its appropriate
thermodynamic function is

− 𝑃 𝑉 /𝑘𝐵𝑇 = − ln𝑄𝜇𝑃 𝑇 . (2.10)
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Chapter 3

Theory of Atomistic Modeling

This chapter describes a general overview on the theory of atomistic modelling.The
Liouville’s theorem, pillar of classical atomisticmolecular dynamics (MD), togetherwith
the corresponding equations of motion are here presented.

3.1 Generalised Lagrangian andHamiltonianEquations
of Motion

A set of 𝑁 particles (atoms, molecules) that form a system can be described by their
generalized coordinates, namely positions q𝑖 and momenta p𝑖, with 𝑖 = 1, ...,𝑁:

q = (q1,q2,… ,q𝑁), (3.1)

p = (p1,p2,… ,p𝑁). (3.2)

In a classical system, particles can interact through positions-dependent potential
𝒱 (q) and, due to their momenta, they also have a kinetic energy 𝒦(p), that can be
defined as follows:

𝒦(p) =
𝑁

∑
𝑖=1

∑
𝛼

𝑝𝑖𝛼
2

2𝑚𝑖
, (3.3)

where 𝑚𝑖 is the mass of the particle 𝑖 and the index 𝛼 runs over all the three
spatial coordinates (𝑞𝑖1, 𝑞𝑖2, 𝑞𝑖3) of the particle 𝑖. The potential energy 𝒱 (q) contains
information related to the interactions between all the particles in the system.

Let us define the Lagrangian, ℒ(q, q̇, 𝑡), of such a system as

ℒ(q, q̇, 𝑡) = 𝒦(p) − 𝒱 (q) =
𝑁

∑
𝑖=1

∑
𝛼

𝑝𝑖𝛼
2

2𝑚𝑖
− 𝒱 (q), (3.4)

19



3 – Theory of Atomistic Modeling

being the momenta related to the time derivative of the generalised positions, p𝑖 =
𝑚𝑖 ⋅ q̇𝑖. The generalised coordinates (Eq.s 3.1 and 3.2) evolve in time and, by using the
Lagrangian function, the action 𝑆 can be defined:

𝑆 = ∫
𝑡2

𝑡1
ℒ(q, q̇, 𝑡)𝑑𝑡, (3.5)

at times 𝑡1 and 𝑡2, and must be minimal. The principle of minimal action leads to the
Lagrangian equation of motions (Berendsen, 2007):

𝑑
𝑑𝑡 (

𝜕ℒ
𝜕q̇𝑖 ) − 𝜕ℒ

𝜕q𝑖
= 0, (3.6)

for 𝑖 = 1, 2, ...,𝑁. By combining the definition of Lagrangian given in Eq. (3.4) with
Eq. (3.6), the Newton’s equation of motion is easily obtained:

𝑚q̈ = −
𝜕𝒱 (q)

𝜕q
. (3.7)

Another way to describe classical systems is represented by the Hamiltonian
formalism. The Hamiltonian, ℋ (q,p), of the system is defined as the summation
of kinetic 𝒦(p) and potential energy 𝒱 (q), in turn, function of the generalized
coordinates:

ℋ (q,p) = 𝒦(p) + 𝒱 (q) =
𝑁

∑
𝑖=1

∑
𝛼

𝑝𝑖𝛼
2

2𝑚𝑖
+ 𝒱 (q), (3.8)

representing the total energy of the system. It is possible to show (Berendsen, 2007)
that, starting from the definition reported in Eq. (3.8), the Hamilton’s equations of
motion can be derived:

q̇𝑖 = 𝜕ℋ (Γ)
𝜕p𝑖

,

ṗ𝑖 = −𝜕ℋ (Γ)
𝜕q𝑖

,

(3.9)

and their correspondence to Newton’s equation of motion easily achieved, by just
applying Eq. (3.8) to Eq. (3.9). Starting from the Hamilton formalism, it is then possible
to derive all governing equations for a classical system and, by knowing initial positions
and initial velocities of a set of molecules, then future positions and velocities can be
computed. This is the starting point of MD simulations.

20



3.2 – Liouville’s Theorem and Ergodicity

3.2 Liouville’s Theorem and Ergodicity
In this section, the concept of average of a generic observable property is

introduced, culminating in the formal statement of the Liouville’s equation and the
ergodic theorem. When we think about an average trend of a system, we tend to
think about an average behaviour of such system over time. Furthermore, from an
experimental point of view, it happens that a given quantity is measured in a given time
interval, sufficiently long to determine a trustable measurement of that property itself
leading to the so-called time average. However, the time average is not the only useful
average in atomistic modelling, since, in terms of statistical ensembles introduced in
Chapt. 2, also the average behaviour over all the possible micro-states is somehow
interesting to measure. This is what is formally called ensemble average, defined in
Eq. (2.1).

Let us call, then, the observable property in an experiment 𝐴𝑜𝑏𝑠 and let us relate it to
an average over time, the observation time 𝜏𝑜𝑏𝑠. The last element we need to introduce
is the generic phase space point, Γ(𝑡) evolving over time, 𝑡, of the macroscopic system
Γ considered in the experimental evaluation (it might be an 𝑁𝑃 𝑇, or 𝑁𝑉 𝑇, 𝑁𝑉 𝐸, etc.
ensemble). The relationship between the observable property 𝐴𝑜𝑏𝑠 and its time average
⟨𝐴⟩𝑡𝑖𝑚𝑒 is

𝐴𝑜𝑏𝑠 = ⟨𝐴⟩𝑡𝑖𝑚𝑒 = ⟨𝐴(Γ(𝑡))⟩𝑡𝑖𝑚𝑒 = lim
𝑡𝑜𝑏𝑠→∞

1
𝑡𝑜𝑏𝑠 ∫

𝑡𝑜𝑏𝑠

0
𝐴(Γ(𝑡))d𝑡. (3.10)

Obviously, in a real classical molecular simulation, Newton’s equations are solved
for the time evolution of the trajectory Γ(𝑡) for each particle, but the time related to
this time evolution cannot be infinity. Therefore, a sufficiently long finite time 𝑡𝑜𝑏𝑠 will
be chosen and the Newton’s equations of motion will be integrated in a step-by-step
procedure, by choosing a suitable number of time steps, 𝑛𝑡𝑖𝑚𝑠𝑡𝑒𝑝, so that the time interval
obeys: Δ𝑡 = 𝑡𝑜𝑏𝑠/𝑛𝑡𝑖𝑚𝑠𝑡𝑒𝑝. Consequently, Eq. (3.10) becomes

𝐴𝑜𝑏𝑠 = ⟨𝐴⟩𝑡𝑖𝑚𝑒 = 1
𝑛𝑡𝑖𝑚𝑠𝑡𝑒𝑝

𝑛𝑡𝑖𝑚𝑠𝑡𝑒𝑝

∑
𝑛=1

𝐴(Γ(𝑛)). (3.11)

Since the system is a group of 𝑁 particles evolving in time and space and following
the Newton’s law of motion, then each particle will represent a point of the phase space
Γ(𝑡). This point in the phase space will change in time and physical space and, therefore,
the 𝑁 particles will be distributed at each time instant (or, more correctly, at each time
step) following a probability density function (PDF) 𝑓𝑁𝑝

(Γ(𝑡)) = 𝑓𝑁𝑝
(𝑡;q𝑖,p𝑖), already

introduced in Chapt. 2. Being the PDF an ensemble dependent property of the system,
therefore dependent on the time 𝑡, on particle position q𝑖 and on particle momenta
p𝑖, it will assume a different functional form depending on the statistical ensemble
which it is referred to. For this reason the generic notation 𝑓 𝑒𝑛𝑠

𝑁𝑝
(Γ(𝑡)) should be used,

in which ′𝑒𝑛𝑠′ = 𝑁𝑉 𝑇,𝑁𝑃 𝑇, etc, but for a sake of brevity the solely notation 𝑓𝑁𝑝
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3 – Theory of Atomistic Modeling

will be generically used from now on, keeping in mind that the PDF assumes different
functional forms by varying statistical ensembles. The conservation of a Hamiltonian
system is guaranteed by the Liouville’s theorem, which states that 𝑑𝑓𝑁𝑝

/𝑑𝑡 = 0, where
𝑑/𝑑𝑡 is the total time derivative, that, in turn, can be decomposed in all the variables of
the phase space, namely

d
d𝑡

= 𝜕
𝜕𝑡

+ q̇ ⋅ ∇q + ̇p ⋅ ∇p (3.12)

where 𝜕/𝜕𝑡 represents the partial differentiation with respect to time, ̇q and ̇p
are the time derivative of position and momenta and ∇q and ∇p are respectively
the derivatives with respect to positions and momenta. The notation ∇q stands then
for ∇q = 𝜕/𝜕q = (𝜕/𝜕𝑞𝑖1, 𝜕/𝜕𝑞𝑖2, 𝜕/𝜕𝑞𝑖3), for the generic particle 𝑖. This notation
may be used interchangeably from now on. By introducing the Liouville operator
𝑖𝐿 = (q̇ ⋅ ∇q + ̇p ⋅ ∇p) and by using the Liouville’s theorem, the Liouville’s equation
reads as follows:

𝜕𝑓𝑁𝑝
(Γ(𝑡))

𝜕𝑡
= −𝑖𝐿𝑓𝑁𝑝

(Γ(𝑡)) (3.13)

whose formal solution is 𝑓𝑁𝑝
(Γ(𝑡)) = exp(−𝑖𝐿𝑡)𝑓𝑁𝑝

(Γ(0)). Considering, moreover,
that exp(−𝑖𝐿𝑡) ≈ 1–𝑖𝐿𝑡 + 𝒪(𝑡2), the equation of motion referred to a generic property
𝐴(Γ) then can be written in the form corresponding to ̇𝐴(Γ(𝑡)) = 𝑖𝐿 𝐴(Γ(𝑡)) or
𝐴(Γ(𝑡)) = exp(−𝑖𝐿𝑡)𝐴(Γ(0)).

Liouville’s equation (Eq. 3.13) and its formal solution are the pillar of molecular
simulations; particular attention deserves the exponential term exp(−𝑖𝐿𝑡), called
“propagator”, which is the starting point to obtain all the algorithms useful to
solve the equations of motion for classical MD simulations (Eq. 3.9), as it will be
explained more clearly in Chap. 6. By using Eq. (3.9), the Liouville operator becomes
𝑖𝐿 = ∑𝑖 (

𝜕ℋ
𝜕p𝑖

⋅ ∇q − 𝜕ℋ
𝜕q𝑖

⋅ ∇p).
Let us now introduce the concept of ergodicity. Considering the system Γ, made by

𝑁 classical particles, at equilibrium the particles PDF will be time independent, namely
𝜕𝑓𝑁𝑝

/𝜕𝑡 = 0. The system will evolve over time 𝑡, occupying a point of the phase space
at each time interval 𝑛𝑡, Γ(𝑛𝑡), moving to the next point of the phase space Γ(𝑛𝑡+1) at
the following time interval 𝑛𝑡+1 and being replaced by another system that arrives from
a state Γ(𝑛𝑡−1). All these movements over the points of the phase space will generate
different trajectories in the phase space itself. If there is just one trajectory forwhich 𝑓𝑁𝑝
is non-zero, it means that all the systems that are evolving over timewill be experiencing
all the points of the phase space (more clearly, all the points of the phase space will see
all the possible evolutions of the system Γ in a long closed circuit, a trajectory Γ(𝑡)).This
system is called ergodic and this property just described above is named ergodicity. The
most important consequence of such a property is the fact that, in order to achieve an
average behaviour of the system there are two choices: the first one consists in waiting
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3.2 – Liouville’s Theorem and Ergodicity

for the entire time evolution of the system to evaluate how it behaves over time; the
second one, straight consequence of ergodicity, is that one can freeze the system in a
given status and evaluate an instant picture of the whole group of 𝑛𝑡 systems in those
frozen conditions, instead of following a specific one over the total observation time,
since all the possible systems will experience all the possible points in the phase space.
The two average evaluations (over time, ⟨𝐴⟩𝑡𝑖𝑚𝑒, and ensemble average, ⟨𝐴⟩𝑒𝑛𝑠) will give
the same result; in more mathematical terms, the ergodicity allows us to infer that

𝐴𝑜𝑏𝑠 = ⟨𝐴⟩𝑒𝑛𝑠 = ∑
Γ

𝐴(Γ)𝑓𝑁𝑝
(Γ) = ⟨𝐴⟩𝑡𝑖𝑚𝑒 = 1

𝑛𝑡𝑖𝑚𝑠𝑡𝑒𝑝

𝑛𝑡𝑖𝑚𝑠𝑡𝑒𝑝

∑
𝑛𝑡=1

𝐴(Γ(𝑛𝑡)). (3.14)

This configuration is the key feature of any molecular simulation and satisfies the
following conditions:

• 𝑓𝑁𝑝
(Γ) for a given statistical ensemble does not change as the system evolves;

• any ’reasonable’ starting 𝑓𝑁𝑝
(Γ) tends to its stationary solution for any initial

conditions;

• the system is ergodic.
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Chapter 4

Theory of Coarse-Graining Modeling

Due to the large time and length scales involved in many applications, the full-atom
description of classical MD turns out to be not sufficient to fulfil a complete insight into
such complex systems. Coarse-grained molecular dynamics (CGMD) is then needed, in
order to reduce the number of degrees of freedom (DOF, Carbone and Avenda ̃𝑛o, 2014;
Cheung and Carbone, 2013; Karimi-Varzaneh et al., 2012; Taddese, Cheung, et al., 2015),
by grouping a given number of atoms or even entire molecules together in a unique
particle denominated “bead”. This action of grouping atoms altogether in a unique bead
is called “mapping”.Themapping varies dependently on the kind of CG that one is using,
but a general scheme is depicted in Figure 4.1. Thanks to the possibility of simulating
larger systems for very long times, CGMD is becoming more and more popular in many
biological and complex fields, such as proteins (Bonomi et al., 2017), DNA (Dans et al.,
2010) and lipids (Marrink, de Vries, et al., 2004).

Different classifications may be done among the several existing CG techniques;
basically, it is possible to identify two main categories: the bottom-up (systematic) and
the top-down CGmodels.The latter are built up upon experimental data observed at the
length scale at which the CGmodel is targeted to.The former are systematically derived
from first principles or atomistic detailed-level MD. Examples of bottom-up CG models
are the Iterative Boltzmann Inversion (IBI,Muller-Plathe, 2002), the InverseMonte Carlo
(this one by means of Monte Carlo simulations, Lyubartsev and Laaksonen, 1995), the
force-matching models (Izvekov, Parrinello, et al., 2004; Izvekov and Voth, 2005; Noid
et al., 2008) and more rigorous derived bottom-up techniques such as the conditional
reversible work (CRW, Brini and van der Vegt, 2012), which uses thermodynamic cycles
to calculate non-bonded interaction potentials, and the Mori-Zwanzig framework (Di
Pasquale, Hudson, et al., 2018; Hijon et al., 2010), capable to derive a closed set of
equations for the dynamics of CG systems.

At higher coarse-graining levels of resolution, mesoscopic CG models have
been developed in order to capture the hydrodynamics of the system, such as
the multiparticle collision dynamics (M. Howard et al., 2018) and the well-known
dissipative particle dynamics (DPD, Groot and Warren, 1997). Developed at the
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4 – Theory of Coarse-Graining Modeling

Figure 4.1: Sketch of a CG mapping (red beads on right) on a generic atomistic system
(brown on left).

26



4.1 – Relevant degrees of freedom and characteristic equations

beginning as a top-down model, recent works showed that bottom-up approaches may
be used in order to achieve more accurate information about the range of validity of the
DPD assumptions (especially concerning the Markovian friction term, Kauzlaric et al.,
2012). Furthermore, DPD can be systematically derived via bottom-up techniques, such
as the CRW-DPD (Deichmann et al., 2014). It is worth noticing also that the rigorous
Mori-Zwanzig derivation can lead to the mathematical framework of DPD, despite
the two approaches are completely different. Other CG methods can be built up as
a combination of both top-down and bottom-up techniques. This is the case of the
MARTINI force field, developed by Marrink, Risselada, et al. (2007). Here, the basic
theory concerning the CGMD will be presented and has to be intended as a general
theoretical approach to coarse-graining, independently on what kind of technique the
user wants to adopt.

4.1 Relevant degrees of freedom and characteristic
equations

Reducing the number of DOF of a given system leads to a new concept that governs
the mesoscale world: the relevant variables (or, equally, relevant DOF). It means that
the final simplified approach must be able to reproduce the “interesting” behaviour of
a given system, neglecting the “uninteresting” details (some “uninteresting” variables
are not considered anymore). This action of reducing the number of DOF to catch
the relevant behaviour of a dynamic system is the core of the mesoscale, and every
technique based on that falls under the label of CG. The relevant DOF can be chosen as
spatial coordinates averaged of a given number of atoms or may belong to the densities
grid type.The former leads to a discrete CG that is named “superatom approach” (treated
later on in this chapter); the latter to the so-called mesoscopic continuum dynamics.
Therefore, the first question is necessarily aboutwhat can be considered relevant and, on
the other side, what can be considered irrelevant. In a preliminary way, it is mandatory
to stress that a dynamic system is characterised by many DOF and may be described at
various levels. For each level of description some variables are considered relevant in
order to specify univocally the state of that system at that specific level.

This new concept of “level” suggests that the multiscale pathway, from atomistic
to larger length scales, has a hierarchical structure, and each level of this “hierarchy”
can capture a given amount of information at a given time scale, by considering
the evolution of the characteristic equations related to those relevant variables. For
example, at low length-ranges of atomistic scale, full-atomistic models capture the
dynamics of the system considering each atom positions and momenta as relevant
variables, and by solving then the Hamilton’s equations of motion at the time scale
corresponding to atoms collisions and vibrations (as explained in Chapt. 3). On
the other hand, in continuum modelling, the corresponding relevant variables are
dynamical invariant (mass, momentum and energy). At this level no equation of motion
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4 – Theory of Coarse-Graining Modeling

is considered, as the relevant variables are constant in time and the corresponding time
scale is infinite (continuum).

The main concepts which the CG world is based on have been now introduced: the
concept of “relevant/interesting” and “irrelevant/uninteresting” variables; the concept
of “levels” and their hierarchical structure, as well as the very important concept of
characteristic equations related to the specific level. It is noteworthy to stress here that
the term “irrelevant” does not imply that those variables are neglected or forgotten, but,
more correctly, are taken into account in different ways by using proper mathematical
expressions (closures), that at a higher-coarser level allow to suitably reproduce the
correct dynamics of the system. Another important definition regards the so-called
Markovian systems. A system is defined Markovian if its future state is determined
by the present, but not the past, state of the relevant variables. This reflects the main
feature that the time scales of the relevant variables can be completely decoupled from
the time scales of the irrelevant ones, and such a system is described by differential
equations. When this time scales decoupling is not possible, then, a system is defined
as non-Markovian and its characteristic equations are integro-differential.

The loss of information due to the elimination of some irrelevant DOF brings to
two main terms that are considered in coarser levels, in order to reproduce the correct
dynamics of the system. The first one is a friction term and it comes out from the
principle that, by neglecting DOF in the coarse-graining procedure, the final CG system
would be artificially “accelerated” by a fictious inertia that obviously is not real. The
second term is a stochastic effect that aims to mimic the Brownian interactions that the
solute molecules would have with the surrounding solvent. The principle on which this
stochastic description is based on is that even if the system is Markovian, knowing the
present CG state is not sufficient to correctly predict the future, since many microstates
may correspond to the same macrostate. This uncertainty brings also to a statistical
description of the equation of the relevant variables in terms of probability density
function. Under the Markovian assumption it has the form of the so-called Fokker-
Planck equation. The eliminated DOF in Fokker-Planck equation assume the form of
both dissipative and thermal fluctuations effects. Dissipation and fluctuations have then
the same cause which is the CG procedure of eliminating irrelevant variables and, more
importantly, they are correlated by the fluctuation-dissipation theorem. The main goal
of the coarse-graining is to develop a suitable form for the Fokker-Planck equation,
depending on the specific CG level at which one is aiming to study a given system. For
example, in MARTINI CG force field the coarse level is so fine that both dissipation and
fluctuation terms are neglected; on the contrary, in much coarser techniques such as
dissipative particle dynamics (DPD, Groot and Warren, 1997), they assume a specific
expression that allows to account for the relevant phenomena at that coarse scale. The
Fokker-Planck equation decouples in a set of equations that describes the motion in a
CG system. This leads to the so-called generalised Langevin equation, which, in turn,
will assume different forms depending on the particular CG technique (DPD, Brownian
dynamics, etc …).
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4.2 – Generalised Langevin Equation of Motion

4.2 Generalised Langevin Equation of Motion

Let us consider a system with 𝑁′ relevant particles (coarse level) with positions
r′

𝑖 (𝑡) and velocities v′
𝑖 (𝑡), with 𝑖 = 1,2,…,𝑁′ and 𝑁″ irrelevant particles characterised

by positions r″
𝑗(𝑡) and velocities v″

𝑗(𝑡) with 𝑗 = 1,2,…,𝑁″.
The forces acting on the primed particles can be split in the following terms, in line

with the theory explained in Sect. 4.1:

• systematic (conservative) forces, F𝐶
𝑖 (r′), function of primed positions that accounts

for pairwise interactions between primed particles, as well as the interactions
with the double-primed particles as long as these are related to the primed
positions;

• frictional forces, F𝐷
𝑖 (r′), functions of the primed velocities. As for the systematic

forces, the frictional ones may include also the dependence on the double-primed
velocities, as far as they are related to the primed ones;

• stochastic (random) forces, F𝑅
𝑖 (r′), that accounts for the interactions with the

double-primed particles. They are characterised by statistical distributions and
may parametrically depend on primed coordinates.

Despite this formalism is general and elegant, two more assumptions are necessary
to solve practical problems:

F𝐶
𝑖 (r′) can be written equal to the gradient of the potential in primed coordinates,

that is equivalent to infer that systematic forces have no curl. The potential is the
potential of mean force and it will be explained in the next section;

a)

F𝐷
𝑖 (r′) have linear dependence on primed velocities at earlier times (first order

truncation in terms of velocities). “Earlier times” lead to take into account the
causality of the motion.

b)

The resulting equation of motion turns out to be the generalised Langevin equation:

𝑚𝑖
𝑑v𝑖
𝑑𝑡

= − 𝜕𝑉 𝑚𝑓

𝜕r𝑖⏟
F𝐶

𝑖

− ∑
𝑗 ∫

𝑡

0
𝜁𝑖𝑗(𝜏)v𝑗(𝑡 − 𝜏)𝑑𝜏

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

F𝐷
𝑖

+ 𝜂𝑖(𝑡)
⏟

F𝑅
𝑖

, (4.1)

where 𝑉 𝑚𝑓 is the potential of mean force (extensively explained in the next section)
and 𝜁𝑖𝑗(𝜏) corresponds to the friction kernel defined only for 𝜏 ≥ 0. The integration
interval in the second term of the right side in Eq. (4.1) can be extended from [0 to finite
time, 𝑡] to [0, ∞), if 𝑡 is much greater than the correlation time of the friction kernel.
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Therefore, F𝐷
𝑖 can be seen as a linear description of the velocities derivative, that takes

into account the past trajectory of the system.
The last term on the right side of Eq. (4.1) is a random term that considers the

stochastic fluctuations in the CG system, which obeys to the following mathematical
properties:

⟨𝜂(𝑡)⟩ = 0 (4.2)

⟨v𝑖(𝑡) ⋅ 𝜂𝑗(𝑡′)⟩ = 0, for any 𝑖, 𝑗 and 𝑡′ ≥ 𝜏. (4.3)
The two last terms of Eq. (4.1) (dissipation and fluctuations) are correlated with

each other through the so-called fluctuation-dissipation theorem (shown in sect. 4.4).
The generalised Langevin equation presented in Eq. (4.1) is expressed in Cartesian
coordinates. Concerning the generalised coordinates {q,p}, the mass corresponds to a
tensor and further details are shown in sect. 4.5.

In the following sections there will be presented the potential of mean force
(sect. 4.3) together with the fluctuation-dissipation theorem (sect. 4.4), as well as all the
approximations that bring to simple Langevin equations (sect. 4.5) and to Brownian
dynamics (sect. 4.6). Finally, the Fokker-Planck equation will be shown in sect. 4.7.

4.3 Potential of mean force and superatom approach
In order to reproduce the thermodynamics of the CG system at equilibrium with

a suitable accuracy, the partition function of the coarser system must be proportional
to the partition function referred to the finer system. This means that, in the canonical
ensemble, defining 𝜔(q’) as the probability density function referred to primed particles,
the following proportionality may be established:

𝜔(q’) ∝ ∫Ω𝑞″
𝑒−𝛽𝑉 (q’,q”)dq”, (4.4)

where Ω𝑞″ is the integration domain referred to q” and, as already mentioned, 𝛽 =
(𝑘𝐵𝑇 )−1.

The potential of mean force (PMF) can be defined as:

𝑉 𝑚𝑓(q’) = −𝑘𝐵𝑇 ln∫Ω𝑞″
𝑒−𝛽𝑉 (q’,q”)dq”. (4.5)

Combining the last two equations, the following identity is obtained:

𝜔(q’)dq’ ∝ 𝑒−𝛽𝑉 (q’,q”)dq’. (4.6)
By differentiating the expression reported in Eq. (4.5) with respect to q’, the average

force acting on the ensemble of primed particles can be obtained:
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4.4 – Fluctuation-dissipation theorem

∇𝑞′𝑉
𝑚𝑓(q’) =

∫Ω𝑞″ ∇𝑞′𝑉 (q’,q”) ⋅ 𝑒−𝛽𝑉 (q’,q”)dq”

∫Ω𝑞″ 𝑒−𝛽𝑉 (q’,q”)dq”
. (4.7)

More specifically, in a system of 𝑁 particles, the PMF is the potential that gives the
mean force acting on a 𝑗 particle integrated over the 𝑛 + 1,…,𝑁 configurations, when
the first 1,…, 𝑛 particles are kept fixed (Kirkwood, 1935).

4.3.1 Superatom technique
One of the several ways to coarse-grain a system is represented by the so-called

superatom approach. This means that a given number of atoms are grouped together
in a unique particle called superatom (or bead). This technique turns out to be useful
in long-chain systems like lipids, proteins or polymers, representing a reasonable
trade-off between computational cost and accuracy. Following the superatom approach,
few techniques have been developed (as already discussed in the introduction of this
chapter), but some of themmay neglect the two additional terms (friction and stochastic
fluctuations) of the Langevin equation. This leads to an artificially accelerated system,
and this is why this exclusion works only for low number of particles mapping (namely,
low number of atoms grouped together in a superatom or bead).

The interactions between two close beads in a chain are usually described through
soft harmonic potentials, which corresponds to describe the distance evolution of the
beads as a Gaussian distribution. Several approaches have been developed following this
technique; the most common ones are represented by the Finitely Extendable Nonlinear
Elastic (FENE) chain model, which limits the chain extension to a finite upper limit.
Some stochastic applications of FENEmodels have also been developed (Fan et al., 2003).

Another model is the one developed by Nielsen et al. (2003) that specifically
reproduces targeted compounds, by using a three non-hydrogen atoms mapping
together with soft harmonic bond and angle potentials. This model is based on a
parametrization of surface tension and density of the compounds by reproducing the
end-to-end distance distributions from atomistic simulations. A last example of a very
well-established and employed tool is the MARTINI model (Marrink, Risselada, et al.,
2007), which lies on a four-to-one mapping and that will be extensively described in
the second part of this work.

4.4 Fluctuation-dissipation theorem
In this section the correlation between the last two terms (friction and noise) of the

Langevin equation is presented. Let us consider the long-time range contribution of
the kinetic energy 𝒦 = ∑𝑖 1/2𝑚𝑖𝑣𝑖

2. While the conservative force, F𝐶, keeps the total
energy (potential + kinetic) constant, the friction (or dissipative) force, F𝐷, lowers 𝒦

31



4 – Theory of Coarse-Graining Modeling

and the noise (or stochastic) term, F𝑅, increases it. Let us consider now the velocity
correlation function, expressed as ⟨v𝑖(𝑡)v𝑗(𝑡 + 𝜏)⟩. For large values of 𝑡 it becomes
independent on 𝑡 itself. The thermodynamic quantity ⟨v𝑖(𝑡)v𝑗(𝑡)⟩ must obey the so-
called equipartition theorem:

⟨𝑣𝑖𝛼𝑣𝑗𝛽⟩ =
𝑘𝐵𝑇
𝑚𝑖

𝛿𝑖𝑗𝛿𝛼𝛽. (4.8)

This is equivalent to infer that if a process always starts with the identical
initial conditions at 𝑡 = 0, and several simulations are performed, after a suitably
long simulation time, the average velocities correlation functions must fulfil the
equipartition theorem.

A more general formulation for the fluctuation-dissipation theorem is the one
proposed by Kubo (1966), making a distinction between a first and second fluctuation-
dissipation theorem. In order to show them, let us define a single velocity 𝑣(𝑡) for a
pure Langevin equation (neglecting the systematic forces):

𝑚 ̇𝑣(𝑡) = − ∫
𝑡

0
𝜁(𝑡)𝑣(𝑡 − 𝜏)d𝜏 + 𝜂(𝑡) + 𝐹 𝑒𝑥(𝑡), (4.9)

where 𝐹 𝑒𝑥(𝑡) is an external force necessary to measure the linear response of the
system. Applying an external impulse-force: 𝐹 𝑒𝑥(𝑡) = 𝑚𝑣0𝛿(𝑡) where 𝛿(𝑡) is the Dirac
delta function, the ensemble-averaged velocity ⟨𝑣(𝑡)⟩ will correspond to the response:
𝑣0𝜙(𝑡). This means that starting from random initial conditions and unperturbed
equilibrium distribution, it is true that ⟨𝑣(𝑡)⟩ = 𝑣0𝜙(𝑡) and, for independent realizations
of the noise, the first fluctuation-dissipation theorem corresponds to:

𝜙(𝑡) =
⟨𝑣(𝑡0)𝑣(𝑡0 + 𝑡)⟩

⟨𝑣2⟩
, (4.10)

where the correlation functions are stationary (independent on 𝑡0) and ensemble
averaged.The proof of the correlation reported in Eq. (4.10) is extensively demonstrated
in Berendsen (2007).

The second fluctuation-dissipation theorem states that:

⟨𝜂(𝑡0)𝜂(𝑡0 + 𝑡)⟩ = 𝑚⟨𝑣2⟩𝜁(𝑡) = 𝑘𝐵𝑇 𝜁(𝑡). (4.11)

In the case of Langevin equation without considering the systematic forces
(pure Langevin equation), the expression reported in Eq. (4.11) can be rigorously
demonstrated (Kubo et al., 1985). As it happens in all the realistic MD simulations,
systematic forces are considered and the theorem cannot be generally proven anymore.
Several particular cases have been considered and validated in the latter scenario
(Bossis et al., 1982; Ciccotti and Ryckaert, 1981; McDowell, 2000). In a more general
way, Berendsen (2007) recommends to use time-independent friction kernels when
the systematic forces relaxation time is of the same order as the friction characteristic
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times. In this case, the system is called Markovian and the characteristic equation is
labelled as Markovian-Langevin equation. In a Markovian process, the changes in 𝒦
due to friction (decrease) and noise (increase) are shown to be:

(
𝑑𝒦
𝑑𝑡 )𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛

= 𝑚𝑣 ̇𝑣 = −𝜁𝑣2 = −
2𝜁
𝑚

𝒦, (4.12)

⟨
𝑑𝒦
𝑑𝑡 ⟩𝑛𝑜𝑖𝑠𝑒

=
𝐴𝜂

2𝑚
, (4.13)

where 𝐴𝜂 is the intensity if a 𝛿-noise-force, 𝐴𝜂𝛿(𝑡). The balance of Eq. (4.12) and
Eq. (4.13) leads to ⟨𝒦⟩ = 𝐴𝜂/(4𝜁). The stationary equilibrium at temperature 𝑇0 is
shown to satisfy

𝐴𝜂 = 2𝜁𝑘𝐵𝑇0, (4.14)

for one degree of freedom (one dimension system). If the temperature deviates from
the reference value 𝑇0, then the decay will be exponential with respect to 𝑇0 itself. In
other words,

𝑑𝑇
𝑑𝑡

= −
2𝜁
𝑚

(𝑇 − 𝑇0), (4.15)

where 𝑚/2𝜁 is the characteristic time constant of the decay.The physical meaning of
all the theory just presented above is the following: velocity fluctuations are stabilised
thanks to the presence of friction and noise terms; moreover, the increase and decrease
of kinetic energy, due to noise and friction respectively, can be thought as heat exchange
with a bath at a reference temperature 𝑇0 (independent on both systematic forces and
time, as well as time-dependence of velocity autocorrelation functions).

In the case of non-Markovian systems, the friction decrease reads as follows

⟨
𝑑𝒦
𝑑𝑡 ⟩𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛

= 𝑚⟨𝑣(𝑡) ̇𝑣(𝑡)⟩ = − ∫
∞

0
𝜁(𝑡)⟨𝑣(𝑡)𝑣(𝑡 − 𝜏)⟩𝑑𝜏, (4.16)

depending on both velocity autocorrelation function and the systematic (conservative)
forces.

4.5 Langevin equation in generalised coordinates
Let us define a system with 𝑁 particles identified in the cartesian coordinates by

r. The generalised coordinates q are defined in such a way that r𝑖 = r𝑖(𝑞1, .., 𝑞𝑛), with
𝑖 = 1,…,𝑁 and 𝑛 = 3𝑁. Considering also the generalised momenta p, the set of
generalised variables is z = {q,p}. The mass is expressed by the so-called mass tensor
M. In order to find it out, let us consider the expression of kinetic energy 𝒦, in terms
of generalised coordinates q:
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4 – Theory of Coarse-Graining Modeling

𝒦 =
𝑁

∑
𝑖=1

1
2

𝑚𝑖 ̇r2 =
𝑛

∑
𝑘,𝑙=1

𝑁

∑
𝑖=1

𝑚𝑖
𝜕r𝑖
𝜕𝑞𝑘

𝜕r𝑖
𝜕𝑞𝑙

̇𝑞𝑘 ̇𝑞𝑙, (4.17)

where:

M = 𝑀𝑘𝑙 =
𝑁

∑
𝑖=1

𝑚𝑖
𝜕r𝑖
𝜕𝑞𝑘

𝜕r𝑖
𝜕𝑞𝑙

. (4.18)

The mass tensor M is symmetric and invertible (det M ≠ 0) and its eigenvalues
are the masses 𝑚𝑖. It is correlated to the generalised coordinates through the following
relation:

p = Mq̇, (4.19)

or, equally

q̇ = M−1p. (4.20)

Labelling the relevant coordinates as q′ and the irrelevant ones with q″, the mass
tensor can be decomposed as

M−1 = (
X Y
Y𝑇 Z) . (4.21)

Consequently,

(q̇′ q̇″) = (
X Y
Y𝑇 Z) (

p′

p′′) . (4.22)

From Eq. (4.22) the two following relations hold:

q̇′ = ⟨X⟩″p′ + ⟨Yp′′⟩″, (4.23)

ṗ′ = − ⟨
𝜕𝑉
𝜕q′ ⟩″

+ friction + noise, (4.24)

where ⟨⟩″ denotes a canonical distribution average. On the right side of Eq. (4.24)
the three terms are similar to the ones seen in the Langevin equation in cartesian
coordinates. However, on the left hand side of Eq. (4.24) the expression is different,
in line with the matrix notation, yielding:

𝑑
𝑑𝑡

⟨X⟩−1
″ v(𝑡) = −𝜕𝑉 𝑚𝑓

𝜕q
− ∫

𝑡

0
𝜁(𝜏)v(𝑡 − 𝜏)𝑑𝜏 + 𝜂(𝑡). (4.25)
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Berendsen (2007) and Fixman (1974) extensively show that, in some specific cases,
if the mass tensor is independent on time-dependent variables, then the generalised
Langevin equations can be written down as follows:

Mv̇ = F𝐶(q′) − ∫
𝑡

0
𝜁(𝜏)v(𝑡 − 𝜏)𝑑𝜏 + 𝜂(𝑡), (4.26)

v = q̇, (4.27)
M = X−1, (4.28)

where M is the mass tensor, 𝑋𝑘𝑙 = ∑𝑖 (1/𝑚𝑖 ⋅ 𝜕𝑞″
𝑘 /𝜕r𝑖 ⋅ 𝜕𝑞″

𝑙 /𝜕r𝑖) and F𝐶(q′) are the
systematic (conservative) forces.

4.6 Brownian dynamics
When the conservative forces are slow, namely when they are pretty much constant

with the time scale 𝜏𝐶 = 𝑚/𝜁 related to the velocity correlation function, the Langevin
equation can be averaged on a time step Δ𝑡 > 𝜏𝐶. The average over the left hand side
term of Eq. 4.26 yields a small quantity that can be neglected. Therefore, a non-inertial
Langevin dynamics is obtained:

0 ≈ 𝐹𝑖[q(𝑡)] − ∑
𝑗

𝜁𝑖𝑗𝑣𝑗(𝑡) + 𝜂𝑖(𝑡), (4.29)

which corresponds to the following matrix notation:

𝜁v = F + 𝜂(𝑡). (4.30)
The Brownian equation related to the velocities becomes:

v = q̇ = 𝜁 −1F + 𝜁 −1B𝜂0(𝑡), (4.31)

where B and 𝜂0(𝑡) are quantities that are defined so that:

BB𝑇 = 2𝜁𝑘𝐵𝑇, (4.32)
⟨𝜂0(𝑡)⟩ = 0, (4.33)

⟨𝜂0(𝑡0)𝜂0(𝑡0 + 𝑡)⟩ = I𝛿(𝑡). (4.34)
In the context of MD simulations, starting from Eq. (4.31), the positions q can be

updated through the Euler step and, in components notation, the equation becomes:

𝑞𝑖(𝑡 + Δ𝑡) = 𝑞𝑖(𝑡) +
Γ𝑖

𝑘𝐵𝑇
𝐹𝑖(𝑡)Δ𝑡 + 𝜉 (4.35)

where Γ𝑖 = 𝑘𝐵𝑇/𝜁𝑖𝑖 and 𝜉 is a random number (from a probability distribution) so
that:

⟨𝜉⟩ = 0, ⟨𝜉2⟩ = 2ΓΔ𝑡. (4.36)
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4.7 Fokker-Planck equation
As in classical atomistic MD the Liouville equation is used to describe the evolution

of the density function in the phase space, here in CG systems the equivalent approach
can be expressed by the so-called Fokker-Planck equation (FPE). The two approaches
are similar in terms of statistical mechanics, both of them describing the evolution
of density functions and directly related to the corresponding dynamics equations of
motion (Hamiltonian equation for MD and Langevin equation for CG systems). The
main difference lies on the stochastic nature that Fokker-Planck equations take into
account.

The general FPE proposed (Risken and Frank, 1989; van Kampen, 1981) in matrix
notation reads as follows:

𝜕𝑓𝑁𝑝

𝜕𝑡
= −∇𝑇

𝑥(a𝑓𝑁𝑝
) + 1

2
tr (∇𝑥∇𝑇

𝑥BB
𝑇𝑓𝑁𝑝

), (4.37)

where the first and the second terms on the right hand side correspond respectively
to a drift and a diffusion contribution. Applying Eq. (4.37) to the generalised Langevin
dynamics, assuming B constant, the following relation holds:

𝜕𝑓𝑁𝑝

𝜕𝑡
= −v𝑇∇𝑞𝑓𝑁𝑝

−F𝑇M−1∇𝑣𝑓𝑁𝑝
+ tr (M−1𝜁)𝑓𝑁𝑝

+

+ v𝑇𝜁M−1∇𝑣𝑓𝑁𝑝
+ 1

2
tr (M−1BB𝑇M−1∇𝑞∇𝑞𝑓𝑁𝑝

).
(4.38)

Reducing Eq. (4.38) to the one-dimensional case, the so-called Kramers equation
(Kramers, 1940) is obtained:

𝜕𝜌
𝜕𝑡

= −𝑣
𝜕𝜌
𝜕𝑞

− 𝐹
𝑚

𝜕𝜌
𝜕𝑣

+
𝜌𝑣
𝑚

𝜕𝜌
𝜕𝑣

+
𝜁
𝑚

𝜌 +
𝜁𝑘𝐵𝑇

𝑚2
𝜕2𝜌
𝜕𝑣2 . (4.39)

The corresponding equilibrium distribution is shown to be:

𝑓 𝑒𝑞
𝑁𝑝

(𝑞, 𝑣) ∝ exp [− 𝑚𝑣2

2𝑘𝐵𝑇] exp [−
𝑉 (𝑞)
𝑘𝐵𝑇 ] , (4.40)

where 𝑉 (𝑞) is the potential related to the force, 𝐹 = −𝑑𝑉 (𝑞)/𝑑𝑞.
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Chapter 5

Theory of Continuum Modeling

5.1 From Atomistic to Continuum Modelling
In this section, continuum models are derived starting from one of the main results

shown in atomistic modelling, namely the Liouville equation. The aim of continuum
modelling is to describe the evolution of continuous properties, such as number
density functions (NDFs) and other macroscopic variables (density, momentum, etc.).
In the continuum modelling context, NDFs represent group of molecules that have
in common the same infinitesimal physical and phase space that evolves over time,
without tracking the trajectory of single particles, as it is done in atomistic modelling.
Passing then through Boltzmann equation and by using the moments of the NDF,
continuity, Navier-Stokes and energy transport equations are derived. Further details
concerning importance and modelling properties of number density functions are
reported in Appendix A. Turbulence modelling is exploited, with particular attention to
Reynolds- and Favre-averaged Navier-Stokes equation. Population balance modelling is
finally introduced in both laminar and turbulent conditions, focusing on the functional
form of PBEs source term and, more specifically, about aggregation kernels.

5.1.1 From Liouville to Boltzmann Equation
Starting from the Liouville equation reported in Eq. (3.13), referred to the probability

density function 𝑓𝑁𝑝
for a system of 𝑁𝑝 particles, and developing explicitly the Liouville

operator 𝑖𝐿𝑓𝑁𝑝
, Liouville equation in generalised coordinates can be rearranged as

follows:

d𝑓𝑁𝑝

d𝑡
=

𝜕𝑓𝑁𝑝

𝜕𝑡
+ q̇ ⋅ ∇q𝑓𝑁𝑝

+ ̇p ⋅ ∇p𝑓𝑁𝑝
= 0. (5.1)

Let pass from generalised coordinates q and p to Cartesian coordinates x = (𝑥, 𝑦, 𝑧).
Each 𝑖𝑡ℎ particle is characterised by a position vector x𝑖 = (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) and velocity v𝑖 =
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5 – Theory of Continuum Modeling

(𝑣𝑖𝑥, 𝑣𝑖𝑦, 𝑣𝑖𝑧). The momenta can be therefore expressed by the relation p = 𝑚v. Eq. (5.1)
becomes:

𝜕𝑓𝑁𝑝

𝜕𝑡
+ ẋ ⋅ ∇x𝑓𝑁𝑝

+ v̇ ⋅ ∇v𝑓𝑁𝑝
= 0, (5.2)

where the notation ∇x stands for the partial derivative vector with respect to
position x, that is ∇x = 𝜕/𝜕x = (𝜕/𝜕𝑥, 𝜕/𝜕𝑦, 𝜕/𝜕𝑧). The same notation is obviously
valid for ∇v = 𝜕/𝜕v = (𝜕/𝜕𝑣𝑥, 𝜕/𝜕𝑣𝑦, 𝜕/𝜕𝑣𝑧) and from now on these two equivalent
expressions will be used interchangeably.

The acceleration term ̇v can be furthermore decomposed into two different
contributions

̇p = 𝑚 ̇v = F + 𝑚g, (5.3)

that are molecular accelerations due to force fields (g) and to discrete events
of molecular collisions (F). The Liouville equation can be therefore written down
accounting explicitly for all the 𝑖𝑡ℎ particles contribution (summation over 𝑖) in the
following way:

𝜕𝑓𝑁𝑝

𝜕𝑡
+

𝑁𝑝

∑
𝑖=1 (

v𝑖 ⋅
𝜕𝑓𝑁𝑝

𝜕x𝑖 )
+ g ⋅

(

𝑁𝑝

∑
𝑖=1

𝜕𝑓𝑁𝑝

𝜕v𝑖 )
= −

𝑁𝑝

∑
𝑖=1

𝑁𝑝

∑
𝑗=1

F(r𝑖,𝑗)
𝑚

⋅
𝜕𝑓𝑁𝑝

𝜕v𝑖
, (5.4)

where the third term on left hand side is a molecular acceleration term in
velocity space and the term on right hand side corresponds to discrete events due
to collisions/molecular interactions, between generic particles 𝑖 and 𝑗 that have a
distance vector r𝑖,𝑗. Eq. (5.4) represents an alternative form of Eq. (3.13), always fully
deterministic and time reversible but expressed in terms of Cartesian coordinates.

Now, let us introduce the number density function, 𝑓𝑁 (𝑡,x, v) = ∑𝑖⟨𝛿(x𝑖 −x)𝛿(v𝑖 −
v)⟩ which accounts for the number of molecules that are in the same infinitesimal
configuration, in terms of position x and velocity v. Therefore, from now on, the NDF
will identify a group of molecules, of which the single trajectories have been averaged.
The brackets ⟨⋅⟩ identify this average over all the possibles states of the 𝑁𝑝 particles
system, namely ⟨⋅⟩ = ∫ ⋅𝑓𝑁𝑝

𝑑x𝑑v, where x = {x1, ...,x𝑁𝑝
} and v = {v1, ..., v𝑁𝑝

}.
By integrating Eq. (5.4) over all the molecular variables except for 𝑖𝑡ℎ molecule and
summing over all possible 𝑖, the Boltzmann equation comes out (indistinguishable
molecules with equal mass 𝑚):

𝜕𝑓𝑁
𝜕𝑡

+ v ⋅
𝜕𝑓𝑁
𝜕x

+ g ⋅
𝜕𝑓𝑁
𝜕v

= ℂ. (5.5)

The term ℂ is the collision integral and accounts for all molecular interactions
(collisions, discrete events). It usually has a very complicated functional form, especially
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due to the highly non-linear intermolecular potentials. It is worth mentioning some
interesting properties about the term ℂ: the collision integral applied to mass,
momentum and energy is always null, stating the conservation of those properties.
More generally, it is possible to infer that at equilibrium the collision term is null and
the distribution of the NDF tends to a Maxwell-Boltzmann distribution (Gaussian).
The Maxwell-Boltzmann distribution is valid in case of Knudsen number much smaller
than unity (many collisions occurs) and especially when the number of states available
is much greater than the number of molecules; otherwise, a quantum approach is
needed. Independently on the complexity of the interaction potential employed in
the collision term, every system at equilibrium will always evolve following the
Maxwell-Boltzmann distribution.

However, there are many cases in which, for a given range of intermediate Knudsen
number (0.1 < 𝐾𝑛 < 100), the system is out of equilibrium, it cannot be treated
as a continuum, and the collision integral is therefore non-zero. In this case, suitable
closures are needed; one of the most famous example is represented by the hard-spheres
potential, in which the so-called Boltzmann Stosszahlansatz approximation is done
(indistinguishable particles, two-particles PDF equal to the product of one-particles
PDF, molecular chaos) in order to close the collision term.

5.1.2 From Boltzmann to Continuity, Navier-Stokes and Energy
equations

In this section the main equations of change for continuum systems will be
presented, starting from Boltzmann equation (5.5). In a preliminary way, let us take a
NDF 𝑓𝑁(𝑡,x, v) and define the generic k𝑡ℎ order moment of a distribution:

𝑚(k) = ∫Ω𝑣

vk𝑓𝑁(𝑡,x, v)𝑑v, (5.6)

where Ω𝑣 is the velocity phase space domain.
The 0𝑡ℎ-order moment corresponds to the total number, 𝑁𝑡 of entities (disperse

phase, e.g., bubbles, particles, molecules, …) in the mesoscale system, per unit volume:

𝑚(0,0,0) = ∫Ω𝑣

𝑓𝑁(𝑡,x, v)𝑑v = 𝑁𝑡. (5.7)

The 1𝑡ℎ-order moment divided by 0𝑡ℎ one corresponds to the mean velocity in
number. Therefore, the following equality holds:

𝑚(1,0,0) = ∫Ω𝑣

v𝑓𝑁(𝑡,x, v)𝑑v = 𝑁𝑡(𝑡,x) ⋅ 𝑈𝑥(𝑡,x), (5.8)

whereU(𝑡,x) = (𝑈𝑥,𝑈𝑦,𝑈𝑧) is the number-averaged velocity. It is straightforward that
𝑈𝑥 = 𝑚(1,0,0)/𝑁𝑡, 𝑈𝑦 = 𝑚(0,1,0)/𝑁𝑡 and 𝑈𝑧 = 𝑚(0,0,1)/𝑁𝑡.
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The mass density (total mass of molecules per unit volume) is

𝜌(𝑡,x) = 𝑚 ∫Ω𝑣

𝑓𝑁(𝑡,x, v)𝑑v, (5.9)

where 𝑚 is the molecule mass.
The momentum density is defined as follows:

𝜌U = 𝑚 ∫Ω𝑣

v𝑓𝑁(𝑡,x, v)𝑑v. (5.10)

Let us take now the Boltzmann equation (5.5). Let us multiply it by 𝑚𝑑v and
integrate it out in Ω𝑣 (0𝑡ℎ-order moment),

∫Ω𝑣
(

𝜕𝑓𝑁
𝜕𝑡

+ 𝜕
𝜕x

⋅ (v𝑓𝑁) + 𝜕
𝜕v

⋅ (g𝑓𝑁) = ℂ) 𝑚𝑑v. (5.11)

By applying the definitions reported in Eq. (5.7) and Eq. (5.9), the continuity equation
comes out:

𝜕𝜌
𝜕𝑡

+ 𝜕
𝜕x

⋅ (𝜌U) = 0, (5.12)

where the collisional term ℂ is null if integrated over all the velocity phase space
domain at equilibrium (Maxwell-Boltzmann distribution) and the acceleration term
results zero by integrating it out by parts (the NDF is null at phase space domain
border 𝜕Ω𝑣).

Following the same procedure, let us apply the 1𝑠𝑡-order moment (Eq. 5.8) to
Eq. (5.5):

∫Ω𝑣
(

𝜕𝑓𝑁
𝜕𝑡

+ 𝜕
𝜕x

⋅ (v𝑓𝑁) + 𝜕
𝜕v

⋅ (g𝑓𝑁) = ℂ) 𝑚v𝑑v. (5.13)

Introducing the celerity c = v − U the following equality trivially holds:

∫ 𝑓𝑁(v)c𝑑v = ∫ 𝑓𝑁(c)c𝑑c = 0. (5.14)

After some trivial calculations and by using the definitions given in Eq. (5.8) and
Eq. (5.10), Eq. (5.13) results in:

𝜕
𝜕𝑡

(𝜌U) + 𝜕
𝜕x

⋅ (𝜌UU) + 𝜕
𝜕x

⋅
[

𝑚 ∫Ω𝑣

cc𝑓𝑁(c)𝑑c
]

− g𝑚 ∫Ω𝑣

𝑓𝑁(v)𝑑v = 0, (5.15)

where the quantity aa, with a generic tensor, represents a generic tensor product.
By defining the momentum flux tensor:
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Π = 𝑚 ∫Ω𝑣

cc𝑓𝑁(c)𝑑c = −Σ, (5.16)

opposite of the viscous stress tensor Σ, the following equation is obtained:

𝜕
𝜕𝑡

(𝜌U) + 𝜕
𝜕x

⋅ (𝜌UU) = 𝜌g − 𝜕
𝜕x

⋅ Π. (5.17)

By decomposing now the quantity Π = 𝜏 + 𝑝I, where 𝑝 = 1/3𝑡𝑟(Π) and 𝜏 is a
traceless stress tensor, the equation of motion becomes:

𝜕
𝜕𝑡

(𝜌U) + 𝜕
𝜕x

⋅ (𝜌UU) = − 𝜕
𝜕x

𝑝 + 𝜌g − 𝜕
𝜕x

⋅ 𝜏. (5.18)

Having a closer look at Eq. (5.23), it turns out that Eq. (5.23) is unclosed due to
the viscous term 𝜏. For Newtonian (constant viscosity 𝜇) and incompressible fluids (𝜌
constant), it can be closed with the expression 𝜏 = −𝜇(∇v+ ∇v𝑇) (∇ coincides with the
expression 𝜕/𝜕x), yielding the very famous so-called Navier-Stokes equation:

𝜌 𝜕
𝜕𝑡

(U) + U ⋅ 𝜕
𝜕x

(𝜌U) = − 𝜕
𝜕x

𝑝 + 𝜌g + 𝜇 𝜕2

𝜕x2v (5.19)

or, equally:
𝜌 𝜕

𝜕𝑡
(U) + U ⋅ ∇(𝜌U) = −∇𝑝 + 𝜌g + 𝜇∇2v. (5.20)

Following again the same approach, by applying the 2𝑛𝑑-order moment transform
to Boltzmann equation, the mechanical energy equation can be obtained. Let us define
the internal energy, 𝜌𝑈̂, and kinetic energy, 𝜌 ̂𝐾:

𝜌𝑈̂ = ∫Ω𝑣
(

1
2

𝑚c2
) 𝑓𝑁(v)𝑑v = 𝑚

2 ∫Ω𝑣

c2𝑑c, (5.21)

𝜌 ̂𝐾 = ∫Ω𝑣
(

1
2

𝑚U2
) 𝑓𝑁(v)𝑑v = 𝑚U2

2 ∫Ω𝑐

𝑑c = 𝜌U
2

2
. (5.22)

By multiplying Eq. (5.5) by the quantity 1/2𝑚v2𝑑v and integrating out over Ω𝑣
(remember the equality v = U + c) the energy balance equation referred to the energy
per unit mass ̂𝐸 = ̂𝐾 + 𝑈̂ is obtained:

𝜕
𝜕𝑡

(𝜌 ̂𝐸) + 𝜕
𝜕x

⋅ (𝜌U ̂𝐸) = − 𝜕
𝜕x

⋅ J𝑞 + 𝜌g ⋅ U − 𝜕
𝜕x

⋅ (Π ⋅ U), (5.23)

where the three terms on right hand side correspond respectively to conduction,
work due to gravity and work due to viscous stresses.
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5.2 Turbulence Modelling

5.2.1 Reynolds decomposition and RANS equations
When the flow becomes turbulent, a proper mathematical description must be

introduced since turbulence affects heat and mass transfer, as well as aggregation and
breakage phenomena. Being turbulent flows chaotic, random and irregular, a statistical
description of the evolution of instant variables is needed. More than 100 years ago,
Reynolds introduced a statistical averaging method in order to simplify the description
of the fluctuating properties in turbulent flows. He proposed to split the instantaneous
property 𝜙(𝑡,x) that fluctuates in time 𝑡 and physical space x into two contributions:
an average contribution plus the fluctuation of the given property. This is the very
well-known Reynolds decomposition:

𝜙 = ̄𝜙 + 𝜙′, (5.24)
where 𝜙′ is the fluctuating component and ̄𝜙 represents the average, also known as

Reynolds average:

̄𝜙(𝑡,x) = 1
𝜏 ∫

𝑡+𝜏

𝑡
𝜙(x, ̃𝑡)𝑑 ̃𝑡, (5.25)

representing the average of 𝜙 in a time interval 𝜏. Thanks to Reynolds
decomposition, shown here in Eq. (5.24), a statistical description of the flow field
can be obtained together with the evolution of turbulent properties. More specifically,
let us decompose the instantaneous fluid velocity in the following way: U = U + u′.
Applying Reynolds decomposition approach to continuity and Navier-Stokes equations
(the body forces g are here neglected) already presented in this chapter respectively
in Eq. (5.12) and Eq. (5.19), the so-called Reynolds-averaged Navier-Stokes (RANS)
equations are obtained. The whole mathematical derivation is here omitted (the reader
can find it in Andersson et al., 2012) and only the final result is shown. RANS equations
read as follows:

𝜕U
𝜕𝑡

+ U ⋅ 𝜕U
𝜕x

= −1
𝜌

𝜕
𝜕x

⋅
[

𝑃 I + 𝜇
(

𝜕U
𝜕x

+ 𝜕U
𝜕x

𝑇

)
− 𝜌u′u′

]
, (5.26)

where the term −𝜌u′u′ is labelled as Reynolds stresses, which represents an
unclosed term. The Boussinesq approximation is therefore adopted in order to close
the Reynolds stress tensor, in terms of fluid mean velocity field. It is based on the
hypothesis that the Reynolds stress tensor is proportional to the mean velocity
gradients:

− 𝜌u′u′ = 𝜇𝑡 (
𝜕U
𝜕x

+ 𝜕U
𝜕x

𝑇

)
− 2

3
𝜌𝑘I, (5.27)
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where 𝜇𝑡 is the turbulent eddy viscosity (it is not a physical quantity, but rather
a numerical term that comes out from the closure) and the turbulent kinetic energy
𝑘 = 1

2u
′u′ is introduced.

When density fluctuations are important (e.g., compressible gas flows, two-liquids
flows), a density-average, or Favre-average (Favre, 1965), must be introduced, strictly
related to Reynolds average:

⟨𝜙(𝑡,x)⟩ =
∫ 𝜌(𝑡,x)𝜙(𝑡,x)d𝑡

∫ 𝜌(𝑡,x)d𝑡
=

𝜌𝜙
̄𝜌
, (5.28)

where ⟨⋅⟩ represents the Favre average. Following the same procedure and the same
closure as for the RANS equations, the FANS equation is easily obtained:

𝜕 ̄𝜌⟨U⟩
𝜕𝑡

+
𝜕 ̄𝜌⟨U⟩⟨U⟩

𝜕x
= − 𝜕

𝜕x
⋅ [⟨𝑃 ⟩ I+

+ (𝜇 + 𝜇𝑡) (
𝜕⟨U⟩

𝜕x
+

𝜕⟨U⟩
𝜕x

𝑇
− 2

3
𝜕

𝜕x
⋅ ⟨U⟩I) − 2

3
̄𝜌𝑘I], (5.29)

where the divergence of the velocity 𝜕/𝜕x ⋅ U is also taken into account, showing
the general case of compressible fluid.

As said above, the turbulent viscosity 𝜇𝑡, in contrast with molecular viscosity,
is not a physical property, but a mathematical artifact of the turbulence model. The
mathematical closure procedure is now moved to this term, that is still unclosed. In
general, turbulent eddy viscosity 𝜈𝑡 is proportional to the large-scale eddy velocity
𝑢 and its characteristic length scale 𝑙. Depending on the kind of models adopted to
close it, several turbulence models have been developed and classified in three main
categories: zero-, one- and two-equation models. Here one of the two-equation models
will be presented, being the turbulence model adopted in the CFD simulations in the
current work. This is the 𝑘 − 𝜀 standard and will be presented in the next section.

5.2.2 𝑘 − 𝜖 standard turbulence model
The 𝑘 − 𝜀 standard is one of the most employed turbulence models in CFD

calculations, thanks to its simplicity and to its direct link to key turbulent properties,
such as the turbulent dissipation rate 𝜀, also necessary to close 𝑘-equation itself.
Therefore, two transport equations for 𝑘 and 𝜀 are solved:

𝜕𝑘
𝜕𝑡

+ U ⋅ 𝜕𝑘
𝜕x

= 𝜈𝑡 [(
𝜕U
𝜕x

+ 𝜕U
𝜕x

𝑇

)
⋅ 𝜕U

𝜕x]
− 𝜀 + 𝜕

𝜕x
⋅ [(𝜈 +

𝜈𝑡
𝜎𝑘 )

𝜕𝑘
𝜕x] , (5.30)
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𝜕𝜀
𝜕𝑡

+ U ⋅ 𝜕𝜀
𝜕x

= 𝐶𝜀1𝜈𝑡
𝜀
𝑘 [(

𝜕U
𝜕x

+ 𝜕U
𝜕x

𝑇

)
⋅ 𝜕U

𝜕x]

−𝐶𝜀2
𝜀2

𝑘
+ 𝜕

𝜕x
⋅ [(𝜈 +

𝜈𝑡
𝜎𝜀 )

𝜕𝜀
𝜕x] ,

(5.31)

where 𝜈𝑡 = 𝜇𝑡
𝜌 = 𝐶𝜇

𝑘2

𝜀 , 𝐶𝜇 = 0.09, 𝐶𝜀1 = 1.44, 𝐶𝜀2 = 1.92, 𝜎𝑘 = 1.00 and 𝜎𝜀 = 1.30.

5.3 Population Balance Modelling

5.3.1 PBE and GPBE
The aim of this section is to write down the kinetic equation related to NDF in terms

of PBE. In a preliminary way, it is worthwhile to stress again that a NDF, as defined
above, is an average quantity of the disperse phase based on the atomistic possible
states (look up in section 5.1.1 at the definition of NDF). However, at the clusters scale,
this information (stochastic behaviour and trajectories of the single particles) is lost
and the evolution of the entire population is considered (in an Eulerian approach), by
trasporting a fully deterministic equation (PBE or GPBE) as long as the population is
made by a large number of particles.

The last definition that is noteworthy to introduce is the distinction between
internal and external coordinates. The former consist in something that can be
classified as an intimate property (internal) of the disperse phase (particle velocity,
concentration, particle size). On the other hand, the external coordinates are those that
do not belong directly to the particles; for example, physical space represents a set of
external coordinates.

Adopting the same approach already seen for the Boltzmann and Liouville
equations, the PBE referred to the NDF 𝑓𝑁(𝑡,x, 𝜉) evolving in time, 𝑡, physical space x
and with respect to 𝑀 internal coordinates 𝜉 = (𝜉1, ..., 𝜉𝑀) reads as follows (Marchisio
and Fox, 2013; Ramkrishna, 2000):

𝜕𝑓𝑁
𝜕𝑡

+ 𝜕
𝜕x

⋅ (v𝑓𝑁) + 𝜕
𝜕𝜉

⋅ (𝜉̇𝑓𝑁) = ℎ𝜉, (5.32)

where the quantity 𝜉̇ corresponds to the time derivative of the internal coordinate
vector 𝜉. For the numerical solution of Eq. (5.32), suitable expressions (closures) for the
phase space coordinates rates (last term on left hand side of Eq. 5.32) are needed and
vary from case to case.

Solving numerically Eq. (5.32) means achieving the knowledge of the NDF at every
physical point in space and time, and every phase space point. If the internal coordinates
vector 𝜉 is made by just one element (e.g., 𝜉 = 𝐿 particle size) then the PBE is said to
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be univariate. If the elements of the vector 𝜉 are two, then the PBE is defined bivariate
and, finally, multivariate PBE for higher dimensional internal coordinates vector 𝜉. It
is worthwhile to mention here that in Eq. (5.32) together with the advection term in
physical space (second term on left hand side), theremight be a diffusive-flux termwhen
the disperse phase consists of fine particles (characteristic dimension less than 1micron)
or low-inertia particles (e.g., bubbles), due to Brownian and turbulent fluctuations.

Let us consider now the transport equation for the NDF 𝑓𝑁(𝑡,x, v, 𝜉), in which the
particle velocity v is considered as internal coordinate vector. This is the case of non
negligible inertia particles (very high particle Stokes number), and the disperse phase
has its own velocity distribution. The kinetic equation referred to 𝑓𝑁(𝑡,x, v, 𝜉) is the
GPBE and reads as follows:

𝜕𝑓𝑁
𝜕𝑡

+ 𝜕
𝜕x

⋅ (v𝑓𝑁) + 𝜕
𝜕v

⋅ (A𝑝𝑓𝑁) + 𝜕
𝜕𝜉

⋅ (𝜉̇𝑓𝑁) = ℎ𝜉, (5.33)

where A𝑝 is a continuous term that states the rate of change of particle velocity
(acceleration term), or the force per unit mass acting on the particle (e.g., drag force,
gravity). The term ℎ𝜉 is a discontinuous jump term that considers discrete events
(e.g., particle collisions, nucleation, aggregation, breakage). In GPBE there are never
diffusive terms in the physical space; however, diffusion in velocity space is quite often
taken into consideration, to account for Brownian motion and turbulent fluctuations
of the continuous phase effect on the inertial particles movement.

5.3.2 Laminar and Turbulent PBE
Referring to PBE (Eq. 5.32), if the flow is laminar, then the NDF changes due

to advection and Brownian motion (fine particles); on the other side, if the flow
is turbulent, then turbulent fluctuations must be taken into account because they
affect the micromixing (turbulent mixing) of the system. In this section, laminar and
turbulent PBE for fine particles (negligible inertia, very small Stokes number) are
presented.

In an Eulerian approach, for fine particles, the Brownian motion is expressed by a
size-dependent diffusion coefficient multiplied by the gradient of the NDF. The laminar
PBE reads then as follows:

𝜕𝑓𝑁
𝜕𝑡

+ 𝜕
𝜕x

⋅ (v𝑓𝑁) − 𝜕
𝜕x

⋅ (Γ(𝜉)
𝜕𝑓𝑁
𝜕x ) + 𝜕

𝜕𝜉
⋅ (𝜉̇𝑓𝑁) = ℎ𝜉, (5.34)

where Γ(𝜉) is the diffusion coefficient that can be estimated by Nernst-Einstein
theory (Bird et al., 1960).

When the flow field is turbulent, the NDF fluctuates due to turbulence itself, due
to non-linear convection term in the equation of motion related to the continuous
phase. When the system is turbulent a Reynolds decomposition is introduce, in order
to consider the fluctuating component of the turbulent flow.
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By expressing the turbulent NDF 𝑓𝑁 and the turbulent velocity v through the
Reynolds decomposition (Eq. 5.24), a Reynolds-average transport equation for the NDF
can be written down:

𝜕⟨𝑓𝑁⟩
𝜕𝑡

+ 𝜕
𝜕x

⋅ (⟨v𝑓𝑁⟩) − 𝜕
𝜕x

⋅ (Γ(𝜉)
𝜕⟨𝑓𝑁⟩

𝜕x ) + 𝜕
𝜕𝜉

⋅ (𝜉̇⟨𝑓𝑁⟩) = ⟨ℎ𝜉⟩, (5.35)

where the ⟨⋅⟩ indicates the Reynolds average (Eq. 5.25). The argument of the
convection in physical space ⟨v𝑓𝑁⟩ represents though an unclosed term. The equality
⟨v𝑓𝑁⟩ = ⟨v⟩⟨𝑓𝑁⟩ + ⟨v′𝑓 ′

𝑁⟩ holds by definition (Eq. 5.24). The unclosed term ⟨v′𝑓 ′
𝑁⟩ is

called turbulent flux of the NDF and is closed thanks to the gradient-diffusion model:

⟨v′𝑓 ′
𝑁⟩ ≈ −Γ𝑇∇⟨𝑓𝑁⟩, (5.36)

where Γ𝑇 is the turbulent diffusion coefficient, calculated by proper turbulence
models for the fluid phase (extensively explained in the Part II of this work).

The turbulent PBE reads then as follows:

𝜕⟨𝑓𝑁⟩
𝜕𝑡

+ 𝜕
𝜕x

⋅ (⟨v⟩⟨𝑓𝑁⟩) − 𝜕
𝜕x

⋅ ((Γ(𝜉) + Γ𝑇)
𝜕⟨𝑓𝑁⟩

𝜕x ) + 𝜕
𝜕𝜉

⋅ (𝜉̇⟨𝑓𝑁⟩) = ⟨ℎ𝜉⟩. (5.37)

The source term ⟨ℎ𝜉⟩ is closed if it can be expressed in terms of ⟨𝑓𝑁⟩ and the phase
space advection 𝜕/𝜕𝜉 ⋅ (𝜉̇⟨𝑓𝑁⟩) needs to be closed with a suitable micromixing model
(see Part II, sect. 8.6).

5.3.3 Second-order point processes and aggregation kernels for
fine particles

So far, the source term of the PBE shown in Eq. (5.34) has been indicated with the
generic expression ℎ𝜉 . Here the explicit form of the ℎ𝜉 is shown for the particular
case of second-order point processes, being these strictly related to the modelling case
studied in this work. They are discrete events involving the discontinuous interactions
of two particles. This is the case of aggregation between nanoparticles or coalescence
of bubbles, very often treated as second-order processes. More generally, the aim of this
section is to give a mathematical form for events involving two particles that collide,
sticking together in a solely particle as result.

The rigorous derivation of the source term functional form is reported in
Appendix B. Here, only the specific case of aggregation of fine particles is explicitly
shown, being this of paramount importance for the test case analysed in the following
chapters. The nomenclature fine particles refers to a system in which the disperse
phase is characterised by Stokes number much smaller than unity, so that their inertia
is negligible. This assumption simplifies the derivation of the source term, since particle
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velocities are not accounted in it and are therefore considered equal to the fluid mean
velocity.

Let us consider the evolution of the NDF 𝑓𝑁(𝑡,x, 𝜉𝑝), in which the generic phase
space variable referred to the fine particle is indicated with the symbol 𝜉𝑝 (it might
correspond to the mass or the dimension of the particle). Let us define 𝜉′

𝑝 and ̃𝜉𝑝 the
phase space variables referred to the two particles that are colliding; let us suppose it
represents the mass or the dimension, so that the particle that is going to form will
have a phase space variable 𝜉𝑝 = 𝜉′

𝑝 + ̃𝜉𝑝. The aggregation source term reads as follows
(Marchisio and Fox, 2013):

ℎ𝜉(𝜉𝑝) = 1
2 ∫

𝜉𝑝

0
𝛽(𝜉′

𝑝, ̃𝜉𝑝)𝑓𝑁(𝜉′
𝑝)𝑓𝑁( ̃𝜉𝑝)𝑑𝜉′

𝑝 − ∫
∞

0
𝛽(𝜉′

𝑝, 𝜉𝑝)𝑓𝑁(𝜉′
𝑝)𝑓𝑁(𝜉𝑝)𝑑𝜉′

𝑝, (5.38)

that is very often written explicitly in terms of the final phase space variable 𝜉𝑝:

ℎ𝜉(𝜉𝑝) = 1
2 ∫

𝜉𝑝

0
𝛽(𝜉′

𝑝, 𝜉𝑝 − 𝜉′
𝑝)𝑓𝑁(𝜉′

𝑝)𝑓𝑁(𝜉𝑝 − 𝜉′
𝑝)𝑑𝜉′

𝑝 − ∫
∞

0
𝛽(𝜉′

𝑝, 𝜉𝑝)𝑓𝑁(𝜉′
𝑝)𝑓𝑁(𝜉𝑝)𝑑𝜉′

𝑝,

(5.39)
where 𝛽(𝜉′

𝑝, ̃𝜉𝑝) is the aggregation kernel and represents the rate at which two
particles undergo second-order point process, e.g., the rate at which two particles,
with dimension 𝜉′

𝑝 and ̃𝜉𝑝 respectively, aggregate forming a particle with dimension
𝜉′

𝑝 = 𝜉′
𝑝 + ̃𝜉𝑝. Depending on the physical meaning of the internal coordinate 𝜉𝑝, suitable

closures are needed in order to calculate the source term.
Concerning the aggregation kernel 𝛽(𝜉′

𝑝, ̃𝜉𝑝), its mathematical expression strongly
depends on transport phenomena that make particles come close to each other and
collide. The first very important phenomenon is represented by Brownian motion.
Assuming that the internal coordinate 𝜉𝑝 corresponds to the particle diameter, 𝑑𝑝, the
rate at which two particles with dimension 𝑑′

𝑝 and ̃𝑑𝑝 are brought closely to each other,
collide and aggregate due to Brownian phenomena is (Elimelech et al., 1998):

𝛽𝐵𝑟𝑜𝑤𝑛(𝑑′
𝑝, ̃𝑑𝑝) = 4𝜋 (Γ′ + Γ̃)

(𝑑′
𝑝 + ̃𝑑𝑝)

2
, (5.40)

where, (𝑑′
𝑝 + ̃𝑑𝑝)/2 is the collision radius of the two particles, Γ is the diffusion

coefficient that by using the Stokes-Einstein equation is:

Γ =
𝑘𝐵𝑇

3𝜋𝜇𝑑𝑝
, (5.41)

where 𝜇 is the fluid phase viscosity, 𝑘𝐵 is the Boltzmann constant and 𝑇 is the
fluid phase temperature. By using Eq. (5.41) in Eq. (5.40) and under the assumption of
Knudsen number (free molecular path to its dimension ratio) much smaller than unity,
the Brownian aggregation kernel reads as follows:
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𝛽𝐵𝑟𝑜𝑤𝑛(𝑑′
𝑝, ̃𝑑𝑝) =

2𝑘𝐵𝑇
3𝜇

(𝑑′
𝑝 + ̃𝑑𝑝)2

𝑑′
𝑝 ̃𝑑𝑝

. (5.42)

It is very important to stress again that the Brownian kernel reported in Eq. (5.42)
is valid only in continuous regime, namely Knudsen number much smaller than unity.
When the Knudsen number is higher, then different andmore complex functional forms
such as the Fuchs equation (Fuchs, 1964) must be employed. Being not this one the case
of the current work, they are omitted here and the reader can found them in Elimelech
et al. (1998) and Marchisio and Fox (2013).

Another important phenomenon that brings to fine particles aggregation is the
spatial gradients fluid velocity. In fact, without any spatial inhomogeneity in fluid
flow field, two particles will never collide, following the same velocity line in parallel
motion. Thanks to the presence of local shear rates, the flow field turns out to be locally
inhomogeneous and so the orthokinetic aggregation may occur. The corresponding
aggregation kernel proposed by von Smoluchowski (1917) is:

𝛽𝑝𝑒𝑟(𝑑′
𝑝, ̃𝑑𝑝) = 4

3
𝐺

(
𝑑′

𝑝

2
+

̃𝑑𝑝

2 )

3

, (5.43)

where 𝐺 is the fluid shear rate. For laminar flows it corresponds to the second
invariant of the rate-of-strain tensor 𝐺 = 1/2(𝑠𝑖𝑗𝑠𝑖𝑗 − 𝑠2

𝑘𝑘) where 𝑠𝑖𝑗 = 1/2(𝜕𝑈𝑖/𝜕𝑥𝑗 +
𝜕𝑈𝑗/𝜕𝑥𝑖) and repeated indices imply summation (Einstein notation).

For turbulent flows G = √𝜀/𝜈, where 𝜀 is the turbulent dissipation rate and 𝜈 is the
kinematic viscosity, both of them referred to the continuous phase. This assumption is
valid only in case of particle size smaller than Kolmogorov length scale 𝜂𝑘 = (𝜈3/𝜀)1/4,
resulting in the following turbulent aggregation kernel (Saffman and Turner, 1956):

𝛽𝑇 𝑢𝑟𝑏(𝑑′
𝑝, ̃𝑑𝑝) = (

8𝜋
15 )

0.5

(
𝜀
𝜈)

0.5

(
𝑑′

𝑝

2
+

̃𝑑𝑝

2 )

3

≈ 1.2944 (
𝜀
𝜈)

0.5

(
𝑑′

𝑝

2
+

̃𝑑𝑝

2 )

3

. (5.44)

For particle size greater than Kolmogorov length scale, different functional forms
of the turbulent aggregation kernels must be used. It is worthwhile stressing one more
time that these expressions reported in Eq. (5.42) and Eq. (5.44) are valid only in case
of particles Stokes number that approaches to zero. When the Stokes number is greater
than zero, than the particles inertia must be taken into account and suitable corrections
to the aggregation kernels must be introduced (Ammar and Reeks, 2009). The total
aggregation kernel is usually calculated as the summation of the single contributions
reported in Eq. (5.42) and Eq. (5.44), 𝛽 = 𝛽𝐵𝑟𝑜𝑤𝑛 + 𝛽𝑇 𝑢𝑟𝑏.
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Chapter 6

All-Atom Molecular Dynamics

6.1 MD Algorithms
In this chapter, technical details about the algorithms used for all-atom MD

simulations will be provided. In order to achieve a complete description of all the most
important algorithms, let us start from the dynamic equations typical of MD, namely
the Hamilton’s equations of motion for a classical system reported in Eq. (3.9) that in
terms of second Newton’s law read as follows:

𝑚𝑖 ̈r𝑖 = F𝑖,

F𝑖 = −𝜕𝒱 (r)
𝜕r𝑖

,
(6.1)

where F𝑖 is the force acting on the atom 𝑖, at position r𝑖, with mass 𝑚𝑖, and
interatomic potential 𝒱 (r), with r = (r1, ..., r𝑖, ..., r𝑁) are the coordinates of the 𝑁
particles. Note that r𝑖 is a vector in spatial Cartesian coordinates.

Introducing the momenta vector p = (p1, ...,p𝑖, ...,p𝑁) the classical equations of
motion in Cartesian coordinates become:

̇r𝑖 = p𝑖/𝑚𝑖,

ṗ𝑖 = F𝑖.
(6.2)

It is noteworthy to stress here that whereas the system of equations reported in
Eq. (6.1) is a set of 3𝑁 second-order differential equations, the latter is a set of 6𝑁 first-
order differential equations. Eq. (6.1) can be solved with the Verlet-based algorithm;
Eq. (6.2) is the base of the Euler algorithm. All of themwill be schematically presented in
the following sections. In a preliminary way, the general scheme whichMD simulations
are based on is presented in Table 6.1.
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6 – All-Atom Molecular Dynamics

THE GENERAL MD ALGORITHM
1. Input initial conditions

Potential interaction 𝒱 as a function of atom positions
Positions r𝑖 of all atoms in the system
Momenta p𝑖 of all atoms in the system

⇓

repeat 2,3,4 for the required number of steps:
2. Compute forces

The force on each atom
F𝑖 = −𝜕𝒱 (r)

𝜕r𝑖
is computed (summation of bonded, non-bonded, restrains, external forces)

Potential and kinetic energies and the pressure tensor are computed

⇓

3. Update configuration

The movement of the atoms is simulated by numerically solving
Newton’s equations of motion

𝑚𝑖 ̈r𝑖 = F𝑖,
or

Eq. (6.2)

⇓

4. if required: Output step
positions, velocities, energies, temperature, pressure, etc.

Table 6.1: MD general algorithm

6.2 Integration Schemes
A commonmethod to solve ordinary differential equations such as Eq. (6.1) and (6.2)

is represented by the finite difference method. Starting from initial conditions (atoms
positions and momenta) and following the general scheme reported in Table 6.1,
numerical frameworks are necessary to update positions, velocities, etc.. from a
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simulation time 𝑡 to the following simulation time 𝑡 + Δ𝑡. The equations are then
solved by a step-by-step method, and the choice of the time-step Δ𝑡 depends on the
other numerical conditions, as well as the kind of algorithm used for the integration
scheme. Before going into the specific algorithms, assuming the classical trajectories
to be continuous, let us apply a Taylor expansion to the positions and velocities at the
instant time 𝑡 + Δ𝑡:

r𝑖(𝑡 + Δ𝑡) = r𝑖(𝑡) + Δ𝑡 v𝑖(𝑡) + Δ𝑡2

2𝑚𝑖
F𝑖(𝑡) + Δ𝑡3

3!
⃛r𝑖(𝑡) + 𝒪(Δ𝑡4), (6.3)

v𝑖(𝑡 + Δ𝑡) = v𝑖(𝑡) + Δ𝑡
𝑚𝑖

F𝑖(𝑡) + Δ𝑡2

2
v̈𝑖(𝑡) + Δ𝑡3

3!
v⃛𝑖(𝑡) + 𝒪(Δ𝑡4). (6.4)

6.2.1 Euler Algorithm
The simplest integration scheme is the Euler integration scheme which reads as

follows:

r𝑖(𝑡 + Δ𝑡) = r𝑖(𝑡) + Δ𝑡 v𝑖(𝑡) + Δ𝑡2

2𝑚𝑖
F𝑖(𝑡) + 𝒪(Δ𝑡3),

v𝑖(𝑡 + Δ𝑡) = v𝑖(𝑡) + Δ𝑡
𝑚𝑖

F𝑖(𝑡) + 𝒪(Δ𝑡2).
(6.5)

Despite its simplicity, it has the disadvantages that it is no-time reversible and does
not preserve the phase-space, becoming then not very used in the computational field.

6.2.2 Verlet Algorithm
One of the most used algorithms in MD simulations is the Verlet algorithm. By

solving the second order system reported in Eq. (6.1), considering the position and forces
at the instant time 𝑡, and considering the previous time 𝑡 − Δ𝑡, the Taylor expansion
becomes:

r𝑖(𝑡 − Δ𝑡) = r𝑖(𝑡) − Δ𝑡 v𝑖(𝑡) + Δ𝑡2

2𝑚𝑖
F𝑖(𝑡) − Δ𝑡3

3!
r⃛𝑖(𝑡) + 𝒪(Δ𝑡4). (6.6)

By summing Eq. (6.3) to Eq. (6.6), and by subtracting the same equations for the
velocities, the obtained set is:

r𝑖(𝑡 + Δ𝑡) = 2r𝑖(𝑡) − r𝑖(𝑡 − Δ𝑡) + Δ𝑡2

𝑚𝑖
F𝑖(𝑡) + 𝒪(Δ𝑡4),

v𝑖(𝑡) =
r𝑖(𝑡 + Δ𝑡) − r𝑖(𝑡 − Δ𝑡)

2Δ𝑡
+ 𝒪(Δ𝑡3).

(6.7)
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A closer look at Eq. (6.7) reveals that velocities are not needed anymore to compute
the trajectories; however the code needs to calculate them in order to compute the
kinetic energy and other observable properties. The algorithm gives some numerical
imprecision due to the fact that a small quantity (order Δ𝑡2) is added to a difference of
order 𝒪(1)-factors.

6.2.3 Leap-frog Algorithm
The leap-frog algorithm reads as follows:

v𝑖(𝑡 + Δ𝑡
2

) = v𝑖(𝑡 − Δ𝑡
2

) + Δ𝑡
𝑚𝑖

F𝑖(𝑡),

r𝑖(𝑡 + Δ𝑡) = r𝑖(𝑡) + Δ𝑡 v𝑖(𝑡 + Δ𝑡
2

).
(6.8)

The velocity is calculated at half time-steps, ’leaping’ the positions. The update
velocity is then estimated as:

v𝑖(𝑡) =
v𝑖(𝑡 + Δ𝑡

2 ) + v𝑖(𝑡 − Δ𝑡
2 )

2
. (6.9)

6.2.4 Velocity-Verlet Algorithm
Thevelocity-Verlet algorithm gives the advantage of having positions, velocities and

forces at the same simulation time. It reads as follows:

r𝑖(𝑡 + Δ𝑡) = r𝑖(𝑡) + Δ𝑡 v𝑖(𝑡) + Δ𝑡2

𝑚𝑖
F𝑖(𝑡) + 𝒪(Δ𝑡3),

v𝑖(𝑡 + Δ𝑡) = v𝑖(𝑡) + Δ𝑡
2𝑚𝑖

(F𝑖(𝑡) + F𝑖(𝑡 + Δ𝑡)) + 𝒪(Δ𝑡3).
(6.10)

It preserves the phase space and it is very stable, being therefore one of the most
used algorithms in MD. The normal Verlet scheme (Eq. 6.7) can be derived from
Eq. (6.10), by eliminating the velocities during the positions calculation.

6.2.5 Predictor-Corrector Schemes
Unlike the methods presented so far, the predictor-corrector schemes approach to

the calculation of the trajectories in a different, optimised way. The general idea is to
predict positions, velocities, accelerations, and third time derivative of positions (all the
terms appearing in Eq. 6.3) and starting from them, to correct the value at the next step
in a proper way. Let us define the predicted quantities in the following system:
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r𝑝(𝑡 + Δ𝑡) = r(𝑡) + Δ𝑡 v𝑖(𝑡) + Δ𝑡2

2
a(𝑡) + Δ𝑡3

3!
⃛r(𝑡) + ...

v𝑝(𝑡 + Δ𝑡) = v(𝑡) + Δ𝑡 a(𝑡) + Δ𝑡2

2
r⃛(𝑡)...

a𝑝(𝑡 + Δ𝑡) = a(𝑡) + Δ𝑡 r⃛(𝑡)...
⃛r𝑝(𝑡 + Δ𝑡) = ⃛r(𝑡) + ...

(6.11)

Once the predicted positions, r𝑝(𝑡 + Δ𝑡), are known, the correct accelerations, a𝑐(𝑡 +
Δ𝑡), (passing through the force) can be computed. Therefore, an error in the prediction
step is:

Δa(𝑡 + Δ𝑡) = a𝑐(𝑡 + Δ𝑡) − a𝑝(𝑡 + Δ𝑡). (6.12)

By using Eq. (6.12), the new correct quantities can be evaluated:

r𝑐(𝑡 + Δ𝑡) = r𝑝(𝑡 + Δ𝑡) + 𝑐0Δa(𝑡 + Δ𝑡)
v𝑐(𝑡 + Δ𝑡) = v𝑝(𝑡 + Δ𝑡) + 𝑐1Δa(𝑡 + Δ𝑡)
a𝑐(𝑡 + Δ𝑡) = a𝑝(𝑡 + Δ𝑡) + 𝑐2Δa(𝑡 + Δ𝑡)

⃛r𝑐(𝑡 + Δ𝑡) = ⃛r𝑝(𝑡 + Δ𝑡) + 𝑐3Δa(𝑡 + Δ𝑡)

(6.13)

Equations (6.13) represent the corrector step of theMD simulation.The choice of the
coefficients 𝑐0, 𝑐1, 𝑐2, 𝑐3 depends on the specific chosen predictor-corrector technique,
as discussed by Gear (1967).

6.2.6 Stochastic and Brownian Dynamics Algorithms
Considering the stochastic dynamics, the generalised Langevin equation (Eq. 4.1)

is solved by either simple integrators (Hess, Kutzner, et al., 2008) or a more complex
leap-frog one. Details about the last one can be found in van Gunsteren and Berendsen
(1988).

Concerning instead Brownian dynamics (sect. 4.6), namely when the system has a
negligible inertia (non-inertial Langevin dynamics) a simple Euler scheme is adopted:

r𝑖(𝑡 + Δ𝑡) = r𝑖(𝑡) + Δ𝑡
𝜁𝑖
F𝐶

𝑖 (r(𝑡)) +
√

2𝑘𝐵𝑇 Δ𝑡
𝜁𝑖
r𝐺

𝑖 , (6.14)

where r𝐺
𝑖 is a Gaussian distribution to describe the noise effect.
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6.3 Trotter expansion
As already mentioned in sect. 3.2, the solution of the equation of motion referred

to a generic property 𝐴(Γ, 𝑡) is represented by 𝐴(Γ(𝑡)) = 𝑒−𝑖𝐿𝑡𝐴(Γ(0)), introducing
also the propagator 𝑒−𝑖𝐿𝑡. Starting from the propagator, the aim of this section is to
investigate Trotter dynamics, in order to better understand the main properties of the
time-reversible algorithms (such as the velocity-Verlet, Eq. 6.10).

The Liouville operator expressed in Cartesian coordinates (r,p), for positions and
momenta respectively, can be split into two contributions:

𝑖𝐿 = 𝑖𝐿r + 𝑖𝐿p, (6.15)

with

𝑖𝐿r = ∑
𝑖

̇r𝑖
𝜕

𝜕r𝑖
(6.16)

and

𝑖𝐿p = ∑
𝑖
ṗ𝑖

𝜕
𝜕p𝑖

. (6.17)

The Trotter expansions reads as follows:

𝑒𝑖(𝐿r+𝐿p)Δ𝑡 = 𝑒𝑖𝐿p
Δ𝑡
2 𝑒𝑖𝐿rΔ𝑡𝑒𝑖𝐿p

Δ𝑡
2 + 𝒪(Δ𝑡3). (6.18)

Applying the Trotter expansion to positions r𝑖 and momenta p𝑖,

𝑒𝑖𝐿p
Δ𝑡
2 r𝑖 = r𝑖

𝑒𝑖𝐿rΔ𝑡r𝑖 = r𝑖 + Δ𝑡 ̇r𝑖

𝑒𝑖𝐿p
Δ𝑡
2 p𝑖 = p𝑖 + Δ𝑡

2
ṗ𝑖

𝑒𝑖𝐿rΔ𝑡p𝑖 = p𝑖,

(6.19)

the following set of equations can be rewritten as follows:

𝑒𝑖𝐿p
Δ𝑡
2 𝑒𝑖𝐿rΔ𝑡𝑒𝑖𝐿p

Δ𝑡
2 r𝑖(𝑡) = r𝑖(𝑡) + Δ𝑡 ̇r𝑖(

Δ𝑡
2

) =

= r𝑖(𝑡) + Δ𝑡 v𝑖(𝑡) + Δ𝑡2

2𝑚𝑖
F𝑖(𝑡)

𝑒𝑖𝐿p
Δ𝑡
2 𝑒𝑖𝐿rΔ𝑡𝑒𝑖𝐿p

Δ𝑡
2 p𝑖(𝑡) = p𝑖(𝑡) + Δ𝑡

2
(ṗ𝑖(𝑡) + ṗ𝑖(𝑡 + Δ𝑡)) =

= p𝑖(𝑡) + Δ𝑡
2

(F𝑖(𝑡) + F𝑖(𝑡 + Δ𝑡)),

(6.20)
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yielding exactly the equations of the velocity-Verlet algorithm. The Trotter
operators and the analysis reported in Eq. (6.16) and (6.17) show that these methods
based on the velocity-Verlet algorithm conserve the volume in phase-space and
guarantee time reversibility (due to the coordinates symmetry of the equations).

6.4 Temperature Control
In MD simulations at constant temperature (𝑁𝑉 𝑇, 𝑁𝑃 𝑇 ensembles) the

temperature is controlled by suitable thermostats that are coupled to the system.
Several thermostats are available in MD codes and can be found in literature, such
as the stochastic Andersen thermostat (Andersen, 1980), Nosè-Hoover (Hoover, 1985;
Nose, 1984), Berendsen (Berendsen, Postma, DiNola, et al., 1984) and velocity rescale
thermostats (Bussi et al., 2007). Here, only the last two will be presented since they
have been used in this work.

6.4.1 BerendsenThermostat
The Berendsen thermostat is a weak-coupling of first-order kinetics with respect to

the reference temperature 𝑇0:

𝑑𝑇
𝑑𝑡

=
𝑇0 − 𝑇

𝜏
, (6.21)

implying an exponential decay with time constant 𝜏. It is a very robust method, but
it suppresses kinetic energy fluctuations, impeding the proper generation of a canonical
ensemble. This error decreases as the number of particles increases, therefore for large
system it might be successfully employed.

6.4.2 Velocity-Rescale Thermostat
The above-mentioned issue can be overcome by using a velocity-rescale thermostat.

It simply corresponds to a classical Berendsen thermostat plus a stochastic term that
allows the development of the correct kinetic energy distribution:

𝑑𝐾 = (𝐾0 − 𝐾)𝑑𝑡
𝜏𝑇

+ 2
√

𝐾𝐾0
𝑁𝑓

⋅ 𝑑𝑊
√𝜏𝑇

, (6.22)

where 𝑁𝑓 corresponds to the total number of degrees of freedom, 𝐾 is the kinetic
energy and 𝑑𝑊 is aWiener process (i.e., a stochastic continuous Gaussian process).This
approach has the advantage of reproducing the correct ensemble, together with those
already listed in the Berendsen section.
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6.5 Pressure Control
In line with the theory, also a pressure control is applied to some MD simulations.

Different barostats can be used, some of them more suitable for specific thermostats.
The most used ones are the Berendsen (Berendsen, Postma, DiNola, et al., 1984), the
Parrinello-Rahman algorithm (Nose and Klein, 1983; Parrinello and Rahman, 1981) and
the Martyna-Tuckerman-Tobias-Klein (MTTK) one (Martyna et al., 1996). The first two
can be used with any thermostat; on the other hand, the last one can only be coupled
with the Nosè-Hoover thermostat.

6.5.1 Berendsen Barostat
Following the Berendsen thermostat, the barostat follows the same approach:

𝑑𝑃
𝑑𝑡

=
𝑃0 − 𝑃

𝜏𝑃
. (6.23)

A scaling matrix 𝜇 is implemented in order to rescale positions and box vectors at
every number of time steps, 𝑛𝑠𝑡𝑒𝑝, defined as follows:

𝜇𝑖 = 𝛿𝑖𝑗 −
𝑛𝑠𝑡𝑒𝑝Δ𝑡

3𝜏𝑝
𝛽𝑖𝑗{𝑃0𝑖𝑗 − 𝑃𝑖𝑗(𝑡)}, (6.24)

where 𝛽 is the isothermal compressibility.

6.5.2 Parrinello-Rahman Barostat
When pressure fluctuations are too large and the simulation boxes are quite small,

then a weak-coupling might not suffice to reproduce the correct canonical ensemble.
Parrinello-Rahman barostat is then needed.The box vectors are represented by a matrix
𝑏, following the matrix equation of motion:

𝑑2𝑏
𝑑𝑡2 = 𝑉 W−1𝑏′−1(P − P𝑟𝑒𝑓), (6.25)

where the P𝑟𝑒𝑓 and P are the reference and current pressure, 𝑉 is the box volume
and W is a matrix parameter that governs the strength of the coupling.

The pressure matrix P is calculated from the virial Ξ and the kinetic energy K:

P = 2
𝑉

(K − Ξ). (6.26)

The scalar 𝑃 = 1/3𝑡𝑟(P) and the virial is defined as:

Ξ = −1
2 ∑

𝑖<𝑗
r𝑖𝑗 ⊗ F𝑖𝑗, (6.27)
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where the symbol ⊗ identifies the direct product between two vectors which gives
a second-order tensor.

6.6 Force Fields and Interaction Potentials
Before dealing with the interactions between particles inside a classical MD system,

the concept of force field must be introduced. In MD, a force field is a set of analytical
functions (potentials, parameters, etc.) that fully describes a given system at the
atomistic scale level. In line with the multiscale modeling approach and, above all, with
the concept of relevant degrees of freedom going from one scale to another (sect. 4.1),
these functions are calculated at a lower scale (ab initio methods, i. e., quantum
mechanical simulations, Maple et al., 1988) and, therefore, ”closed” by eliminating
the irrelevant DOF (e.g., electrons, etc.). This closure leads to a set of parameters
that characterise the specific force field. Different force fields are available for MD
simulations; they differ from case to case and their choice depends on the kind of
system that has to be simulated (i.e., proteins, gas, liquid-liquid, etc.).

6.6.1 Interaction Potentials
In classical MD, the interaction potentials taken into account in the force fields

consist of the summation of bonded and non-bonded interactions between atoms.
Different functional forms exist to describe them and are schematically reported in the
following subsections.

Non-bonded Potentials

Pairwise potentials are employed to account for the non-bonded interactions
(particle attractions and repulsions). The most used is the Lennard-Jones (LJ) potential,
𝑉𝐿𝐽(𝑟𝑖𝑗), that for two atoms 𝑖 and 𝑗 in Cartesian coordinates reads in the following
forms:

𝑉𝐿𝐽(𝑟𝑖𝑗) =
𝐶 (12)

𝑖𝑗

𝑟12
𝑖𝑗

−
𝐶 (6)

𝑖𝑗

𝑟6
𝑖𝑗

, (6.28)

where the parameters 𝐶 (12)
𝑖𝑗 and 𝐶 (6)

𝑖𝑗 depend on the kind of atoms considered and
are stored in the force fields files of the MD simulation package. An alternative form is:

𝑉𝐿𝐽(𝑟𝑖𝑗) = 4𝜖𝑖𝑗 ((
𝜎𝑖𝑗

𝑟𝑖𝑗 )

12
− (

𝜎𝑖𝑗

𝑟𝑖𝑗 )

6

)
, (6.29)
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where the LJ parameters 𝜖𝑖𝑗 and 𝜎𝑖𝑗 represent respectively the well depth of the
potential minimum point and the distance at which the interactions are null, as shown
in Figure 10.1.

Figure 6.1: Lennard-Jones potential.

The way in which the LJ parameters, appearing in both equations Eq. (6.28) and
Eq. (6.29), are calculated is named combination rules. It simply consists in the way
in which the single atom 𝑖 parameter 𝐶𝑖, for instance, is combined with the atom
𝑗 parameter 𝐶𝑗, obtaining 𝐶𝑖𝑗. The combination rules can be either geometric or
arithmetic averages or a mix of them (Lorentz-Berthelot rules).

Alternatively to the LJ potential, the Buckingham potential can be used:

𝑉𝑏ℎ(𝑟𝑖𝑗) = 𝐴𝑖𝑗𝑒𝑥𝑝(−𝐵𝑖𝑗𝑟𝑖𝑗) −
𝐶𝑖𝑗

𝑟6
𝑖𝑗
, (6.30)

where amore advantageous repulsion term is used, rising though the computational
cost.

Concerning electrostatic interactions, the Coulomb potential is typically used:

𝑉𝐶(𝑟𝑖𝑗) = 1
4𝜋𝜖0

𝑞𝑖𝑞𝑗

𝜖𝑟𝑟𝑖𝑗
, (6.31)
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where 𝜖0 and 𝜖𝑟 are the dielectric constants respectively in vacuum and in the
medium, 𝑟𝑖𝑗 is the distance between atoms 𝑖 and 𝑗 which carry the charges 𝑞𝑖 and 𝑞𝑗.

Bonded Potentials

Bonded potentials are functional forms that account for bonded atoms interactions
and are divided in bonds (2-atoms interaction), angles (3-atoms interaction), proper and
improper dihedrals (4-atoms interaction).

The bond stretching between two atoms 𝑖 and 𝑗 is modelled by a harmonic spring:

𝑉𝑏(𝑟𝑖𝑗) = 1
2

𝑘𝑏
𝑖𝑗(𝑟𝑖𝑗 − 𝑏𝑖𝑗)2, (6.32)

where 𝑘𝑏
𝑖𝑗 and 𝑏𝑖𝑗 corresponds respectively to the bond force constant and the

equilibrium bond distance between two generic bonded atoms 𝑖 and 𝑗. The situation is
depicted in Figure 6.2.

Figure 6.2: Representation of a bond between two generic atoms 𝑖 and 𝑗.

The harmonic angle potential between three atoms 𝑖, 𝑗 and 𝑘 reads as follows:

𝑉𝜃(𝜃𝑖𝑗𝑘) = 1
2

𝑘𝜃
𝑖𝑗𝑘(𝜃𝑖𝑗𝑘 − 𝜃0

𝑖𝑗𝑘)2, (6.33)

where 𝑘𝜃
𝑖𝑗𝑘 and 𝜃0

𝑖𝑗𝑘 corresponds respectively to the angle force constant and the
equilibrium angle value between a generic triplet of atoms 𝑖, 𝑗, 𝑘 consecutively bonded.
The situation is shown in Figure 6.3.

The dihedrals are group of four atoms bonded to each other. If they are bonded in
a continuous way, one by the other one, following a line, then they are defined proper
dihedral and describe the torsion of the molecule. Sometimes, four atoms are connected
to each other in a non-continuous way, but belonging to a plane (carboxyl group). In
this case the dihedral is said to be improper and means to keep that plane planar, as
well as to prevent a chiral molecule to change its conformation (by mirroring itself).
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Figure 6.3: Representation of an angle between a triplet of atoms 𝑖,𝑗,𝑘.

The improper dihedral potential is still a harmonic spring:

𝑉𝜉(𝜉𝑖𝑗𝑘𝑙) = 1
2

𝑘𝜉
𝑖𝑗𝑘𝑙(𝜉𝑖𝑗𝑘𝑙 − 𝜉0

𝑖𝑗𝑘)2, (6.34)

where the improper dihedral angle 𝜉𝑖𝑗𝑘𝑙 is defined as the angle between the planes
𝑖 − 𝑗 − 𝑘 and 𝑗 − 𝑘 − 𝑙. This scenario is reported in Figure 6.4.

The proper dihedrals potential follows a continous periodic function:

𝑉𝑑(𝜙𝑖𝑗𝑘𝑙) = 𝑘𝜙(1 + cos(𝑛𝜙 − 𝜙𝑠)), (6.35)

where 𝜙 is the angle between the plane 𝑖 − 𝑗 − 𝑘 and 𝑗 − 𝑘 − 𝑙. This situation is
reported in Figure 6.5. An alternative form is represented by the Ryckaert-Bellemans
function, namely an expansion in powers of cosines:

𝑉𝑟𝑏(𝜙𝑖𝑗𝑘𝑙) =
5

∑
𝑛=0

𝐶𝑛(𝑐𝑜𝑠(𝜓))𝑛, (6.36)

where 𝜓 = 𝜙 − 180∘.
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Figure 6.4: Representation of an improper dihedral (torsional) angle 𝜉𝑖𝑗𝑘𝑙 between the
planes 𝑖 − 𝑗 − 𝑘 and 𝑗 − 𝑘 − 𝑙.

Figure 6.5: Representation of a proper dihedral (torsional) angle𝜙𝑖𝑗𝑘𝑙 between the planes
𝑖 − 𝑗 − 𝑘 and 𝑗 − 𝑘 − 𝑙.
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6.7 Constraints, Periodic Boundary Conditions and
Cut-off

In classical MD simulations there is a very common practice to consider the bond
lengths constrained at a fixed bond length, instead of considering their intramolecular
potential. The advantage is twofold: first, the torsional potentials (proper and improper
dihedrals) vibrate at a much lower frequency than the chemical bonds and, secondly,
a practical reason consists in the possibility of using a four-five times larger time-step
(van Gunsteren and Berendsen, 1977) in the simulation run, giving higher stability and
lowering the computational cost. This approximations turns out to be very useful in
treating the hydrogen vibrations, being a proton very light and therefore vibrating
at very high frequencies. Being interested in the long-term conformation/evolution
of the molecule dynamics, the vibrations that happens at a lower time-scale are then
approximated with good results in the perspective of the classical limit of the MD.

Several techniques have been developed to include this constrained dynamics in the
equation of motion and they are based on the so-called Lagrange multipliers (Allen and
Tildesley, 1987; Ryckaert, 1985). The most used algorithms are SHAKE (Ryckaert et al.,
1977) for the Verlet algorithm and the more stable and faster LINCS (Hess, Bekker, et al.,
1997).

MD simulations take place in a finite control volume that is denominated simulation
box. Due to the limited, finite size periodic boundary conditions (PBC) are employed
to minimise the edge effect on the evolution of the system. It simply consists in
surrounding the simulation box with its replicas on each box face. In this way each
particle interacts with the surrounding particles, including the PBC images thereof.
This is schematically reported in Figure 6.6.

For the sake of computational cost the molecular interactions are limited to a given
distance from the specific particle. This distance is the so-called cutoff radius. Each
particle can interact with all the others that are placed at a distance less than the cutoff
including the replica images due to PBC. In certain cases, the non-bonded interactions
are also calculated in a way to include also the effect of long-range interactions,. This is
the case of the Ewald summation techinque or the Particle Mesh Ewald (PME, Darden
et al. (1993) and Essmann et al. (1995)) algorithms for long-range Coulomb interactions,
which avoid the accumulation of charges in the cutoff sphere that would be caused by
using the cutoff method. The cutoff radius must be shorter than the half shortest box
length.

Different simulation boxes may be used, such as cubic, rhombic dodecahedron,
truncated octahedron, etc. From the point of view of the computational cost, it is more
convenient to store the pair atoms interactions of the neighbour atoms around a given
particle. These neighbours pairs are store in the so-called neighbour list, identified by a
radius as well. Only the neighbour pairs stored in the neighbour list are considered for
the force calculation (cutoff LJ potential, etc.), saving computing time. The neighbour
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Figure 6.6: Periodic boundary conditions in MD simulations, using cubic simulation
boxes. Image taken and modified from Allen and Tildesley (1987)
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list radius must be greater or equal to the cutoff one.

6.8 Polarization Effect
Polarization effect can be introduced in classical MD by implementing some

artificial particles responsible of carrying the charge on themselves, following the
Born-Oppenheimer approximation, i.e. decoupling the electronic and nuclear motions
degrees of freedom. These are divided into two groups: the shell (drude) particles and
the virtual interaction sites. The former are particles with a given mass and charge,
whereas the latter are massless by definition. Also a mix of them can be used in order to
improve the complexity of the polarization effect on a given molecule. A very famous
application of this technique is represented by the so-called Drude Oscillator Model
(Lemkul et al., 2016).

When more than one shell particle is implemented on a molecule, the intra-
molecular electrostatic interaction must be taken into account, thanks to the Thole
polarization effect (Thole, 1981), and more specifically by introducing the Thole
potential between two shell particles 𝑖 and 𝑗:

𝑉𝑡ℎ =
𝑞𝑖𝑞𝑗

𝑟𝑖𝑗 [1 − (1 +
̂𝑟𝑖𝑗

2 ) 𝑒− ̂𝑟𝑖𝑗
] , (6.37)

where

̂𝑟𝑖𝑗 = 𝑎
𝑟𝑖𝑗

(𝛼𝑖𝛼𝑗)1/6 , (6.38)

with the 𝑎 parameter equal to 2.6 (Noskov et al., 2005); 𝛼𝑖 and 𝛼𝑗 are the
polarizabilities related to the two shell particles 𝑖 and 𝑗 respectively.

Being the second technique (virtual interaction site) employed in part of this work
(see Chapt. 9), a more detailed discussion is included in the following subsection.

6.8.1 Virtual Interaction Site
A virtual interaction site (VS) is used in MD simulations in several ways. Basically,

it is “virtual” since it is massless, but, an ”interaction site” to interact with other atoms
thanks to a charge placed on it.

In MD simulations, VSs are built up by means of position constrains with respect to
a given number of 𝑁 surrounding atoms.Therefore, the VS will be position-constrained
to the chosen 𝑁 surrounding atoms, as shown in Figure 6.7 which depicts a very generic
scenario. Let us consider a system of 𝑁 surrounding particles with respect to which the
VS is built up; the simplest choice is to write the VS position vector, r𝑠 = (𝑥𝑠, 𝑦𝑠, 𝑧𝑠), as
a linear combination of the overall surrounding atoms positions, r𝑖 = (𝑥𝑖, 𝑦𝑖, 𝑧𝑖), with
𝑖 = 1, ...,𝑁:
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r𝑠 =
𝑁

∑
𝑖=1

𝑤𝑖r𝑖, (6.39)

where 𝑤𝑖 are the weights of the linear combination, suitably chosen depending on
the VS type, and that will be defined later on in this section. Since a VS is massless,
the system takes it into account by redistributing the force F𝑠 (depicted in brown in
Figure 6.7) acting on the VS (before the integration of the equation of motion) over
the other 𝑁 particles (with mass) with respect to which the VS was constrained, in a
consistent way (Berendsen and van Gunsteren, 1984). The force contribution due to the
VS presence is then redistributed according to the weights 𝑤𝑖 in the same proportional
way, namely

F′
𝑖 =

𝑁

∑
𝑖=1

𝑤𝑖F𝑠. (6.40)

Figure 6.7: Generic scheme of a VS built up with respect to 𝑁 surrounding atoms 𝑖, 𝑖 +
1, ..., 𝑖 + 𝑁 − 1. The force F𝑠 acting on the VS is redistributed on the 𝑁 surrounding
atoms with respect to which the VS itself is constrained, contributing to the total force
F𝑖 acting on them (Eq. 6.41).

The total force F𝑖 (red arrow in Figure 6.7), acting on the generic surrounding atom
𝑖, is:
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F𝑖 = F𝑑𝑖𝑟𝑒𝑐𝑡
𝑖 + F′

𝑖 = F𝑑𝑖𝑟𝑒𝑐𝑡
𝑖 +

𝜕r𝑠
𝜕r𝑖

F𝑠 = F𝑑𝑖𝑟𝑒𝑐𝑡
𝑖 +

⎡
⎢
⎢
⎢
⎣

𝜕𝑥𝑠
𝜕𝑥𝑖

𝜕𝑦𝑠
𝜕𝑥𝑖

𝜕𝑧𝑠
𝜕𝑥𝑖

𝜕𝑥𝑠
𝜕𝑦𝑖

𝜕𝑦𝑠
𝜕𝑦𝑖

𝜕𝑧𝑠
𝜕𝑦𝑖

𝜕𝑥𝑠
𝜕𝑧𝑖

𝜕𝑦𝑠
𝜕𝑧𝑖

𝜕𝑧𝑠
𝜕𝑧𝑖

⎤
⎥
⎥
⎥
⎦

F𝑠, (6.41)

where F𝑑𝑖𝑟𝑒𝑐𝑡
𝑖 is the normal force acting on the particle 𝑖 (in absence of VS), the

second term is the force due to the VS, strictly dependent on the force F𝑠, and also
a general definition of the weights 𝑤𝑖 is therefore given (matrix of partial position
derivatives).

Thanks to this modelling approach, the total potential of the system is able to
consider the presence of the new particle (VS) in the conservation laws, so that the
total force and total torque are conserved.

Depending on the number of surrounding atoms 𝑁, different kinds of VS can be set
up. In the simplest scenario (adopted also in this work to develop the charge-on-particle
model, Chapt. 9), 𝑁 = 2 and, consequently, the generic scheme shown in Figure 6.7
reduces to:

Figure 6.8: Scheme of VS built up with respect to 𝑁 = 2 surrounding atoms. The three
particles (VS plus the two atoms 𝑖 and 𝑖 + 1) lie on the axis 𝑥. The relative distance from
the two surrounding atoms is governed by the weights 𝑤𝑖 = 1 − 𝑎 and 𝑤𝑖+1 = 𝑎.

In this very simple scenario, the weights easily read as:

𝑤𝑖 = 1 − 𝑎
𝑤𝑖+1 = 𝑎,

(6.42)

where 𝑎 is a geometric parameter suitably chosen by the user, depending on the
physics that one wants to reproduce (e.g., electrons pair around an atom, electron cloud
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deformation and so on). Being this one the VS type implemented in the current work,
in order to make it more clear, a numerical example is here proposed and depicted in
Figure 6.9. Let us suppose to be in the following situation:

r𝑖 =
⎛
⎜
⎜
⎝

1
0
0

⎞
⎟
⎟
⎠
, r𝑖+1 =

⎛
⎜
⎜
⎝

2
0
0

⎞
⎟
⎟
⎠
,

𝑎 = 0.75,
𝑤𝑖 = 1 − 𝑎 = 0.25,

𝑤𝑖+1 = 𝑎 = 0.75.

(6.43)

By applying Eq. (6.39), the VS position r𝑠 can be found out:

r𝑠 =
2

∑
𝑖=1

𝑤𝑖r𝑖 = 𝑤𝑖r𝑖 + 𝑤𝑖+1r𝑖+1 = 0.25 ⋅
⎛
⎜
⎜
⎝

1
0
0

⎞
⎟
⎟
⎠

+ 0.75 ⋅
⎛
⎜
⎜
⎝

2
0
0

⎞
⎟
⎟
⎠

=
⎛
⎜
⎜
⎝

1.75
0
0

⎞
⎟
⎟
⎠
, (6.44)

as schematically reported in Figure 6.9.

Figure 6.9: Numerical example of a VS built up with respect to 𝑁 = 2 surrounding
atoms and 𝑎 = 0.75. The three particles (VS plus the two atoms 𝑖 and 𝑖 + 1) lie on the
axis 𝑥.The relative distance from the two surrounding atoms is governed by the weights
𝑤𝑖 = 1 − 𝑎 = 0.25 and 𝑤𝑖+1 = 𝑎 = 0.75.

What happens if 𝑎 > 1? By following the simple calculation reported in Eq. (6.43)
and Eq. (6.44), the reader can easily find out that in this case the VS will fall on the
other side (right side, looking at Figure 6.9) with respect to atom (𝑖 + 1). For example,
by employing 𝑎 = 1.2 in the example presented in Eq. (6.43), it is easy to find out that
r𝑠 = (2.2, 0, 0), namely on the right side of atom (𝑖 + 1) in Figure 6.9.
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Chapter 7

Coarse-Grained MARTINI Force Field

In this chapter a general overview about theMARTINI Coarse-Grained force-field is
given.Most of the information provided here are extensively reported in amore detailed
way inMarrink, Risselada, et al. (2007). Realised at the beginning only for lipids systems
(Marrink, de Vries, et al., 2004), it has been extended throughout the years to other
biological systems, such as proteins (Monticelli et al., 2008), carbohydrates (Lopez et al.,
2009), DNA (Uusitalo et al., 2015) and also employed in polymer systems (Bochicchio
and Pavan, 2017). Recently, also a polarizable version of the MARTINI force field has
been developed (Michalowsky et al., 2018).

It consists of a four-to-one mapping, namely four heavy atoms per CG bead. A
qualitative example is depicted in Figure 7.1. Being the level of coarse-graining very fine,
the MARTINI force field accounts only for the conservative forces, neglecting therefore
the dissipative and stochastic terms of the Langevin equation, reported in Eq. (4.1). The
CG bead types are classified into four general main classes: polar (P), non-polar (N),
apolar (C) and charged (Q). For each type, a subtype is present, in order to lead to a more
accurate representation of the chemical nature of the atomic compounds. Subtypes can
be either letters or numbers, indicating whether that compound is a electron donor (d),
acceptor (a), both of them (da) or none of them (0), or indicating the polarity, from 1
(low) to 5 (high). Bead types interact among themselves thorough bonded and non-
bonded interactions. The bonded interactions have been parametrised from atomistic
simulations (bottom-up), whereas the non-bonded interactions have been evaluated by
reproducing the experimental partitioning free energies referred to a wide range of
chemical compounds (top-down).

Non-bonded interactions are described through shifted potentials (LJ and Coulomb
interactions), and all the algorithms used for MARTINI CG simulations are the same as
the ones described in Chapt. 6 for the full-atom molecular dynamics. Obviously, this is
another direct consequence of the very fine level of coarsening that characterises this
method. Concerning the LJ potentials, discrete levels of non-bonded interactions are
available and, more specifically, there are ten levels of LJ interactions from the strongest
(0) to the weakest (IX), briefly summarised in Figure 7.2, in which the LJ parameters 𝜎
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and 𝜀 are reported. A complete overview of the all bead types present in the MARTINI
model, as well as all the possible non-bonded levels of interactions, are reported in
Figure 7.3.

Looking at the algorithms details, larger time steps can be used compared to the
full-atom MD (almost one order of magnitude grater), together with larger cutoffs
for the neighbour list searching. The use of shifted potentials guarantees smooth and
continuous functions during the integration of the equations of motion, leading to
higher stability and solidity of this method (the energy conservation is facilitated).

Further technical details concerning the application of the MARTINI force field to
the specific test case investigated in this work is extensively reported in Chapt. 10.

Figure 7.1: Sketch of the MARTINI force field mapping. This image has been taken and
modified from Marrink, Risselada, et al. (2007).
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Figure 7.2: Levels of non-bonded LJ interaction parameters used in theMARTINI model.
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Figure 7.3: Bead types non-bonded interactions in the MARTINI force field. This image
has been taken and modified from Marrink, Risselada, et al. (2007).
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Chapter 8

Population Balance Model and
Computational Fluid Dynamics

In this chapter Gaussian quadrature and quadrature-based method of moments
(QBMM) are presented as powerful tool to solve the PBE introduced in Chapt. 5.
Particular attention is dedicated to univariate and multivariate distributions, stressing
two specific methods of moments: the direct quadrature method of moments (DQMOM)
and the conditional quadrature method of moments (CQMOM). Turbulent and micro-
mixing models are also discussed, being one of the key aspects of the test case analysed
in this work. All the governing equations presented in Chapt. 5 together with the
modelling algorithms shown in this chapter are implemented in finite volume CFD
codes. In line with the finite volume method (FVM), the computational domain is
discretised in volume elements denominated cells. Each cell has a number of faces (the
edges of the cell domain). Governing equations (continuity, Navier-Stokes, turbulence
modelling, PBE) are discretised and the partial derivatives appearing in their original
form are transformed into algebraic quantities that must be integrated in each cell.
Some of the terms appearing in the governing equations are discretised in FVM as
fluxes through the cell domain (entering into and going out of the cell faces). Being
the flux of properties entering in a finite volume cell equal to the flux that goes out
from the adjacent cell, FVM turns out to be strictly conservative and, for this reason, it
represents one of the most employed methods in CFD simulation codes.

8.1 UnivariateDistributions andGaussianQuadrature
As already discussed in Chapt. 5, the population balance equation (PBE) is affected

by some closure problems. In general, a closure can be represented by the following
integral:
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𝐼 = ∫Ω𝜉

𝑓𝑁(𝜉)𝑔(𝜉)𝑑𝜉, (8.1)

where 𝑓𝑁(𝜉) is a generic univariate NDF that is transported in the PBE, function of
the internal coordinate 𝜉 in the phase space domain Ω𝜉 and space and time dependence
is omitted for brevity; 𝑔(𝜉) is a function that encloses all the terms appearing in the
unclosed integral 𝐼, except the NDF. It is straightforward that the integration domain
changes, depending on the physical meaning of the quantities that are considered in
the PBE.

In the context of real applications, it would be almost impossible to solve directly the
transport equation of the NDF. It turns out to be more strategic therefore to transport
the moments of the NDF instead of the NDF itself. The advantage is twofold: first, while
the NDF is unknown, its moments correspond to very well-known physical quantities;
second, by transporting the moments of the NDFmuch less equations (just the numbers
of moments belonging to the moments set) have to be solved and so the computational
cost decreases.

The general idea is to transport the moments of the NDF and to reconstruct it
directly from its moments set by applying the quadrature method, as it will extensively
explained later on. It is important to stress that the reconstruction does not want to
reconstruct the actual unknown NDF, but to identify a possible reconstructed NDF, that
shares the same moments with the unknown NDF, and that can be used to overcome
the closure problem.

Let us define the generic 𝑘𝑡ℎ-order moment of the NDF:

𝑚𝑘(𝜉) = ∫Ω𝜉

𝜉𝑘𝑓𝑁(𝜉)𝑑𝜉. (8.2)

Let us also give the following fundamental definition: a set of polynomials {𝑃𝛼(𝜉)} =
{𝑃0(𝜉),𝑃1(𝜉), ...,𝑃𝛼(𝜉), ...}, with 𝑃𝛼(𝜉) = ∑𝛼

𝑙=0 𝑘𝛼,𝑙𝑥𝛼−𝑙, is defined as orthogonal with
respect to the NDF, also known as weight or measure, if (Marchisio and Fox, 2013):

∫Ω𝜉

𝑃𝛼(𝜉)𝑃𝛽(𝜉)𝑓𝑁(𝜉)𝑑𝜉 = {
0, (𝛼 ≠ 𝛽)

> 0, (𝛼 = 𝛽), = 1 orthonormal. (8.3)

A polynomial is said to be monic if its term 𝑘𝛼,0 is unitary. Any set of orthogonal
polynomials can be written with the following recurrence formula:

𝑃𝛼+1(𝜉) = (𝜉 − 𝑎𝛼)𝑃𝛼(𝜉) − 𝑏𝛼𝑃𝛼−1(𝜉), 𝛼 = 0, 1, 2, ..., (8.4)

where 𝑃−1(𝜉) = 0 and 𝑃0(𝜉) = 1, and the coefficients are defined as follows:
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𝑎𝛼 =
∫Ω𝜉

𝜉𝑓𝑁(𝜉)𝑃𝛼(𝜉)𝑃𝛼(𝜉)𝑑𝜉

∫Ω𝜉
𝑓𝑁(𝜉)𝑃𝛼(𝜉)𝑃𝛼(𝜉)𝑑𝜉

, 𝛼 = 0, 1, 2, ...,

𝑏𝛼 =
∫Ω𝜉

𝑓𝑁(𝜉)𝑃𝛼(𝜉)𝑃𝛼(𝜉)𝑑𝜉

∫Ω𝜉
𝑓𝑁(𝜉)𝑃𝛼−1(𝜉)𝑃𝛼−1(𝜉)𝑑𝜉

𝛼 = 0, 1, 2, ....

(8.5)

Knowledge of these coefficients is the pillar of the quadrature method itself, paving
the way to the calculation of the zeros of the orthogonal polynomials. The formula
reported in Eq. (8.4) leads to a set ofmonic polynomials that are orthogonal to theweight
function in the phase space domain. Starting from Eq. (8.4) and (8.5) a set of coefficients
can be written down, as a function of themoments of the NDF. To reconstruct a 𝑁-order
polynomial, a set of 2𝑁 − 1 moments must be used.

Each orthogonal polynomials set expressed as in Eq. (8.4) has distinct, real roots
belonging to the phase space integration domain. It is noteworthy to stress also that
each root 𝜉𝛼 of the generic polynomial 𝑃𝛼 lies in between the two roots corresponding
to the polynomials of order 𝛼 − 1 and 𝛼 + 1. Finally, the key feature that comes from the
theory just presented here is that the roots of the orthogonal polynomials correspond
to nodes of the Gaussian quadrature method.

The generic unclosed integral shown in Eq. (8.1) can be approximate as follows:

𝐼 = ∫Ω𝜉

𝑓𝑁(𝜉)𝑔(𝜉)𝑑𝜉 ≈
𝑁

∑
𝛼=1

𝑤𝛼𝑔(𝜉𝛼), (8.6)

where 𝑤𝛼 and 𝜉𝛼 correspond, respectively, to nodes and weights of the quadrature
formula by using 𝑁 nodes. A quadrature formula of degree of accuracy 𝑑 means that
the interpolation formula is exact (Eq. 8.6) by using a 𝑑(or less-)-order polynomial, and
gives an error if at least one 𝑑+1-order polynomial is employed.The advantage of using
the Gaussian quadrature method consists in the fact that for 𝑁 distinct nodes a degree
of accuracy equal to 2𝑁 − 1 is achieved. This means that by using for example only two
nodes, the first four moments (𝑚0, ...,𝑚3) of the weight function are known exactly:
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𝑚0 =
𝑁

∑
𝛼=1

𝑤𝛼

𝑚1 =
𝑁

∑
𝛼=1

𝑤𝛼𝜉𝛼

𝑚2 =
𝑁

∑
𝛼=1

𝑤𝛼𝜉2
𝛼

⋮

𝑚2𝑁−1 =
𝑁

∑
𝛼=1

𝑤𝛼𝜉2𝑁−1
𝛼 .

(8.7)

Solving the nonlinear system shown here (Eq. 8.7) is computationally too expensive;
consequently, other more efficient algorithms must be employed to ensure a stable
convergence of the method.

Therefore, a more efficient method consists in using the recurrence formula seen in
Eq. (8.4) (with 𝛼 = 0, 1, ...,𝑁) and solving the following system in matrix notation:

𝜉

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑃0
𝑃1
𝑃2
𝑃3
⋮

𝑃𝑁−2
𝑃𝑁−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑎0 1
𝑏1 𝑎1 1

𝑏2 𝑎2 1
𝑏3 𝑎3 1

⋱ ⋱ ⋱
⋱ 𝑎𝑁−2 1

𝑏𝑁−1 𝑎𝑁−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑃0(𝜉)
𝑃1(𝜉)
𝑃2(𝜉)
𝑃3(𝜉)

⋮
𝑃𝑁−2(𝜉)
𝑃𝑁−1(𝜉)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
0
⋮
0

𝑃𝑁(𝜉)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (8.8)

which clearly corresponds to an eigenvalues problem. More specifically, the nodes
{𝜉𝛼} of the quadrature formula are the eigenvalues of a tridiagonal matrix. The latter
can be transformed in a symmetric one, leading to the Jacobi matrix:

J =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑎0 √𝑏1
√𝑏1 𝑎1 √𝑏2

√𝑏2 𝑎2 √𝑏3
√𝑏3 𝑎3 ⋱

⋱ ⋱ ⋱
⋱ 𝑎𝑁−2 √𝑏𝑁−1

√𝑏𝑁−1 𝑎𝑁−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (8.9)

This approach stabilises the numerical solution of the search of the orthogonal
polynomials roots {𝜉𝛼} by solving a well-conditioned eigenvalues problem.Theweights
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are calculated through the relation 𝑤𝛼 = 𝑚0𝜙2
𝛼,1 (Wilf, 1962), where 𝜙𝛼,1 is the first

component of the eigenvector 𝜙𝛼 related to J. The coefficients reported in Eq. (8.5) and
appearing in J can be calculated by means of suitable algorithms. In the next section,
two of them (that use the moments of the NDF) will be briefly presented and discussed.

8.2 Computing Nodes andWeights of the Quadrature
Approximation

In this section two main algorithms are presented and discussed: the Product-
Difference (PD) and the Wheeler algorithm. Both of them take advantage of the
orthogonality properties and the knowledge of the moments of the weight functions
(NDF).

8.2.1 Product-Difference Algorithm
The Product-Difference (PD) Algorithm, proposed by Gordon (1968), consists in

constructing a P matrix in which the components 𝑃𝛼,𝛽 are a combination of moments
of the NDF. The first column is 𝑃𝛼,1 = 𝛿𝛼,1 with 𝛼 = 1, 2, ..., 2𝑁 + 1 and 𝛿𝛼,1 is the
Kronecker delta. The second column is 𝑃𝛼,2 = (−1)𝛼−1𝑚𝛼−1, with 𝛼 = 1, 2, ..., 2𝑁. The
other components are 𝑃𝛼,𝛽 = 𝑃1,𝛽−1𝑃𝛼+1,𝛽−2 − 𝑃1,𝛽−2𝑃𝛼+1,𝛽−1, with 𝛽 = 3, ..., 2𝑁 + 1
and 𝛼 = 1, ..., 2𝑁 + 2 − 𝑗 for the 𝑗 columns of P.

Furthermore, a set of coefficients 𝜁𝛼 is evaluated:

𝜁𝛼 =
𝑃1,𝛼+1

𝑃1,𝛼𝑃1,𝛼−1
, 𝛼 = 2, ..., 2𝑁. (8.10)

The coefficients of the matrix J are then calculated as:

𝑎𝛼 = 𝜁2𝛼 + 𝜁2𝛼−1, 𝛼 = 1, ...,𝑁

𝑏𝛼 = −√𝜁2𝛼+1𝜁2𝛼 𝛼 = 1, ...,𝑁 − 1.
(8.11)

8.2.2 Wheeler Algorithm
The Wheeler Algorithm was proposed by Sack and Donovan (1971), in order to

rearrange the coefficients calculation of Eq. (8.4) in a different way. The main novelty
lies on the introduction of new basis functions {𝜋𝛼(𝜉)} to represent the orthogonal
polynomials, taking over the classical 𝜉𝑘. This strategy implies a better and more stable
numerical solution. The modified moments are then:

𝜈𝑘(𝜉) = ∫Ω𝜉

𝜋𝑘(𝜉)𝑓𝑁(𝜉)𝑑𝜉, 𝑘 = 0, 1, ..., 2𝑁 − 1, (8.12)
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assuming that:

𝜋−1(𝜉) = 0
𝜋0(𝜉) = 1
𝜋𝛼(𝜉) = (𝜉 − 𝑎′

𝛼)𝜋𝛼(𝜉) − 𝑏′
𝛼𝜋𝛼−1(𝜉).

(8.13)

By using this new approach it is straightforward that the coefficients (𝑎′
𝛼, 𝑏′

𝛼) are
different from the ones reported in Eq. (8.5) and, obviously, must be calculated. Wheeler
(1974) proposed an algorithm to do that, calculating some intermediate quantities:

𝜎𝛼,𝛽 = ∫Ω𝜉

𝜋𝛼(𝜉)𝜋𝛽(𝜉)𝑓𝑁(𝜉)𝑑𝜉, 𝛼, 𝛽 > 1. (8.14)

The initial values are:

𝜎(−1, 𝛼) = 0, 𝛼 = 1,2, ..., 2𝑁 − 2
𝜎(0, 𝛼) = 𝜈𝛼, 𝛼 = 1,2, ..., 2𝑁 − 1

𝑎0 = 𝑎′
0 +

𝜈1
𝜈0

𝑏0 = 0.

(8.15)

Evaluating then the quantities 𝜎𝛼,𝛽 = 𝜎𝛼−1,𝛽+1 − (𝑎𝛽−1 − 𝑎′
𝛽)𝜎𝛼−1,𝛽 − 𝑏𝛽−1𝜎𝛼−2,𝛽 +

𝑏′
𝛽𝜎𝛼−1,𝛽−1 for 𝛼 = 1, 2, ...,𝑁 − 1 and 𝛽 = 𝛼, 𝛼 + 1, ..., 2𝑁 − 𝛼 − 1, the Jacobi matrix

coefficients are:

𝑎𝛼 = 𝑎′
𝛼 −

𝜎𝛼−1,𝛼

𝜎𝛼−1,𝛼−1
+

𝜎𝛼,𝛼+1

𝜎𝛼,𝛼

𝑏𝛼 =
𝜎𝛼,𝛼

𝜎𝛼−1,𝛼−1
.

(8.16)

Compared to the PD algorithm, the Wheeler one turns out to be more robust,
especially at very high-order quadrature approximations.

8.3 Realizability of a Moments Set and Correction
Algorithms

All the properties concerning the quadrature approximation, reported so far,
are valid only if the moments set is realizable. The concept of realizability comes
from physical intuitions based on the physical meaning of the low-order moments
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themselves. From a mathematical and rigorous point of view, a moment set is realizable
if the Hankel-Hadamard determinants are non-negative (Gautschi, 2004):

Δ𝑘,𝑙 = det(H𝑘,𝑙) =

|
|
|
|
||

𝑚𝑘 𝑚𝑘+1 ⋯ 𝑚𝑘+𝑙
𝑚𝑘+1 𝑚𝑘+2 ⋯ 𝑚𝑘+𝑙+1

⋮ ⋮ ⋮ ⋮
𝑚𝑘+𝑙 𝑚𝑘+𝑙+1 ⋯ 𝑚𝑘+𝑙+𝑙

|
|
|
|
||

≥ 0, 𝑘 = 0,1 𝑙 ≥ 0. (8.17)

The relationship reported in Eq. (8.17) represents a necessary and sufficient
condition for the realizability. A weaker condition, only necessary, is the convexity of
ln(𝑚𝑘) with respect to 𝑘:

ln(𝑚𝑘) − ln(𝑚𝑘−2)
2

≥ ln(𝑚𝑘−1), 𝑘 = 2,3, ..., (8.18)

which corresponds to the physical intuition that, being the moments the
representation of physical quantities, 𝑚0, 𝑚1 must be positive and also the variance
𝑚2 − 𝑚2

1/𝑚0 ≥ 0 (is null only in case of delta-function distributions). In fact, the
condition reported in Eq. (8.18) is valid only for the first four-order moments, after that
strongest conditions must be employed.

From a computational cost point of view, computing the Hankel determinants
at each iteration would be very expensive, especially for a number of nodes greater
than two. Very often, this is overcome by taking advantage of other properties of the
quadrature approximation, namely evaluating the sign of the coefficients appearing
in the recurrence formula, since they are strictly correlated to the positiveness of the
Hankel determinants (Dette and Studden, 2002).

It might happen that, even starting from a realizable moments set, at a certain
iteration the numerical solution gives back a non-realizable moments set in which at
least one of the transported moments is unrealiazable. This is due to the numerical
scheme and the discretization adopted in the simulation, and is named moment
corruption. When this happens, a correction algorithm can be applied to adjust
that corrupted moment with one that guarantees the realizability. In this sense, two
different correction algorithms have been proposed by McGraw (2006) and Wright
(2007). The main aim of these two algorithm is to minimize the number of corrections
artificially (so, arbitrary) introduced in the numerical scheme and, at the same time, to
maximize the smoothness of the moments convexity (Eq. 8.18).

8.4 Multivariate Distributions
When the NDF depends on more than one internal coordinate (e.g., size and particle

velocity, or size and mixture fraction), the distribution that one aims to reconstruct is
said to be multivariate. In this case, the unclosed term can be generalised as follows:
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𝐼 = ∫Ω𝜉

𝑓𝑁(𝜉)𝑔(𝜉)𝑑𝜉, (8.19)

where 𝜉 = {𝜉1, 𝜉2, ..., 𝜉𝑀} is the generic internal coordinate vector that considers
the 𝑀 internal coordinates, 𝑓𝑁(𝜉) is the multivariate NDF (unknown) and 𝑔(𝜉) accounts
for all the other terms appearing in the integral 𝐼.

Now the quadrature approximation has the aim of finding 𝑁 weights for the 𝑁
nodes of the 𝑀 internal coordinates. The quadrature approximation for a multivariate
problem reads as follows:

∫Ω𝜉

𝑓𝑁(𝜉)𝑔(𝜉)𝑑𝜉 ≈
𝑁

∑
𝛼=1

𝑤𝛼𝑔(𝜉𝛼), (8.20)

and the assumption of the functional form for the NDF is:

𝑓𝑁(𝜉) =
𝑁

∑
𝛼=1

𝑤𝛼𝛿(𝜉 − 𝜉𝛼) =
𝑁

∑
𝛼=1

𝑤𝛼

𝑀

∏
𝛽=1

𝛿(𝜉𝛽 − 𝜉𝛼,𝛽), (8.21)

where each node 𝜉𝛼 of the quadrature approximation is now a vector of length 𝑀.
It is straightforward that the case 𝑀 = 1 corresponds to the univariate case.

The moments of the multivariate NDF are now a set of mixed moments of the single
internal coordinates:

𝑚𝑘1,𝑘2,...,𝑘𝑀
(𝜉) = ∫Ω𝜉

𝜉𝑘1
1 𝜉𝑘2

2 ...𝜉𝑘𝑀
𝑀 𝑓𝑁(𝜉)𝑑𝜉 = ⟨𝜉𝑘1

1 𝜉𝑘2
2 ...𝜉𝑘𝑀

𝑀 ⟩, (8.22)

in which the new notation, ⟨𝜉
𝑘𝛽
𝛽 ⟩ has been introduced to identify the generic 𝑘𝑡ℎ-

order moment. The corresponding multivariate approximation reads as follows:

𝑚𝑘1,𝑘2,...,𝑘𝑀
(𝜉) =

𝑁

∑
𝛼=1

𝑤𝛼

𝑀

∏
𝛽=1

𝜉
𝑘𝛽
𝛼,𝛽. (8.23)

Due to the multivariate nature of the unclosed term 𝐼, the normal Gaussian
quadrature cannot be applied to this new mathematical framework. New algorithms
are needed, in order to reconstruct the original multivariate NDF, by applying different
assumptions. One of them will be treated in detail in the next section and it is called
conditional quadrature method of moments (CQMOM), taking advantage of the
conditional probability theory. Alternatives to the CQMOM are represented by the
brute-force QMOM (Wright et al., 2001) and the tensor-product QMOM (Yoon and
McGraw, 2004).
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8.4.1 Conditional Quadrature Method of Moments
Based on the conditional probability theory, CQMOM starts from considering

the so-called conditional density function. It represents the probability of finding
an internal coordinate in a given infinitesimal interval when all the other internal
coordinates are equal to a fixed value. In mathematical terms:

ℎ(𝜉𝑀|𝜉1, 𝜉2, ..., 𝜉𝑀−1) =
𝑓𝑁(𝜉)

ℎ(𝜉1, 𝜉2, ..., 𝜉𝑀−1)
, (8.24)

which states the probability of having the internal coordinate 𝜉𝑀 in a range interval
𝜉𝑀 and 𝜉𝑀 + 𝑑𝜉𝑀 when all the others 𝜉1, ..., 𝜉𝑀−1 are fixed to constant values. The
conditional density function integrates to one, that is:

ℎ(𝜉1, 𝜉2, ..., 𝜉𝑀−1) = ∫Ω𝜉𝑀

𝑓𝑁(𝜉)𝑑𝜉𝑀. (8.25)

By applying the definition reported in Eq. (8.24), the following equality holds:

ℎ(𝜉𝑀−1|𝜉1, 𝜉2, ..., 𝜉𝑀−2) =
ℎ(𝜉1, 𝜉2, ..., 𝜉𝑀−1)
ℎ(𝜉1, 𝜉2, ..., 𝜉𝑀−2)

, (8.26)

and, by repeating the recurrent relation, the following equality is valid and
represents the starting point of the CQMOM:

𝑓𝑁(𝜉) = ℎ(𝜉𝑀|𝜉1, 𝜉2, ..., 𝜉𝑀−1)ℎ(𝜉𝑀−1|𝜉1, 𝜉2, ..., 𝜉𝑀−2) ⋯ ℎ(𝜉3|𝜉1, 𝜉2)ℎ(𝜉2|𝜉1)ℎ(𝜉1).
(8.27)

By using Eq. (8.25), the following equality is trivial to show:

𝑚0 = ∫Ω𝜉1

ℎ(𝜉1)𝑑𝜉1. (8.28)

Thanks to all the properties and equations reported so far, it is now possible to
build up a multivariate quadrature approach. More specifically, the definition of the
conditional density function itself allows to transform the multivariate quadrature in a
series of single univariate quadratures.

Therefore, the first step consists in constructing the first univariate quadrature in
the direction of the first internal coordinate 𝜉1. The moments set of 𝜉1 is known and, by
applying the Wheeler algorithm (sect. 8.2.2), it can be inverted obtaining the weights
and nodes referred to the first internal coordinate. In mathematical notation:

{𝑚𝑘1,0,0,...,0}, 𝑘1 = 0, 1, ..., 2𝑁1 − 1 ⇒ Wheeler ⇒ {𝜉1,𝛼1
,𝑤𝛼1

}, 𝛼1 = 1, 2, ...,𝑁1,
(8.29)
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where the first quadrature inversion has been done on 𝑁1 nodes. The last term of
the right hand side of Eq. (8.27) is then reconstructed:

ℎ(𝜉1) =
𝑁1

∑
𝛼1=1

𝑤𝛼1
𝛿(𝜉1 − 𝜉1,𝛼1

). (8.30)

The generic mixed moment can be expressed as:

𝑚𝑘1,𝑘2,...,𝑘𝑀
=

𝑁1

∑
𝛼1=1

𝑤𝛼1
𝜉𝑘1

1,𝛼1

∫Ω𝜉𝑀

𝜉𝑘2
2 ⋯ 𝜉𝑘𝑀

𝑀 ℎ(𝜉𝑀|𝜉1, 𝜉2, ..., 𝜉𝑀−1)ℎ(𝜉𝑀−1|𝜉1, 𝜉2, ..., 𝜉𝑀−2)

⋯ ℎ(𝜉3|𝜉1, 𝜉2)ℎ(𝜉2|𝜉1,𝛼1
)𝑑𝜉2 ⋯ 𝑑𝜉𝑀−1𝑑𝜉𝑀.

(8.31)

The mixed moment of order 𝑘1, 𝑘2 reads then as follows:

𝑚𝑘1,𝑘2,0,...,0 =
𝑁1

∑
𝛼1=1

𝑤𝛼1
𝜉𝑘1

1,𝛼1 ∫Ω𝜉2

𝜉𝑘2
2 ℎ(𝜉2|𝜉1,𝛼1

)𝑑𝜉2. (8.32)

The integral on the right hand side of the last equation is the conditional moment of
order 𝑘2 with respect to the second internal coordinate 𝜉2 conditioned on a fixed value
of the first internal coordinate 𝜉1,𝛼1

:

𝑚𝑘2
(𝜉2|𝜉1,𝛼1

) = ⟨𝜉𝑘2
2 ⟩(𝜉1,𝛼1

) = ∫Ω𝜉2

𝜉𝑘2
2 ℎ(𝜉2|𝜉1,𝛼1

)𝑑𝜉2, (8.33)

that from now on will be identified with the shorter notation ⟨𝜉𝑘2
2 ⟩𝛼1

.
Following again the same procedure as in Eq. (8.29) the second set of nodes and

weights must be calculated at this step:

⟨𝜉𝑘2
2 ⟩𝛼1

, 𝑘2 = 0, 1, ..., 2𝑁2 − 1 ⇒ Wheeler ⇒ {𝜉2,𝛼1,𝛽,𝑤𝛼1,𝛽}, 𝛽 = 1, 2, ...,𝑁2,∀𝛼1.
(8.34)

Unlike the first quadrature inversion reported in Eq. (8.29), the conditional moments
⟨𝜉𝑘2

2 ⟩𝛼1
reported in Eq. (8.34) are not known a priori, and can be calculated from the

following Vandermonde linear system:

V1R1

⎡
⎢
⎢
⎢
⎢
⎣

⟨𝜉𝑘2
2 ⟩1

⟨𝜉𝑘2
2 ⟩2
⋮

⟨𝜉𝑘2
2 ⟩𝑁1

⎤
⎥
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝑚0,𝑘2,0,...,0
𝑚1,𝑘2,0,...,0

⋮
𝑚𝑁1−1,𝑘2,0,...,0

⎤
⎥
⎥
⎥
⎦

, 𝑘2 = 0, 1, ..., 2𝑁2 − 1, (8.35)
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with

V1 =

⎡
⎢
⎢
⎢
⎢
⎣

1 ⋯ 1
𝜉1,1 ⋯ 𝜉1,𝑁1
⋮ ⋮ ⋮

𝜉𝑁1−1
1,1 ⋯ 𝜉𝑁1−1

1,𝑁1

⎤
⎥
⎥
⎥
⎥
⎦

(8.36)

and

R1 =
⎡
⎢
⎢
⎢
⎣

𝑤1
𝑤2

⋱
𝑤𝑁1

⎤
⎥
⎥
⎥
⎦

(8.37)

solved by using the algorithm proposed by Rybicki (Press et al., 1992).
The NDF referred to the first two internal coordinates is reconstructed:

ℎ(𝜉1, 𝜉2) = ℎ(𝜉2|𝜉1)ℎ(𝜉1) =
𝑁1

∑
𝛼1=1

𝑁2

∑
𝛼2=1

𝑤𝛼1
𝑤𝛼1,𝛼2

𝛿(𝜉1 − 𝜉1,𝛼1
)𝛿(𝜉2 − 𝜉2,𝛼1,𝛼2

). (8.38)

This procedure can be repeated until the 𝑀 𝑡ℎ internal coordinate, so that the final
𝑓𝑁(𝜉1, 𝜉2, ..., 𝜉𝑀) is reconstructed.

8.5 Direct Quadrature Method of Moments
Unlike all the other inversion algorithms, the direct quadrature method of moments

(DQMOM) is not a proper inversion technique. The only initial values of weights and
abscissas are inverted and, after that, weights andweighted abscissas are solved through
suitable transport equations (Marchisio and Fox, 2005):

𝜕𝑤𝛼
𝜕𝑡

+
𝜕(𝑢𝑤𝛼)

𝜕𝑥
= Γ

𝜕2𝑤𝛼

𝜕𝑥2 + 𝑎𝛼,

𝜕𝑤𝛼𝜉𝛼
𝜕𝑡

+
𝜕(𝑢𝑤𝛼𝜉𝛼)

𝜕𝑥
= Γ

𝜕2𝑤𝛼𝜉𝛼

𝜕𝑥2 + 𝑤𝛼𝑆𝛼 + 𝑏𝛼,

(8.39)

where 𝑤𝛼(𝑡,x) and 𝑤𝛼(𝑡,x)𝜉𝛼(𝑡,x) are, respectively, the weights and the weighted
abscissas (the dependence on the independent variable is omitted in the last set of
equations for a sake of compactness), 𝑆𝛼 represents a generic source term, Γ is a
diffusion coefficient, and 𝑢 is a known velocity. Also the initial distribution is assumed
to be known. The two terms 𝑎𝛼 and 𝑏𝛼 are additive source terms necessary to be taken
into account for a coherent description of the moments transport equations.
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A practical application of the DQMOM in describing the turbulent fluctuation effect
on a nanoparticles formation process (Lavino, Di Pasquale, et al., 2017) is extensively
reported Chapt. 11.

8.6 Turbulent Mixing
In many industrial applications (nanoparticles formation, crystallization processes,

etc.) the mixing at molecular level plays a key role in determining the final desired
properties (e.g., particle size). This effect is taken into account by implementing proper
transport equations for a passive scalar 𝜙 (Madadi-Kandjani et al., 2017). The mixture
fraction is described by using a probability density function (PDF), 𝑓𝜙(𝑡,x,𝜓), whose
the transport equation reads as follows (Fox, 2003; Pope, 2000):

𝜕𝑓𝜙

𝜕𝑡
+ ⟨𝑈𝑖⟩

𝜕𝑓𝜙

𝜕𝑥𝑖
+ 𝜕

𝜕𝑥𝑖
(⟨𝑢𝑖|𝜓⟩𝑓𝜙) = − 𝜕

𝜕𝜓𝑖
(⟨Γ𝑖∇2𝜙′

𝑖 |𝜓⟩𝑓𝜙) − 𝜕
𝜕𝜓𝑖

(Γ𝑖∇2⟨𝜙𝑖⟩𝑓𝜙), (8.40)

where Γ𝑖 is the molecular diffusivity of th especies 𝑖, repeated indices imply
summation and the Reynolds decomposition of 𝜙 = ⟨𝜙⟩ + 𝜙′ and 𝑣 = ⟨𝑈⟩ + 𝑢 for
the composition variable 𝜙 and the velocity 𝑣 has been applied. On the left hand side,
the physical meaning of Eq. (8.40) is: rate of change of the PDF plus the convection
in physical space due to mean velocity (macromixing) plus the convection in physical
space due to the fluctuations of the velocity (mesomixing) conditioned on the phase
space composition variables 𝜓 (note that 𝜙 is the composition variable, 𝜓 is its
representation in the phase space). On the right hand side, transport in phase space
due to molecular mixing (micro-mixing) is represented.

For statistical homogeneous systems, ∇2⟨𝜙𝑖⟩ and the convection in physical space
are null. Therefore the only first term on right hand side of Eq. (8.40) must be closed.
Two of the most used techniques are represented by the interaction-and-exchange with
the mean (IEM) and the Fokker-Planck (FP) models.

The IEM model is a linear relaxation of the passive scalar with its mean (Fox, 2003):

− 𝜕
𝜕𝜓

(⟨Γ∇2𝜙′|𝜓⟩𝑓𝜙) = − 𝜕
𝜕𝜓 [

𝜀𝜙

2⟨𝜙′2⟩
(⟨𝜙⟩ − 𝜓)𝑓𝜙] , (8.41)

where 𝜀𝜙 is the scalar covariance dissipation rate, ⟨𝜙′2⟩ is the covariance of
the scalars. Furthermore, their ratio is related to the time scale of the turbulent
micro-mixing interactions 1/𝜏𝑇 = 𝜀𝜙/⟨𝜙′2⟩. This term is usually closed by means of
the mechanical-to-scalar ratio parameter 𝐶𝜙, evaluated from the turbulent energy
spectrum (Liu and Fox, 2006):

𝜀𝜙

2⟨𝜙′2⟩
= 1

2𝜏𝑇
=

𝐶𝜙𝜀
2𝑘

= 𝛾𝑀, (8.42)
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where the 𝛾𝑀 is the micro-mixing rate, expressed in terms of turbulence dissipation
rate 𝜀 and turbulent kinetic energy 𝑘. The last two quantities are closed thanks to a
two-equation model, such as the 𝑘 − 𝜀 standard model (Ferziger and Peric, 2001). 𝐶𝜙 is
a function of the local Reynolds number and shows different profiles, depending on the
Schmidt number (Liu and Fox, 2006).

The FP model is able to overcome some limitations of the IEM method (differential
diffusion, control of the shape of the PDF). Introduced by Fox (1994, 1999) it closes
Eq. (8.40) as follows:

− 𝜕
𝜕𝜓

(⟨Γ∇2𝜙′|𝜓⟩𝑓𝜙) = −
𝑐𝐹 𝑃 + 1

2
𝜕

𝜕𝜓 [
𝜀𝜙

⟨𝜙′2⟩
(⟨𝜙⟩ − 𝜓)𝑓𝜙] +

𝑐𝐹 𝑃
2

𝜕2

𝜕𝜓2 (⟨𝜖𝜙|𝜓⟩𝑓𝜙),

(8.43)
where 𝑐𝐹 𝑃 is a positive constant, ⟨𝜖𝜙|𝜓⟩ is a term that closes the conditional

diffusion and is provided by the user to close the model (Fox, 2003). If 𝑐𝐹 𝑃 is equal to
zero, then the IEM model is obtained.

8.7 Transport Equation of the Moments of the NDF
The aim of this section is to start from the general transport equation of a

multivariate NDF, in order to obtain the transport equation of its generic 𝑘𝑡ℎ-
order moments. Considering the general PBE presented in Eq. (5.32) applied to the
multivariate NDF 𝑓𝑁(𝜉) presented in section 8.4 (time and space dependence is omitted
for brevity), where 𝜉 = {𝜉1, 𝜉2, ..., 𝜉𝑀} is the internal coordinates vector, the following
PBE is obtained:

𝜕𝑓𝑁(𝜉)
𝜕𝑡

+ 𝜕
𝜕x

⋅ (v𝑓𝑁(𝜉)) + 𝜕
𝜕𝜉

⋅ (𝜉̇𝑓𝑁(𝜉)) = ℎ𝜉(𝜉), (8.44)

where ℎ𝜉(𝜉) represents the generic source term, extensively described in
section 5.3.3.

By using the multivariate moment definition reported in Eq. (8.22), multiplying
Eq. (8.44) by 𝜉𝑘1...𝜉𝑘𝑀 ⋅ d𝜉 and integrating out all the terms in the phase space domain
of the internal coordinates Ω𝜉, the trasport equation related to the moments of the NDF
is obtained:

𝜕𝑚k(𝜉)
𝜕𝑡

+ 𝜕
𝜕x

⋅ (v𝑚k(𝜉)) − k𝛾𝑀 ⋅ [𝑚k−1(𝜉)𝑚1(𝜉) − 𝑚k(𝜉)] = ℎ𝜉(𝑚k(𝜉)), (8.45)

where the micro-mixing term (third term on left hand side) is closed thanks to
the IEM model together with the micro-mixing rate parameter, 𝛾𝑀, introduced in the
previous section, followed by integration by parts. All this mathematical procedure is
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here omitted and reported in Appendix C. k = {𝑘1, 𝑘2, ..., 𝑘𝑀} corresponds to the 𝑀 𝑡ℎ-
order of the moments and, as already said, 𝜉 = {𝜉1, 𝜉2, ..., 𝜉𝑀}. It is straightforward that
if 𝑀 = 1, then the univariate moments transport equation is trivially obtained.
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Chapter 9

Full atom molecular dynamics: the
demixing problem in acetone-water
mixtures

Most of this chapter has been published in Alessio D. Lavino, Luca Banetta, Paola
Carbone, and Daniele L. Marchisio (2018). Extended Charge-On-Particle Optimized
Potentials for Liquid Simulation Acetone Model: The Case of Acetone–Water Mixtures,
J. Phys. Chem. B, 122 (20), pp 5234–5241.

9.1 Introduction to the problem
Molecular simulations of complex fluids, such as aqueous mixtures, and their

micro-heterogeneities have received a lot of attention during the last decades (Perera,
Mazighi, et al., 2012). One of the most common complex fluids is represented by water
(Guillot, 2002), due to its network of hydrogen bonds (HB Angell, 1982), as well as
its polarization effects. For this reason it has been widely investigated via computer
simulations and several models have been developed (Berendsen, Postma, Von
Gusteren, et al., 1981; Jorgensen, Chandrasekhar, et al., 1983; Mahoney and Jorgensen,
2000). Complex liquids and their mixtures are subjected to density or concentration
fluctuations which, if not properly modeled, can lead to phase separation phenomena,
resulting in a wrong evaluation of both thermodynamic correlations and transport
properties, such as the Kirkwood-Buff integrals (KBI), strictly related to concentration
fluctuations (Allison et al., 2005; Gupta, 2012; Mountain, 2010), and, consequently, the
radial distribution functions (RDF).

It is surprising to find out how computer simulations of common aqueous mixtures,
such as acetone-water mixtures, can be non-trivial. More specifically, in classical
molecular dynamics (MD) simulations (Ferrario et al., 1990; Freitas et al., 1999;
Jorgensen, Briggs, et al., 1990) numerous acetone force fields showed an evident
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de-mixing and phase separation in acetone-water mixtures (Di Pasquale, Marchisio,
Barresi, and Carbone, 2014; Jedlovszky et al., 2009; Perera and Sokolić, 2004; Pereyra
et al., 2011; Weerasinghe and Smith, 2003), despite water and acetone are perfectly
miscible at any proportion at room temperature.

Phase separation depends on the stability of a given mixture and the stability
is, in turn, strictly related to the local order of the molecules. The fact that water
undergoes clustering effects in the simulation of acetone-water mixtures is due to the
wrong description of acetone molecules, which have a low dipole moment in aqueous
mixtures with respect to the expected trend, not being affected by the presence of a
polar solvent. In other words, the polarization effect of water on acetone molecules
is usually not properly taken into account by all-atom acetone force fields. Similarly,
water molecules are not affected by such low polar acetone interactions and tend to
self-organise together, driven by a self-induced polarization effect due to their own
dipole moment. Consequently, in MD simulations the local order increases (together
with the stability of the system) leading to unphysical de-mixing and phase separation.

Molecular mechanics/quantum mechanics (QM/MM) iterative calculations (Georg
et al., 2006) showed that the electronic polarization on the acetone molecule is strongly
influenced by the aqueous environment and that the acetone dipole moment spans from
3.3 D (neat liquid acetone) to 4.8 𝐷 (one molecule of acetone surrounded by 200 water
molecules). These results are not in accordance with the original OPLS acetone force
field that predicts a constant dipole moment of 2.35 𝐷 for the acetone molecule, as
reported in a previouswork (Perera and Sokolić, 2004), and, consequently, leads to phase
separation at low acetone concentrations in the mixture.

Since the classical force fields turn out not to be adequate for describing these
solvents mixtures, research efforts have focused on the development of new ones
specifically addressing the miscibility issue of acetone-water mixtures. Pereyra et al.
(2011) developed a modified version of the CHARMM27 acetone force field, thanks
to a variable charge distribution on the acetone molecule and validated in terms
of addressing the de-mixing issue from a thermodynamic point of view (Pinke and
Jedlovszky, 2012). The method introduced by Pereyra et al. (2011) consisted in varying
the charge distribution on the acetone molecule with the acetone molar fraction, in
order to fit the excess mixing enthalpy. This approach relied on the idea that, in order
to gain a better description of the several features related to the micro-heterogeneity
of acetone-water mixtures, it is mandatory to introduce a polarization effect in the
acetone force field. However, this approach requires changing the charge distribution
when the composition of the mixture is modified. Here we propose an alternative
way, namely to implement a pseudo-polarizable model for the acetone molecule
which adjust the acetone polarizability without the need to modify the atomic charge
distribution, but just acting on the charge displacement along the carbonyl group, as
explained later on.

Numerous techniques have been recently developed to introduce polarizability
effects into classical MD simulations, such as the point polarizable dipole model (PPD)
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(Van Belle et al., 1987; Vesely, 1977; Warshel and Levitt, 1976), the charge-on-spring
(COS, Straatsma and McCammon, 1990) (also called Drude oscillator, Lemkul et al.,
2016) model and the fluctuating charge (FQ, Rick et al., 1994) model. The approach
proposed here consists in using a charge-on-particle (COP) model by means of a
Virtual interaction Site (VS), which lies on the basic idea of the COS approach, in which
molecules polarization is modelled by charged particles attached to the nuclei of their
core atoms by harmonic springs. Applications of polarizable force fields spread out
on a wide range, especially in biological systems, but they have never been applied to
acetone-water mixtures. Lying on the idea of the COS model, the COP model is based
on the concept of induced polarizability by means of a charged particle (the virtual
site, VS). In the case of the acetone molecule, the charged particle is placed along the
carbonyl group and attached to the carbonyl carbon.

The aim of this work is therefore to reproduce the induced polarizability of
acetone, optimizing the charge equilibrium position. This allows us to model the
variable stretching of the electron cloud around the carbonyl group, depending on the
environment in which the acetone molecule is placed. It merges the idea of polarization
which the polarizable force fields lie on, preserving at the same time the simplicity and
originality of the classical OPLS force field. Consequently, the novelty of this approach
consists in acting on the charge position, instead of modifying the charge distribution,
and without modifying the force field itself like previous efforts did (Pereyra et al.,
2011), stating therefore an improvement with respect to them. It is worthwhile to
mention that the model proposed here cannot be defined as pure-polarizable, since it
does not adjust the polarizability of the acetone on-the-fly at different acetone molar
fractions, and it is therefore labelled as charge-on-particle (COP) model.

9.2 The Charge-on-Particle Approach and Numerical
Details

The model developed here is based on the general idea of the self-consistent field
(SCF) procedure, in line with the Born-Oppenheimer approximation, i.e. keeping
the electronic and nuclear degrees of freedom separated. A charge-on-spring (COS)
approach is adopted by placing a charge along the carbonyl axis, attached to a core
atom by a harmonic spring. Being the charge carried on a virtual particle, that is a
virtual interaction site (VS), this approach will be named as charge-on-particle (COP)
model from now on. VS is used in MD simulations in several ways. It is defined
“virtual” because it is massless, but, “interaction site” because it interacts with other
atoms, by means of a charge placed on it. As explained in section 6.8.1, in general,
the VS is a position-constrained massless particle, built upon a given number of
surrounding atoms 𝑁, as reference positions to constrain the VS itself. In this case,
𝑁 = 2 and they correspond to the carbon and the oxygen of the carbonyl group.
Therefore, the position of the VS is uniquely defined with respect to the carbonyl
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group as reference atoms, and, more specifically, the carbon represents its core atom. A
harmonic non-chemical bond is introduced between the VS and its core atom. All the
computational details concerning the implementation of the VS in acetone topology
are reported in Appendix D. The force acting on the VS is redistributed by the code
on these reference atoms in a consistent way (Berendsen and van Gunsteren, 1984),
following the procedure presented in section 6.8.1 and also explained in the GROMACS
simulation package (Hess, Kutzner, et al., 2008) manual.

Thanks to this modelling approach, the total potential of the system is able to
consider the presence of the new particle (VS) in the conservation laws, so that the
linear and angular momenta are conserved. Both experiments (Applequist et al.,
1972; Thole, 1981) and solvent accessible area (Connolly, 1983; Eisenhaber et al.,
1995) calculations of a single acetone molecule in water environment show how
polarizability of acetone is enhanced on the carbonyl axis. Therefore, the COP model
aims to reproduce this polarization effect around the carbonyl group, which stretches
its electron cloud depending on the polarity of the environment (induced electronic
polarization, Israelachvili, 2011). Hence, the stretching of the electron cloud is modelled
by the equilibrium position of the charge (carried on the VS), which vibrates via a
harmonic spring around it.

In the case of 𝑁 = 2, the equilibrium position of the VS is characterised by the
geometrical parameter introduced in section 6.8.1, which we denote with the symbol
𝑎. The parameter 𝑎 represents the normalized distance over the carbon-oxygen bond of
the VS from its core atom (in this case, the carbonyl carbon). If 𝑎 = 0 the VS is placed
on the carbon; for 𝑎 = 1 the VS lies on the oxygen, for 0 < 𝑎 < 1 the VS lies in between
the carbon and the oxygen, and finally if 𝑎 > 1 then the VS is placed on the other
side of the oxygen with respect to the carbon. A numerical example is also reported
in section 6.8.1. This scheme is depicted in Figure 9.1. By following this procedure, the
VS is always constrained to lie on the carbonyl axis. The choice of this VS type, built
upon only two atoms, assures the best trade off in terms of both computational cost and
physical interpretation of the charge movement.

As stated above, the VS is attached to the carbonyl carbon (Figure 9.1) and placed
at an equilibrium distance from it equal to 𝑎 ⋅ 𝑟0 (where 𝑟0 is the equilibrium carbon-
oxygen distance). The VS charge, 𝑞𝑠, must be chosen in order to respect the equality
𝑞𝑠 + 𝑞𝑜,𝑙 = 𝑞𝑜, where 𝑞𝑜,𝑙 is the charge left on the oxygen and 𝑞𝑜 is the original oxygen
atom charge, before the introduction of the VS (original OPLS force field). This new
approach consists in shifting the totality of the oxygen charge (𝑞𝑜 in this case) on the
VS, such that 𝑞𝑠 = 𝑞𝑜; therefore 𝑞𝑜,𝑙 is equal to zero, and no charge is left on the oxygen
after the introduction of the VS. At the carbon-oxygen-VS group the following isotropic
polarizability is associated:

𝛼𝑠 =
𝑞2

𝑠
𝑘𝑠

, (9.1)

where 𝑘𝑠 is the force constant of the carbon-VS harmonic spring, in line with
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Figure 9.1: Schematic representation of the charge-on-particle (COP) model. The VS
bead is attached to the carbon of the carbonyl group through a harmonic spring and
𝑎 represents its normalized position, depicted here as in the general scheme shown in
section 6.8.1. The positive charge, 𝛿+ = 𝑞𝑐 = −𝑞𝑜 is placed on the C; the negative
charge, 𝛿− = 𝑞𝑜 = 𝑞𝑠 (initial oxygen charge, without COP model), is totally shifted on
the VS (𝑞𝑜,𝑙 = 0). The charge displacement contributes to the dipole moment, 𝜇. An
electric field acting on the VS makes it vibrate around its equilibrium position, 𝑎 ⋅ 𝑟0,
creating an induced pseudo-polarization effect. Being 𝑎 greater than unity, the VS lies
on the other side of the oxygen of the carbonyl group.
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the isotropic polarizable force fields theory (Lamoureux, MacKerell Jr., et al., 2003;
Lamoureux and Roux, 2003), 𝑞𝑠 is the charge carried on the VS and 𝛼𝑠 = 6.39 ̊𝐴3 is
the experimental polarizability referred to the acetone molecule (Israelachvili, 2011;
Thole, 1981). Being the polarizability defined as the induced dipole moment to the
electric field ratio, it is usually normalised to a factor of 4𝜋𝜀0, where 𝜀0 is the vacuum
dielectric constant, and instead of being expressed in 𝐶2𝑚2𝐽 −1 units, is more often
indicated with volume units (e.g., in ̊𝐴3). The energy associated to the carbon-VS
harmonic spring is 𝑉𝑠𝑒𝑙𝑓 = 1

2𝑘𝑠(𝑟 − 𝑎 ⋅ 𝑟0)2, where 𝑎 is the characteristic normalized
and dimensionless VS parameter, 𝑟0 = 0.1229 𝑛𝑚 (equilibrium distance of the carbonyl
bond in the OPLS force field), and 𝑘𝑠 = 4804 kJ mol−1nm−2 has been calculated
achieving the appropriate polarization response (Applequist et al., 1972), according to
Eq. (9.1).

By shifting the oxygen partial charge onto the VS, a relative motion is created
between the oxygen charge (displaced now on the VS) and the oxygen atom, thanks
to both the VS parameter 𝑎 (greater than one) and the spring constant of the VS
harmonic potential, 𝑘𝑠 which is different from the one of the carbonyl bond. This
is more extensively explained in the sect. 9.3.1, where a sensitivity analysis with
respect to both 𝑎 and 𝑘𝑠 is also reported. Since 𝑘𝑠 is derived by a physical measurable
quantity (i.e. acetone polarizability) and seems not to affect much the final predictions,
more attention is paid to the value of 𝑎, upon which model predictions are extremely
sensitive. The parameter 𝑎 is therefore varied in order to fit a target property of the
mixture, namely the density of the mixture (Figure 9.4), and, consequently a set of 𝑎
values is obtained, depending on the acetone molar fraction (Table 9.2).

Moreover, the necessity to change the value of the parameter 𝑎 lies on the aim of
creating a variable charge displacement, in order to reproduce higher acetone dipole
moments in more polar environment (lower acetone molar fractions). As already
mentioned, it turns out that the spring constant, 𝑘𝑠, plays a secondary role when
a polar molecule interacts with the VS and, on the other side, it is the equilibrium
position, 𝑎 ⋅ 𝑟0, that mainly determines the polarization response. This is related to the
following fact: all the chemical bonds are constrained to their equilibrium positions
(as usually happens in MD simulations) in order to lower the computational cost; the
VS is a position-constrained particle by definition and, in this case, it is constrained
to the C-O bond. Being the bonds vibrations damped by the constraint algorithms
(LINCS, in this work, as reported in the operating conditions, sect. 9.2.1) it turns out
that such constraints damp the displaced-charge oscillations as well, leading to very
small oscillations for both C-O (atom-atom) and C-VS (atom-charge) bonds. These
small fluctuations, damped by the constraints, make the charge oscillations and,
consequently, the effect of the spring constant 𝑘𝑠 negligible, with respect to the charge
equilibrium position 𝑎 ⋅ 𝑟0.
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9.2.1 Numerical Details about the COP model
Simulations are performed in this study by using GROMACS 4.5.6 MD package

(Hess, Kutzner, et al., 2008). The VMD program is used to produce the graphical images
of the molecular systems. The OPLS (Jorgensen, Maxwell, et al., 1996) acetone force
field is employed, coupled with SPC/E (Berendsen, Grigera, et al., 1987) force field for
water. All the simulations are conducted in a 𝑁𝑃 𝑇 ensemble, with a total of 𝑁 = 1500
molecules in a cubic box with periodic boundary conditions and box length equal to 4
nm; this leads to a sufficiently large system to guarantee the uniformity condition for
the RDF. Weak harmonic potential functions are used for bonds, angles and improper
dihedrals, whereas the Ryckaert-Bellemans potential is implemented for the proper
dihedrals.

The whole range of acetone molar fractions has been investigated, with values of
𝑥𝐴 considered equal to 0.10, 0.25, 0.50, 0.75, 1. The system is equilibrated by using a
leap-frog algorithm for 100 ps with a 1 fs timestep. The simulations are performed for
20 ns with a 1 fs timestep, and bonds are constrained using the LINCS algorithm. Both
simulation time and box length are large enough to detect the de-mixing phenomenon.
The electrostatic interactions are evaluated by using the Particle-mesh Ewald (PME)
summation, with Van der Waals and electrostatic cut-off radii equals to 0.9 nm; long-
range dispersion corrections are taken into account for both energy and pressure. The
non-bonded interactions are settled by Lennard-Jones and Coulomb potential functions.
In particular, the Lennard-Jones interactions are taken into account by the combination
rule defined as follows:

𝜎𝑖𝑗 = (𝜎𝑖𝜎𝑗)1/2, (9.2)

𝜀𝑖𝑗 = (𝜀𝑖𝜀𝑗)1/2, (9.3)

where 𝜎 and 𝜀 are the Lennard-Jones parameters and 𝑖 and 𝑗 represent two different
non-bonded atoms.

The temperature is fixed at 300 K by means of a velocity-rescale algorithm with a
time constant equal to 0.1 ps. The Berendsen barostat is implemented with a coupling
constant equal to 1.0 ps to keep the system at the reference pressure of 1 bar; the
compressibility is set to 4.5 ⋅ 10−5bar−1. Diffusion coefficients are calculated from the
mean square displacement, as it is customary.

The viscosity of the acetone-water mixture has been calculated via non-equilibrium
molecular dynamics (NEMD, Allen and Tildesley, 1987; Song andDai, 2010) simulations,
since it has been shown (Hess, 2002) that the periodic perturbation method represents
the best choice for the evaluation of the viscosity of liquids, in terms of accuracy and
computational cost. It briefly consists in perturbating an equilibrated system (it is
crucial to not bring the system too far from an equilibrium condition to not affect the
final results) by applying a periodic force. This force is characterized by an acceleration
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amplitude that in a MD simulation is considered by a term called cos-acceleration.
After the system was equilibrated in a NPT ensemble for few hundred picoseconds
(as much as it needs to reach the equilibrium), it has been perturbated by setting a
cos-acceleration value equal to 0.01 nm ps−2. This value represents a good compromise
between too low values which could not guarantee a reasonable perturbation and, on
the other hand, too high values which would lead to very high shear rates affecting the
structure of the liquid.

9.3 Results and discussion
Before going into the modelling results details in terms of dynamical properties and

de-mixing behaviour, a deeper look at the polarization response introduced by the COP
model is done in a preliminary way in the following subsection, in order to better clarify
limits and advantages of this kind of approach.

9.3.1 Polarization response
In this section, further details regarding the polarizability effect implemented by

the COP model, as well as the roles of the VS characteristic parameter 𝑎 and of the
associated harmonic spring will be shown and discussed. First of all, it is interesting to
evaluate the dependence of the mixture density and the acetone dipole moment on the
VS parameter 𝑎. This is done at acetone molar fraction equal to 0.25 and the relative
results are shown in Table 9.1.

Virtual Site parameter, 𝑎 Density (kg⋅m−3) Dipole Moment (D)
1.00 895.89 3.10
1.10 902.91 3.37
1.16 913.89 3.54
1.20 921.37 3.65
1.25 931.45 3.79

Table 9.1: Variation of the density of the mixture and the acetone dipole moment with
the VS parameter, 𝑎, at acetone molar fraction, 𝑥𝐴, equal to 0.25.

By looking at Table 9.1, it is clear that both density and dipole moment increase
proportionally with 𝑎. This is explained by the following reason: increasing the
characteristic parameter 𝑎, the charge is displaced at a greater equilibrium distance
from the carbonyl carbon, equal to 𝑎 ⋅ 𝑟0; this implies a higher acetone dipole moment
(third column in Table 9.1) and, consequently, stronger electrostatic interactions with
the surrounding environment. This brings the molecules to interact more among
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themselves leading to a lower volume and, therefore, the density increases, as shown
in Table 9.1.

As already explained in the final part of the previous section, constraining all
chemical bonds makes the bonds oscillation almost vanish and this reflects directly
to the charge oscillations as well. Consequently, model predictions were found to be
less sensitive to the value of the VS harmonic constant 𝑘𝑠. Even changes of orders of
magnitude did not significantly changed the predictions. Attention was therefore paid
to the value of 𝑎 only.

In order to assess the polarization effect induced by the presence of water in the
mixture, both carbon-oxygen and carbon-VS harmonic bonds have beenmonitored over
the whole simulation time (20 ns) for this mixture composition, i.e. 𝑥𝐴, equal to 0.25,
and results are reported in Figure 9.2. As it can be seen, the decoupling between the
two harmonic bonds is evident, demonstrating that the VS vibrates around the position
𝑎 ⋅ 𝑟0 = 1.16 ⋅ 0.1229 𝑛𝑚 = 0.1426 𝑛𝑚 (top panel), while the carbon-oxygen bond
is vibrating around its equilibrium position given by 𝑟0 = 0.1229 𝑛𝑚, despite the
corresponding fluctuations are very small. Although the oscillations are limited and do
not influence the final dipole moment values, it is noteworthy to stress that the carbon-
VS bond is independent on the carbon-oxygen one, as proven by the insets of Figure 9.2
and pointed out by the red and blue flags. For instance, enlarging the interval around
the red flag, at 0.35 ps, the carbon-VS distance reaches a local maximum, whereas the
carbon-oxygen one is still increasing. The same behaviour is detected around the blue
flag (look at the insets respectively in the bottom and top panels).This univocally proves
that the two fluctuations are out of phase, thanks to the polarization response caused
by the presence of water. For the sake of clarity in the results depicted in both Figure 9.2
and Figure 9.3, only the first 30 ps are represented; however, this behaviour has been
observed for the whole simulation time (20 ns).

This polarization effect vanishes in pure acetone (𝑥𝐴 = 1, no water in the box
and 𝑎 = 1), where the carbon-oxygen and carbon-VS behave exactly in the same way.
Therefore, the bonds fluctuations are in phase at any time instant (Figure 9.3) and the
VS model is consistent with the original OPLS force field in pure acetone.
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Figure 9.2: Carbon-oxygen (bottom) and carbon-VS (top) distances over simulation time
at acetone molar fraction equal to 0.25. The first 30 ps are represented here, in which
it is clear how the carbon-VS bond is independent on the carbon-oxygen one, as stated
by the red and blue flags, enlarged in the insets. Indeed, when the carbon-VS distance
reaches a local maximum (red flag, top inset), at the same time instant the carbonyl-
oxygen bond is still increasing (red flag, bottom inset) and vice-versa for the blue flag.
The same behaviour is observed for the whole simulation time (20 ns).
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Figure 9.3: Carbon-oxygen (black solid line) and carbon-VS (green dashed line) distances
over simulation time at acetone molar fraction equal to 1.00. The first 30 ps are
represented here, proving that when there is no water, no polarization effect is detected.
Consequently, the carbon-VS curve collapses on the carbon-oxygen one, fluctuating in
phase as stated by the red and blue flags, enlarged in the insets.

9.3.2 Dynamical properties and de-mixing analysis
In line with the adopted modelling approach, several target functions can be chosen

in order to fit the VS parameter 𝑎. In this case, the density was identified to be the
most suitable target property due to its general relevance and role in the de-mixing
issue. The result of this fitting is depicted in Figure 9.4, in which the experimental
density (blue filled symbols, Thomas and McAllister, 1957) is fitted by the VS parameter
(open purple squares) at different acetone molar fractions, 𝑥𝐴. The density profile
corresponding to the original SPC/E-OPLS force field (open black squares) is also
reported. Looking at Figure 9.4, it is evident that the original SPC/E-OPLS force field is
inadequate to quantitatively reproduce the density of the mixture, especially far away
from the pure components; this gap is overcome by fitting the parameter 𝑎 of the COP
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model with the experimental data. More specifically, the fitting procedure consists in a
very straightforward trials and errors approach, by taking advantage of the monotonic
profile of the density with respect to a at constant acetone molar fraction (look at
Table 9.1).

Figure 9.4: Experimental density of the acetone-water mixture (filled blue diamonds)
versus the acetone molar fraction, 𝑥𝐴, fitted by the COP model (open purple squares).
The original SPC/E-OPLS model predictions (open black squares) are also reported.

The 𝑎 parameter values, corresponding to the different acetone molar fractions
investigated in this work, are summarized in Table 9.2. Increasing the acetone molar
fraction, 𝑥𝐴, the parameter 𝑎 clearly decreases, indicating that the acetone molecule
is more polarized when the water concentration is higher. At 𝑥𝐴 = 1 (pure acetone)
𝑎 is equal to 1, namely the mobile charge is on the oxygen, relaxing into the original
OPLS force field. As explained in more details in sect. 9.3.1, the decoupling between
the charge and its reference atom (i.e. the oxygen) brings out a more stretched electron
cloud. The stretching of the electron cloud around the carbonyl group is enhanced by
acting on the equilibrium position 𝑎 ⋅ 𝑟0, and, more specifically, increasing the value
of the VS parameter 𝑎 leads the molecules to interact among themselves in a more
attractive way resulting in higher density values in better agreement with experiments.
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𝑥𝐴 0.10 0.25 0.50 0.75 1.00
𝑎 1.30 1.16 1.08 1.03 1.00

Table 9.2: VS parameter, 𝑎, at different acetone molar fractions, 𝑥𝐴, obtained by the
fitting against the experimental density of the mixture.

The polarizability response of the mixture in function of acetone molar fractions
is also demonstrated by the profile of the acetone dipole moment obtained from the
COP model (empty purple squares), as shown in Figure 9.5. The acetone dipole moment
spans in the range of 3-4 𝐷. This is qualitatively in line with the results obtained by
Pereyra et al. (2011) through a modified charge distribution on acetone molecules by
means of a CHARMM27 acetone force field (black empty circles) but slightly in contrast
with the value of acetone dipole moment reported by Perera and Sokolić (2004) that
predicts a value of 2.35 𝐷 for pure OPLS acetone as also reported in the introduction
of the current chapter; this might be addressed to the different operating conditions
as well as the different versions of the tools used. Moreover, what we obtained here is
confirmed by the trends experimentally observed (Marcus, 1985), as well as by quantum
mechanical calculations (Georg et al., 2006) of the induced polarizability of the acetone
molecule surrounded by water molecules. Both experiments and quantum mechanical
calculations state indeed that the acetone dipole moment must increase as the acetone
molar fraction decreases in acetone-water mixtures.

Figure 9.6 reports the acetone diffusion coefficient as a function of the acetone
molar fraction. As shown in Figure 9.6, the COP model (empty purple squares) can
reproduce qualitatively better the experimental values (blue filled diamonds, Toryanik
and Taranenko, 1987), with respect to the original SPC/E-OPLS force field (empty
black squares), which is shown to overestimate the acetone diffusion coefficient
except for 𝑥𝐴 = 1. On the contrary, the COP model underestimates the diffusion
coefficient in all the acetone molar fraction range, although the agreement is very
good, especially at low acetone molar fractions. This is due to the fact that the COP
model takes into consideration stronger electrostatic interactions between molecules
than the original one, so that the mobility of the acetone molecules is hindered,
resulting in smaller diffusion coefficients. Furthermore, it is qualitatively in good
accordance with the experimental trend (the minimum is correctly reached), similarly
to the technique proposed by Pereyra et al., 2011, which however leads to a crossover
between simulations results and experiments, resulting in a flatter diffusivity profile.

Regarding the viscosity coefficient 𝜂, it was calculated by means of non-equilibrium
molecular dynamics (NEMD) calculations. In line with the NEMD theory, a trade off
value for the cos-acceleration has been identified thanks to a sensitivity analysis. The
viscosity profile versus cos-acceleration values is here reported in Figure 9.7 at acetone
molar fraction equal to 0.10; the same qualitative results are obtained for all the others
acetone molar fractions investigated in this work. By looking at Figure 9.7, it is visible
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Figure 9.5: Average dipole moment, 𝜇, of acetone molecules versus the acetone molar
fraction, 𝑥𝐴, obtained from the COP model (open purple squares) and by Pereyra et al.
(2011) with the modified CHARMM27 (open black circles). The experimental value of
the acetone dipole moment is 2.88 𝐷 (gas phase, Marcus, 1985), slightly lower than the
QM/MM calculations (2.98 𝐷) to neat liquid (3.33 𝐷, Pereyra et al., 2011), to infinite
dilution (4.8 𝐷, Georg et al., 2006). These last values are omitted in the picture, for a
sake a clarity.
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Figure 9.6: Comparison between the experimental acetone diffusion coefficient
(Toryanik and Taranenko, 1987) versus the acetone molar fraction, 𝑥𝐴, (filled blue
diamonds), with the COP model predictions (open purple squares), together with the
original SPC/E-OPLS (Perera and Sokolić, 2004) model predictions (open black squares).
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that a value of 0.01 nm⋅ps−2 represents a good trade off, since smaller values of cos-
acceleration bring to greater errors of viscosity estimation. On the other hand, the error
estimation decreases with cos-acceleration, leading however to a wrong evaluation of
viscosity for cos-acceleration values greater than 0.1 nm⋅ps−2.

Figure 9.7: Viscosity dependence on acceleration amplitude at acetone molar fraction
equal to 0.10 calculated by NEMD. Error bars are reported.

In Figure 9.8 the COP model results (empty purple squares) are compared against
the experimental data (K. Howard and McAllister, 1958; Noda et al., 1982), showing
excellent agreement. The largest mismatch is detected at 𝑥𝐴 = 0.50, but it still can
be considered an acceptable agreement. This is a very encouraging result, which
demonstrates that the COP model proposed here reproduces very well not only the
density of the mixture (target property), but also, the molecular diffusion and the
rheological behaviour of acetone-water mixtures.

The COP model not only results in better predictions for density, diffusion and
viscosity coefficients, but it also fixes the unphysical de-mixing of the mixture observed
with the original SPC/E-OPLS model. This is shown here by looking at the snapshots
of the MD simulations, the radial distribution functions, as well as the density profiles
along the simulation box. The snapshots related to the four acetone molar fractions
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investigated here are reported in Figure 9.9, taken at very long simulation times (20 ns).
It is evident that no de-mixing occurs anymore, by looking at the acetonemolecules (the
green atoms univocally refer to the acetone carbons) which are uniformly distributed
in the simulation box after 20 ns. It is also possible to see the VS (pink bead) attached to
its core nuclei on the carbonyl group of the acetone.The affinity with water is enhanced
thanks to the VS approach since more HB between water and acetone are clearly visible
(O red bead - H white bead — VS pink bead – O red bead) in the snapshots, overcoming
the characteristic hydrophobicity of the original OPLS force-field.

Figure 9.8: Comparison between the experimental viscosity coefficient (filled blue
diamonds) of the acetone-water mixture (K. Howard and McAllister, 1958; Noda et al.,
1982) as a function of the acetone molar fraction, 𝑥𝐴, with the COP model predictions
(open purple squares) Error bars referred to the average viscosity estimation are
reported; at 𝑥𝐴 = 0.75 and 1.00 they are too small (10−5 order of magnitude) to be
graphically detected.

This is also confirmed by the RDF referring to acetone-acetone molecules, 𝑔𝐴𝐴(𝑟),
water-acetone molecules, 𝑔𝑊 𝐴(𝑟), and water-water molecules, 𝑔𝑊 𝑊(𝑟), as it can be
seen in Figure 9.10. Looking at 𝑔𝐴𝐴(𝑟), no first peak is present anymore, unlike previous
works (Perera and Sokolić, 2004), observed especially at low acetone molar fractions, as
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well as no long-range tail effect is visible, confirming that acetone-acetone clustering is
clearly milder with the COP model, and, therefore pointing out that the hydrophilicity
of the OPLS acetone model has been enhanced, as shown in the snapshots before
(Figure 9.9). As far as the 𝑔𝑊 𝐴(𝑟) is concerned, although the RDFs in the middle panel
do not show an evident first peak, it is noteworthy to stress that shallow first peaks
can be observed, especially increasing the acetone concentration. This is explained by
the so-called effective neighbour interactions, which increase with the acetone molar
fraction, since acetone can form HB to water. This fact states that the interactions with
acetone are improved, thanks to the introduction of the polarizability response in the
model. The bottom panel of Figure 9.10 shows 𝑔𝑊 𝑊(𝑟), in which the first peak increases
with 𝑥𝐴. This is in line with previous works, and states that the HB between water
molecules prevail over the H-bonds that a molecule of water can build with a molecule
of acetone, especially when the system is mostly made of acetone. This is because the
water concentration is too low and it is not able to induce a sufficient polarization
of acetone, preferring to interact with itself, since the affinity with acetone lowers.
Despite the first peak observed, it is much less enhanced with respect to the original
SPC/E-OPLS model; moreover, no long-range tail effect can be detected despite the
𝑔𝑊 𝑊(𝑟) goes to unity from the top, at increasing acetone concentrations, but this effect
is immediately damped.
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Figure 9.9: Snapshots of the acetone-water mixture referred to the COP model. From
left to right and from up to bottom the acetone molar fractions are 0.10, 0.25, 0.50, 0.75.
The oxygen is represented in red, the hydrogen in white, carbon in green and the VS is
shown in pink.
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Figure 9.10: Radial distribution functions related to acetone-acetone, 𝑔𝐴𝐴(𝑟), water-
acetone, 𝑔𝑊 𝐴(𝑟), and water-water, 𝑔𝑊 𝑊(𝑟). The acetone molar fractions shown here
are equal to 0.10 (black), 0.25 (red), 0.50 (green) and 0.75 (blue).
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Density profiles averaged over the entire simulation time (20 ns) along the box are
shown in Figure 9.11, proving that the COP model developed here can definitely solve
the de-mixing issue, typical of MD simulations of acetone-water mixtures. Looking at
Figure 9.11, no density gradients are observed at any acetone molar fraction and at
any spatial direction investigated. On the other hand, if the system underwent phase
separation, evident density oscillations should be detected along the box, proving that
one of the two phases prefers to segregate in a specific region of the simulation box.

Figure 9.11: Density profiles of the COPmodel for acetone-water mixture along the box.
From left to right and from up to bottom the acetone molar fractions are 0.10, 0.25, 0.50,
0.75. The three space directions are reported, namely density along x (black), y (red),
and z axes (green).

9.4 Conclusions
In this chapter, the well-known issue of de-mixing in MD simulations of acetone-

water mixtures (Di Pasquale, Marchisio, Barresi, and Carbone, 2014; Jedlovszky
et al., 2009; Perera and Sokolić, 2004; Pereyra et al., 2011; Weerasinghe and Smith,
2003) has been investigated, stating the difficulty in reproducing perfect miscibility
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at all concentrations with classical all-atom force fields. Both quantum mechanical
calculations (Georg et al., 2006) and experiments (Applequist et al., 1972; Thole, 1981)
show that the effect of induced polarization must be taken into account. Here, lying
on the idea of the charge-on-spring approach, a charge-on-particle (COP) model
that uses a virtual site (VS) bead for carrying the charge together with the standard
OPLS acetone force field is proposed and applied. The VS is attached to its core atom
(carbonyl carbon) via a harmonic spring. The COP model is able to account for the
effect of the induced polarization due to the interaction with a more polar solvent such
as water. This effect is reached by fitting the VS characteristic parameter, 𝑎, on the
mixture density as target function. The polarization response is reproduced then by
varying the equilibrium charge displacement, namely the value of the VS parameter,
𝑎, reaching a higher dipole moment value around the carbonyl group of the acetone
molecule.

The advantage of the adopted approach consists in merging the simplicity of
the well-known force fields (e.g. OPLS) with the main features of the more complex
polarizable models such as the Drude oscillator force fields (Lemkul et al., 2016) or the
fluctuating charge model (Rick et al., 1994). Regarding the latter ones, we believe that
they are more suitable for more complex biological systems, like proteins or DNA,
representing a far too complex approach for this simple binary system, since further
degrees of freedom would have been added (e.g. introducing a small mass particle to
carry the charge, in line with the extended Lagrangian approach (Rick et al., 1994)).
Here, we aim to preserve the originality of the adopted force fields together with
the simplicity of the analysed binary mixture as well as the ease of implementing
the COP model in classical MD simulations, which consequently turns out to be also
computational cost saving. The only limitation of this kind of approach is the necessity
of adjusting the charge displacement, namely the equilibrium position of the VS, at
different mixture molar fractions.

The explanation of this limitation lies on the fact that, being all the chemical bonds
constrained, and considering the nature of the VS that is amassless position-constrained
particle by definition, it turns out the the charge fluctuations are considerably damped
and, therefore, the harmonic potential is negligible in solving the equation of motion
during the MD simulations. The detected bond and charge fluctuations are then too
small (as shown in the results section) to guarantee a polarizable response by the
system, without suitably modifying the charge displacement. However, it surely
represents an improvement with respect to previous efforts (Pereyra et al., 2011) that
modified the entire charge distribution to reach the polarization effect. The results
are very encouraging, showing an evident improvement with respect to the original
SPC/E-OPLS force field in all the properties investigated, namely in terms of the
density of the mixture (target property), as well as diffusion and viscosity coefficients
of the mixture.

Furthermore, the COP model is able to solve the de-mixing issue of acetone-water
mixtures, since no more phase separation is detected, leading to well micro-mixed
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systems. It is noteworthy to stress that another advantage of this COP model lies on
its universality and transferability of the general approach adopted here in case of
simple binary systems, namely on the possibility from the user to fit suitably the VS
parameter 𝑎 on a given chemical-physical target property which plays a key role in the
considered system, depending on its own purpose that one aims to reach. Future work
could be done to carry out thermodynamics analysis of the COP model here presented
and validated only in terms of dynamic and structural properties, in order to assess the
miscibility behaviour also on a thermodynamic point of view and, at the same time,
the evaluation of more mixture properties like dielectric constant, heat capacitance
and other spectroscopic properties of the acetone-water solution system.
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Chapter 10

MARTINI coarse grained model in
PCL self-assembly

Most of this chapter has been already published in Alessio D. Lavino, Paola Carbone,
and Daniele L. Marchisio (2019), submitted in Soft Matter.

Here, we present the coarse-graining of the poly-𝜀-caprolactone (PCL) by using
the MARTINI force field. In particular, we combine atomistic and coarse-grained (CG)
molecular dynamics to model the structural behaviour of long PCL chains in acetone,
water and their mixtures. A thermodynamic/structural procedure is adopted to build
up the CG model, based on the classical MARTINI force field. The single CG bead
is parametrised upon solvation free energy calculations, by means of the Bennett’s
Acceptance Ratio (BAR) method, whereas the whole polymer chain is optimized in
terms of radius of gyration at different chain lengths.

10.1 Introduction
As already explained in Chapt. 4, simulations of realistic polymer chain length by

the solely classical full-atomMD is complicated by the associated computational cost. In
order to catch interesting and fundamental phenomena that take place at large time and
length scales, the use of alternative methods, such as CGMD, turns out to be particularly
interesting. One of the most used CG force field is represented by the MARTINI model
(Marrink, Risselada, et al., 2007), introduced and extensively described in Chapt. 7.

Despite the MARTINI CG force field is able to catch the partition properties of
several compounds in different mixtures, recent works by Rossi et al. (2011), Lee,
de Vries, et al. (2009), Lee and Larson (2006) and Taddese and Carbone (2017) have
shown how the MARTINI force field can be suitably adjusted and improved for
polymer systems, introducing new bead types compatible with the existing ones. These
new beads can be parametrised through the tuning of several properties, such as the
solvation free energy. Polymer systems still represent a challenging area, because of
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the several properties concerning the polymer chain lengths, as well as the different
conformations they assume depending on the environment. More specifically, polymer
self-assembly in solution is still an open topic, due to the numerous applications
(Ancona et al., 2018; Valente, Celasco, et al., 2012; Zelenková et al., 2018) it spreads on.
Particularly important is the understanding of the polymer chain behaviour in ”good”
and ”bad” solvents and a mixture of them.

The aim of this chapter is to develop and validate a CG model for the poly-𝜀-
caprolactone (PCL) in solution, based on the MARTINI CG force field and suitably
modified to account for the thermodynamics of a mixed system containing polymers
chains and two solvents in different concentration. The parameter space optimized
using the standard ”MARTINI approach” is expanded including solvation free energies
of the monomer (calculated by means of the Bennett’s Acceptance Ratio method
Bennett, 1976), and the structure of the polymer chains in terms of radius of gyration.
The validation of the model has been done by comparing it against the atomistic
simulations, some of which are performed in this work, others in a previous one
(Di Pasquale, Marchisio, Barresi, and Carbone, 2014). Once all the parameters related to
a single CG polymer chain are set up, it is possible to use this CGMD model to simulate
larger systems and systems involving multiple polymer chains in the simulation box.

10.2 Atomistic Simulations
As reported in Chapt. 9, most of the classical full-atom force fields are not able

to describe the miscibility of acetone-water mixtures, because of the bad polarization
response by the acetone molecule. Two different approaches are possible to consider
the polarization of acetone molecules at different acetone molar fractions in aqueous
mixtures. Here we followed the approach proposed by Pereyra et al. (2011), in order to
carry out the full-atom simulations needed to develop the CG model. The reason of this
choice is simply due to the fact that the other way, proposed by Lavino, Banetta, et al.
(2018), was not fully tested and complete when we developed this CG model.

Following the Pereyra approach, different charge distributions (depending on
mixture molar fraction) on the acetone molecule have been settled, as shown in
Table 10.1 and in which C2-O2 corresponds to the acetone carbonyl group. The charge
distributions adopted in this context lead to an acetone dipole moment sufficiently high
(Table 10.1) to guarantee a good affinity with the water model, therefore no de-mixing
occurs during the MD simulations.

The OPLS/AA force field has been implemented in the atomistic simulations,
whereas the TIP4P model has been used for water. The last row in Table 10.1
corresponds to the original OPLS/AA force field (pure acetone), properly modified
at the other acetone molar fractions, in order to avoid phase separation, in line with
the Pereyra et al. (2011) and Lavino, Banetta, et al. (2018) approaches. By means of
the acetone charge distributions reported in Table 10.1 no de-mixing takes place, as
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xA C2 O2 C C H H H H H H 𝜇, 𝐷
0.25 0.79 -0.73 -0.36 -0.36 0.11 0.11 0.11 0.11 0.11 0.11 4.60
0.50 0.79 -0.73 -0.36 -0.36 0.11 0.11 0.11 0.11 0.11 0.11 4.60
0.75 0.55 -0.55 -0.27 -0.27 0.09 0.09 0.09 0.09 0.09 0.09 3.69
1.00 0.47 -0.47 -0.18 -0.18 0.06 0.06 0.06 0.06 0.06 0.06 3.07

Table 10.1: Acetone charge (e) distribution used at different acetone molar fractions,
xA. C2-O2 corresponds to the carbonyl group; all the other atoms correspond to the two
methyl groups. For each charge distribution, the corresponding acetone dipole moment,
𝜇, is reported.

qualitatively shown in Figure 10.1.

Figure 10.1: From left to right there are reported the three snapshots related to acetone
molar fractions equal to 0.25, 0.50 and 0.75 respectively in cubic simulation boxes of 3
nm length. It is clear how no de-mixing occurs.

From a more quantitative point of view, in order to detect possible de-mixing
behaviours, it is noteworthy to evaluate also the radial distribution functions (RDF),
𝑔𝛼𝛽. Figure 10.2 (top panel) shows the acetone-acetone RDF, 𝑔𝐴𝐴(𝑟), and it is clear
that acetone clustering is not detected at all acetone molar fractions, since no first
peak is observed. Figure 10.2, in the middle and bottom panels, shows a different
trend for 𝑔𝑊 𝐴(𝑟) and 𝑔𝑊 𝑊(𝑟) in terms of first peak. In particular, a small peak is
shown by 𝑔𝑊 𝐴(𝑟) highlighting the so-called acetone-water “effective-neighbour”
effect. Nevertheless, also 𝑔𝑊 𝑊(𝑟) shows an overshoot and therefore the water-water
clustering seems to be still quite strong but only at 𝑥𝐴 = 0.75. Results are in line with
those obtained by Lavino, Banetta, et al. (2018), in which clustering effect vanishes
at all acetone molar fractions, thanks to a pseudo-polarizable model (as also shown
in Chapt. 9). Indeed, by comparing Figure 10.2 with Figure 9.10 (RDF obtained with
the COP model), it is interesting to note that the profiles are similar, as well as the
trends at different acetone molar fractions. The only notable difference is detected for
the acetone-water RDF profile (middle panel) that in the latter approach (Figure 10.2)
shows a slight first overshoot, leading to stronger acetone-water interactions than in

117



10 – MARTINI coarse grained model in PCL self-assembly

the COP model. Acetone-acetone and water-water RDFs are instead very similar in
the two cases. It is then possible to infer that under these operating conditions the
system can be considered well micro-mixed enough to perform all the sets of atomistic
simulations which the single CG beads will be characterised on. All the atomistic
details concerning the latter point will be presented accurately in section 10.5.
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Figure 10.2: Atomistic radial distribution functions for acetone-acetone, 𝑔𝐴𝐴(𝑟), water-
acetone, 𝑔𝑊 𝐴(𝑟) and water-water, 𝑔𝑊 𝑊(𝑟), at different acetone molar fractions, 𝑥𝐴. The
red, green and black lines correspond respectively to 𝑥𝐴= 0.25, 0.50 and 0.75.
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10.3 Coarse-Grained MARTINI Model
In line with the MARTINI force field (Marrink, Risselada, et al., 2007), a four-to-one

mapping has been considered, which means four heavy atoms per CG bead. The two
beads of the PCL repeat unit have been chosen in order to account for both the alkyl and
the ester part of the polymer.Therefore, at the beginning a C1 bead type (corresponding
to butane) was used for the alkyl part, whereas a bead type labelled N𝑎𝑚 (corresponding
tomethyl formate) was used for the ester part, based on the existing one N𝑎 and suitably
modified in order to differentiate it from the latter, which corresponds to acetone. The
mapping of the system is schematically depicted in Figure 10.3. Water is modelled by a
P4 bead type (corresponding to four water molecules), in line with the MARTINI force
field. It is crucial to stress here that this mapping (N𝑎𝑚 - C1) represents just a starting
choice, since the outcome of the CG optimization procedure we adopt here may lead to
different bead types (formore suitably describing the behaviour of PCL in acetone/water
mixtures) as it will be shown in the results section.

Figure 10.3: Initial mapping of both the PCL chain and the solvents used in this work.
The repeat unit is described by N𝑎𝑚 (a new bead introduced here) and C1 bead types
respectively for the ester and the alkyl part. Water and acetone are mapped respectively
by P4 and N𝑎 bead types.

The approach proposed here consists in parametrising the conservative potentials
of the single CG beads by matching the atomistic results in terms of solvation free
energy, evaluated by using the BAR method (extensively explained in the next section).
More specifically, the Lennard-Jones (LJ) parameter 𝜀 has been varied, keeping 𝜎
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constant. The default MARTINI non-bonded LJ interaction levels have been used to
build up the model, in line with the MARTINI force field. Every interaction between
bead types is biunique as reported in the interaction matrix of the MARTINI work
(Marrink, Risselada, et al., 2007). A pairwise shifted LJ 12-6 potential energy function:

𝑈𝐿𝐽(𝑟) = 4𝜀𝑖𝑗 [(
𝜎𝑖𝑗

𝑟 )

12
− (

𝜎𝑖𝑗

𝑟 )

6

]
(10.1)

coupled with a Coulombic potential energy function:

𝑈𝑒𝑙(𝑟) =
𝑞𝑖𝑞𝑗

4𝜋𝜀0𝜀𝑟𝑟
, (10.2)

are used to describe non-bonded interactions, where 𝜎𝑖𝑗 represents the closest
distance between two particles and 𝜀𝑖𝑗 the strength of their interaction; in the
Coulombic potential, 𝜀𝑟 = 15 is the dielectric constant (explicit screening). Concerning
the bonded interactions, weak harmonic potentials have been used for both bonds and
angles:

𝑉𝑏(𝑟) = 1
2

𝐾𝑏(𝑟 − 𝑟𝑏)2, (10.3)

𝑉𝑎𝑛𝑔𝑙𝑒(𝑟) = 1
2

𝐾𝑎𝑛𝑔𝑙𝑒(𝜃 − 𝜃0)2, (10.4)

where 𝐾𝑏 and 𝑟𝑏 are respectively the bond stretching force constant and the
equilibrium bond length, while 𝐾𝑎𝑛𝑔𝑙𝑒 and 𝜃0 are respectively the angle force constant
and the equilibrium angle. Their values will be reported in the simulation details
section.

10.4 Bennett’s Acceptance Ratio Method

The free energy of solvation, Δ𝐺𝑠𝑜𝑙𝑣, is evaluated by means of the Bennett’s
Acceptance Ratio (BAR) method (Bennett, 1976), since it has been shown that it
represents a more efficient method compared to other thermodynamic integration
methods (Bruckner and Boresch, 2011; Shirts and Pande, 2005). The BAR method
allows to calculate the energy difference in a thermodynamic transformation from a
state A to a state B, evaluating the energy differences between several intermediate
states. The idea is to sample several ensembles in between the two reference ones
that one wants to estimate. These sampled ensembles must be close enough to each
other in terms of configuration space (potential functions), and the BAR method uses
a probability estimator to efficiently compute the energy difference between two
consecutive ensembles.
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10 – MARTINI coarse grained model in PCL self-assembly

Δ𝐺𝑠𝑜𝑙𝑣 is defined as the reversible work required to transfer a molecule from
the ideal gas state to ideal solution, at 298.15 𝐾, in the pure solvent. However,
from a computational point of view, it is more convenient to define the Δ𝐺𝑠𝑜𝑙𝑣 as
the balance between the work required for the production of a cavity in the bulk
solvent, plus the gain reached to solvate a given solute which gradually compares
in that cavity and interacts with the surrounding solvent molecules, in terms of Van
der Waals, Coulomb and hydrogen interactions. Since Δ𝐺𝑠𝑜𝑙𝑣 is a state function, it is
independent on the specific thermodynamic pathway, therefore the two interpretations
are thermodynamically equivalent (Figure 10.4).

Figure 10.4: Thermodynamic pathways that lead to the determination of the Δ𝐺𝑠𝑜𝑙𝑣

from a state A to a state B. On the left side, there is a schematic representation of the
definition of Δ𝐺𝑠𝑜𝑙𝑣; on the right side, a sketch of the BAR method is reported, going
from 𝜆=0 (cavity production, non-interacting system) to 𝜆=1 (fully interacting system).

Although the work related to the cavity production is always an unfavourable
process, the gain in terms of enthalpic and entropic solvation can be more or less
favourable, depending on the solute hydrophobicity (if the solvent is pure water) or,
in general, on the affinity with the solvent. Δ𝐺𝑠𝑜𝑙𝑣 can be interpreted as the balance
between these two factors (Skyner et al., 2015).

The BAR method is based on a switching/interacting parameter, 𝜆 ,which states
the coupling between the solute and the solvent, and spans the range [0,1]. Stating
𝜆 = 0 means non-interacting state, a cavity is created in the bulk solvent (vacuum);
on the other hand, 𝜆 = 1 stands for a fully interacting state between the solute and
the solvent. All the other values in between [0,1] state a gradual appearance of the
solute in the cavity. The chosen number of 𝜆 points represents a crucial aspect of this
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method. In fact, on one side, the computational cost decreases together with [𝜆𝑖−1, 𝜆𝑖]
intervals (a single simulation is required for each interval); on the other side, it must be
high enough to guarantee a suitable phase space overlap (Wu and Kofke, 2005) along
the thermodynamic pathway. A single simulation is run for each [𝜆𝑖−1, 𝜆𝑖] interval and,
then, the Δ𝐺𝑠𝑜𝑙𝑣 from a generic state A to a state B is evaluated bymeans of the variation
of the Hamiltonian of the system with respect to 𝜆; therefore, the total Δ𝐺𝑠𝑜𝑙𝑣 can be
expressed by

Δ𝐺𝑠𝑜𝑙𝑣 =
𝑁

∑
𝑖=1

Δ𝐺𝐵𝐴𝑅
𝑖 [𝜆𝑖−1, 𝜆𝑖], (10.5)

where Δ𝐺𝐵𝐴𝑅
𝑖 [𝜆𝑖−1, 𝜆𝑖] is the solvation free energy related to the single interval

[𝜆𝑖−1, 𝜆𝑖], evaluated by means of the BAR method on the 𝑁 intervals.
Computational details about Δ𝐺𝑠𝑜𝑙𝑣 simulations will be reported in the next section;

potential functions deserve particular attention. More specifically, soft-core potentials
have been used for the BAR simulations, in order to avoid singularitieswhen nonbonded
interactions are turned off. Soft-core potentials 𝑉𝑠𝑐 are defined as a shifted version of
the regular potentials:

𝑉𝑠𝑐 = (1 − 𝜆)𝑉𝐴(𝑟𝐴) + 𝜆𝑉𝐵(𝑟𝐵) (10.6)

𝑟𝐴 = (𝛼𝜎6
𝐴𝜆𝑝 + 𝑟6)1/6 (10.7)

𝑟𝐵 = (𝛼𝜎6
𝐵(1 − 𝜆)𝑝 + 𝑟6)1/6, (10.8)

where 𝑉𝐴(𝑟𝐴) and 𝑉𝐵(𝑟𝐵) are the normal ”hard-core” potentials referred to the states
A and B, 𝛼 is the soft-core parameter (it controls the value of the potentials when 𝑟 is
approaching to zero), 𝑝 is the soft-core 𝜆 power and 𝜎 is the radius of the interaction.

10.5 Operating Conditions
All simulations were performed by using GROMACS 4.5.6 molecular dynamics

package (Hess, Kutzner, et al., 2008). The VMD program was used to produce graphical
images of the molecular systems.

Atomistic Simulations

The atomistic simulations were carried out in a cubic box with box length equal
to 3 nm, in an NPT ensemble. The OPLS-AA force-fields was employed for acetone
(suitably modified according to the charge distributions shown in sect. 10.2) and
TIP4P force field for water. The weak harmonic potential functions were used for
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bonds, angles and improper dihedrals, whereas the Ryckaert-Bellemans potential
was implemented for the proper dihedrals. It was simulated a single butane and a
single methyl formate (corresponding to the atomistic part of the single CG beads)
molecule in mixture at acetone molar fractions equal to 0, 0.25, 0.50, 0.75, 1. The
energy minimization of the system was carried out with a steepest descent algorithm.
The system was then equilibrated by using a leap-frog algorithm for 1 ns with a 2
fs timestep. Berendsen thermostat and Berendsen barostat (coupled with Parrinello-
Rahman) fixed the temperature and the pressure respectively at 300 K and 1 bar
during the equilibration, with a coupling time constant respectively equal to 0.2 ps
and 5 ps. The simulations were performed for 10 ns with a 1 fs timestep, and bonds
were constrained using the LINCS algorithm. 3D periodic boundary conditions were
employed and electrostatic interactions were evaluated using the Particle-Mesh Ewald
(PME) summation. A temperature of 300 K temperature was maintained by means of a
velocity-rescale algorithm with a time constant equal to 0.1 ps. An isotropic pressure
was set to 1 bar by using a Parrinello-Rahman scheme with a coupling constant equal
1.0 ps and a compressibility set to 4.5 10-5 bar-1. To keep away from singularities and
numerical instabilities, a soft-core LJ and Coulomb potentials were used50 as reported
in sect. 10.4. A stochastic dynamics integrator was implemented in order to avoid
singularities when 𝜆 approaches to zero, and the number of lambda points has been
chosen equal to 10 for the butane and 20 for the methyl formate, since it represents a
good trade-off between the computational cost and the phase space overlap needed
to guarantee a correct thermodynamic pathway. Concerning the soft-core potential
parameters (Eq. 10.6) used in the atomistic BAR simulations, 𝑝 was set equal to 1, 𝛼
equal to 1 and 𝜎 equal to 0.3 nm.

Coarse-Grained Simulations

The CG simulations were performed in a cubic box, whose box length varied
depending on the simulated system. It spans from 4 nm for the simulation of the
single CG bead in mixture to 15 nm for the longest PCL chains. Different PCL chains
lengths have been simulated. In particular, we focused on the PCL-10, PCL-20 and
PCL-30, namely a PCL chain with a number of repeat units respectively equal to 10,
20 and 30. Bond stretching and angle bending motions were treated with harmonic
potentials, reported in Eq. (10.3) and (10.4) where 𝑟𝑏=0.415 nm, 𝜃0=170

∘ (N𝑎𝑚-C1-N𝑎𝑚)
𝜃0=129

∘ (C1-N𝑎𝑚-C1) and the force constants 𝐾𝑏=5000 kJ mol−1 nm−2 and 𝐾𝑎𝑛𝑔𝑙𝑒=50
kJ mol−1, since it has been demonstrated that this set of values can reproduce the
atomistic distributions (Raman et al., 2017). The energy minimization was carried
out by means of the steepest descent algorithm. The system was equilibrated with a
leap-frog algorithm for 1-2 ns by using a Berendsen thermostat and a combination of
Berendsen and Parrinello-Rahman barostat (T = 300 K and p = 1 bar). The temperature
time constant for the Berendsen scheme is equal to 1 ps, Parrinello-Rahman coupling
time constant is equal to 4-12 ps (higher constants values ensure more stability).
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The simulations were performed for 50 ns with a 20 fs timestep. A velocity-rescale
thermostat scheme was used with a temperature time constant of 1.0 ps, whereas a
Parrinello-Rahman barostat was employed with a time constant equal to 4 ps and a
compressibility set to 4.5 10-5 bar−1. A soft-core LJ and Coulomb potentials were used
for BAR calculations, and the number of lambda points has been chosen equal to 10 for
both of the CG solutes. Concerning the soft-core potential parameters (Eq. 10.6) used
in the CG BAR simulations, the soft-core parameters have been chosen to be 𝑝 equal
to 1, 𝛼 equal to 0.5 and 𝜎 equal to 0.47 nm.

10.6 Results and Discussions
In this section, themain results concerning the developed CGmodel and the adopted

methodology will be discussed. First of all, it is noteworthy to underline that, unlike the
atomistic system, CG acetone-water mixtures do not lead to evident phase separation or
de-mixing. Little clusters seem to appear, as shown in Figure 10.5 in which a simulation
box of N𝑎-P4 (CG acetone-water) at 𝑥𝐴 = 0.25 and box length equal to 15 nm, with
27000 particles and after 10 ns is reported. Since the system does not undergo an evident
phase separation, by looking at the snapshots reported in Figure 10.5, it is reasonable
to infer that no de-mixing occurs at the CG level. This is also confirmed from a more
quantitative analysis by looking at the density profiles along the three spatial directions
𝑥, 𝑦, 𝑧 (Figure 10.5c, d, e) that are shown to be flat. This is far too different from the all-
atom MD simulations of acetone-water mixtures, in which evident phase separation
takes place with most of the classical MD force fields (Lavino, Banetta, et al., 2018;
Perera and Sokolić, 2004). It was already explained in Chapt. 9 that the cause of such
de-mixing at molecular level lies on a bad polarization response of acetone molecule
in water. The reason why this does not happen at CG level is probably due to the CG
beads framework, in which polarization effects are less important since CG water and
acetone bead types do not carry any charge on themselves, showing therefore a better
affinity (Figure 10.5).
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Figure 10.5: (a) Snapshot of the N𝑎-P4 CG acetone(blue)-water(pink) mixture for 𝑥𝐴 =
0.25 and box length equal to 15 nm, with 27000 particles and after 10 ns. (b) Detail of
the N𝑎-P4 box in which a little cluster (blue, N𝑎) it seems to form; however, no evident
phase separation is detected at the CG level. Densities profiles along 𝑥 (black), 𝑦 (red)
and 𝑧 (green) are reported at acetone molar fraction equal to 0.25 (c), 0.50 (d) and 0.75
(e).

10.6.1 Estimation of the solvation free energy of a single bead
Firstly, full-atom and CG simulations of a single bead in solution were carried out,

in order to match the Δ𝐺𝑠𝑜𝑙𝑣 between the CG beads and the atomistic part of the
polymer chain that it represents (mapping). Therefore, atomistic models for butane,
methyl formate, and the beads C1 and N𝑎𝑚 are simulated in acetone-water mixtures
and the relative Δ𝐺𝑠𝑜𝑙𝑣 are evaluated. The main results are shown in Figure 10.6.
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Figure 10.6: Free energy of solvation of butane (squares) and methyl formate (triangles)
in mixture from the atomistic simulations (black symbols) carried out in this work.
The red results are referred to the MARTINI model, C1 (squares) and N𝑎𝑚 (triangles),
without any modifications of the LJ parameter, 𝜀. The purple curves refer to the CG
model developed here, in terms of single beads (squares for the alkyl part and triangles
for the ester part of the PCL repeat unit) varying suitably the LJ parameter, 𝜀. The green
symbols stand for the experimental Δ𝐺𝑠𝑜𝑙𝑣 values respectively of butane and methyl
formate in pure water.

Figure 10.6 clearly points out that the MARTINI beads C1 and N𝑎𝑚 (red symbols)
show a mismatch with the atomistic results, in terms of Δ𝐺𝑠𝑜𝑙𝑣 for the whole
composition of the mixture. The mismatch is quite evident at high acetone molar
fractions, as far as the butane is concerned, and for the whole acetone molar fraction
range, for the methyl formate. By modifying properly the LJ parameter 𝜀, namely, by
moving upwards and downwards along the MARTINI LJ interaction levels, a better
agreement in terms of Δ𝐺𝑠𝑜𝑙𝑣 between atomistic and CG model is here achieved
(purple profiles in Figure 10.6). The only experimental values available in literature
are those referred to pure water (Ben‐Naim and Marcus, 1984). It is evident that the
agreement between atomistic, experimental and CG values is improved also in pure
water (Figure 10.6, 𝑥𝐴 = 0).

The new set of LJ parameters (between CG solvents and CG polymer bead types)
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that best fit the Δ𝐺𝑠𝑜𝑙𝑣 (purple profiles in Figure 10.6) is reported in Table 10.2. Looking
at Table 10.2, it is worthwhile to stress that the hydrophilicity of the ester part of the PCL
is enhanced in acetone-water mixture, behaving at CG level of resolution as a P2 bead
type (polar), instead of a N bead type (non-polar) as considered in the initial mapping.
This implies that, in order to better reproduce the atomistic and experimental Δ𝐺𝑠𝑜𝑙𝑣

in acetone-water mixtures, a more polar bead type is necessary to suitably describe the
affinity of such a group in a mixture of solvents with which polarizable effects may take
place. This can be justified by looking at the atomistic scale, in which water can H-bond
with the carboxyl group of the PCL.This may lead to a negative charge dislocation on it,
which, in turn, dislocates partial positive charge on the rest of the molecule increasing
therefore also the affinity with the acetone carbonyl group. In a CG framework, this
fact can be taken into account by increasing the interaction level between polymer
bead and solvents from III (weaker, 𝜀= 4.0 kJ/mol) to II (stronger, 𝜀 = 4.5 kJ/mol) in the
LJ levels of the MARTINI force field.Therefore, in the mapping procedure, the bead N𝑎𝑚
is substituted by a P2 bead type.

Concerning instead the alkyl part of the PCL repeat unit, it is visible, by looking at
Figure 10.6, that the MARTINI (red symbols) model does not match the experimental
(green symbol) Δ𝐺𝑠𝑜𝑙𝑣 in pure water, overestimating this thermodynamic quantity. In
order to better reproduce the experimental value, a stronger affinity (higher values of
𝜀) between the CG alkyl group and CG water (P4), is necessary. Therefore, a C1 bead
type is clearly not suitable to reach this purpose. In order to get it and, at the same
time, to have a better qualitative agreement with the atomistic results, this alkyl bead
type has to relate to water (P4) and acetone (N𝑎) as a C bead type, but the subscript has
to be greater than 1, belonging to the range [2,4], namely being slightly more polar.
However, regarding the alkyl bead type there is not a unique bead belonging to the
interaction matrix of the MARTINI model that can catch up on those variations just
introduced above (with respect to both water and acetone), since it behaves as a C4
with acetone and as a C2 with water. This makes us conclude that only ten different LJ
interaction levels are not sufficient to catch all the variability that may takes place in
binary mixtures, at CG level of description, and more bead types must be introduced in
this CG approach. Therefore, in order to reproduce the best profile in terms of Δ𝐺𝑠𝑜𝑙𝑣,
the CG alkyl group must be mapped by a generic C𝛼 bead type, whose LJ interactions
with the solvent beads are reported in Table 10.2 and still belong to the range of the
non-polar C bead types family of the MARTINI force field.

10.6.2 Structural investigation of the polymer chain
Once the ”polymer single bead – solvent” non-bonded interactions are optimized

upon mixture thermodynamics, an investigation on the polymer chain structural
properties can be carried out. The aim here is to evaluate how different non-bonded
intrachain interactions can affect the final structure of the PCL chain, looking for the
optimal set of polymer intrachain LJ parameter 𝜀 that brings to the best agreement
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Polymer bead, P2 Polymer bead, C𝛼
LJ interaction 𝜀, kJ mol−1 LJ interaction 𝜀, kJ mol−1

Water bead, P4 II 4.5 VII 2.3
Acetone bead, N𝑎 II 4.5 V 3.1

Table 10.2: Lennard-Jones interactions and parameter 𝜀, between the repeat unit bead
types P2, C𝛼 and the solvent bead types P4 and N𝑎.

with the atomistic radii of gyration.
Three different PCL chain lengths are used here to develop the CG model: PCL-10

(i.e. 10 monomers), PCL-20 (20 monomers) and PCL-30 (30 monomers), being these the
only ones investigated in the literature at the atomistic level, at all the acetone mixture
fractions, in a previous work (Di Pasquale, Marchisio, Barresi, and Carbone, 2014).
However, before showing the final set of LJ intrachain parameters that best reproduces
the atomistic radius of gyration for these three chain lengths (PCL-10, PCL-20 and PCL-
30, Table 10.4), it is worthwhile to do a preliminary analysis by just considering PCL-10
and PCL-20, since interesting properties and limitations of these kind of approach can
be pointed out.

Let us start therefore in a preliminary way with the comparison between PCL-
10 and PCL-20. After optimising the LJ intrachain interactions for PCL-10 in terms of
matching atomistic and CG radii of gyration at all acetone molar fractions investigated
in this work, it turns out that this set of LJ parameters underestimates the radius of
gyration of the CG system for PCL-20. The mean radius of gyration even decreases
with respect to the PCL-10 at acetone molar fractions 𝑥𝐴 > 0.25. This behaviour is
quantitative and qualitative reported respectively in Table 10.3 and Figure 10.7 and can
be summarised as follows: the best configuration in terms of non-bonded interactions
for a given chain length 𝑁 turns out to be not the optimal configuration in the same
operating conditions, for a chain with a double length 2𝑁. This peculiar aspect makes
the used CG procedure less trivial than one can expect and, above all, allows us to infer
that the final set up in terms of non-bonded parameters will be a compromise between
the three different chain lengths investigated in this work (PCL-10, PCL-20 and PCL-30).
This is clearly demonstrated in Table 10.3 in which the two PCL chain lengths used for
this preliminary analysis (PCL-10 and PCL-20) are simulatedwith the best configuration
found out initially for solely PCL-10. This configuration corresponds to LJ interaction
levels equal to II (𝜀 = 4.5 kJ mol−1) for all the three PCL intrachain interactions. As
Table 10.3 shows, the agreement is always good in pure water, but if the atomistic trend
is well reproduced for PCL-10, concerning the PCL-20 the mismatch is evident at all the
other acetone molar fractions. At constant acetone molar fraction, say equal to one, the
radius of gyration even decreases substantially, going from 1.38 nm (PCL-10) to 0.99 nm
(PCL-20).These LJ intrachain interactions are therefore too strong and, then, increasing
the molecular weight, namely the chain length, the polymer collapses on itself rather
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than exposing to the solvent, since the intrachain bead-bead attractions are preferred
on the bead-solvent ones (a globule form is then preferred).

At the end of this preliminary analysis we can conclude that the best configuration
(in terms of LJ polymer intrachain interactions) at a given acetone molar fraction is not
said to be the best one for the full range of acetonemolar fractions. Furthermore, the best
configuration for a given PCL chain length does not guarantee the best match at higher
PCL chain lengths, since the polymer beads will prefer to interact more favourably with
themselves (higher LJ interaction parameter, 𝜀), rather than exposing to the solvent
(poor solvent condition). This is quite evident for the case of the PCL-10 and -20, in
which the length doubles (it smooths going to higher molecular weights) as shown in
the snapshots reported in Figure 10.7, which represents PCL-10 and PCL-20 in pure
acetone, after 50 ns of simulation with all the intrachain LJ parameters set to the level
II (𝜀 = 4.5 kJ mol−1). It is evident that PCL-20 collapses on itself showing a globule
conformation, instead of the PCL-10 which shows a more stretched (coil) conformation.
Being this set of intrachain LJ parameters considered so far suitable to represent the
PCL-10, but not good at all to represent the PCL-20, it is not worth to continue with
higher molecular weights.

In line with the strategy adopted here, a trade-off set of LJ intrachain parameters
has to be established in order to correctly reproduce the atomistic results for PCL-10,
PCL-20 and PCL-30. After this has been done, by using this set of LJ parameters, higher
molecular weights are investigated (PCL-40 and PCL-60) and reported at the end of this
chapter.

Figure 10.7: Snapshots referred to the preliminary analysis conducted in this work, in
which CG PCL-10 (left) and PCL-20 (right) are compared and reported here in pure
acetone with the LJ intrachain interaction levels equal to II. This scheme refers to the
numerical results reported in Table 10.3.

At the end of the optimization procedure, the best fitting (in terms of accordance
with atomistic radii of gyration among PCL-10, PCL-20 and PCL-30) is finally
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Acetone molar fraction, x𝐴
Preliminary analysis ⟨𝑅𝑔⟩ 0 0.25 0.50 0.75 1.00

PCL-10 CG, 𝑛𝑚 0.64 0.73 0.94 1.37 1.38
AA, 𝑛𝑚 0.64 - 1.19 1.23 1.25

PCL-20 CG, 𝑛𝑚 0.76 0.83 0.85 0.86 0.99
AA, 𝑛𝑚 0.77 - 1.66 1.73 1.85

Table 10.3: Mean radius of gyration, ⟨𝑅𝑔⟩, of coarse-grained (CG) and atomistic (AA)
PCL-10 and PCL-20, at different acetone molar fractions. The LJ interaction levels are II
for all the possible beads interactions, namely the set of LJ parameters that best fit the
atomistic radii of gyration for the solely PCL-10 (preliminary analysis).

represented by the LJ intrachain interaction levels of type II (𝜀 = 4.5 kJ mol−1) for
P2- P2, III (𝜀 = 4.0 kJ mol−1) for C𝛼- C𝛼 and IV (𝜀 = 3.5 kJ mol−1) for P2- C𝛼. The
results are schematically shown in the Table 10.4 and depicted in Figure 10.8. As it
can be seen, the agreement is very good in pure water and at high acetone molar
fractions. However, the mismatch is quite viewable at medium acetone molar fraction
in mixture (i.e., 𝑥𝐴 = 0.50). Let us stress here that despite the intrachain P2- P2 and
P2-C𝛼 interactions are in accordance with those tabulated in the MARTINI force field,
the optimal C𝛼-C𝛼 LJ interaction level turns out to be one level stronger (level III, 𝜀 =
4.0 kJ/mol) than the ones (level IV, 𝜀 = 3.5 kJ/mol) reported in the interaction matrix
of the MARTINI force field. This stresses again what was already pointed out for the
single-bead characterization in this work: in order to capture more chemical/structural
details of the atomistic systems, the corresponding CG framework with the MARTINI
force field needs more LJ interaction levels, namely, a finer discretization of them.
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Figure 10.8: Snapshots referred to the final configuration of the CG PCL, after the
optimization procedure conducted on the atomistic radius of gyration.The LJ intrachain
interaction levels of type II (𝜀 = 4.5 kJ mol−1) for P2- P2, III (𝜀 = 4.0 kJ mol−1) for C𝛼-
C𝛼 and IV (𝜀 = 3.5 kJ mol−1) for P2- C𝛼. This scheme refers to the numerical results
reported in Table 10.4.

Acetone molar fraction, x𝐴
Final setup ⟨𝑅𝑔⟩ 0 0.25 0.50 0.75 1.00

PCL-10 CG, 𝑛𝑚 0.68 1.00 1.39 1.47 1.48
AA, 𝑛𝑚 0.64 - 1.19 1.23 1.25

PCL-20 CG, 𝑛𝑚 0.81 1.02 1.51 1.75 2.10
AA, 𝑛𝑚 0.77 - 1.66 1.73 1.85

PCL-30 CG, 𝑛𝑚 0.89 1.05 1.58 1.75 2.70
AA, 𝑛𝑚 0.88 - 2.00 2.17 2.42

Table 10.4: Mean radius of gyration, ⟨𝑅𝑔⟩, of coarse-grained (CG) and atomistic (AA)
PCL-10, PCL-20 and PCL-30, at different acetone molar fractions, 𝑥𝐴. The LJ interaction
levels are of type II (𝜀 = 4.5 kJ mol−1) for P2- P2, III (𝜀 = 4.0 kJ mol−1) for C𝛼- C𝛼 and
IV (𝜀 = 3.5 kJ mol−1) for P2- C𝛼.

The behaviour observed at 𝑥𝐴 = 0.50 and, in general, the whole trend reported
in Table 10.4, deserves further considerations. The most important one is about what
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happens at 𝑥𝐴 = 0.50. This seems to be a threshold value at which a stepwise globule-
to-coil transition takes place, instead of being smoother at medium acetone molar
fractions, as it happens in the atomistic framework. Recent works have investigated
this interesting behaviour, finding out that this is one of the limits of the CG models for
long single chains in solution. More specifically, J. Cheng et al. (2014), demonstrated
that a stepwise transition from globule-to-coil configuration is detected at medium
acetone molar fraction in binary mixture (𝑥𝐴 ≈ 0.55) for a single polymer tethered
chain in solution, in a DPD-based analysis. They also detected another interesting
property of the CG polymer systems, namely that this stepwise transition observed
for a single CG chain becomes less sharp for polymer brushes. This means that the
stepwise transition observed in CG single macromolecule systems fades out when
more CG macromolecules are present in solution. Furthermore, the CG approach on
one single macromolecule may be limited by the very low degrees of freedom of the
system, especially when the mixture is at medium acetone molar fraction (around
0.50) and, above all, when the solvents mixture itself is made by a good and bad
solvent. In this scenario, in fact, the number of ”good-solvent-beads” are equal to
the number of ”bad-solvent-beads”. Consequently, the probability of interacting with
a ”good-solvent-bead” (stronger, favourable interactions) is the same as the one of
interacting with a ”bad-solvent-bead” (weaker, unfavourable interactions). Being the
level of discretization much coarser than an atomistic scenario (much less number
of degrees of freedom and only ten levels of LJ interactions in the MARTINI model),
one single isolated CG chain in mixture is not able to guarantee a smooth transition
in its conformation when it is experiencing a statistically equivalent number of
interactions with both ”good” (higher 𝜀) and ”bad” (lower 𝜀) solvents beads. Indeed, it
is expectable that going through intermediate good solvent molar fractions, from bad
to good solvent conditions, a smooth polymer structural transition may be detected,
by gradually changing its configuration from globule-to-coil conformation as long as
the good solvent molar fraction increases. However, the CG results do not show this
smooth conformational change, leading to a sharp globule-to-coil transition, at least
sharper than the atomistic results.

Raman et al. (2017) observed the same behaviour at 𝑥𝐴 = 0.50 for single CG PCL
chains in acetone-water mixtures, by using the MARTINI force filed with a polarizable
water model. This allows us to conclude that the anomalous behaviour detected at
𝑥𝐴 = 0.50 (medium good solvent molar fraction) represents an intrinsic limit of CG
approaches for a single polymer chain in binary ”good-bad” solvent mixtures.

However, it is still under debate the validity of the atomistic simulations reported
in Table 10.4, since they are referred to a work in which acetone/water mixtures were
affected by de-mixing issues. Although a complete phase separation between acetone
and water is detected at acetone molar fraction, 𝑥𝐴, equal to 0.25 with the most common
classical acetone force fields, the authors of the reference work (Di Pasquale, Marchisio,
Barresi, and Carbone, 2014) observed the formation of an acetone pocket around the
PCLmolecule at 𝑥𝐴 = 0.50.This solvent behaviormay be enhanced by a slight de-mixing
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that keeps taking place also at the other intermediate molar fractions (not only 𝑥𝐴 =
0.25), forming a little acetone pocket around the PCL molecule and, therefore, leading
to a more stretched final structure (higher mean radius of gyration). This could pave the
way to further atomistic investigations, maybe employing the charge-on-particle model
presented in the previous chapter, in order to better clarify the uncertainty related to
the atomistic calculations.

By using the set of LJ parameters that come from the previous optimisation
procedure on PCL-10, PCL-20 and PCL-30, the mean radius of gyration of longer
CG single polymer chains in solution was calculated, despite no atomistic data are
available in literature. The case of PCL-40 and PCL-60 was evaluated and is reported
in Table 10.5. It is noteworthy to stress that also for longer polymer chains (PCL-40
and PCL-60) the trend is the same as the one observed at lower molecular weights
(Table 10.4). A stepwise globule-to-coil conformation is detected also here in the range
of acetone molar fractions, 𝑥𝐴 = [0.50, 0.75]. However, in pure solvents and far away
from medium acetone molar fractions the CG chain evolves more qualitatively in
accordance with the trend predicted by atomistic simulations at lower chain lengths
(Di Pasquale, Marchisio, Barresi, and Carbone, 2014; Raman et al., 2017). By looking at
Table 10.4 and Table 10.5, it is worth noticing that the trend obtained by this new CG
model of PCL in acetone-water mixture follows the Flory’s theory of polymers, namely

⟨𝑅𝑔⟩ ∝ 𝑀𝜈
𝑤 (10.9)

where 𝑀𝑤 is the polymer chain molecular weight and 𝜈 corresponds to the Flory’s
exponent that is equal to 1/3 in pure anti-solvent (water) and 3/5 in pure good solvent
(acetone), in line with the Flory’s theory. The trend in pure water and pure acetone
for all the 𝑀𝑤 investigated here (PCL-10 / -60) is depicted in Figure 10.9, where
the simulation results are reported with discrete symbols and the theory of Flory’s
predictions (Eq. 10.9) with dashed lines (an arbitrary constant is employed, being the
Flory trend a proportionality relation).

Acetone molar fraction, x𝐴
Further investigation ⟨𝑅𝑔⟩ 0 0.25 0.50 0.75 1.00

PCL-40 CG, 𝑛𝑚 0.99 1.18 1.60 1.84 3.10
PCL-60 CG, 𝑛𝑚 1.13 1.28 1.80 2.10 4.09

Table 10.5: Mean radius of gyration of the CG PCL-40 and PCL-60 at different acetone
molar fractions.
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Figure 10.9: Flory’s theory predictions (dashed lines) of the CG model developed here
(discrete symbols) in pure good solvent (acetone, red) and pure bad solvent (water, blue)
for all the PCL chain lengths investigated in this work. The dashed lines represent the
Flory law reported in Eq. (10.9).

In pure solvents the CG model predictions are in an excellent accordance with the
Flory’s theory (dashed lines, Eq. 10.9), namely the mean radius of gyration scales with
the Flory’s exponent equal to 1/3 (blue dashed line) for bad solvent and to 3/5 (red
dashed line) for good solvent. The accordance is shown to be slightly better in water, in
which also the atomistic agreement was better than in pure acetone.

10.7 Conclusions
In this chapter a multiscale molecular dynamics approach for a polymer self-

assembly in solution is proposed, in which classical all-atom molecular dynamics
(MD) is combined together with the coarse-grained molecular dynamics (CGMD).
The model developed here is based on the MARTINI force field (Marrink, Risselada,
et al., 2007) and aims to build up a CG model for the poly-𝜀-caprolactone (PCL) in
acetone, water and their mixtures. The adopted strategy consists in optimising both
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polymer - solvent and intrachain polymer - polymer non-bonded interactions, in terms
of accordance respectively with thermodynamic and structural properties. Concerning
the thermodynamics, the solvation free energy of single polymer beads was evaluated
by means of the Bennett’s Acceptance Ratio (BAR) method (Bennett, 1976). Regarding
the structure of the polymer chains, the mean radius of gyration was chosen as target
property, whose atomistic data are taken from a previous work (Di Pasquale, Marchisio,
Barresi, and Carbone, 2014). Three different PCL chain lengths have been employed
in this optimization procedure, that are PCL-10, -20 and -30 (i.e., 10, 20 and 30 repeat
units). The model optimised on these three chain lengths was also validated for higher
molecular weights (PCL-40 and -60).

Atomistic simulations related to the solvation free energy were carried out here, by
means of different acetone charge distributions, in order to avoid the very well-known
issue of the de-mixing of acetone-water mixtures (Lavino, Banetta, et al., 2018; Pereyra
et al., 2011).

TheCGmapping of the PCLwas done by selecting at the beginning a non-polar bead
type (N) for the ester part and an apolar (C) bead type for the alkyl part of the polymer
repeat unit, as a starting choice.Thermodynamics results showed however that, in order
to better reproduce the atomistic and experimental (at 𝑥𝐴 = 0) free energy of solvation,
a different mapping in terms of polarity degree of the PCL bead types must be chosen.
This optimization procedure led to a bead P2 (polar type) for the ester part and yet
to a C (apolar) for the alkyl part of the PCL. Concerning the apolar bead type of the
PCL, an interesting limit of this approach turns out from this work: a set of solely ten
different levels of LJ interactions (which this version of the MARTINI force field lies on)
are not sufficient to properly describe all the interactions and to reproduce the correct
thermodynamics in binary mixtures made by good and bad solvents. For this reason,
the bead type corresponding to the alkyl part was chosen to be labelled as a generic C𝛼,
where the subscript 𝛼 belongs to the range of degree of polarity [2,4] in the MARTINI
interaction matrix.

Results in terms of accordance with atomistic mean radii of gyration depict also
an interesting scenario. First of all, the optimization procedure is not trivial to afford
since effects due to the chain length are important especially for single short CG chain
lengths. It is therefore a sake of trade-off in finding the best set of intrachain non-bonded
interactions parameters.

The agreement with atomistic results is very good in pure solvents and, more
generally, far away from medium acetone molar fraction. At this threshold acetone
concentration in mixture, a stepwise globule-to-coil transition is detected for the single
PCL chain in solution. This trend was also observed by previous attempts (J. Cheng
et al., 2014; Raman et al., 2017) and it turns out to be an intrinsic limitation of single
CG macromolecules in binary mixtures, especially when the mixture itself is made
by a good and a bad solvent. Investigation of higher PCL molecular weights shows
the same trend observed for smaller chains, with the same limitations and advantages.
The CG model shows also an excellent behaviour in reproducing the Flory’s theory

136



10.7 – Conclusions

predictions in both pure good and bad solvents.
We can therefore conclude that the CG model developed here, based on the

MARTINI force field, shows good results in terms of both thermodynamic and
structural properties in binary mixtures. Interesting developments can be done in the
future, by simulating multiple longer PCL chains in larger simulation boxes, in order
to achieve a better insight into the dynamics of the polymer self-assembly.
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Chapter 11

Population balance model and
computational fluid dynamics in NP
production

Most of this chapter has been published in Alessio D. Lavino, Nicodemo Di
Pasquale, Paola Carbone, and Daniele L. Marchisio (2017). A novel multiscale model
for the simulation of polymer flash nanoprecipitation, Chemical Engineering Science
171, 485-494.

11.1 Introduction
In this chapter the population dynamics combined with the effect of fluid dynamics

on poly-𝜀-caprolactone (PCL) molecules self-assembly in acetone-water mixtures is
studied.

Macromolecule self-assembly into molecular clusters or nanoparticles (NP) is
investigated both with experimental and modeling approaches. Self-assembly is often
described by using thermodynamics models designed to describe what happens at the
equilibrium (Jones, 2002), whereas kinetics effects are well-known to play an important
role (Johnson and Prud’homme, 2003b; Lince et al., 2008), in determining, for example,
the size and structure of the final molecular clusters or nanoparticles (Celasco et al.,
2014; Valente, Celasco, et al., 2012; Valente, Stella, et al., 2012).

As already explained in the Introduction of this thesis (Chapt. 1), in order to induce
self-assembly, a particular technique named solvent-displacement is employed: PCL
molecules are dissolved in a so-called ‘good’ solvent (e.g. acetone) and the solution
is then mixed with a ‘bad’ solvent or anti-solvent (e.g. water) for the polymer, but
with which the ‘good’ solvent is fully miscible. The presence of water induces the
destabilization of themacromolecules, leading to their aggregation inmolecular clusters
(or nanoparticles) (Jones, 2002).
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As it happens, the system (reaching the lowest energy state) can either undergo
a pure spinodal separation in which macromolecules aggregate together without any
resistance, or a metastable separation characterized by an energy barrier. In this latter
case, the formation of clusters or NP is referred to as nucleation. The former instead
consists of both a global and local instabilities defined with respect to small fluctuations
in composition, and therefore the system undergoes a phase transition without any
energy barrier to overcome. On the other hand, the latter is characterized by a global
instability and local stability with respect to small fluctuations and thus it becomes
necessary to consider an energy barrier. It is also worth mentioning here that often
this solvent displacement process takes place in very small continuous mixers (look at
Chapt. 1 for a complete list of them), such as the confined impinging jets mixer (Johnson
and Prud’homme, 2003a) (CIJM) where solvent and anti-solvent are mixed together in
a controlled way (Johnson and Prud’homme, 2003b).

In this chapter, a multiscale model, accounting for the most important phenomena
involved, is validated.Themodel describes the macromolecule self-assembly as a purely
aggregative phenomenon (spinodal decomposition), as also proposed by other authors
(J.C. Cheng et al., 2010), but for the first time it employs kernels (to describe the rate with
which macromolecules self-assemble) directly derived from molecular dynamics (MD)
simulations (Di Pasquale, Marchisio, Barresi, and Carbone, 2014), resulting in a fully-
predictive multiscale model, without adjusting parameters. Also for the first time this
approach is validated by extensive comparison with experimental data derived under
different operating conditions.This multiscale approach seems to bemore effective than
other alternatives, based for example on cluster prenucleation by using the classical
nucleation theory (CNT) (Di Pasquale, Marchisio, and Barresi, 2012; Garcia et al., 2013)
or other more detailed but similar theories (Di Pasquale, Marchisio, Carbone, et al.,
2013).

The model implicitly assumes that aggregation is irreversible and is characterized
by a unitary efficiency, as it will be explained better in section 11.2. The degree of
aggregation and the resulting form of the cluster mass distribution (CMD) is quantified
by the number of macromolecules belonging to a cluster (i.e., aggregation number) and
by solving a population balance model (PBM). Moreover, in order to account for the
inhomogeneous mixing between the acetone and water streams and for the influence
of turbulence on the process, the PBM is solved with the quadrature method of
moments (QMOM) (Marchisio, Vigil, et al., 2003) inside a computational fluid dynamics
(CFD) code. Including the mixing in the description of the self-assembly is particularly
important here, as the self-assembly process is very fast, almost instantaneous, and
irreversible, and is therefore strongly influenced by spatial inhomogeneities (Johnson
and Prud’homme, 2003a,b). Being, for the test cases considered in this work, the flow
turbulent, it is also necessary to consider the effect of turbulent fluctuations on the
aggregation process. This is done in the context of the Favre-averaged Navier-Stokes
(FANS) equation approach, by using the direct quadrature method of moments coupled
with the interaction and exchange with the mean (DQMOM-IEM) model (Fox, 2003).
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The main novelty of the results collected and the methodology employed in this
chapter stands in the relationship employed to calculate the radius of gyration of the
single PCL molecule, based on the Flory law (Flory, 1953). The use of Flory’s theory is
particular important in this context as it allows to predict molecule conformation taking
into account the solvent nanoscopic mixing effect on the chain entropy (Rubinstein and
Colby, 2003). The coefficient and exponent appearing in the Flory law are calculated
from MD simulations, performed in a previous work (Di Pasquale, Marchisio, Barresi,
and Carbone, 2014) and reported in the operating conditions, section 11.3. These MD
simulations results also show that the Flory law derived for a single macromolecule,
can be safely extended to clusters of macromolecules. The use of MD to estimate the
coefficient and exponent of the Flory law, together with the use of PBM and of CFD,
make themodel fully-predictive and without adjustable parameters.Themodel is in this
chapter validated against experimental data referring to different mixing conditions in
a CIJM, different initial polymer concentrations and two different molecular weights
for the PCL. Comparison with experimental data allows to assess the range of validity
of the approach, in line with the theory. A particular section is here dedicated also to
the effect of other good solvents on mean NP size, showing a method to suitably adjust
the Flory law, at this scale, when acetone is replaced by acetonitrile and THF.

11.2 Governing Equations
As already mentioned, turbulent mixing between acetone and water is described

here with CFD. Turbulence is treated with the Favre-averaged Navier-Stokes equation
(FANS) approach, introduced in Chapt. 5, Eq. (5.29), since two fluids with different
densities are involved. The fluid can still be considered incompressible, but density
fluctuations are accounted for in this way. The continuity equation for the acetone-
water mixture is solved together with the Navier-Stokes equations and the equations
for the turbulent kinetic energy, 𝑘, and the turbulent dissipation rate, 𝜀, as common
practice with the standard 𝑘 − 𝜀 model (section 5.2.2). All these equations are reported
in Chapt. 5. In the following subsection, the detailed PBM for FNP will be shown. Here,
we will be referring to acetone as good solvent, but the model is valid for any choice of
good solvents, as it will be shown in section 11.4.1.

11.2.1 Population Balance Model for FNP
In order to efficiently describe the evolution of the population of polymer clusters,

a PBM is employed. The PBM operates on the CMD, 𝑓(x, 𝑛), defined in such a way
that the quantity, 𝑓(x, 𝑛)d𝑛, represents the number density of molecular clusters
containing 𝑛 macromolecules at position x. The variable 𝑛, referred to in what follows
as dimensionless cluster mass or aggregation number, is discrete, but since it varies
between one and very large numbers, is treated here as a continuous variable. It is
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also useful to highlight here that, in the acetone inlet, when the macromolecules are
dissolved in the solvent, and do not show any tendency to self-assemble, the CMD is
always equal to zero, except for 𝑛 = 1, where it assumes the value corresponding to the
initial macromolecule concentration (or number density) in acetone. Moreover, as the
values assumed by the CMD would inevitably be very large, the CMD is normalized
by dividing it to the Avogadro number. By using this normalization the CMD in the
acetone inlet corresponds to the initial polymer molar concentration.

In line with the theory of PBM reported in Chapt. 5, section 5.3.2, the evolution of
the CMD, for a stationary problem and before Favre average, reads as follows:

𝜕
𝜕x

⋅ (U𝑓(𝑛)) − 𝜕
𝜕x

⋅ (Γ(𝑛)
𝜕𝑓(𝑛)

𝜕x ) =

= 1
2 ∫

𝑛

0
𝛽(𝑛 − 𝑛′, 𝑛′)𝑓 (𝑛 − 𝑛′)𝑓 (𝑛′)d𝑛′ − ∫

∞

0
𝛽(𝑛, 𝑛′)𝑓 (𝑛)𝑓(𝑛′)d𝑛′, (11.1)

where space dependencies are omitted for brevity, Γ(𝑛) is the diffusion coefficient
due to Brownian motions of a cluster of size 𝑛, U is the cluster velocity and 𝛽(𝑛, 𝑛′) is
the second-order point aggregation kernel, previously introduced in section 5.3.3. It
is assumed here that U is identical to the fluid velocity, as clusters are characterized
by very small particle Stokes number (Baldyga and Orciuch, 2001) (i.e. pseudo-
homogeneous system hypothesis).

As already seen in section 5.3.3, the aggregation kernel quantifies the rate at which
clusters of different size aggregate together forming larger clusters and its specific
functional form, in the context of aggregation number as internal coordinate of the
PBE, will be introduced later on. It is important to stress here that aggregation results
in two source terms, one positive related to the formation of a cluster containing 𝑛
macromolecules and one negative due to the disappearance of clusters formed by 𝑛′

macromolecules. Consequently, the term 𝛽(𝑛 = 1, 𝑛′ = 1) corresponds to the rate with
which individual molecules disappear forming dimers.

Since the solution of the PBM with discretized methods (Marchisio and Fox, 2013)
leads to very high computational costs, it is more convenient to solve the problem in
terms of the moments of the CMD. Let us recall the defintion of the generic 𝑗𝑡ℎ-order
moment:

𝑚(𝑗) = ∫
∞

0
𝑓(𝑛)𝑛𝑗𝑑𝑛. (11.2)

An additional advantage of solving the PBM in terms of the moments of the CMD
is that they represent physical measurable quantities; in fact, 𝑚(0) represents the total
cluster number density, 𝑚(1) is a conserved quantity and represents the total number
density of macromolecules, whereas the ratio between 𝑚(1) and 𝑚(0) results in the
average number of macromolecules per cluster. By applying the moment transform
and the Favre average the steady-state transport equation for the moment of order 𝑗
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assumes the following form:

𝜕
𝜕x

⋅ ( ̄𝜌⟨U⟩ ⟨𝑚(𝑗)⟩) − 𝜕
𝜕x

⋅
(

̄𝜌Γ𝑡
𝜕 ⟨𝑚(𝑗)⟩

𝜕x )
=

=
̄𝜌

2 ⟨∫
∞

0 ∫
∞

0
[(𝑛 + 𝑛′)𝑗 − 𝑛𝑗 − 𝑛′𝑗] 𝛽(𝑛, 𝑛′)𝑓 (𝑛)𝑓(𝑛′)𝑑𝑛𝑑𝑛′

⟩ , (11.3)

where during derivation it was assumed that the turbulent diffusivity, Γ𝑡 ≈ 𝜈𝑡/0.7, which
does not depend on the moment order, is much larger than the Brownian diffusivity and
is calculated from the turbulent viscosity, 𝜈𝑡, by assuming a turbulent Schmidt number
of 0.7 (Andersson et al., 2012), ̄𝜌 is the time-averaged fluid density and ⟨U⟩ is the Favre-
averaged fluid velocity.

Let us now define the functional form of the aggregation kernel, 𝛽(𝑛, 𝑛′), stating the
rate of aggregation of clusters of size 𝑛 with clusters of size 𝑛′, appearing in Eq. (11.3). To
do that it is useful to know that our MD simulations, performed in a previous work (Di
Pasquale, Marchisio, and Barresi, 2012), have shown that the PCL molecule behaves as
a freely-jointed chain (Rubinstein and Colby, 2003). This observation allows to assume
that the behavior of a molecular cluster with 𝑛 PCL molecules of molecular weigth 𝑀𝑤,
is similar to the behavior of a single PCL molecule with molecular weight 𝑛𝑀𝑤. This
assumption allows to extend the Flory law, valid for a single PCL molecule:

J𝑅𝑔
2K = 𝑘𝑀𝑤

2𝜈, (11.4)

to a cluster of 𝑛 PCL molecules:

J𝑅𝑔
2(𝑛)K = 𝑘(𝑛𝑀𝑤)2𝜈, (11.5)

where J𝑅𝑔
2K = J𝑅𝑔

2(𝑛 = 1)K is the ensemble-averaged squared radius of gyration of
a single PCL molecule, J𝑅𝑔

2(𝑛)K is the ensemble-averaged squared radius of gyration
of a PCL cluster with 𝑛 molecules, 𝑀𝑤 is the molecular weight of a single PCL chain
and 𝑘 and 𝜈 are the Flory parameters, that depend on the acetone molar fraction 𝑥𝐴 in
the acetone-water mixture. Their functional dependences on 𝑥𝐴 were determined in a
previous work via MD simulations (Di Pasquale, Marchisio, and Barresi, 2012) and are
reported in the next section, in Eq. (11.34) and Eq. (11.35).

The aggregation kernel accounts for two mechanisms: collisions due to Brownian
motions and those due to turbulent fluctuations. By using the following approximation:
J𝑅𝑔K ≃ √J𝑅𝑔

2K and by assuming that the diffusion coefficient due to Brownian
motions can be calculated with the Stokes-Einstein equation (look at section 5.3.3), the
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following expression is obtained (J.C. Cheng et al., 2010):

𝛽(𝑛, 𝑛′) =

= 𝜂
(

2𝑘𝐵𝑇
3𝜇

(J𝑅𝑔(𝑛)K + J𝑅𝑔(𝑛′)K)
2

J𝑅𝑔(𝑛)KJ𝑅𝑔(𝑛′)K
+ 1.2944√

𝜀
𝜈 (J𝑅𝑔(𝑛)K + J𝑅𝑔(𝑛′)K)

3

)
=

= 𝜂

⎛
⎜
⎜
⎜
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⎝
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3𝜇

(√𝑘 (𝑛𝑀𝑤)
2𝜈 + √𝑘 (𝑛′𝑀𝑤)
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2

√𝑘 (𝑛𝑀𝑤)
2𝜈
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+

+ 1.2944√
𝜀
𝜈 (√𝑘 (𝑛𝑀𝑤)

2𝜈 + √𝑘 (𝑛′𝑀𝑤)
2𝜈

)

3

) , (11.6)

where 𝜂 is the aggregation efficiency that will be defined later on, together with 𝜇,
the molecular viscosity, both exhibiting a strong dependence on the acetone molar
fraction 𝑥𝐴, where 𝑘𝐵 is the Boltzmann constant, 𝜀 is the turbulent dissipation rate
and 𝜈 is the mixture kinematic viscosity. Derivation of Eq. (11.6) also made use of the
assumption that the two aggregationmechanisms are simply additive: at low PCL initial
concentrations and low turbulence intensity the Brownian aggregation mechanism
dominates on the turbulent one and viceversa at high PCL initial concentrations and
high turbulence intensity. The whole procedure to derive Eq. (11.6) is extensively
explained in section 5.3.3.

It is worth showing that Eq. (11.6), after substitution of Eq. (11.5), can be semplified
as follows:

𝛽(𝑛, 𝑛′) = 𝜂
(

2𝑘𝐵𝑇
3𝜇

(𝑛𝜈 + 𝑛′𝜈)
2

𝑛𝜈𝑛′𝜈 + 1.2944√
𝜀
𝜈 (𝑘

3
2 𝑀3𝜈

𝑤 ) (𝑛𝜈 + 𝑛′𝜈)
3
) . (11.7)

As it can be seen, the Brownian term is in line with the theory since it does not
depend on the PCL molecular weight. In fact, thanks to the Stokes-Einstein theory, the
diffusion coefficient is inversely proportionally to the molecular weight, whereas the
radius of gyration increases over the molecular weight, and so the two effects cancel
out. If Brownian aggregation were the only acting process, outcome would be the same
in terms of 𝑛 but not in terms of radius of gyration, because this latter depends on
molecular weight.

The integrals that appear on the right-hand side of Eq. (11.3) are affected by a twofold
closure problem, one due to the impossibility of writing the integrals in terms of the
moments of the CMD and one related to the fact that turbulent fluctuations, that affect
the CMD, are characterized by time-scales comparable with that of aggregation. To
overcome these two closure problems a synergic strategy is employed: by using QMOM
to overcome the first and DQMOM-IEM to overcome the second. In the next sections
some information concerning the use of these two methods will be given.
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11.2.2 QMOM and DQMOM-IEM for Flash Nano-Precipitation

In a turbulent flow all its properties, including the moments of the CMD, 𝑚(𝑗),
fluctuate. In this work these fluctuations are characterized in terms of the probability
density function (PDF) for the acetone mass fraction, 𝜉, in the acetone-water mixture.
Following the DQMOM-IEM (sections 8.5 and 8.6) formalism, this PDF is approximated
as a summation of 𝑁𝑒 delta functions: 𝑝(x, 𝜉) ≈ ∑𝑁𝑒

𝑖=1 𝑝𝑖(x)𝛿 [𝜉 − 𝜉𝑖(x)], where 𝑝𝑖 are
known as weights and 𝜉𝑖 as nodes of the underlying quadrature approximation. By
setting 𝑁𝑒 = 2 one has that: 𝑖 = 1,2, and the following transport equation is solved:

𝜕
𝜕x

⋅ ( ̄𝜌⟨U⟩𝑝1) − 𝜕
𝜕x

⋅ ( ̄𝜌Γ𝑡
𝜕𝑝1
𝜕x ) = 0, (11.8)

whereas no equation for 𝑝2 is solved, as 𝑝2 = 1−𝑝1 (i.e. the PDF integrates to unity),
together with:

𝜕
𝜕x

⋅ ( ̄𝜌⟨U⟩𝑝1𝜉1) − 𝜕
𝜕x

⋅ ( ̄𝜌Γ𝑡
𝜕

𝜕x
(𝑝1𝜉1)) =

= ̄𝜌𝛾𝑀𝑝1𝑝2 (𝜉2 − 𝜉1) +
̄𝜌Γ𝑡

𝜉1 − 𝜉2 (𝑝1
𝜕𝜉1
𝜕x

⋅
𝜕𝜉1
𝜕x

+ 𝑝2
𝜕𝜉2
𝜕x

⋅
𝜕𝜉2
𝜕x ) . (11.9)

In Eq. (11.9) the right-hand side represents molecular mixing closed with the IEM
model and 𝛾𝑀 = 𝐶𝜙

2
𝜀
𝑘 is the micromixing rate, where 𝐶𝜙 is a constant. More details

can be found in section 8.6. Inverting subscripts 1 and 2, the transport equation related
to 𝑝2𝜉2, can be readily obtained. It is important to stress here that 𝜉1 and 𝜉2 can be
thought of as local acetonemass fractions in two ‘environments’, representing turbulent
composition fluctuations. Following the DQMOM-IEM formalism the Favre-averaged
acetone mass fraction can be calculated as follows:

⟨𝜉⟩ = ∫
1

0
𝑝(𝜉)𝜉d𝜉 ≈ 𝑝1𝜉1 + 𝑝2𝜉2. (11.10)

By using this formalism, together with the modeling details presented in section 8.7,
the moments of the CMD are transported in the following equation:

𝜕
𝜕x

⋅ ( ̄𝜌⟨U⟩𝑝1𝑚(𝑗)
1 ) − 𝜕

𝜕x
⋅ ( ̄𝜌Γ𝑡

𝜕
𝜕x (𝑝1𝑚(𝑗)

1 )) =

= ̄𝜌𝛾𝑀𝑝1𝑝2 (𝑚(𝑗)
2 − 𝑚(𝑗)

1 ) +
̄𝜌Γ𝑡

𝑚(𝑗)
1 − 𝑚(𝑗)

2
(

𝑝1
𝜕𝑚(𝑗)

1
𝜕x

⋅
𝜕𝑚(𝑗)

1
𝜕x

+ 𝑝2
𝜕𝑚(𝑗)

2
𝜕x

⋅
𝜕𝑚(𝑗)

2
𝜕x )

+

+
𝑝1 ̄𝜌
2

𝑁

∑
𝛼=1

𝑁

∑
𝛾=1

𝑤𝛼,1𝑤𝛾,1𝛽𝛼,𝛾,1 [(𝑛𝛼,1 + 𝑛𝛾,1)
𝑗 − 𝑛𝑗

𝛼,1 − 𝑛𝑗
𝛾,1] , (11.11)
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where again inverting the subscripts 1 and 2, the equation for 𝑚(𝑗)
2 is readily

obtained. In Eq. (11.11) the source term due to aggregation is approximated by
using QMOM. The 𝑁 nodes and weights of the quadrature approximation 𝑛𝛼,1, 𝑤𝛼,1

are calculated from the first 2𝑁 moments in the first environment, 𝑚(𝑗)
1 , by using

the Product-Difference (PD) algorithm (and similarly for environment 2). Details
concerning QMOM can be found elsewhere (Marchisio and Fox, 2013). In this work
𝑁 is taken equal to two, transporting therefore four moments (for each of the
two environments), since this value represents a good trade off between stability,
computational cost and accuracy (Barrett and Webb, 1998). The Favre-averaged
moment of order 𝑘, ⟨𝑚⟩(𝑗), can be calculated again from the DQMOM-IEM formalism,
resulting in the following equation:

⟨𝑚(𝑗)⟩ = 𝑝1𝑚(𝑗)
1 + 𝑝2𝑚(𝑗)

2 . (11.12)

By using the same approach, also the final Favre-averaged mean radius of gyration,
⟨𝑅𝑔⟩, for the entire population of clusters can be calculated as the summation weighted
over the two environments, as shown in the following equation:

⟨𝑅𝑔⟩ =
𝑁𝑒

∑
𝑖=1

𝑝𝑖

𝑁

∑
𝛼=1 [

𝑤𝛼,𝑖J𝑅𝑔,𝛼,𝑖K

∑𝑁
𝛼=1 𝑤𝛼,𝑖 ]

=
𝑁𝑒

∑
𝑖=1

𝑝𝑖

𝑁

∑
𝛼=1

⎡
⎢
⎢
⎣

𝑤𝛼,𝑖√𝑘(𝑥𝐴,𝑖) (𝑛𝑖𝑀𝑤)
2𝜈(𝑥𝐴,𝑖)

∑𝑁
𝛼=1 𝑤𝛼,𝑖

⎤
⎥
⎥
⎦

(11.13)

where 𝑅𝑔,𝛼,𝑖, 𝑘(𝑥𝐴,𝑖) and 𝜈(𝑥𝐴,𝑖) are respectevely the radius of gyration, the Flory
coefficient and the Flory exponent, functions of the acetone molar fraction 𝑥𝐴 in the
environment 𝑖, with 𝑖 = 1,2, and in the quadrature node 𝛼, with 𝛼 = 1,2 calculated
by means of QMOM. Functional forms of Flory’s parameters 𝑘(𝑥𝐴,𝑖) and 𝜈(𝑥𝐴,𝑖) are
directly evaluated from MD simulations (Di Pasquale, Marchisio, Barresi, and Carbone,
2014) and their expressions are reported in Eq. (11.34) and Eq. (11.35).The value obtained
from Eq. (11.13) will be then compared against experiments.

11.2.3 CQMOM as alternative model for FNP
In this section, the conditional quadrature method of moments (CQMOM) applied

to FNP is developed, in line with the theory presented in section 8.4.1. Let us define the
bivariate NDF 𝑔(𝑡,x, 𝜉, 𝑛), in which two internal coordinates are considered, namely the
mixture fraction 𝜉 and the number of molecules 𝑛 that form a cluster, also identified as
aggregation number.The quantity 𝑔(𝑡,x, 𝜉, 𝑛)d𝜉d𝑛 corresponds therefore to the number
of molecules per unit volume which form a molecular cluster, at a given position x, at
the time instant 𝑡 in a blob of liquid with composition 𝜉. For a sake of brevity, from
now on time and space coordinates will be omitted in the NDF, resulting in 𝑔(𝜉, 𝑛), but
the two forms are totally equivalent. In line with the conditional quadrature method of
moments (CQMOM) theory, the NDF 𝑔(𝜉, 𝑛) is defined as
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𝑔(𝜉, 𝑛) =
𝑁1

∑
𝛼=1

𝑝𝛼𝛿(𝜉 − 𝜉𝛼)
𝑁2

∑
𝛾=1

𝑤𝛼,𝛾𝛿(𝑛 − 𝑛𝛼,𝛾) (11.14)

where 𝑁1 and 𝑁2 are the number of nodes of the quadrature referred respectively
to the first and second internal coordinate. Choosing 𝑁1 = 𝑁2 = 2 represents a
good compromise between computational cost and accuracy, leading to the quadrature
scheme depicted in Figure 11.1.

Figure 11.1: Sketch of the quadrature procedure with two nodes for the mixing 𝜉 and
the aggregation number 𝑛.

The mixed moment of order 𝑘1 in 𝜉 and 𝑘2 in 𝑛 is defined as follows:

𝑚𝑘1,𝑘2
= ⟨𝜉𝑘1𝑛𝑘2⟩ = ∫

1

0 ∫
∞

1
𝜉𝑘1𝑛𝑘2𝑔(𝜉, 𝑛)d𝜉d𝑛 =

= ∫
1

0
𝜉𝑘1𝑓(𝜉)d𝜉 ∫

∞

1
𝑛𝑘2𝑓(𝑛|𝜉)d𝑛, (11.15)
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where 𝑓(𝑛|𝜉) is the marginal NDF, defined as:

𝑓(𝑛|𝜉) =
𝑔(𝜉, 𝑛)
𝑓(𝜉)

, (11.16)

and where

𝑓(𝜉) =
∫∞

1 𝑔(𝜉, 𝑛)d𝑛
𝑁𝑡

, (11.17)

where 𝑁𝑡 is the total clusters number density, namely the 0𝑡ℎ-order moment in the
variable 𝑛.

The interchangeable notation 𝑚𝑘1,𝑘2
= ⟨𝜉𝑘1𝑛𝑘2⟩ is used again and from now on will

be used very frequently.
Instead of transporting and solving the NDF 𝑔(𝜉, 𝑛), it turns out to be more strategic

and interesting to consider the NDF ℎ(𝜉,m), where

m = {𝑚𝑘2
} = ∫Ω𝑛

𝑛𝑘2𝑓(𝑛)d𝑛, 𝑘2 = 0, 1, 2, 3 =
⎛
⎜
⎜
⎜
⎝

𝑚0
𝑚1
𝑚2
𝑚3

⎞
⎟
⎟
⎟
⎠

(11.18)

is the pure (in 𝑛 variable) moments vector, considered now as an internal variable
of the PBM. Being the number of nodes for the quadrature in 𝑛 equal to two, the first
2𝑁2 − 1 order moments are considered, namely 𝑚0, ...,𝑚3.

Coherently with the multivariate distribution theory, the new NDF is defined as
follows:

ℎ(𝜉,m) =
𝑁1

∑
𝛼=1

𝑝𝛼𝛿(𝜉 − 𝜉𝛼)𝛿(m − m𝛼). (11.19)

The transport equation of the joint NDF ℎ(𝜉,m) reads as follows:

𝜕ℎ(𝜉,m)
𝜕𝑡

+ ⟨U⟩ ⋅
𝜕ℎ(𝜉,m)

𝜕x
− 𝜕

𝜕x
⋅ [Γ𝑡

𝜕
𝜕x

ℎ(𝜉,m)] =

= − 𝜕
𝜕𝜉 (

𝜖𝜙

2⟨𝜉′2⟩
(⟨𝜉⟩ − 𝜉)ℎ(𝜉,m)) +

− 𝜕
𝜕m (

𝜖𝜙

2⟨𝜉′2⟩
(⟨m⟩ − m)ℎ(𝜉,m)) +

− 𝜕
𝜕m

[𝑅(𝜉,m)ℎ(𝜉,m)] ,

(11.20)

where the two transport terms in mesoscale phase space (first two terms on the
right hand side) have been closed by means of the IEM model.
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Let us introduce the new mixed moments for this alternative mathematical
framework:

𝑚̂𝑘1,𝑘2
= ⟨𝜉𝑘1m⟩ = ∫Ω𝜉

∫Ω𝑛

𝜉𝑘1mℎ(𝜉,m)d𝜉dm. (11.21)

Bymultiplying Eq. (11.20) by 𝜉𝑘1m𝑑𝜉𝑑m and by integrating over all the phase space
domain, from Eq. (11.21) the mixed moments transport equation is obtained:

𝜕⟨𝜉𝑘1m⟩
𝜕𝑡

+ ⟨U⟩ ⋅
𝜕⟨𝜉𝑘1m⟩

𝜕x
− 𝜕

𝜕x
⋅ [Γ𝑡

𝜕
𝜕x

⟨𝜉𝑘1m⟩] =

= − ∫Ω𝜉
∫Ω𝑛

𝜉𝑘1m 𝜕
𝜕𝜉 (

𝜖𝜙

2⟨𝜉′2⟩
(⟨𝜉⟩ − 𝜉)ℎ(𝜉,m)) d𝜉dm+

− ∫Ω𝜉
∫Ω𝑛

𝜉𝑘1m 𝜕
𝜕m (

𝜖𝜙

2⟨𝜉′2⟩
(⟨m⟩ − m)ℎ(𝜉,m)) d𝜉dm+

− ∫Ω𝜉
∫Ω𝑛

𝜉𝑘1m 𝜕
𝜕m

[𝑅(𝜉,m)ℎ(𝜉,m)] d𝜉dm.

(11.22)

By using the micro-mixing rate introduced in Chapt. 8, by integrating by parts
the left hand side of Eq. (11.22) (in order to make the phase space derivatives vanish
off, see also Appendix C), and by means of the definition reported in Eq. (11.21), the
general transport equation of the mixed moments of order 𝑘1 (note that 𝑘2 = 0, 1, 2, 3
is implicitly present in the internal coordinate vector m, as reported in Eq. (11.18))
becomes:

𝜕⟨𝜉𝑘1m⟩
𝜕𝑡

+ ⟨U⟩ ⋅
𝜕⟨𝜉𝑘1m⟩

𝜕x
− 𝜕

𝜕x
⋅ [Γ𝑡

𝜕
𝜕x

⟨𝜉𝑘1m⟩] =

= + 𝑘1𝛾𝑀(⟨𝜉⟩⟨𝜉𝑘1−1m⟩ − ⟨𝜉𝑘1m⟩) +
+ 𝛾𝑀(⟨𝜉𝑘1⟩⟨m⟩ − ⟨𝜉𝑘1m⟩) + ⟨𝜉𝑘1𝑅(𝜉,m)⟩.

(11.23)

In order to close the quadrature scheme of this particular problem, only two
equations, corresponding to 𝑘1 = 0 and 𝑘1 = 1, must be solved leading to:

𝜕⟨m⟩
𝜕𝑡

+ ⟨U⟩ ⋅
𝜕⟨m⟩

𝜕x
− 𝜕

𝜕x
⋅ [Γ𝑡

𝜕
𝜕x

⟨m⟩] = ⟨𝑅(𝜉,m)⟩,

𝜕⟨𝜉m⟩
𝜕𝑡

+ ⟨U⟩ ⋅
𝜕⟨𝜉m⟩

𝜕x
− 𝜕

𝜕x
⋅ [Γ𝑡

𝜕
𝜕x

⟨𝜉m⟩] =

=2𝛾𝑀(⟨𝜉⟩⟨m⟩ − ⟨𝜉m⟩) + ⟨𝜉𝑅(𝜉,m)⟩,

(11.24)
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where 𝑅(𝜉,m) is the source term (containing the aggregation kernels) already
defined in the previous section, and

⟨𝑅(𝜉,m)⟩ =
2

∑
𝛼=1

𝑝𝛼𝑅(𝜉𝛼,m𝛼), (11.25)

⟨𝜉𝑅(𝜉,m)⟩ =
2

∑
𝛼=1

𝑝𝛼𝜉𝛼𝑅(𝜉𝛼,m𝛼), (11.26)

closed with the CQMOM.
The solving scheme for this approach consists in the same iteration in:

• Calculating the quadrature in the first phase space variable 𝜉 ; thanks to the pure
moments in 𝜉 and a suitable inversion algorithm (e.g., Wheeler), the nodes and
weights {𝑝𝛼, 𝜉𝛼} are obtained;

• The two mixed moments reported in Eq.s (11.24) are solved and the mixed
moments ⟨m⟩ and ⟨𝜉m⟩ are then known;

• The linear system based on the mixed moments definition is solved:

{
⟨m⟩ = 𝑝1m1 + 𝑝2m2

⟨𝜉m⟩ = 𝑝1𝜉1m1 + 𝑝2𝜉2m2
(11.27)

and the pure moments in the two environments of the mixing quadraturem1 and
m2 are obtained.

• By applying the Wheeler algorithm to the moments set vector m1 and m2
(remember the definition reported in Eq. 11.18), the weights and nodes of the
quadrature of the pure moments in 𝑛, {𝑤𝛼,𝛾, 𝑛𝛼,𝛾} (look at Figure 11.1), are found
and can be employed in the calculation of the mean radius of gyration.

This alternative mathematical framework, presented in this section, has been
implemented in an open-source tool, OpenQBMM, an OpenFOAM-based package.
Being still under numerical and computational optimizations, all the results here
presented are obtained by means of the previous model shown in section 11.2.2.

11.3 Operating conditions and computational details
In order to validate the model developed, predictions are compared with

experiments obtained under different operating conditions. In the experiments the
water and acetone streams are mixed in a CIJM continuosly, as shown in Figure 11.2.
First of all, two molecular weights for PCL are simulated: the first one has 𝑀𝑤 = 14000
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g mol−1 (indicated in what follows as PCL-14000), whereas the second one has
𝑀𝑤 = 80000 g mol−1 (indicated as PCL-80000). For both of them, different operating
conditions have been considered, in terms of initial PCL concentrations (in the acetone
stream) and inlet acetone and water flow rates, whereas the flow rate ratio between
water and acetone was kept equal to one. Therefore, the final acetone concentration at
the CIJM outlet in terms of volume, molar and mass fraction is respectively equal to
0.5, 0.2 and 0.44.

Figure 11.2: Sketch of CIJM. Acetone, with PCL dissolved, and water flow respectively
from left and right. Black arrows show the flux lines. There may be also organic
molecules (e.g. drug, light blue beads in the figure). The mixing leads to supersaturation
and to precipitation of polymeric clusters in micellar structures that may contain the
organic molecules. In this work the presence of the drug is neglected.

The operating conditions related to PCL-14000 and PCL-80000 are summarized in
Tab. 11.1. In order to clearly explain the operating conditions considered, a double-
entry table is employed. The supersaturation ratio 𝑆(𝜉) (fourth column in Tab. 11.1) is
function of the local good solvent mixture fraction 𝜉 and is calculated as
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𝑆(𝜉) =
𝑐𝑃 𝐶𝐿

𝑙𝑜𝑐 (𝜉)

𝑐𝑃 𝐶𝐿
𝑒𝑞 (𝜉)

, (11.28)

where 𝑐𝑃 𝐶𝐿
𝑙𝑜𝑐 is the local PCL concentration, after mixing of water and acetone

streams, and 𝑐𝑃 𝐶𝐿
𝑒𝑞 is the equilibrium PCL concentration, both of them defined later

on respectively in Eq. (11.29) and Eq. (11.30). In Tab. 11.1 the 𝑆(𝜉) is calculated at the
outlet of the mixer, therefore by taking the PCL concentrations reported in the third
column of the table. This value is very meaningful since it represents the driving force
for self-assembly. Moderate 𝑆(𝜉) values probably corrispond to nucleation, whereas
large 𝑆(𝜉) values probably corrispond to spinodal decomposition.

𝑐𝑖𝑛,𝑃 𝐶𝐿, 𝑐𝑖𝑛,𝑃 𝐶𝐿, 𝑐𝑜𝑢𝑡,𝑃 𝐶𝐿, 𝑆(𝜉) Flow rate, 𝑚𝐿 𝑚𝑖𝑛−1

𝑚𝑔 𝑚𝐿−1 𝑚𝑜𝑙 𝑚−3 𝑚𝑜𝑙 𝑚−3 10 20 40 60 80 120
0.5 0.0357 0.0179 23.3

PCL-14000

2.5 0.1786 0.0893 116.7
5.0 0.3571 0.1786 233.4
10.0 0.7143 0.3571 466.7
15.0 1.0714 0.5357 700.1
25.0 1.7857 0.8929 1166.8
0.02 0.00025 0.000125 0.9

PCL-80000

0.2 0.0025 0.00125 9.3
1.0 0.0125 0.00625 46.7
3.0 0.0375 0.01875 140.0
4.0 0.0500 0.025 186.7
6.0 0.0750 0.0375 280.0

Table 11.1: Operating conditions adopted in the simulations related to PCL-14000 and
to PCL-80000, with acetone as good solvent in the CIJM. The first and second columns
refer to the initial PCL concentration in the acetone stream in mg mL−1 and mol m−3.
The third column refers to the final PCL concentration in the outlet stream (after mixing
of acetone and water streams). The fourth column quantifies the supersaturation ratio
(𝑆(𝜉)) at the outlet of the mixer.

The case referring to PCL with the smaller molecular weight (i.e. PCL-14000) is
first investigated only under the effect of Brownian-induced aggregation and then
subsequently under the effect of both Brownian-induced and turbulent-induced
aggregation, in order to assess the relative importance of the two mechanisms. For the
other molecular weight (i.e. PCL-80000) only predictions accounting for both effects
will be discussed.

As already mentioned, PCL molecule self-assembly is induced by a change in the
solvent. The aggregation efficiency, 𝜂, introduced in Eq. (11.6) is assumed to be zero
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if the local PCL molecule concentration in environment 𝑖, 𝑐𝑃 𝐶𝐿
𝑙𝑜𝑐,𝑖 , is smaller than the

equilibrium concentration and equal to one otherwise. The physical meaning behind
this modelling choice deserves a further explanation. The aggregation efficiency
is represented by a stepwise function, zero for undersaturated solutions and one
for supersaturated solutions. This means that if locally the supersaturation ratio
overcomes its solubility threshold of unity, and if two clusters/NP collide, then they
stick together undergoing an aggregation event (second-order point process). This is
physically justified by the fact that, locally, a PCL molecule (or cluster) is interacting
with a poor solvent condition, since the mixing between the good and bad solvent
is extremely fast and characterised by a very low variance (the system tends to a
perfect micro-mixed). Therefore, the PCL molecule (or cluster) once the solubility
limit is overcome (supersaturation ratio greater than unity) will always face a twofold
choice: either interacting with a poor solvent molecule, or with another PCL molecule
(cluster). It is a matter of fact that due to the low compatibility with water, the PCL
chains would always prefer to interact with themselves, sticking together rather than
exposing to the poor solvent (much lower energy interaction). Besides the energetic
effect just introduced here, there is also an entropic effect that is worthwhile to
mention. At the beginning single PCL macromolecules are completely dissolved in
pure acetone stream and this represents the best possible configuration. As soon as
water and acetone streams collide and mix together, the single PCL molecules can
be either in their mono-macromolecular status (the cluster distribution is a delta
centred on unity, namely each cluster can be thought as formed by just one single
PCL macromolecule), or can aggregate together forming two-macromolecule cluster, a
three-macromolecule cluster and so on. The single PCL chains system will correspond
to a given number of possible configurations, but the clusters that would form from
a possible aggregation will have many more configurations that describe the same
aggregate and consequently, the aggregated system turns out to be more probable,
from an entropic point of view.That is why the system is entropically and energetically
favourable to spontaneous self-assemble, driven by the gradient of the chemical
potential (that decreases as long as the aggregation takes place reaching a plateau),
which is simply another form to express the entropic and enthalpic contributions
described above. All of these phenomena are local phenomena, strictly dependent on a
macroscopic quantity that is the PCL initial concentration in acetone stream.

The local PCL concentration is calculated in the environment 𝑖 from the local
mixture fraction, 𝜉𝑖, via the following equation:

𝑐𝑃 𝐶𝐿
𝑙𝑜𝑐,𝑖 (𝜉𝑖) =

𝑐𝑃 𝐶𝐿
𝑖𝑛
𝑀𝑤 [1 + (

1
𝜉𝑖

− 1) (
𝜌𝐴
𝜌𝑊 )]

−1
, (11.29)

where 𝑀𝑤 is the PCL molecular weight in g mol−1, 𝑐𝑃 𝐶𝐿
𝑖𝑛 is the initial PCL

concentration expressed in mg mL−1, 𝜌𝐴 and 𝜌𝑊 are respectively the density of acetone
and water, and 𝜉𝑖 is the mass fraction of acetone in the environment 𝑖; whereas the
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equilibrium concentration in environment 𝑖, 𝑐𝑃 𝐶𝐿
𝑒𝑞,𝑖 (𝜉𝑖), was determined experimentally

in a previous work (Lince et al., 2008) and fitted (Di Pasquale, Marchisio, and Barresi,
2012) obtaining the exponential correlation:

𝑐𝑃 𝐶𝐿
𝑒𝑞,𝑖 (𝜉𝑖) = 1200

𝑀𝑤
⋅ exp [−14.533 (1 − 𝑥𝐴,𝑖(𝜉𝑖))], (11.30)

where 𝑀𝑤 is the PCL molecular weight in g mol−1, 𝑥𝐴,𝑖(𝜉𝑖) is the good solvent (i.e.,
acetone) molar fraction in the environment 𝑖 and its dependence on themixture fraction
is reported in Eq. (11.33). The PCL equilibrium concentration profiles are reported in
Figure 11.3 and 11.4 respectively for PCL-14000 and PCL-80000. The figures report the
equilibrium condition in terms of the molar acetone fraction, 𝑥𝐴, as a function of the
PCL equilibrium concentration together with the operating conditions investigated in
the experiments. The symbols report the final PCL concentrations in the acetone-water
mixture with the final solution composition, after complete mixing of the acetone and
water solutions.

The time-averaged acetone-water mixture density is calculated from the following
equation:

̄𝜌 = (
⟨𝜉⟩
𝜌𝐴

+
1 − ⟨𝜉⟩

𝜌𝑊 )

−1
, (11.31)

where 𝜌𝐴 and 𝜌𝑊 are the acetone and water densities, respectively, and ⟨𝜉⟩ is the
Favre-averaged mixture fraction, namely the acetone mass fraction in the mixture. The
viscosity of the acetone-watermixture is instead calculatedwith the following empirical
correlation:

𝜇(𝑥𝐴,𝑖) = exp [𝑥𝐴,𝑖 ln (𝜇𝐴) + (1 − 𝑥𝐴,𝑖) ln (𝜇𝑊)], (11.32)

where 𝜇𝐴 and 𝜇𝑊 are the acetone and water viscosities, respectively, and 𝑥𝐴,𝑖 is acetone
molar fraction in the environment 𝑖 calculated as follows:

𝑥𝐴,𝑖 = 1 −
⎡
⎢
⎢
⎣

(1−𝜉𝑣,𝑖)
𝑉𝑊

𝜉𝑣,𝑖
𝑉𝐴

+ (1−𝜉𝑣,𝑖)
𝑉𝑊

⎤
⎥
⎥
⎦
, (11.33)

where 𝜉𝑣,𝑖 is the acetone volume fraction, 𝑉𝐴 and 𝑉𝑊 are respectively the molar volume
of acetone and water.

The Flory parameters, 𝑘 and 𝜈, are obtained from MD simulations performed in a
previous work (Di Pasquale, Marchisio, Barresi, and Carbone, 2014) and depend on the
acetone molar fraction as follows:

𝑘(𝑥𝐴,𝑖) = 0.0064 exp (−3.15𝑥𝐴,𝑖), (11.34)

𝜈(𝑥𝐴,𝑖) = 0.30 + 0.45𝑥𝐴,𝑖 − 0.15𝑥2
𝐴,𝑖. (11.35)
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Figure 11.3: Solubility curve for PCL-14000 in acetone-water mixtures, reported as
acetonemolar fraction, 𝑥𝐴, versus the equilibrium concentration, 𝑐𝑃 𝐶𝐿

𝑒𝑞 (𝑥𝐴) (continuous
line). Points above the curve correspond to stable mixture where PCL molecules do not
self assemble, otherwise for the points below. The symbols (empty triangles) identify
the polymer concentrations at the outlet, 𝑐𝑃 𝐶𝐿

𝑜𝑢𝑡 , for equal acetone and water flow rates,
investigated in this work. The dashed curve corresponds to the supersaturation value
equal to 200. The reason for choosing this latter value will be explained later on.
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Figure 11.4: Solubility curve for PCL-80000 in acetone-water mixtures, reported as
acetone molar fraction, 𝑥𝐴, versus the equilibrium concentration, 𝑐𝑃 𝐶𝐿

𝑒𝑞 (𝑥𝐴). Points
above the curve correspond to stablemixturewhere PCLmolecules do not self assemble,
otherwise for the points below. The symbols (empty triangles) identify the six initial
polymer concentrations, 𝑐𝑃 𝐶𝐿

𝑜𝑢𝑡 , for equal acetone and water flow rates, investigated in
this work. The dashed curve corresponds to the supersaturation value equal to 200. The
reason for choosing this latter value will be explained later on.
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Physical variable Value
Temperature, K 303
Pressure, Pa 101325

Water density, kg m−3 994
Acetone density, kg m−3 780

Water viscosity, kg m−1s−1 8.0×10−4

Acetone viscosity (Kestin et al., 1978), kg m−1s−1 3.1×10−4

Table 11.2: Involved physical variables and relative values adopted in the simulations.

It is interesting to notice that Eq. (11.35) returns for the exponent 𝜈 the theoretical values
of 1/3 and 3/5 for bad (i.e. pure water) and good solvents (i.e. pure acetone), respectively.
The values assumed by all the other relevant variables is reported in Tab. 11.2.

As mentioned simulations were performed in a CIJM, which consists of two small
(millimeter size) jets impinging at the center of a cylindrical chamber.The two jets, being
confined in a small volume, after mixing exit from the bottom. Both top and bottom
have conical ends. More details concerning this particular mixer and its mixing features
can be found in the literature (Icardi, Gavi, Marchisio, Barresi, et al., 2011; Icardi, Gavi,
Marchisio, Olsen, et al., 2011; Lince et al., 2011, 2009). By making use of its symmetry,
one can simulate half of the geometry, as depicted in Figure 11.5.

Ansys Fluent 15 was used in this work. The computational grid consists of
about 120.000 uniform hexahedral cells (for half of the actual geometry), with a
refinement near the impinging plane and in the region around the two inlet flows. The
pressure-velocity coupling has been done by using the SIMPLE algorithm, whereas the
employed numerical scheme for spatial dicretization is the first-order upwind. In order
to efficiently study turbulence inside the mixer the standard 𝑘 − 𝜀 model is employed
with enhanced wall treatment near the wall, as this can be considered an adequate
approach for this system (Gavi et al., 2007). Outlet boundary conditions are set to
zero normal gradients for all flow variables, except for pressure; in this way, outflow
boundary values are not imposed but are calculated from the interior.

The DQMOM-IEM and QMOMmodel were implemented via user-defined functions
(UDF) and scalars (UDS) in Fluent 15.0.

The boundary conditions referred to the latter are reported in Tab. 11.3; as it is seen,
in the pure acetone flow, inlet 1 has a unitaryweight (i.e. 𝑝1 = 1), because thewhole fluid
is constituted by acetone only. Similarly, being the pure water inlet consisting of pure
water, the weight 𝑝1 is necessarly zero. For the same reason, it is easy to understand the
reported values referring to 𝑝1𝜉1 and 𝑝2𝜉2: in the first inlet both 𝑝1 and 𝜉1 are unitary
(pure acetone), whereas in second inlet 𝑝2 is equal to one, but 𝜉2 is null because the
nodes always refer to acetone (pure acetone).

As far as the boundary conditions for the j-th order moments, 𝑚(𝑗), is concerned
they represents the initial PCL concentration (expressed in mol m−3), as the PCL enter

157



11 – Population balance model and computational fluid dynamics in NP production

Figure 11.5: Sketch of geometry adopted for the CFD simulation of the CIJM
(corresponding to half of the actual CIJM geometry cut across the symmetry plane
into two identical parts). The characteristic geometric parameters assume the following
values: 𝑑 = 1 mm, 𝐷 = 4.76 mm, 𝐻 = 9.52 mm and 𝑊 = 2 m.
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in the CIJM in a stable molecular solution, corresponding to a CMD centered on n=1
(i.e. clusters made up of only one PCL molecule). For this reason, this value is the same
for the all four moments. It is noteworthy to highlight that the moments boundary
conditions are conveniently corrected taking into account for the Favre-averaged
density of the mixture and acetone density, since also the moments are Favre-averaged
scalar values, obeying the following equation:

𝑚(𝑗) =
𝑐𝑃 𝐶𝐿

𝑖𝑛
𝑀𝑤𝜌𝐴

̄𝜌, (11.36)

where 𝑐𝑃 𝐶𝐿
𝑖𝑛 represents the initial PCL concentration expressed in mg mL−1 and

reported in Tab. 11.1, 𝑀𝑤, 𝜌𝐴 and ̄𝜌 are respectively PCL molecular weight, acetone
mixture and Favre-averaged mixture density. Since the PCL is dissolved in the acetone
inlet stream, the boundary conditions related to the moments in the water inlet are
equal to zero.

Variable Boundary conditions
Pure acetone inlet Pure water inlet

𝑝1 1 0
𝜉1 1 1
𝜉2 0 0

𝑝1𝜉1 1 0
𝑝2𝜉2 0 0

𝑚(𝑗), 𝑗 = 0,1,2,3 Eq. (11.36) 0

Table 11.3: Boundary conditions related to additional scalars employed in the CFD
simulations.

11.4 Results and discussion
In this section the main results are reported and discussed. Figure 11.6 reports

contour plots of the velocity magnitude in the symmetry plane of the CIJM for
increasing flow rates of the two inlet streams of water and acetone. As it can be seen,
the two inlet jets collide in an impinging plane, confined in the central part of the
mixing chamber. This impinging plane is where most of the kinetic energy is produced
and dissipated and is where mixing takes place. It is also interesting to notice that the
impinging plane is slightly shifted towards the acetone inlet due to the difference of
density between acetone and water. Closer observation of Figure 11.6 reveals that the
flow is laminar in the two inlets, as evident from the parabolic velocity profile, and
is instead turbulent in other regions. It is also interesting to observe that some small
stagnant zones are generated near the walls. This leads to a higher residence time of
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the fluid in these regions that, as we will see, influences directly the final PCL molecule
self-assembly.

The contour plots, on the symmetry plane of the CIJM, for the turbulent kinetic
energy, 𝑘, and the turbulence dissipation rate, 𝜀, at different inlet flow rates, are instead
reported in Figure 11.7 and 11.8. As it can be seen, as the low flow rate values are
increased (from 10 to 120 mL min−1) the region where most of the turbulent kinetic
energy is produced and dissipated becomes more and more confined. Moreover, by
increasing the inlet flow rates the characteristic values of both 𝑘 and 𝜀 increase,
indicating faster and faster mixing.

The turbulence dissipation rate is particular important as it determines the rate
with which mixing at the molecular level, or micromixing, occurs. In other words the
turbulent dissipation rate dictates the rate with which acetone (and PCL) and water
molecules enter into contact, dictating therefore also the rate with which the self-
assembly process occurs. The turbulent dissipation rate is also important because it
defines the rate of cluster aggregation due to turbulent fluctuations, as clearly evidenced
by Eq. (11.6). In general, the effect of increasing 𝜀 is twofold: on one hand it improves
micromixing, leading to the formation of smaller molecular clusters, but on the other
hand it increments cluster aggregation, leading to their subsequent aggregation. Its final
effect of the final size of the aggregates is therefore difficult to predict a priori.

Figure 11.9 reports the contour plots on the symmetry plane of the CIJM of the
moments of the CMD ranging from order zero to three at different flow rates. Results
are reported here only for PCL-14000 and for an initial PCL concentration in the acetone
stream of 0.5 mg mL−1, as for the other molecular weight and for the other PCL initial
concentrations very similar trends are observed.

As already mentioned, 𝑚(0) represents the total cluster number density (see top row
of Figure 11.9). When PCL molecules enter the CIJM through the acetone inlet, they
are in a stable molecular solution, and therefore each PCL molecule is an independent
cluster characterized by a cluster dimensionless mass, or aggregation number, of one
(i.e. 𝑛 = 1). As the acetone stream mixes with the water stream it is diluted, and
therefore the total cluster number density decreases. Moreover, by mixing the acetone
stream with water, the PCL equilibrium concentration is overcome, supersaturation is
built up, and aggregation triggered, as depicted in Figure 11.3 and 11.4. As soon as
aggregation takes place, the original molecular clusters entering the CIJM, with the
acetone stream, and containing one single PCL molecule (𝑛 = 1), self-assemble forming
larger clusters, increasing 𝑛 and further reducing the total cluster number density. In
fact, if four molecules self-assemble into one single cluster, the total cluster number
density is reduced from four to one.

The second row of Figure 11.9 reports instead 𝑚(1) that represents the total molecule
number density. This quantity is invariant during aggregation. In fact, if four PCL
molecules self-assemble into a single cluster, 𝑚(1) does not change, as the total molecule
number density quantifies the total number of molecules distributed over the different
clusters. The behavior observed in the contour plots of Figure 11.9 is therefore solely
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Figure 11.6: Contour plots for the magnitude of the velocity vector (m s−1) on the
symmetry plane of the CIJM for, from left to right and from top to bottom, flow rate
values of 10, 20, 40, 60, 80 and 120 mL min−1.
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Figure 11.7: Contour plots for the turbulent kinetic energy, 𝑘 (m2 s−2) on the symmetry
plane of the CIJM for, from left to right and from top to bottom, flow rate values of 10,
20, 40, 60, 80 and 120 mL min−1.
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Figure 11.8: Contour plots for the turbulence dissipation rate, 𝜀 (m2 s−3) on the
symmetry plane of the CIJM for, from left to right and from top to bottom, flow rate
values of 10, 20, 40, 60, 80 and 120 mL min−1.

163



11 – Population balance model and computational fluid dynamics in NP production

Figure 11.9: Contour plots for the moments of the CMD on the symmetry plane of the
CIJM for an initial PCL-14000 concentration of 0.5 mg mL−1 and for, from left to right,
inlet flow rates of 10, 40 and 120 mL min−1; moments are reported according to their
order (i.e. 𝑗 = 0, 1, 2, 3) from top to bottom.
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due to dilution.
The third and fourth rows of Figure 11.9 report finally 𝑚(2) and 𝑚(3) quantifying the

variance and skewness of the CMD. The higher 𝑚(2) and 𝑚(3) are, the more spread and
skewed the CMD is. It is interesting to observe the effect of the inlet flow rate on these
two quantities. As seen by increasing the inlet flow rate both 𝑚(2) and 𝑚(3) are sensibly
reduced, indicating that the corresponding CMD become narrower and less skewed.

As discussed in the previous sections each cluster, depending on the value of 𝑛 and
the composition of the surrounding solution (i.e. 𝑥𝐴), is characterized by a different
radius of gyration. However, as anticipated in Eq. (11.13), a mean radius of gyration
for the entire population of clusters can be calculated by making use of the quadrature
approximations of QMOM and DQMOM-IEM.The contour plots of this quantity on the
symmetry plane of the CIJM for different inlet flow rates is reported in Figure 11.10.
As it can be noted, at the acetone inlet the mean radius of gyration is very small (i.e.
a few nanometers) and corresponds to the size of a single PCL-14000 molecule in pure
acetone. As soon as water and acetone mix, molecules self-assemble and the mean
radius of gyration of the aggregates increases, reaching the final value at the outlet.
It is interesting to observe that the maximum values for the radius of gyration are
reached near the wall, where, as highlighted by the analysis of the flow field, stagnant
zones are detected. In these stagnant zones the fluid, and the clusters, spend more time
and have therefore more time to self-assemble. It is also interesting to observe that
the mean radius of gyration sensibly decreases with the increase of the inlet flow rate.
The reduction of the value of the mean radius of gyration is due to the fact that, by
increasing the inlet flow rate, faster mixing between the two inlet streams is achieved,
resulting in the formation of more clusters, then that have less PCL molecules available
for subsequent growth via further aggregation.

By reconstructing the CMD as a lognormal distribution from the tracked four
moments (Marchisio and Fox, 2013) at the CIJM outlet, the results reported in
Figure 11.11 are obtained. The data are reported here for different inlet flow rates, but
one single PCL-14000 concentration (i.e. 0.5 mg mL−1), and are plotted together with
a line indicating the mean cluster mass at the reactor outlet. As already discussed,
by increasing the inlet flow rates the CMD becomes narrower (i.e. the variance
decreases), less skewed, whereas the mean cluster mass (reported in the figure as red
lines and calculated as the ratio of the moments of order one and zero) decreases. This
confirms once again that manipulating the inlet flow rate allows to control the CMD.
In particular, an increase in the inlet flow rates results in the formation of smaller
clusters with narrower CMD.

The mean radius of gyration at the reactor outlet can now be compared with
experimental data collected in another work (Lince et al., 2008). In fact, the mean
cluster size measured experimentally for clusters collected at the outlet of CIJM
with Dynamic Light Scattering (DLS) corresponds to the mean radius of gyration
calculated with Eq. (11.13). It is noteworthy to stress that the DLS measures the mean
hydrodynamic radius, which is by definition different from the mean radius of gyration
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Figure 11.10: Contour plots for the mean radius of gyration (nm) on the symmetry plane
of the CIJM for PCL-14000 with an initial concentration of 0.5 mg mL−1 and for, from
left to right and top to bottom, flow rate values of 10, 20, 40, 60, 80 and 120 mL min−1.
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Figure 11.11: Reconstructed CMD at the CIJM outlet, 𝑓(𝑛), as a function of the number
of molecules per cluster, 𝑛, at PCL-14000 concentration of 0.5 mg mL−1 and for, from
left to right and top to bottom, inlet flow rates of 10, 20, 40, 60, 80 and 120 mL min−1.
The red vertical line indicates the mean value of 𝑛 of the distribution, namely 𝑚(1)/𝑚(0).
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predicted by simulations. For spherical particles the hydrodynamic to gyration radius
ratio is close to unity and, being the polymer NP experimentally proven to have a
spherical shape, this turns out to be a reasonable approximation.

The comparison for the different PCL-14000 initial concentrations and for the
different inlet flow rates investigated in this work is reported in Figure 11.12. In
general acceptable agreement between experiments and simulations (with Brownian
and turbulent aggregation) is observed at all initial PCL-14000 concentrations, but
the agreement improves as the concentration increases and becomes very good
for concentrations equal to or higher than 2.5 mg mL−1). This corresponds to
supersaturation ratio (𝑆(𝜉)) greater than about 200.

For these simulations predictions are evaluated by considering the effect of
Brownian aggregation only and of both Brownian and turbulent aggregation. The
comparison of predictions in the two cases reveals that at low initial PCL-14000
concentrations the effect of turbulent motions is negligible on cluster aggregation.
This is probably due to the fact that at low initial PCL-14000 concentrations the cluster
size obtained from Brownian aggregation is too small to have some effect on turbulent
fluctuations, as the turbulent aggregation kernel strongly depends on the cluster
size. Under the operating conditions investigated in this work, the local turbulence
intensities are such that turbulent aggregation is relevant only for cluster larger than
200 nm.

As it can be seen, generally both experimental data and model predictions indicate
a decrease of the mean radius of gyration with the inlet flow rate, as already observed
and explained.The only exception is at the highest initial polymer concentration, where
after a first decrease the mean radius of gyration increases at large inlet flow rates. This
behavior, observed also in the experiments, is due again to the strong dependency of the
aggregation kernel on the cluster size. Only at this high initial polymer concentration
the clusters become so large to be extremely sensitive to turbulent fluctuations. At
this initial polymer concentration a first increase of the inlet flow rate results in the
formation of more clusters, that then tend to growth smaller, but a further increase of
the flow rate, results in an increase of the turbulent dissipation rate and of the resulting
turbulent aggregation rate.

The same trend is observed in Figure 11.13 where model predictions are compared
with experiments for PCL-80000. In this case model predictions due to both Brownian
and turbulent aggregation are reported. The similarity of the trends confirms the
generality of the model that can be therefore applied for both molecular weights.
Also in this case predictions at low concentrations result in poorer agreement, when
compared with the agreement obtained at high concentrations. In this case, the
agreement starts being acceptable for an initial PCL concentration of 6.0 mg mL−1,
corresponding to an supersaturation ratio larger than 200.
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Figure 11.12:Mean radius of gyration of the cluster exiting the CIJM versus the inlet flow
rate as measured in experiments (black triangles) and as predicted by the model with
only Brownian aggregation (continuous line) and Brownian and turbulent aggregation
(dashed line) for PCL-14000 initial concentrations of, from left to right and top to
bottom, of 0.5, 2.5, 5.0, 10.0, 15.0 and 25.0 mg mL−1.
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Figure 11.13: Mean radius of gyration of the clusters exiting the CIJM versus the
inlet flow rate as measured in experiments (black triangles) and as predicted by the
model with Brownian and turbulent aggregation (dashed line) for PCL-80000 initial
concentrations, from left to right and top to bottom, of 0.02, 0.2, 1.0, 3.0, 4.0 and 6.0
𝑚𝑔/𝑚𝐿.

Results seems to confirm that there exists a concentration range under which
molecular clusters formation is controlled by aggregation and can be described as a
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purely-aggregative process. This happens for initial superaturation greater than 200.
Then, 𝑆(𝜉) over 200 allows to describe the process as a spinodal decomposition. On the
other hand, for supersaturation ratio smaller than 200 the purely-aggregative model
does not result in good agreement, proving that a nucleative mechanism controls the
process. Therefore, it is reasonable to infer that the spinodal line (i.e. the border line
between nucleation and unstable zone) could be placed at this value of 𝑆(𝜉), as shown
in Figure 11.3 and 11.4.

11.4.1 Effect of different good solvents on FNP
In this section the effect of different good solvents in FNP is investigated, by means

of the QMOM and DQMOM-IEM model presented in section 11.2.2. Experiments show,
in fact, that CMD and mean NP size at the outlet of the mixer are affected by the nature
of the good solvent employed (Ferri et al., 2017). Here, this effect is investigated at the
clusters and vessel scales, with the aim to suitably adjust the Flory’s law, developing a
transferable PBM-CFD model when different good solvents are used. A computational
fitting together with a theoretical approach is employed, in order to identify the key
parameters that lead to different mean NP size at the outlet of the mixer at the same
operating process conditions. Three different good solvents are compared: acetone,
acetonitrile and tetrahydrofuran (THF).

Being the acetone investigated throughout this thesis, also at smaller length scales
(atomistic scale), and having already all the results and functional forms related to the
Flory’s law presented in the previous sections and chapters, it is strategic to choose
acetone as reference solvent in this analysis.

In the modeling framework extensively exploited in this chapter, three main
physical properties must be taken into account when the good solvent is changed:
density, viscosity and molar volume. These physical properties referred to acetone,
acetonitrile and THF are schematically reported in Table 11.4.

Good solvent Density, kg m−3 Viscosity, Pa⋅s Molar volume, cm3mol−1

Acetone 780.85 3.10 ⋅10−4 74.38
Acetonitrile 771.45 3.26 ⋅10−4 53.21

THF 874.78 4.34 ⋅10−4 82.43

Table 11.4: Main physical properties related to the three good solvents investigated here:
density, viscosity and molar volume.

Looking at Table 11.4, it turns out that acetone and acetonitrile have very similar
values of density and viscosity, but acetonitrile has a smaller molar volume; on the
contrary, THF exhibits higher density, viscosity and molar volume with respect to
acetone.

It is worthwhile mentioning now that molar volume will be the most important
physical parameter, affecting the final NP size, since it is related to the good solvent
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molar fraction, 𝑥𝑠, by means of Eq. (11.33) and recalling that 𝑥𝑠 represents the
independent variable of Flory’s parameters functional forms.

The theoretical approach used in this analysis consists in correlating the NP size, in
terms of radius of gyration, to the Flory-Huggins parameter 𝜒 that states the interaction
between two substances (a solvent and a solute, for instance), in turn, strictly dependent
on the solubility parameters of the components of the system.

The Hildebrand solubility parameter (Hildebrand and Scott, 1950) of a solute (e.g.,
polymer) reads as follows:

𝛿 = (
Δ𝐻𝑣 − 𝑅𝑇

𝑉𝑚 ) , (11.37)

where Δ𝐻𝑣 is the vaporization enthalpy and the whole numerator corresponds to
the cohesion energy per unit volume;𝑅 is the gas constant, 𝑇 is the absolute temperature
and 𝑉𝑚 is the molar volume of the solute.

Hansen (2007) proposed a decomposition of the Hildebrand parameter into three
different contributions, leading to the so-called Hansen solubility parameters (HSP):

𝛿 = (𝛿2
𝐷 + 𝛿2

𝑃 + 𝛿2
𝐻)

1/2
, (11.38)

where 𝛿𝐷 considers the dispersion attractive forces (non-polar), 𝛿𝑃 accounts for
the permanent dipole-permanent dipole interactions and 𝛿𝐻 for the hydrogen bonds.
The advantage of the HSP approach lies on the fact that polar effects are explicitly
considered, differently from the Hildebrand parameter that is more suitable for apolar
systems. The ability of a given solvent to solubilize a solute (e.g., polymer) is expressed
in terms of solubility ‘distance’ from the solute itself and takes the form of the radius
of a sphere in Hansen solubility space {𝛿𝐷, 𝛿𝑃, 𝛿𝐻}:

𝑅𝑎 = 4(𝛿𝐷,𝑠 − 𝛿𝐷,𝑝)2 + (𝛿𝑃,𝑠 − 𝛿𝑃,𝑝)2 + (𝛿𝐻,𝑠 − 𝛿𝐻,𝑝)2, (11.39)

where 𝑅𝑎 is the solubility ‘distance’, in terms of sphere radius in the Hansen space,
and the subscripts 𝑠 and 𝑝 refer respectively to the solvent and the polymer. The term
‘4’ is added in order to make the shape of this functional form more spherical and
less elliptical. The whole derivation can be found in Hansen, 2007. The HSP and the
corresponding distance from PCL is summarized in Table 11.5.

In several contexts, it turns out to be more practical to rescale the distance 𝑅𝑎 in
the following way:

𝑅𝐴 = (𝛿𝐷,𝑠 − 𝛿𝐷,𝑝)2 + (𝛿𝑃,𝑠 − 𝛿𝑃,𝑝)2/4 + (𝛿𝐻,𝑠 − 𝛿𝐻,𝑝)2/4, (11.40)

where the simply scaling relation holds: 𝑅𝐴 = 𝑅𝑎/2.
The Flory-Huggins parameter 𝜒𝑠𝑝 can be expressed in function of the HSP (Hansen,

2007) through:
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𝛿𝐷, MPa1/2 𝛿𝑃, MPa1/2 𝛿𝐻, MPa1/2 𝑅𝑎, MPa1/2

PCL 17.0 4.8 8.3 -
THF 16.8 5.7 8.0 1.0

Acetone 15.5 10.4 7.0 6.5
Acetonitrile 15.3 18.0 6.1 13.8

Water 15.6 16.0 42.3 35.9

Table 11.5: HSP and distance from PCL (Eq. 11.39) for all the components of the
investigated systems.

𝜒𝑠𝑝 = (𝑅𝐴)2

2𝑅2
𝑚

, (11.41)

where 𝑅𝑚 represents the radius of the solubility sphere, namely the maximum
solubility distance (in Hansen solubility space) that allows a solvent to dissolve the
solute. Solvents characterised by 𝑅𝐴 > 𝑅𝑚 are classified as non-solvents (or poor
solvents) with respect to that specific solute. On the contrary, all the solvents that
belong to the Hansen solubility sphere (𝑅𝐴/𝑅𝑚 smaller than unity) are classified as
good solvents for that solute. In this analysis, the solute is the PCL and the solvent is
the ‘good solvent’-water mixture. Being the second phase made by a binary mixture,
all the solubility parameters (e.g., HSP) and physical properties (e.g., molar volume)
involved in the following calculations are weighted on the good-bad solvents volume
and molar fractions, and it will be generically labelled as ‘solvent’.

The parameter 𝑅𝑚 is able to consider the dependence of the solubility parameters
on polymer molecular weight, thanks to the following expression:

𝑅2
𝑚 = 0.5(1 + 1/𝑟1/2)𝑅𝑇 /𝑉𝑚, (11.42)

where 𝑟 is the degree of polymerization and it is calculated in this approach as the
PCL macromolecule molecular weight 𝑀𝑤 = 14000 g mol−1 to the PCL monomer
molecular weight 𝑀𝑜 = 114 g mol−1 ratio.

With the assumption of considering the polymer structure at the mean good solvent
molar fraction 𝑥̄𝑠, after mixing occurs, in the range [0.15,0.25] for all the three good
solvents considered, it is reasonable to infer that in the three-component phase diagram
(water, good solvent and PCL) the system is in the condition of poor solvent, for which
the radius of gyration depends on 𝜒𝑠,𝑝 by means of the following equation (Rubinstein
and Colby, 2003):

𝑅𝑔 ≈ 𝑏2

|𝑣|1/3 𝑁1/3 = 𝑏𝑁1/3

(2𝜒𝑠,𝑝 − 1)1/3 , (11.43)

where 𝑏 is the Kuhn length, 𝑣 the excluded volume and 𝑁 is the number of
monomers that form the polymer chain.
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By using the relation reported in Eq. (11.43) for two different solvents 𝑠1 and 𝑠2 (e.g.,
𝑠1 = acetonitrile-water and 𝑠2 = acetone-water), and considering that the Kuhn length
𝑏 is a solute property, therefore the same for any solvent used, the following ratio can
be readily obtained:

⟨𝑅𝑔(𝑛 = 1)⟩𝑠1

⟨𝑅𝑔(𝑛 = 1)⟩𝑠2
=

(2𝜒𝑠2,𝑝 − 1)1/3

(2𝜒𝑠1,𝑝 − 1)1/3 = 𝑆𝑓, (11.44)

where 𝑆𝑓 is a scaling ratio, function of the solely Flory-Huggins parameters 𝜒𝑠1,𝑝
and 𝜒𝑠2,𝑝, calculated starting from the HSP through Eq. (11.41). The adopted strategy
consists in setting 𝑠2 as the reference solvent, i.e., acetone-water in this case, for which
the functional forms of Flory’s parameters are known from MD. The following equality
holds:

√𝑘𝑠1(𝑥𝑠1)𝑀2𝜈𝑠1(𝑥𝑠1)
𝑤 = 𝑆𝑓 ⋅ √𝑘𝑠,𝑟𝑒𝑓(𝑥𝑠,𝑟𝑒𝑓)𝑀

2𝜈𝑠,𝑟𝑒𝑓(𝑥𝑠,𝑟𝑒𝑓)
𝑤 , (11.45)

where, as stated above, the subscript 𝑟𝑒𝑓 refers to acetone-water mixture. Scaling
factors 𝑆𝑓 and Flory-Huggins parameters 𝜒𝑠,𝑝 referred to the three solvent-polymer
systems, namely acetone-water, acetonitrile-water and THF-water, evaluated at mean
good solvent molar fraction 𝑥̄𝑠, are reported in Table 11.6.

Solvent Flory-Huggins parameter, 𝜒𝑠,𝑝 Scaling factor, 𝑆𝑓
Acetone-water 0.923 1.00

Acetonitrile-water 1.003 0.94
THF-water 0.868 1.05

Table 11.6: Flory-Huggins parameter, 𝜒𝑠,𝑝, for acetone, acetonitrile and THF as good
solvents with the relative scaling factors obtained from Eq. (11.44), at mean good solvent
molar fraction, 𝑥̄𝑠.

Looking at Table 11.6, it is worth noticing that for all the systems the Flory-Huggins
parameter is greater than 0.5 (𝜃-condition), confirming the initial assumption of poor
solvent condition (the solvent is made by a good-solvent-to-water ratio in volume equal
to unity).

At this point, an iterative procedure can be conducted, based on Eq. (11.45) and the
results reported in Table 11.6. More specifically, Eq. (11.45) still presents two degrees
of freedom, assuming to set the reference solvent as acetone-water mixtures for which
everything is known. Therefore, by putting 𝜈𝑠1(𝑥𝑠1) = 𝜈𝑠,𝑟𝑒𝑓(𝑥𝑠,𝑟𝑒𝑓) as beginning
value, 𝑘𝑠1(𝑥𝑠1) is univocally determined and with this new set of Flory’s parameters,
say 𝑘∗

𝑠1(𝑥𝑠1) and 𝜈∗
𝑠1(𝑥𝑠1), simulations can be performed and an error against the

experimental data will be detected. Based on the error with the experiments, the
Flory’s exponent can be suitably adjust to a new functional form, 𝜈∗∗

𝑠1 (𝑥𝑠1) and, by
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means of Eq. (11.45), a new functional form for 𝑘∗∗
𝑠1 (𝑥𝑠1) is obtained. With this new

set of Flory’s parameters simulations are performed until this iterative procedure will
lead to the minimum error. This minimum error corresponds to the functional forms
of the Flory’s parameters reported in Table 11.7, thanks to which the agreement with
experiments is very good and reported in Figure 11.14, as far as the THF-water system
is concerned, and in Figure 11.15, as far as acetone-water and acetonitrile-water are
concerned, in a range of PCL initial concentration in good solvent stream that spans
from 3.0 to 9.0 mg mL−1. The agreement with experiments is line with the results
obtained in the previous section, therefore no further discussion is needed.

The adjustment of the functional forms of Flory’s parameters deserves further
explanations. Regarding the Flory’s constant, only the proportionality constant of the
exponential is adjusted with respect to the function referred to acetone, Eq. (11.34).
As far as the Flory’s exponent is concerned, it corresponds to a parabolic profile
(Eq. 11.35); therefore, three conditions are needed: two of them are represented by the
exponent value in pure good and pure bad solvent, that are respectively 3/5 and 1/3.
The third condition is the only degree of freedom that the user needs to fulfill, and it
might correspond to the exponent value at the mean good solvent molar fraction, 𝑥̄𝑠,
that can be suitably adjusted during the iterative procedure presented above.

Acetone Acetonitrile THF
𝑘𝑠(𝑥𝑠) 0.0064 exp (−3.15𝑥𝑠) 0.0055 exp (−3.15𝑥𝑠) 0.0047 exp (−3.15𝑥𝑠)
𝜈𝑠(𝑥𝑠) 0.30 + 0.45𝑥𝑠 − 0.15𝑥2

𝑠 0.30 + 0.40𝑥𝑠 − 0.10𝑥2
𝑠 0.30 + 0.62𝑥𝑠 − 0.32𝑥2

𝑠

Table 11.7: Flory’s parameters functional forms for acetone, already reported in
Eq. (11.34) and (11.35), acetonitrile and THF.

The Flory’s exponent profiles are depicted in Figure 11.16. The inset shows the 𝜈∗

values corresponding to the different mean good solvent molar fractions 𝑥̄𝑠 (through
the discrete symbols) for the three good solvents compared in this analysis. The related
value of 𝜈∗ justifies the fact PCL aggregates more in THF (blue line), then acetonitrile
(green line) and finally in acetone, in linewith experiments. In fact, atmean good solvent
molar fraction 𝑥̄𝑠 the inset shows the following relation: 𝜈∗(𝑥̄𝑇 𝐻𝐹) > 𝜈∗(𝑥̄𝑎𝑐𝑒𝑡𝑜𝑛𝑖𝑡𝑟𝑖𝑙𝑒) >
𝜈∗(𝑥̄𝑎𝑐𝑒𝑡𝑜𝑛𝑒). Figure 11.16 also points out the affinity order found out in terms of HSP and
solubility distance from PCL shown in Table 11.5, namely THF>acetone>acetonitrile
for which the solubility distance from PCL is respectively 1.0, 6.5 and 13.8 MPa1/2,
as reported in Table 11.5. This means that, operating at constant good solvent molar
fraction, the 𝜈∗ profiles, or the solubility affinity with PCL, implies that the single
PCL macromolecule dimension follows the order THF>acetone>acetonitrile. As usually
happens in industrial contexts, however, the operating conditions consist in keeping
constant the good-solvent-to-water ratio in volume, which leads to amean good solvent
molar fraction in the order 𝑥̄𝑎𝑐𝑒𝑡𝑜𝑛𝑖𝑡𝑟𝑖𝑙𝑒 > 𝑥̄𝑎𝑐𝑒𝑡𝑜𝑛𝑒 > 𝑥̄𝑇 𝐻𝐹, due to the different molar
volume of the good solvents, affecting the Flory’s parameters profiles and, consequently,
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aggregation.The combination of molar volume and the aggregation kernels (dependent
on Flory’s parameters) lead to the aggregation order THF>acetonitrile>acetone. This
is visible, by looking at Figure 11.17, in which the mean squared radius of gyration is
reported for acetone (red), acetonitrile (green) and THF (blue). The crossover between
the red and green profiles (acetone and acetonitrile) shows the two different tendency
and contributions in case of single molecule (⟨𝑅𝑔⟩(𝑛 = 1) higher in acetone) and at
high aggregation number, 𝑛, in which ⟨𝑅𝑔⟩ is higher in acetonitrile than in acetone.This
means that, despite the single PCL macromolecule occupies a smaller volume, the PCL
cluster is bigger in acetonitrile than in acetone, namely more macromolecules belong to
the same cluster (or NP) in acetonitrile (𝑚1/𝑚0 in acetonitrile is greater than in acetone).
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Figure 11.14: Mean radius of gyration of the NP exiting the CIJM versus the inlet
flow rate as measured in experiments (black symbols) and as predicted by the purely-
aggregative model (dashed line, empty symbols) for PCL-14000 initial concentrations
equal to 3.0 (top panel) and 5.0 (bottom panel) 𝑚𝑔/𝑚𝐿 in THF as the good solvent.
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Figure 11.15: Mean radius of gyration of the NP exiting the CIJM versus the inlet
flow rate as measured in experiments (black symbols) and as predicted by the purely-
aggregative model (dashed line, empty symbols) for PCL-14000 initial concentrations
equal to 3.0 (top), 6.0 (middle) and 9.0 (bottom) 𝑚𝑔/𝑚𝐿 in acetone (triangles) and
acetonitrile (squares) as the good solvents.
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Figure 11.16: Flory’s exponent 𝜈∗ profiles in function of good solvent molar fraction for
acetone (red), acetonitrile (green) and THF (blue). The discrete symbols correspond to
the conditions of bad and good solvent (1/3 and 3/5, respectively) and at the outlet mean
good solvent molar fraction (inset).
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Figure 11.17: Mean squared radius of gyration in function of the number of molecules
that form a cluster (aggregation number, 𝑛) for acetone (red), acetonitrile (green) and
THF (blue).

11.5 Conclusions
In this chapter the self-assembly of PCL in acetone-water mixtures is modeled,

for FNP conducted inside a CIJM, with the aim of developing a fully-predictive model
capable of describing NP formation. The modeling approach is based on CFD to
simulate the mixing between the two streams of acetone and water, but it uses also a
PBM to describe the evolution of the CMD.Themain novelty consists in considering for
the first time the number 𝑛 of polymer molecules (i.e., aggregation number) that form
a cluster (or NP) as internal coordinate of the univariate population balance equation
(PBE), overcoming the usual distinction between nucleation, molecular growth and
aggregation. The resulting model is therefore defined as purely aggregative process
without any form of energy barrier. In the theory of phase separation this corresponds
to modeling the phenomenon as a spinodal decomposition (instead of a nucleation
process). This assumption is valid especially at high initial supersaturation ratios of
the polymer, which characterise FNP processes. The aggregation number as internal
coordinate of the PBE allows to have a more direct link with the atomistic scale,
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building the aggregation kernels directly fromMD simulations (in terms of Flory’s law)
performed in a previous work (Di Pasquale, Marchisio, Barresi, and Carbone, 2014).

In order to assess the validity of the model, several operating conditions are
evaluated in terms of initial PCL concentrations in the acetone inlet stream and
in terms of inlet flow rate values. Moreover, two molecular weights for PCL are
considered: 14000 and 80000 g mol−1. Simulation results are validated against
experiments, resulting in good agreement, especially at high polymer concentrations.
The agreement deteriorates as the polymer concentration is decreased, indicating that,
in line with the corresponding theory, at low polymer concentrations and therefore
low driving force for phase separation, the role of nucleation starts being important.

In the final part of this chapter the effect of different good solvents is evaluated,
showing a transferable procedure to assess new functional forms for the Flory’s
parameters when the good solvent changes and, furthermore, assessing the key
physical parameters (molar volume, solubility parameters) that are responsible of the
different NP size at the outlet of the mixer, when acetone is substituted by acetonitrile
and THF. This approach is conducted at the clusters and vessel scales, it has a general
validity and can be applied to other good solvents. Future developments may be done,
by investigating the validity of the results obtained here at the atomistic scale, through
MD simulations.

Moreover, future work may include also the investigation of other polymers,
experimentally investigated in the past, together with considering the presence of the
drug inside the NP.
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Chapter 12

Conclusions

In this work a multiscale modelling approach for soft matter self-assembly in
binary mixtures is developed and tested on the case of Flash Nano-Precipitation (FNP)
of poly-𝜀-caprolactone (PCL) in acetone-water mixtures. Considering the complexity
of the phenomena involved in this process, three different scales are investigated: the
atomistic scale, in which molecular phenomena are modelled thanks to Molecular
Dynamics (MD) and Coarse-Grained Molecular Dynamics (CGMD); the clusters (or,
nanoparticles, NP) scale, namely the scale of the population of polymer clusters
dynamics, by means of a population balance model (PBM); the vessel scale, that is the
scale of continuum, in which fluid dynamics effects on NP formation are evaluated
through Computational Fluid Dynamics (CFD).

The PBM is implemented and coupled into a CFD code and it is, in turn, built up
from MD simulations performed in a previous work (Di Pasquale, Marchisio, Barresi,
and Carbone, 2014).

Full-atom MD is used to investigate the intimate mixing properties of good and bad
solvent (acetone and water). Despite the well-known experimental fact that acetone is
miscible with water in any proportion at room temperature, MD calculations showed
to be affected by a strong phase separation when using most of the standard all-atom
force fields. The strong de-mixing behaviour (that is particularly stressed at low
acetone molar fractions) was shown to be due to the bad polarization response of the
classical all-atom force fields, usually employed to simulate such liquid systems (Perera
and Sokolić, 2004; Pereyra et al., 2011). The de-mixing of acetone-water mixtures
is overcome at the atomistic scale by means of a Charge-on-Particle model (COP)
(Lavino, Banetta, et al., 2018), in which a pseudo-polarizable approach is adopted. A
charge displacement is introduced on the carbonyl group of the acetone molecule, and
suitably modified in function of the acetone molar fraction in order to get the desired
polarizable response. The dipole moment increases in this way together with the
content of water and the de-mixing is shown to be disappeared. Beyond the de-mixing
that is demonstrated to vanish, also dynamical properties are shown to be in better
agreement with experiments, with respect to the standard all-atom force fields.
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Coarse-grained molecular dynamics is here employed in order to investigate
the behaviour of long polymer chains in solution. The MARTINI CG force field is
used (Marrink, Risselada, et al., 2007), in which both thermodynamics and structural
investigations are adopted to build up the model. Non-bonded interactions referred
to the single CG bead types are set up by matching the solvation free energies of
the corresponding atomistic structures, by means of the Bennett’s Acceptance Ratio
method. The CG polymer chain is then optimised always in terms of non-bonded
interactions, by matching the radius of gyration of the atomic chains. Although the
CG model developed here shows the typical limitations of the CG approaches (e.g., the
sharp globule-to-coil transition at medium good solvent molar fraction in mixture),
results are quite satisfactory in terms of both thermodynamics and structural behaviour
of the system, paving the way towards future simulations of multiple chains in the
simulation box, in order to get a better insight into the PCL self-assembly in solution.
Molecular dynamics simulations are performed in an open-source tool, the GROMACS
simulation package (Hess, Kutzner, et al., 2008).

Moving to the clusters scale, the aim of the PBM is to describe the evolution of
the cluster mass distribution (CMD, i.e., the number of polymer molecules that form
a NP) thanks to suitable transport equations (population balance equations) and,
at the same time, to predict the final mean NP size at the mixer outlet, in terms of
mean radius of gyration, by using the Flory’s theory (Flory, 1953) of real polymers.
The whole PBM is treated with a quadrature-based method of moments approach
(QBMM, Marchisio and Fox, 2013). A novelty of this PBM approach is represented
by setting the number of polymer molecules 𝑛 (i.e., the aggregation number) that
form a cluster as internal coordinate of the univariate PBE, overcoming the usual
distinction between nucleation, molecular growth and aggregation steps. The model
can be therefore defined as fully predictive aggregative. Turbulence fluctuations on NP
formation are taken into account thanks to the direct quadrature method of moments
coupled together with the interaction-and-exchange with the mean (DQMOM-IEM)
method and by solving the Favre-averaged continuity and Navier-Stokes equations.
The 𝑘 − 𝜀 standard model is employed. The rate at which two polymer clusters collide
and aggregate is modelled by means of the aggregation kernels (built up from MD
calculations) and suitably implemented in the PBM. Finally, the effect of fluid dynamics
on NP formation (in terms of influence on both CMD and final radius of gyration), is
studied by CFD. The latter two scales (PBM and CFD) are coupled together in a suitable
user defined function in a commercial CFD code (ANSYS Fluent 15.0).

An alternative mathematical approach is also proposed, in which mixing and
aggregation are considered together in a bivariate PBE. Mixture fraction and the
pure moments in aggregation are used as internal coordinates of the bivariate PBE,
resulting in the transport of the mixed moments of order zero and one. The conditional
quadrature method of moments is employed to close the mathematical framwork, and
the entire PBM is developed and implemented in an open-source tool, OpenQBMM
(Passalacqua et al., 2018), based on OpenFOAM package. Being currently under
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numerical optimization, simulations results are still not present here and future
investigations can be made by comparing the results obtained with the last technique
to the first approach proposed and validated in this work (Lavino, Di Pasquale, et al.,
2017).

Furthermore, the effect of different good solvents on NP formation is evaluated at
this scale. Acetonitrile and THF are studied and the key parameters, responsible for the
different NP size have been successfully identified, thanks to both tuning techniques
and theoretical (Flory-Huggins solubility theory) approaches. Further investigations on
the different solvents effect may be carried out at the atomistic scale, by means of MD
analysis.

Future developments regarding this multiscale approach can be done, by validating
the current models on different soft matter systems, as well as by considering the
presence of the organic drug (together with the PCL) inside this fully-predictive
pure-aggregative model.
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Appendix A

Industrial and Modeling Overview on
Number Density Functions

A.1 Number density function and population balance
equation

In several industrial applications, chemical processes are characterised by
multiphase flows, namely a flow in which continuous and disperse phases can be
identified (crystallizers, fluidized beds, bubble columns). The dispersed phase, in turn,
is characterised by some properties such as mass, velocity, particle size, etc. When at
least one of these properties varies from particle to particle, then the disperse phase is
characterised by a distribution function of that specific property and the corresponding
system is labelled as polydisperse system. For example, in a crystallisation process, the
crystals and the quality of the product strongly depend on the crystal size distribution
(CSD) at the outlet of the crystallizer, in turn, influenced by the evolution of the
CSD inside the reactor. The evolution of the CSD inside the control volume (e.g., the
crystallizer) is governed by a kinetic equation, named population balance equation
(PBE).

In general, a PBE is a continuity statement written in terms of partial integro-
differential equations that describes the evolution of density functions referred to the
disperse phase. Moreover, also the effect of the fluid dynamics of the continuous phase
may affect the behaviour of the disperse one, in terms of evolution of density functions.
This means that a theoretical framework together with a suitable computational
modelling approach are necessary, in order to describe such complex systems.

Regarding the density functions, they have been introduced so far as functions
able to consider one or more peculiar features of the disperse phase. For instance, in a
crystallisation process it might be the distribution of the crystal sizes; in a carrier drug
delivery system it might correspond to the number of molecules that form a delivery
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nano-cluster. It might be also the gas volume fraction of a given component in a gas-
liquid system (bubble columns). In the first two cases the density function corresponds
respectively to the crystal-size distribution (or, equally, the particle size distribution,
PSD) and cluster mass distribution (CMD) in the case of drug delivery systems. In the
latter case it corresponds instead to a distribution function that surely belongs to the
range [0,1] (volume fraction). Therefore, in the case of CMD and PSD (or CSD) the
density function is generically defined as number density function (NDF); in the case of
bubble columns it corresponds to a probability density function (PDF) since the integral
domain is limited to [0, 1], or in other words the NDF is normalised to one. Another
example of PDF is represented by the mixture fraction, which has a key role in many
industrial processes. From a more mathematical point of view the PDF, 𝑓(𝑥), is defined
such that

𝑓(𝑥)𝑑𝑥 = 𝑃 𝑟[𝑥, 𝑥 + 𝑑𝑥] (A.1)

namely, the quantity 𝑓(𝑥)𝑑𝑥 represents the probability of finding the system in a
configuration between 𝑥 and 𝑥 + 𝑑𝑥. This is also schematically depicted in Figure A.1.

Figure A.1: Sketch of a probability density function, 𝑓(𝑥). The quantity 𝑓(𝑥)𝑑𝑥
represents the probability of the system to lie in the configurational interval [𝑥, 𝑥 + 𝑑𝑥]

.

Being a probability, another property of the PDF is that the integral over the whole
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domain yields the unity:

∫
1

0
𝑓(𝑥)𝑑𝑥 = 1. (A.2)

If the integral over the phase space domain yields to a number 𝐴 ≠ 1, then the PDF
is a NDF. When the particles in a system (disperse phase) have non-negligible inertia,
then also the velocity associated to each particle becomes important. This is the case of
bubbles column systems. Each particle (bubble, for instance) has different velocity, and
the whole system is represented by a velocity distribution function. The evolution of
the velocity distribution function is taken into account by a suitable kinetic equation.
Taking into consideration the velocity distribution function (namely, considering the
inertia of the single particles) leads to the so-called generalised population balance
equation (GPBE). In the following section, a closer look at further properties of NDF
is given.

A.2 Properties of number density functions
The NDF can be defined as the number of entities (particles) per unit volume

with a given range of cluster scale variables. The cluster scale variables are those
variables that play a key role in the cluster scale system (mixture fraction, volume
fraction, particle size …). Cluster scale variables are said to be realisable if they can
be reproduced and observed at the atomistic scale level; otherwise, they are defined
unrealisable. Cluster scale variables are very often correlated to each other; thus,
the cluster scale model (the NDF) must take this into account. This means that two
correlated cluster scale variables cannot be reconstructed by two separate NDF referred
to each variable separately. For example, in a binary collisions system (e.g., spheres
that collide pairwise) two particles are correlated to each other in terms of velocities
before and after a collision. Consequently, the NDF referred to one-particle (so-called
one-particle NDF ) for velocity is influenced by two-particle NDF due to the collisions. A
cluster scale model framework is then needed, in order to capture the complexity of the
correlations between cluster scale variables. Let us give some other useful definitions.

The evolution of NDF is governed by the so-called kinetic equation. Kinetic
equations for NDF that do not take into account the particle velocity are labelled
population balance equation (PBE); on the other side, if the kinetic equation accounts
for the velocity of the disperse phase, then it is defined as generalised population
balance equation (GPBE), in both cases together with all the other cluster scale
variables.

In general, the variables that appear in a kinetic equation (PBE or, more generally, in
a GPBE) can be classified in physical variables (time, space) if they represent a point in
the real space, and cluster scale variables (cluster scale point) represented by a point in
the so-called phase space (mixture fraction, particle size, …). By integrating the kinetic
equation over the phase space domain, a continuum model is thus obtained (only time
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and space as independent variables). The last very crucial concept that is mandatory
to be introduced is the closure. A kinetic equation is said to be closed if all the terms
appearing in it are formulated in terms of cluster scale variables.Themain goal of cluster
scale modelling is to get to closed kinetic equations that are able to account for the
atomistic scale physics effects on the cluster scale.
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Appendix B

Derivation of Source Terms for
Second-Order Point Processes in PBE

B.1 Source term derivation
In this appendix a deeper insight into the derivation of the source term for second-

order point processes is provided. Let us recall the definition of second-order point
process: these are processes involving the interaction of two particles, during which
velocities, mass and other internal properties are instantaneously changed Therefore,
aggregation, coalescence and agglomeration represent an example of second-order
point processes. The assumption which these mathematical modeling lies on is that,
during the interacting event (e.g., collision), only two particles interact at the time.

For a sake of simplicity, let us consider a granular system (i.e., without any solvent),
described by the number density function (NDF) 𝑓𝑁(𝑡,x, 𝜉) evolving in time 𝑡, physical
space x and that is characterised by the internal coordinate vector 𝜉. The generic source
term, in a second-order point process, reads as follows:

ℎ𝜉 = ℎ+ − ℎ−, (B.1)

where ℎ+ is the production rate and ℎ− represents the particle loss rate due to the
second-order event.

Let us identify one of the two particles with its center of mass position vector x′

and its phase space vector 𝜉′; another particle is instead placed at x̃with its phase space
vector ̃𝜉. The frequency of this second-order process is

𝑎(x′, 𝜉′; x̃, ̃𝜉), (B.2)

and the quantity 𝑎(x′, 𝜉′; x̃, ̃𝜉)d𝑡 represents the number of particles undergoing
second-order events in the time interval d𝑡.TheNDF related to this second order process
is 𝑓 (2)

𝑁 (𝑡,x′, 𝜉′; x̃, ̃𝜉) and it represents the expected number of particle pairs with (x′, 𝜉′)
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and (x̃, ̃𝜉). Using the pairs NDF would lead to a too high computational cost due to the
solution of an equation for 𝑓 (3)

𝑁 , therefore the following closure is adopted:

𝑓 (2)
𝑁 (𝑡,x′, 𝜉′; x̃, ̃𝜉) ≈ 𝑓𝑁(𝑡,x′, 𝜉′)𝑓𝑁(𝑡, x̃, ̃𝜉). (B.3)

The particles located at (x̃, ̃𝜉) are labelled as test particles, whereas particles placed
at (x′, 𝜉′) are known as field particles.The number of second-order events, 𝑁𝑒 occurring
between particles located near (x̃, ̃𝜉), per unit volume and per unit time is:

𝑁𝑒 = ∫ 𝑎(x′, 𝜉′; x̃, ̃𝜉)𝑓𝑁(𝑡,x′, 𝜉′)𝑓𝑁(𝑡, x̃, ̃𝜉)dx′d𝜉′. (B.4)

Being very often the test and field particles distances much greater than particles
dimensions, 𝑓𝑁 does not change significantly in physical space within these distances.
Consequently, the closure 𝑓𝑁(𝑡,x′, 𝜉′)𝑓𝑁(𝑡, x̃, ̃𝜉) ≈ 𝑓𝑁(𝑡, x̃, 𝜉′)𝑓𝑁(𝑡, x̃, ̃𝜉) can be done.
This allows us to rearrange Eq. (B.4) in the following way:

𝑁𝑒 = ∫ (∫ 𝑎(x′, 𝜉′; x̃, ̃𝜉)dx′
) 𝑓𝑁(𝑡, x̃, 𝜉′)𝑓𝑁(𝑡, x̃, ̃𝜉)d𝜉′. (B.5)

The integral appearing in Eq. (B.5) is the kernel of the second-order point process,
already introduced for the particular case of aggregation of fine particles in section 5.3.3:

𝛽(x̃; 𝜉′, ̃𝜉) = ∫ 𝑎(x′, 𝜉′; x̃, ̃𝜉)dx′. (B.6)

The dimensions of the kernel usually correspond to physical volume per unit time,
stating the volumetric rate at which these processes occur.

Let us consider a system inwhich the two internal coordinates vectors 𝜉′ and ̃𝜉 result
in 𝜉 after the interaction takes place. Recalling Eq. (B.1), its positive term ℎ+ reads as
follows (Ramkrishna, 2000):

ℎ+ = 1
𝛿 ∫ 𝛽(𝜉′, ̃𝜉)𝑓𝑁(𝑡, x̃, 𝜉′)𝑓𝑁(𝑡, x̃, ̃𝜉)𝐽 ( ̃𝜉, 𝜉)d𝜉′, (B.7)

where 𝛿 is a symmetry factor avoiding multiple counting (it is equal to two for
fine particles aggregation) and 𝐽( ̃𝜉, 𝜉) is the determinant of the partial derivatives
matrix 𝜕 ̃𝜉𝑖/𝜕𝜉𝑗 corresponding to the transformation from phase space variable ̃𝜉, before
collision, to 𝜉, after collision.

The particles loss rate, ℎ− is:

ℎ− = ∫ 𝛽(𝜉′, ̃𝜉)𝑓𝑁(𝑡, x̃, 𝜉′)𝑓𝑁(𝑡, x̃, ̃𝜉)d𝜉′. (B.8)
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Appendix C

From PBE to moments transport
equation - derivation and closure of
the micro-mixing term

In this section a more extensive derivation of the transport equations of moments of
CMD is shown, underlying the keymathematical details. Let us start with a PBE referred
to the generic NDF 𝑓𝑁(𝑡,x, 𝜉) presented in Eq. (8.44) and, for a sake of simplicity, by
butting the number of internal variables equal to one.

𝜕𝑓𝑁(𝜉)
𝜕𝑡

+ 𝜕
𝜕x

⋅ (v𝑓𝑁(𝜉)) + 𝜕
𝜕𝜉

⋅ ( ̇𝜉𝑓𝑁(𝜉)) = ℎ𝜉(𝜉), (C.1)

where ℎ𝜉(𝜉) is the source term and only the internal variable 𝜉 is indicated for
brevity. The third term on the left hand side needs a closure with a mixing model; the
interaction and exchange with the mean method (IEM) is chosen and already shown in
this work in section 8.6. Recalling the IEM model, it is a linear relaxation of the passive
scalar with its mean (Fox, 2003):

− 𝜕
𝜕𝜓

(⟨Γ∇2𝜙′|𝜓⟩𝑓𝜙) = − 𝜕
𝜕𝜓 [

𝜀𝜙

2⟨𝜙′2⟩
(⟨𝜙⟩ − 𝜓)𝑓𝜙] , (C.2)

where 𝜀𝜙 is called scalar covariance dissipation rate and ⟨𝜙′2⟩ is the inverse
covariance matrix of the scalars. This term is closed, as already seen, by employing the
micro-mixing rate 𝛾𝑀:

𝜀𝜙

2⟨𝜙′2⟩
= 1

2𝜏𝑇
=

𝐶𝜙𝜀
2𝑘

= 𝛾𝑀, (C.3)

Let us also recall the definition of generic 𝑘𝑡ℎ-order moment:

𝑚𝑘(𝜉) = ⟨𝜉𝑘⟩ = ∫Ω𝜉

𝜉𝑘𝑓𝑁(𝜉)𝑑𝜉, (C.4)
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Multiplying Eq. (C.1) by 𝜉𝑘 d𝜉 and integrating out over the internal variable phase
space domain Ω𝜉, the following equation is obtained:

𝜕 (∫Ω𝜉
𝜉𝑘𝑓𝑁(𝜉)d𝜉)

𝜕𝑡
+ 𝜕

𝜕x
⋅

[
v

(∫Ω𝜉

𝜉𝑘𝑓𝑁(𝜉)d𝜉
)]

+

+ ∫Ω𝜉

𝜉𝑘 𝜕
𝜕𝜉

⋅ [𝛾𝑀 (⟨𝜉⟩ − 𝜉) 𝑓𝑁(𝜉)] d𝜉 = ∫Ω𝜉

𝜉𝑘ℎ𝜉(𝜉)d𝜉, (C.5)

where, in the first two terms on left hand side, the big round parenthesis correspond
to the 𝑘𝑡ℎ-order moment, defined in Eq. (C.4). The third term on left hand side needs
further developments in order to eliminate the partial derivative, by integrating it by
parts:

𝛾𝑀 ∫Ω𝜉

𝜉𝑘 𝜕
𝜕𝜉

⋅ [(⟨𝜉⟩ − 𝜉) 𝑓𝑁(𝜉)] d𝜉 = −𝑘𝛾𝑀 ∫Ω𝜉

𝜉𝑘−1 (⟨𝜉⟩ − 𝜉) 𝑓𝑁(𝜉)d𝜉, (C.6)

and, by applying the moment definition given in Eq. (C.4) (⟨𝜉⟩ = 𝑚1):

− 𝑘𝛾𝑀 ∫Ω𝜉
(𝜉𝑘−1⟨𝜉⟩ − 𝜉𝑘−1𝜉) 𝑓𝑁(𝜉)d𝜉 =

= −𝑘𝛾𝑀⟨𝜉⟩ ∫Ω𝜉

𝜉𝑘−1𝑓𝑁(𝜉)d𝜉 + 𝑘𝛾𝑀 ∫Ω𝜉

𝜉𝑘𝑓𝑁(𝜉)d𝜉 =

= −𝑘𝛾𝑀 (𝑚𝑘−1𝑚1 − 𝑚𝑘) . (C.7)

The final transport equation of the moments of the NDF reads then as follows:

𝜕𝑚𝑘(𝜉)
𝜕𝑡

+ 𝜕
𝜕x

⋅ (v𝑚𝑘(𝜉)) − 𝑘𝛾𝑀 ⋅ [𝑚𝑘−1(𝜉)𝑚1(𝜉) − 𝑚𝑘(𝜉)] = ℎ𝜉(𝑚𝑘(𝜉)), (C.8)

where the source term on right hand side may need a proper closure, depending on
the physical meaning of the internal coordinate 𝜉.
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Appendix D

Topology of Charge-on-Particle
Acetone model

In this appendix, the topology of charge-on-particle acetone model is shown,
implemented at the atomistic scale in MD simulations.

;Charge-on-particle OPLSAA topology for acetone
;
#include ”oplsaaff.itp”
#include ”oplsaa.ff/spc.itp”
[ moleculetype ]
; Name nrexcl
acetone 3

[ atoms ]
;nr type resnr residue atom cgnr charge mass
1 opls_280 1 LIG C 1 0.47 12.011
2 opls_135 1 LIG C 2 -0.18 12.011
3 opls_135 1 LIG C 3 -0.18 12.011
4 opls_281 1 LIG O 4 0.0 15.9994
5 opls_282 1 LIG H 5 0.06 1.008
6 opls_282 1 LIG H 6 0.06 1.008
7 opls_282 1 LIG H 7 0.06 1.008
8 opls_282 1 LIG H 8 0.06 1.008
9 opls_282 1 LIG H 9 0.06 1.008
10 opls_282 1 LIG H 10 0.06 1.008
11 VS 1 LIG VS 11 -0.47 0.0

[ bonds ]
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; ai aj funct
1 2 1
1 3 1
1 4 1
1 11 6
2 5 1
2 6 1
2 7 1
3 8 1
3 9 1
3 10 1

[ pairs ]
; ai aj funct

2 8 1
2 9 1
2 10 1
3 5 1
3 6 1
3 7 1
4 5 1
4 6 1
4 7 1
4 8 1
4 9 1
4 10 1

[ angles ]
; ai aj ak funct

2 1 3 1
2 1 4 1
3 1 4 1
1 2 5 1
1 2 6 1
1 2 7 1
5 2 6 1
5 2 7 1
6 2 7 1
1 3 8 1
1 3 9 1
1 3 10 1
8 3 9 1
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8 3 10 1
9 3 10 1

[ dihedrals ]
; ai aj ak al funct

3 1 2 5 3
3 1 2 6 3
3 1 2 7 3
4 1 2 5 3
4 1 2 6 3
4 1 2 7 3
2 1 3 8 3
2 1 3 9 3
2 1 3 10 3
4 1 3 8 3
4 1 3 9 3
4 1 3 10 3

[ virtual_sites2 ]
; site ai aj funct a

11 1 4 1 1.16

[ system ]
mixture
[ molecules ]
acetone 301
SOL 899
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