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Abstract

The present work introduces a numerical approach for the study of the free-edge effects that arise

in generic laminated composites with arbitrary geometries. The model is based on the use of a

higher-order beam theory that employs only displacement unknowns over the cross-section domain,

the so-called Lagrange expansion (LE). This allows for the representation of arbitrary sections of

laminated structures through a two-dimensional distribution of mathematical domains, accounting

for layerwise (LW) kinematics and high refinements towards the free edges. Subsequently, the

finite element method (FEM) is employed to solve the problem along the laminate’s length, thus

enabling the user to introduce arbitrary boundary conditions. Benchmark solutions of the free-edge

stresses in symmetric laminates under extension, bending and twisting are included to assess the

model. Then, new solutions of a composite C-section beam made of an asymmetric lamination are

provided.

Keywords: Free-edge, Laminates, Carrera Unified Formulation, Finite Element Method,

Stress concentrations.

∗Ph.D. Student, alberto.garcia@polito.it
†Assistant Professor, alfonso.pagani@polito.it
‡Professor of Aerospace Structures and Aeroelasticity, erasmo.carrera@polito.it

1



1 Introduction

The increasing adoption of composite laminates in the construction of new lightweight structures

demands a comprehensive knowledge of their mechanical response at different scales. Unlike tradi-

tional thin-walled metallic structures, laminates are inherently heterogeneous and feature abrupt

changes of the material properties through the thickness, see the book of Jones [1]. Although

this allows for the optimization of the material to a desired performance, it also provokes some

unwanted effects such as stress concentrations in holes, joints and free edges, that must be fully

understood for the safe deployment of composite parts. In particular, the so-called free-edge effects

refer to singular stress states that arise at the interfaces between dissimilar layers in the vicinity of

geometrical or mechanical discontinuities in the structure. An illustration of the free-edge effects

in typical composite beams is shown in Fig. 1. The present paper introduces a numerical method

for the efficient evaluation of the free-edge stresses in generic composite laminated structures.
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Figure 1: Free-edge stresses in generic composite beams.

Classical laminate theories cannot provide any useful information of the free-edge effects, there-

fore specific models continue to be developed for understanding the mechanics of this complex

problem. The first studies addressing the topic were carried out by Hayashi [2] and Puppo and

Evensen [3]. Then, in 1970 Pipes and Pagano [4] provided the first approximation of the 3D stress

fields at the free edges. The latter work was followed by numerous studies, which have made the

literature rich in analytic and numerical solutions for the free-edge problem, as illustrated in the

excellent review of Mittelstedt and Becker [5]. However, given the high complexity and singular

nature of the interlaminar stress fields, no exact elasticity solution is available yet for the free-edge

stress fields and active interest is still focused nowadays in the development of accurate tools for

their evaluation in real composite applications. In most studies, the benchmark example for the

free-edge study is that defined in [4], which addresses a symmetric cross-ply laminate of infinite
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length loaded under uniaxial extension. In that case, the solutions become independent of the

longitudinal direction and the problem is reduced to the section domain. Due to the Poisson effect

and the diverse elastic moduli of the material, the plies tend to behave differently in the in-plane

direction. Subsequently, in order to satisfy the compatibility of the displacements at the interfaces,

transverse shear stresses appear in a small zone near the free edge and, consequently, the fulfillment

of the equilibrium conditions lead to a full 3D state of stress which features singularities at the

interfaces, see Fig 1. A correct evaluation of these stresses, which can infer damage to the material

due to the onset of delamination, becomes then necessary for the design of composite structures.

An overview of some of the most relevant solutions of the free-edge problem which are available in

the literature is included in the following.

Since the initial investigations addressing the singularities at the free edges, many close-form

approaches have been introduced to provide an accurate approximation of the stress fields. As

an extension of their early research, Pipes and Pagano [6] proposed an approximate elasticity

solution using a Fourier series for the displacements. Then, Pagano [7] employed a modified

version of the higher-order theory of Whitney and Sun [8] to provide an analytic solution of

the interlaminar normal stresses in symmetric composite laminates. Kassapoglou and Lagace [9]

used the force balanced method and the principle of minimim complementary energy to solve the

interlaminar stresses in angle-ply and cross-ply laminates. Becker [10] introduced a single-layer

higher-order theory with a warping mode in the free-edge area. The stress functions of Lekhnitskii

[11] were employed by Yin [12] to develop a stress-based layerwise model for the evaluation of the

interlaminar stresses in a laminate strip under combinations of extension, bending and twisting.

Tahani and Nosier [13] presented a displacement-based analytical solution of uniformly loaded

composite laminates based on the layerwise theory of Reddy [14]. An approximate stress function

was introduced by Flanagan [15] using an expansion of harmonic terms in the thickness direction

and the princple of minimum complimentary energy. An iterative method to solve the free-edge

stresses based on the extended Kantorovich method was employed by Cho and Yoon [16] for

uniaxial extension. In a further development, Cho and Kim [17] extended the method to study

also bending, twisting and thermal loads. More recently, Dhanesh et al. [18] introduced the mixed-

field multiterm Kantorovich method using the Reissner’s mixed variational theorem [19] to satisfy

all boundary conditions at the free-edges and the interlaminar continuity.

Numerical approaches have also been considerably popular to provide the 3D stress solutions

at the free edges. Among these, special mention is due to the pioneering work of Pipes and Pagano

[4], who used the finite difference method (FDM) to compute the 3D displacements and stresses in

symmetric laminates. In the following years, the finite element method (FEM) has been employed

in most of the works on free-edge due to its availability and versatility, commonly to generate 2D

plane strain models. Wang and Crossman [20] made an study of the interlaminar singularities

in symmetric laminates using three-node elements with a mesh refinement in the free-edge zone.
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Whitcomb et al. [21] performed an extensive study on the reliability of the FEM for the study

of stress singularities using eight-node elements, reporting that the stress solutions obtained are

accurate except for the two elements in the vicinity of the singularity. Although computationally

more expensive, 3D solid elements have also been employed to solve the free-edge problem by Raju

and Crews [22] and Lessard et al. [23], among others. Recently, Martin et al. [24] compared the

accuracy of 2D and 3D finite elements for the onset of delamination due to shear in angle-ply

laminates. Solutions of the free-edge stresses were also obtained via the boundary element method

by Dav̀ı and Milazzo [25] and the boundary finite element method by Lindemann and Becker [26].

Non-traditional FE models based on plate/beam theories of structures have also been used

to obtain 3D stress fields at the free-edge. Robbins and Reddy [27] implemented a higher-order

layerwise plate element to study 3D-like localized effects in composite laminates, showing inter-

esting advantages in comparison to 3D solid models, such as faster element stiffness integration

and simplified input requirements. D’Ottavio et al. [28] proposed a number of displacement-based

and mixed plate elements with higher-order kinematics for the study of the interlaminar stresses

at the free-edges. Vidal et al. [29] used the proper generalized method to split the problem in

the 2D in-plane domain, modeled via eight-node elements, and a 1D analysis on the thickness

direction, represented by a layerwise fourth-order expansion. In a recent publication, Peng et al.

[30] employed the mechanics of structure genome to study the free-edge effects in composite beams

featuring generic laminations via a refined cross-sectional analysis.

This paper introduces a numerical approach based on higher-order 1D models for the free

edge analysis of generic composite beams. The Carrera’s unified formulation [31] is employed to

generate a theory of structure which makes use of displacements as only variables and Lagrangian

polynomials as cross-sectional assumptions, named as Lagrange expansion (LE). This theory of

structures was first introduced by Carrera and Petrolo [32] and has proven to be a powerful tool

for the accurate stress analysis of composite beams in many works, see [33, 34, 35]. The use of

a distribution of mathematical expansion domains to assume the deformation of the cross-section

of the laminated beam enables the model to capture 3D-like stress distributions at the ply level.

Moreover, it also allows the user to refine the cross-section domain in the zones of interest, such

as the free-edges. The accuracy and robustness of the proposed method to represent the free-edge

effects in generic composite beams is presented in the present work.

The paper is organized as follows: Section 2 introduces the LE beam theory employed in the

present study and its application to the analysis of the free-edge effects in laminated beams with

arbitrary cross-sections. Subsequently, the FEM solution of the problem is presented in Section

3, including the derivation of the fundamental nucleus of the stiffness matrix and the integrals of

the beam element. Then, the numerical assessment of the proposed method is included in Section

4, which includes benchmark examples and a realistic application. Finally, the conclusions are

summarized in Section 5.
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2 Layerwise laminated theories based on a Lagrange Ex-

pansion

Many displacement-based theories of structure have been introduced in the past decades for the

study of the mechanical response of laminated structures. These theories are usually divided into

two classes: equivalent-single layer (ESL) and layerwise (LW). In the former, the displacement

assumptions are taken for the whole thickness of the laminate and the number of variables is

therefore independent of the number of layers. On the other hand, LW theories make use of

independent assumptions for each layer, leading to a quasi-3D model in which the number of

degrees of freedom grows as the number of layers increases. ESL theories are very attractive

due to their lower computational costs and they are extensively employed by engineers to acquire

information about the global response of the composite structure. However, these theories, which

in most cases make use of C1 kinematics across the stack of plies, are not suitable to provide

accurate 3D stress fields at the ply level, specially in thick laminates, or in particularly complex

zones, such as open holes or free-edges.

Despite the higher computational demands, LW models [36, 37, 38, 39, 40] provide more in-

formation of the meso-scale effects by accounting for the deformation of each ply independently.

In this class of theories, the C0 continuity of the displacements must be imposed at the interfaces

between layers by a certain numerical constrain, such as specific displacement functions or La-

grange multipliers. Reddy [14, 41] introduced an elegant solution using 1D elements to discretize

the thickness of the laminate which satisfy the continuity conditions automatically. By taking

displacement assumptions at the ply-level, LW models are able to capture the zig-zag effect of the

displacements in the thickness direction, which is strongly related to the complex distribution of

transverse stresses in composite laminates, as noted by Carrera [42].

In the framework of CUF for beam theories, the LW displacement field of the composite beam

is written as:

u(x, y, z) = Fτ (x, z)u
k
τ (y) τ = 1, 2, ...,M (1)

where u(x, y, z) is the three-dimensional displacement field, uτ (y) is the vector of generalized dis-

placements that depends on the longitudinal coordinate y and Fτ (x, z) are the expansion functions

of the cross-sectional domain. The class and number of expansion functions is arbitrary, being M

the maximum number of expansions, which is a user defined parameter. Repeating indexes denote

summation.

2.1 Lagrange Expansions

Lagrange Expansions (LE) are an extension of the Reddy’s LW theory to the beam analysis. This

beam theory, introduced by Carrera and Petrolo [32], is based on the use of interpolating Lagrange
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polynomials as expansion functions Fτ of the cross-sectional coordinates. In this manner, the

cross-section of the composite beam can be discretized with an arbitrary number of Lagrangian

domains, which are used to represent the surfaces of each layer. The explicit expressions of a

nine-node quadratic expansion (hereinafter denoted to as L9) are reported in the following:

Fτ = 1
4
(r2 + rrτ )(s

2 + ssτ ) τ = 1, 3, 5, 7

Fτ = 1
2
s2
τ (s

2 − ssτ )(1− r2) + 1
2
r2
τ (r

2 − rrτ )(1− s2) τ = 2, 4, 6, 8

Fτ = (1− r2)(1− s2) τ = 9

(2)

where r and s are the coordinates of the natural plane [-1,1]×[-1,1] and rτ and sτ are the position of

the nodes. Since LE beam models make use of displacement unknowns as degrees of freedom, they

represent a useful tool for the efficient stress analysis of beam-like structural components. More-

over, LE are in particular interesting to generate LW models since the displacement compatibility

at the interfaces between plies is automatically satisfied with no need of numerical artifacts.

2.2 High-fidelity beam models for free-edge analysis

Free-edge effects are confined in a small zone whose size is directly proportional to the thickness

of the laminate, as reported in the experimental work of Pipes [43]. Subsequently, in the damage

analysis of laminated structures, a refinement of the model is required towards the free edge, see

for instance the works of Wang and Crossman [20], Martin et al. [24] and Saeedi et al.[44]. In LW

theories, a common technique for the refinement of the stress solutions is the use of mathematical

layers within the thickness of each ply.

LE beam models extend this technique to the whole cross-section domain, allowing the user to

generate arbitray distributions of mathematical domains over the laminate’s section, refining the

free edge zone with denser distributions. Moreover, any cross-section geometry can be represented

using a mesh of LE domains. Figure 2 shows the cross-section of a composite C-section beam

modeled with multiple mathimatical layers and a refinement towards the bottom and top free edges.

It is worthy to mention that one could straightforwardly generate different classes of mathematical

domains based on Lagrange polynomials, such as three-node, six-node ot sixteen-node expansions,

although this implementation remains out of the scope of the present work. If the reader is

interested, the development of such theories of structure is reported in the book by Carrera et al.

[31].

3 Finite element approximation

Several methods can be applied to solve the mechanical problem in the longitudinal direction,

including strong and weak form solutions. In the present study, the FEM is chosen due to is easy
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Figure 2: Distribution of LE domains over the cross-section of a C-section laminated beam.

implementation and versatility. In the 1D FE framework, the displacement unknowns, uτ , are

interpolated over the beam axis using standard shape functions, Ni, as:

ukτ (y) = Ni(y)ukτi, i = 1, 2, ..., n, (3)

where uτi = {uxτi uyτi uzτi}T is the vector of the displacement unknowns and n is the total number

of nodes. In the present work, four-node cubic Lagrangian elements are employed in all numerical

cases. Subsequently, introducing Eq. 3 into the kinematic field of the beam, Eq. 1, the global

displacements can be described as:

u(x, y, z) = Fτ (x, z)Ni(y)ukτi. (4)

The principal of virtual displacements (PVD) for linear static problems is now recalled to obtain

the governing equations. The PVD states

δLint =

∫
L

∫
Ω

δεεεTσσσ dΩ dy = δLext, (5)

i.e. the equivalence of the virtual variation of the strain energy, δLint, and the virtual variation

of the work of done by the external loads, δLext. Subsequently, recalling the geometrical and

constitutive relations, the expression of the strain energy reads:

δLint =

∫
L

∫
Ω

δukTτi [DDDT (FτNiIII)C̃
k
DDD(FsNjIII)]uksj dΩ dy (6)

where DDD is the differential operator and C̃
k

is the material matrix of the k-th layer in the global

coordinate system shown in Fig. 1. The geometrical and constitutive equations are detailed in
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Appendix A. Reformulating Eq. (6), one can write

δLint = δuTτiK
τsijusj, (7)

where Kτsij is the fundamental nucleus of the stiffness matrix. The layer index k has been omitted

in Eq. (7) for the sake of clarity. The fundamental nucleus is the 3× 3 matrix which contains the

essential information of the beam model. The derivation of the corresponding loading vector is

not included here, but it can be found in [31]. An example of two components of Kτsij is included

in the following:

K τ sij
xx = C̃22 I ij Eτ,xs,x + C̃44 I ij Eτ,z s,z + C̃26 I ij,y Eτ,xs + C̃26 I i,y j Eτ s,x + C̃66 I i,y j,y Eτ s

K τ sij
xy = C̃23 I ij,y Eτ,xs + C̃45 I ij Eτ,z s,z + C̃26 I ij Eτ,xs,x + C̃36 I i,y j,y Eτ s + C̃66 I i,y j Eτ s,x .

(8)

The remaining components of the fundamental nucleus can be obtained by permutations from Eq.

8. The I and E terms of the previous expression correspond to the integrals over the length of

the beam, L, and over the section surface, Ω, respectively. The comma indicates partial derivation

with respect to the global coordinates. For the sake of completeness, the explicit expressions of

the E terms are shown:

Eτ,xs,x =

∫
Ω

Fτ,xFs,x dΩ, Eτ,zs,z =

∫
Ω

Fτ,zFs,z dΩ, Eτs =

∫
Ω

FτFs dΩ,

Eτ,xs,z =

∫
Ω

Fτ,xFs,z dΩ, Eτ,zs,x =

∫
Ω

Fτ,zFs,x dΩ, Eτ,xs =

∫
Ω

Fτ,xFs dΩ,

Eτs,x =

∫
Ω

FτFs,x dΩ, Eτ,zs =

∫
Ω

Fτ,zFs dΩ, Eτs,z =

∫
Ω

FτFs,z dΩ;

(9)

as well as the expression of the I terms:

I ij =

∫
l

NiNj dy, I i,y j =

∫
l

Ni,y Nj dy,

I ij,y =

∫
l

NiNj,y dy, I i,y j,y =

∫
l

Ni,y Nj,y dy.

(10)

All the integrals are solved numerically using standard quadrature rules.

The fact that the integrals of the energy terms in the fundamental nucleus are decoupled into

the cross-section domain and the axial length provides an interesting framework for the study of

laminated composites, in which the classical laminate assumptions hold (to an extent) over most

the volume and localized 3D effects arise in particular zones. This property can be exploited to

drastically reduce the computational size of the free-edge problem in composite beams, in which the

mechanical solutions vary smoothly along y, while feature massive gradients over the cross-section
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coordinates in the vicinity of the free-edge. Indeed, most of the solutions in the literature (weak

and strong) are based in the assumption of plane strains, which accounts for a laminate of infinite

length and neglects any variation of the solutions in the longitudinal direction. Models based in

this assumption can produce very accurate stress solutions over the section domain, although they

are always limited to simple geometries and boundary conditions, being in most cases allocated to

benchmarking purposes. By employing the FEM to solve the structural problem, generic composite

problems can be straightforwardly addressed, as it is illustrated in Fig. 3.

y

z

x

coarse 1D mesh

refined cross-section

domain

generic boundary 

conditions

Figure 3: Representation of the FEM modeling of composite laminates using LE beam elements.

4 Numerical results

The numerical assessment of the present method for the free-edge analysis of composite laminates is

divided in two main sections. The first part includes a comprehensive assessment of the solutions

against well-known benchmark results of the Pipes and Pagano laminate [4] under extension,

bending and twisting loads. Secondly, the advanced capabilities for the efficient study of complex

composite beams is presented through an example of a laminated C-section beam.

4.1 Assessment through benchmark problems

To assess the present model for the free-edge analysis under generic loads a series of benchmark

examples from the literature are selected. The material and geometry are equivalent to that of the

pioneering work of Pipes and Pagano [4], who considered a symmetric cross-ply with four layers
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of equal thickness, t = h/4. The material properties are the following:

E1 = 137.9 GPa, E2 = E3 = 14.5 GPa,

G12 = G13 = G23 = 5.9 GPa,

ν12 = ν13 = ν23 = 0.21.

(11)

Although most of the studies on free-edge are based on ’Psi’ units, the SI is adopted in the present

work. The section of the laminate features a width-to-thickness ratio, b/h, is equal to 4, whereas

the length is assumed as infinite. In order to generate a model making use of beam elements, it

is necessary to specify finite dimensions. Thus, in all the examples included in the present section

b = 20 mm, h = 5 mm and L = 400 mm, as shown in Fig. 4. The total length, L, is chosen

great enough to neglect the local effects at the zones of application of the boundaries, resulting in

a slenderness ratio of L/b = 20.

u0

Figure 4: Dimensions of the four-layer laminate used for benchmarking and different loads consid-
ered.

Results are obtained for extension, bending and twisting loads. Since the FEM is employed

to solve the governing equations of the problem, any boundary condition can be considered. The

model generated for the present assessment consists of 6 cubic 1D elements along the beam axis

and a distribution of quadratic LE over the cross-section domain which in all cases consists of 10

LE in the x-axis with a graded distribution towards both the free edges. A convergence study

regarding the number of mathematical layers in the direction of the stacking sequence is perform,

accounting from one LE per layer up to eight LE per layer. The total number of degrees of freedom

goes from 10,431 for the coarsest model, to 77,805 for the finest.

In the following, the transverse stress solutions are computed for the different loading cases in

[0,90]s and [45,-45]s laminates. Since this particular problem is widely used as a benchmark, only

some of the most representative references are included for comparison purposes, although many

others are mentioned in Section 1). The reference solutions are extracted from the original works

and converted to the SI.
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4.1.1 Extension

For the first assessment, the laminated beam is subjected to unitary axial strain, ε0 = 1. In

the proposed model, the uniform extension is modelled by prescribing the displacement u0 in

the longitudinal direction at the end section, y = L, as shown in Fig. 4. All the stress solutions

reported in the following are obtained at half-length of the beam, y = L/2. The reference solutions

used for this example correpond to Pipes and Pagano [45], Becker [10], Flanagan [15], Cho and

Kim [17], D’Ottavio et al. [28], Dhanesh et al. [18] and Peng et al. [30]. Regarding the [0,90]s

laminate, Fig. 5 shows the transverse normal stresses, σzz, across the thickness at the free-edge

for an increasing number of mathematical layers per ply, from one (CUF - 1LE) to eight (CUF

- 8LE). Fig. 6 includes the interlaminar stresses σzz and σxz along the interface between the 0

and 90 layers, from the center of the beam towards the free-edge. For the [45,-45]s laminate, Fig.

7 includes the transverse shear stresses across the thickness, and Fig. 8 shows the interlaminar

stresses, σyz and σzz respectively, at the interface between the 45 and -45 layers.

The convergence study illustrated Figs. 5 and 7 proves that highly refined kinematics are re-

quired to compute accurate free-edge stresses by means of layerwise theories of structure. Since

the only unknowns are displacements and no recovery of the 3D stress fields is performed, the

trasnverse stress solutions show some discontinuities between the expansion domains (correspond-

ing to the vertical lines in the graphs), which are more pronounced in the vicinities of the interfaces

between layers due to the high stress gradients. By increasing the number of mathematical layers

in the beam model, the stress distributions tend to those obtained from the exact theories, approx-

imating well both the stress-free boundary conditions and the interlaminar continuity. It is worthy

noting that in the present work an h-refinement scheme is chosen to refine the kinematics of the

beam model by increasing the number of mathematical layers in the stacking direction. D’Ottavio

et al. [28] also demonstrated that the transverse stress solutions are improved by adding numerical

layers in the kinematic expansion of higher-order mixed plate elements. A p-refinement scheme

based on hierarchical higher-order polynomials would also be suitable option, as shown in [46].

In view of these results, all the subsequent solutions of the Pipes and Pagano’s laminate are

obtained using eight mathematical layers per ply for all loading cases. For this model, the global

distributions of all transverse stress components show an excellent agreement with the reference

solutions, with some differences at the maximum value at the interlaminar singularities. This

diversity cannot be considered a limitation of any theory when dealing with free-edge effects and

is in all cases related to the refinement of the model, meaning that a steady increase of the peak

values is expected for finner models. One can notice that the best correlation is found with the

five-term solutions from Dhanesh et al. [18], which can be considered an interesting benchmark

since it satisfies exactly all boundary conditions and the interlaminar continuity of displacements

and stresses.
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Figure 5: Transverse stresses along z of the [0,90]s laminate under extension at x = b/2.
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Figure 6: Transverse stresses along x of the [0,90]s laminate under extension at z = h/4.
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Figure 7: Transverse shear stresses along z of the [45,-45]s laminate under extension at x = b/2.

0.0 0.1 0.2 0.3 0.4 0.5

0.0

5.0x103

1.0x104

1.5x104

2.0x104

 

yz
/

0 (
M

P
a)

x/b

 Pagano 1978
 Dhanesh et. al. 2016
 Peng et. al. 2016
 CUF

(a) σyz

0.0 0.1 0.2 0.3 0.4 0.5

-5x103

-4x103

-3x103

-2x103

-1x103

0

1x103

 

zz
/

0 (
M

P
a)

x/b

 Dhanesh et. al. 2016
 Flanagan 1994
 CUF

(b) σzz

Figure 8: Transverse stresses along x of the [45,-45]s laminate under extension at z = h/4.
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4.1.2 Bending

Figures 9 and 10 depicts the distributions of σzz across the thickness and along the interface,

respectively, of the [0,90]s laminate under uniform bending χ0 = 1/t. The reference solutions in

this section are those of Cho and Kim [17] and Dhanesh et al. [18], which consider a generalized

plane strain state. In order to simulate the uniform bending state in a 1D FEM model, a rotation

around the x-axis of magnitude ψ = χ0 L is applied at the end section, as shown in Fig. 4.

The interlaminar stresses σyz and σzz of the [45,-45]s laminate are shown in Fig. 11 (a) and (b),

respectively. It is possible to state that there is a good agreement with the reference solutions. In

the [45,-45]s case, a better agreement is found with Cho and Kim [17], showing a faster decrease of

the transverse shear stress values from the free-edge inwards in comparison to the solutions from

[18].
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Figure 9: Transverse stresses along z of the [0,90]s laminate under bending at x = b/2.
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Figure 10: Transverse stresses along x of the [0,90]s laminate under bending at z = h/4.
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Figure 11: Transverse stresses along x of the [45,-45]s laminate under bending at z = h/4.
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4.1.3 Twisting

For the last benchmark assessment, the laminate is subjected to a uniform twisting Θ0 = 1/t. As

for the previous example, in the present model it can be modeled by means of a rotation θ = Θ0 L

around the y-axis applied at the end section, as shown in Fig. 4. The reference solutions are

extracted from Cho and Kim [17], Dhanesh et al. [18] and Yin [12]. The stress distributions that

arise at the free edges under twisting differ from those of the previous cases in that no singularity

is observed at the vicinities of the interfaces and the maximum value of the transverse stresses is

located at the center of the thickness. Figure 12 shows the normal stresses σzz along the interface

between the 0 and 90 layers, whereas Figs. 13 and 14 includes the transverse shear stresses σyz

along the interface between distinct plies and across the thickness, respectively. Again, all the

solutions presented in the graphs follow the same trend, with some differences at the maximum

values at x = b/2. The best agreement is found with [18], as it can be observed in Fig. 14.
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Figure 12: Transverse stresses along x of the [0,90]s laminate under twisting at z = h/4.
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Figure 13: Transverse shear stresses along x of the [45,-45]s laminate under bending twisting at
z = h/4.
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Figure 14: Transverse shear stresses along z of the [45,-45]s laminate under twisting at x = b/2.
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4.2 Free-edge effects in complex parts

After validating the fidelity of the stress solutions against the literature, the capabilities of the

model for the efficient free-edge analysis in complex composite structures and generic three-

dimensional boundary conditions is presented in this section. A C-section composite beam, typ-

ically used as reinforcement of lightweight structures, is herein modeled and three different load

cases are considered. The geometry of the problem is depicted in Fig. 15. The composite lay-

up consists of a four-ply [0,90,45,-45] of IM7/8552 material, with the following ply mechanical

properties:

E1 = 165 GPa, E2 = 9 GPa, E3 = 9 GPa,

G12 = 5.6 GPa, G13 = 5.6 GPa, G23 = 2.8 GPa,

ν12 = 0.34, ν13 = 0.34, ν23 = 0.5.

(12)

All the plies are of equal thickness, t = 0.635 mm, and they are stack from inside towards the

exterior, see Fig. 15. The loading cases considered, which are shown in Fig. 16, are described as

follows:

• Load case 1: the beam is clamped at one end, y = 0, and prescribed displacements ūuu(x, L, z) =

[0, 0.02, 0] m are applied in the other end section.

• Load case 2: the beam is supported at both ends and a distributed vertical load of pz = −1

kPa is applied over the top surface.

• Load case 3: the beam is clamped at one end, y = 0, and a distributed shear load px = −1

kPa is applied over the top surface.

Figure 15: Geometry and dimensions of the composite C-beam.
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ū=(0,0.02 m,0)

(a) Load case 1

pz=1 kPa

(b) Load case 2

px=1 kPa

(c) Load case 3

Figure 16: Representation of the three load cases analyzed.

(a) Load case 1 (b) Load case 2 (c) Load case 3

Figure 17: Deformation and contour of the total displacements.
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Figure 17 shows the deformations of the composite beam for all load cases considered. It is

possible to observe that in all three cases non-classical effects arise, including warping, in-plane

deformation of the cross-section and secondary bending, which may have an effect on the stress

fields at the free-edges. For the sake of comparison and assessment, different 2D and 3D FEM

models are generated in the commercial software MSC Nastran [47]. A brief description of these is

included in Table 1, which gives information about the computational models and the maximum

total displacements obtained for each case. All models are within 4 % of error in displacements.

The Nastran 2D model is used only for load case 1 with the purpose of comparing the in-plane

stresses obtained from the CUF model in complex structures. For that, the stress fields across the

thickness at the center of the top flange (point A in Fig. 15) are plotted in Fig. 18. From both

models it is possible to observe the presence of secondary bending due to the rise of σxx in the 90◦

layer. It is also worthy noting that classical plate theories cannot capture the linear distribution

of in-plane stresses under bending, which might affect the evaluation failure indexes.

Table 1: Model description and displacement solutions.

Model Description DOF Maximum displacement [mm]

Load case 1 Load case 2 Load case 3

CUF 8 4-node 1D elements + 280 L9, 5 do-
mains per layer (similar to Fig. 2)

89,175 25.79 2.53 27.01

Nastran 2D 7800 QUAD4 elements 40,200 26.87 - -

Nastran 3D - 1 108,000 linear HEX8 elements, 1 ele-
ment per layer

410,865 26.36 2.61 26.55

Nastran 3D - 3 1,800,000 linear HEX8 elements, 3 ele-
ment per layer

2,276,739 26.50 2.63 26.69

∗All models are refined towards the free-edges
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Figure 18: In-plane stresses of the composite C-beam at Point A of the midspan section.
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The free-edge stress distributions are evaluated in the center of the structure at the top flange

for all three load cases. The results obtained from the proposed model and the Nastran 3D models

are included in Figs. 19, 21 and 22. As expected, some similarities are found with the benchmark

results included in the previous section. In the first two cases, the maximum shear stress σyz is

located at the interface between the 45◦ and −45◦ layers, whereas the maximum normal stress σzz

corresponds to the 90◦ layer, close to the 45◦ interface. However, in load case 3 the situation is the

opposite. Figure 20 shows the most relevant interlaminar stresses in the vicinity of the free-edge.

It is possible to note that the free-edge effects are also in this case confined in a small region of

depth about one thickness of the laminate, h.
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Figure 19: Free edge stresses of the composite C-beam at midspan, point B, for load case 1.

Finally, a further study was performed on the relation between the local deformation state of

the structure and the severity of the stress concentrations in the free edges. Figures 23 and 24

show the stress concentrations at different points along the beam structure for load cases 2 and

3. In general 3D problems, the variation of the local deformation state over the structure lead to

different profiles of the transverse stresses along the free edges, which should be understood for the

correct failure evaluation of the composite. Indeed, although there is a clear relation between the

local extension and the free-edge effects, see Fig. 24, the maximum value of the stress peaks does

not necessarily correspond to the location of the maximum local deformation of the flange (point

F), as shown in Fig. 23. This kind of results cannot be obtained using semi-analytical models

based on generalized plane strains and represent the main novelty of the present work.

21



-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0
-140

-120

-100

-80

-60

-40

-20

0

20

40

 

 

zz
, 

yz
 (M

P
a)

x*/h

 zz in [90/45]
 yz in [45/-45]

Figure 20: Interlaminar stresses of the composite C-beam at the top-flange. The x∗-axis starts at
the free-edge and the negative values refer to the depth inside the laminate.
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Figure 21: Free edge stresses of the composite C-beam at midspan, point B, for load case 2.
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Figure 22: Free edge stresses of the composite C-beam at midspan, point B, for load case 3.

(a) Longitudinal strain contour
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Figure 23: Effect of local deformation on the free-edge stress fields, load case 2.
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(a) Longitudinal strain contour

-0.50 -0.25 0.00 0.25 0.50
-4

-2

0

2

4

6

 

 

zz
 (M

P
a)

z*/h

 D (y = 0.1 m)
 E (y = 0.5 m)
 F (y = 1.0 m)

(b) Normal stress

Figure 24: Effect of local deformation on the free-edge stress fields, load case 3.

5 Conclusion

The present work introduces an efficient modeling technique for the free-edge analysis of generic

composite parts. The model is developed in the framework of the Carrera’s unified formulation

and is based on the use of advanced 1D elements with LW kinematics. The displacement field is

enriched with only displacement unknowns that are interpolated over the cross-section domain by

means of Lagrange functions, allowing the model to capture the complex stress fields that arise at

the free-edges of laminated structures. First, a comprehensive assessment of the Pipes and Pagano

problem [4] is carried out, showing the accuracy and robustness of the model under extension,

bending and twisting loads. Subsequently, the capabilities of the model are fully exploited to

present new results of free-edge effects in a composite C-beam stringer.

In view of the results, the authors believe that the proposed methodology can be used to fill

the gap between the available theories for free-edge analysis, which provide highly accurate results

for a small range of geometries and loading conditions, and the FE analysis of complex composite

structures, which cannot be employed to study these singularities due to computational limits.

Further developments will be focused on the free-edge analysis of curved laminates and the use of

the model as a global-local tool for real-life structures. The introduction of a stress-displacement

formulation based on the Reissner’s mixed variational theorem is also of interest in the current

framework.
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A Geometrical and constitutive relations

The second-order strain and stress tensors, expressed in vectorial form, can be written as:

εεεT =
{
εyy εxx εzz εxz εyz εxy

}
σσσT =

{
σyy σxx σzz σxz σyz σxy

} (13)

with no loss of generality. The coordinate system defined by x, y and z corresponds to that of Fig.

1. The Green-Cauchy strain-displacement relations are considered as geometrical relations:

εεε = D u (14)

D being the following linear differential operator:

D =



0 ∂
∂y

0
∂
∂x

0 0

0 0 ∂
∂z

∂
∂z

0 ∂
∂x

0 ∂
∂z

∂
∂y

∂
∂y

∂
∂x

0


(15)

On the other hand, the Hooke’s law is applied at the ply level to obtain the stresses:

σσσ = Cεεε (16)

where CCC is the stiffness matrix of the material (orthotropic), defined as:

C =



C33 C23 C13 0 0 0

C23 C22 C12 0 0 0

C13 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66


(17)

3 refers to the fiber direction and 1 lies perpendicular to the lamina. For generic orientations of

the laminate in the global coordinate system, the stiffness matrix is rotated according to Fig. 25,

and the Hooke’s law is rewritten as:

σσσ = C̃
k
εεε (18)

25



The components of the rotated stiffness matrix, C̃
k
, depend now on the angles θ and ψ.
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Figure 25: Rotations of the lamina.
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