
29 June 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Modeling biological complexity using Biology System Description Language (BiSDL) / Muggianu, Flavia; Benso, A.;
Bardini, R.; Hu, E.; Politano, G.; Carlo, S. Di. - STAMPA. - (2018), pp. 713-717. (Intervento presentato al convegno
IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2018 tenutosi a Madrid, Spain nel 3-6 Dec.
2018) [10.1109/BIBM.2018.8621533].

Original

Modeling biological complexity using Biology System Description Language (BiSDL)

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/BIBM.2018.8621533

Terms of use:

Publisher copyright

©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2731951 since: 2019-05-02T16:43:25Z

Institute of Electrical and Electronics Engineers Inc.

Modeling biological complexity using Biology
System Description Language (BiSDL)

A. Benso, R.Bardini, S. Di Carlo, G. Politano, F. Muggianu
Control and Computer Eng. Dep., Politecnico di Torino

Torino, Italy. Contact: alfredo.benso@polito.it

Eileen Hu
Massachusetts Institute of Technology

Boston, Massachusetts

Abstract—The Nets-within-Nets formalism (NWN) allows to
model complex biological systems expressing hierarchy, encap-
sulation, selective communication, spatiality, quantitative mech-
anisms, and stochasticity. To make NWN usable by life sci-
ence researchers as well as systems biologists, we introduce a
new human-readable description language able to express these
same NWN model properties, at different levels of abstraction.
BiSDL (Biology Systems Description Language) is derived from
the VHDL specification, a standard description language for
hardware systems. In this paper we chose a simple signaling
pathway example to show how BiSDL enables modeling complex
biological systems by separating the behavioral model from the
architectural details.

Index Terms—systems biology, modeling language, ontogeny.

I. INTRODUCTION AND RELATED WORK

Biological research is often compartmentalized in very spe-
cific sub-domains that, individually, can only describe portions
of the overall system. Modeling biological systems requires
to understand the relationships between these sub-domains
in order to make them work together in the same model.
The general lack in understanding the mechanisms at the
edges of the different sub-domains is reflected in the existence
of different languages proposed in the last years to create
biological models.

The COmputational Modelling in BIology NEtwork (COM-
BINE) is an initiative created to coordinate the development
of interoperable and non-overlapping standards covering all
aspects of modeling in biology [1]. This initiative has iden-
tified and classified various languages developed to describe
and exchange information about biological models in specific
sub-domains of biology.

Table I summarizes the most important characteristics of the
considered languages.

TABLE I
AVAILABLE MODELING LANGUAGES IN SYSTEMS BIOLOGY

Lang Main Focus Mobility Spatiality Hierarchy Ref
SBML Reaction Yes Yes Yes [2]
CellML Cell Partial Partial 1-level [3]
LEMS Hierarchical Yes Yes Yes [4]
NeuroML Neuronal model Yes Yes [5]
BioPAX Pathways Partial Yes [6]
SBOL Sequence Partial Yes [7], [8]

All analyzed languages share to some extent the ability
to describe entities, processes, and communications between
entities or between entities and processes. Nevertheless, none

of them has all these characteristics, which are required to
describe models of complex and generic biological processes,
integrated into a single language.

Our goal is to describe models of complex biological
systems including ontogenetic processes, heterogeneous multi-
cellular interactions, spatiality, gene regulation, environment-
dependent stimuli and variables, and hierarchical structures
of models within models. In this work we present the Biol-
ogy System Description Language (BiSDL), a new language
designed to overcome some of the weaknesses of existing
languages.

BiSDL was designed to serve two different purposes:
1) to be biologist-friendly: this includes being human-

readable, able to model both the behavior and the
structure of a biological system, able to support sev-
eral biological sub-domains, and flexible and modular
enough to be used at different levels of abstraction;

2) to be computation-ready: differently from other lan-
guages, one key BiSDL goal is the simulation of the
modeled system. For this reason, the language is de-
signed around the Nets-within-Nets (NWN) formalism,
an extension of Petri Nets [9], which allows modeling
hierarchical structures and is also suitable for distributed
simulations [10]–[12]. Our goal is to create a language
that can be automatically translated into a fully exe-
cutable NWN model.

Although in the development of the language we mainly
focused on ontogenetic processes, this choice does not im-
pact the flexibility of the the language. In fact, in its final
form, the BiSDL can be used to model a wide spectrum
of biological systems. To define the syntax and the structure
of the language, we were inspired by the VHSIC Hardware
Description Language (VHDL), a very well-known language
used to model complex digital circuits and systems [13]. The
BiSDL is currently under development and therefore many
features are still in a prototype form and may change at any
time.

II. METHODS

As discussed in the introduction, BiSDL needs to be
biologist-friendly and computation-ready. On one hand, this
means that some features of the language must be linked to
the NWN formalism used to actually simulate the described
system. On the other hand, to be biologist-friendly, its syntax

must be able to hide the technicalities of the final implemen-
tation, instead allowing focus on the description of the actual
biological system.

To illustrate the main features of the language, first we
need to briefly describe the NWN formalism, then show how
the language is organized to support the description of the
structure and the behavior of a real biological system.

A. Nets-within-Nets (NWN)

High-level Petri Nets formalism extends the basic Petri
Nets notation by allowing tokens of different types: integers,
floats, strings, colored [9]–[11]. The NWN formalism is a
high-level Petri Nets formalism introducing an additional type
of token named Net Token. A Net Token is a token that
embeds another Petri Net, and communication between nets at
different hierarchical levels is performed through synchronous
channels. This implies that Petri Nets can be hierarchically
organized, and each layer can be described resorting to the
same formalism. This characteristic is extremely important for
modeling complex biological systems.

B. BiSDL

In general, in BiSDL, all modules that compose the model
of the system are described using the same general template
reported in Figure 1. Each module includes: (i) a set of
parameters describing the interface of the module, (ii) a set of
entities that compose the internal structure of the module, (iii)
a set of processes that describe the behavior of the module,
and (iv) a set of biological references that link entities and
processes to known ontologies.

PACKAGE <package1>
...
PACKAGE <packageN>

ONTOLOGY <ONTOLOGY_NAME>=<url>
...
ONTOLOGY <ONTOLOGY_NAME>=<url>

MODULE <name> (<type> <nameparam>,.....)

 BIOLOGICAL REFERENCE
 <ONTOLOGY_NAME>.<ID_WITHIN_THE_ONTOLOGY>

 ENTITIES
 PLACE <name_place>,....
 ENTITY <name_entity>,....
 CHANNEL <name_channel>,....

 INIT
 <place_name>.attribute(<value>)
 <entity_name>.attribute(<value>)
 <entity_name> = <module_entity_name>(<params>,..)

 PROCESSES
 process(keyword:entities_declaration,
 keyword:entities_declaration,
 ...,
 {transition_function},
 delay(N)
)

 <module_process_name>(<param>,....)
END

Fig. 1. BiSDL template

Since the general idea is to have a language that allows
description of a biological system in a way that is both human-
readable and ready to be translated into a NWN model, BiSDL
syntax has been designed to allow the creation of different

types of models: (i) low-level models focusing on NWN
structures and (ii) high-level models strictly belonging to the
biological domain. The first type of models is mainly used
to create building blocks to be included in a set of language
libraries.

Figure 1 shows a typical BiSDL template. It begins with the
PACKAGE declarations, which specify the libraries that must
be included. Libraries store the domain specific pre-coded
modules that allow an easy and straightforward description
of biological entities.

The ONTOLOGY directives are next. They are used to unam-
biguously associate the module, and its entities, with known
biological entities. To do this, BiSDL requires specification of
a set of urls to recognized sources of knowledge (e.g., Gene
Ontology [14], Pathway Ontology [15]).

Following is the MODULE section, which contains the actual
description of the module. A module name must be unique
inside the package it belongs to. If necessary, the module
declaration is followed by a list of parameters. The value of
these parameters must be later specified when the module is
instantiated in a model in order to characterize the specific
instance. From a biological point of view, a module could
correspond to any biological entity or process at any hierar-
chical level. For example, a module can describe a simple
protein, a gene, a complete pathway, a metabolic subnetwork,
an entire cell, or a biological process (e.g., gene transcription,
functional activation of a protein or its degradation).

Before describing the core structure and behavior of the
module, BiSDL requires specification of its BIOLOGICAL
REFERENCE, i.e., the unique link to an element of one of
the ontologies declared in the ONTOLOGY section. This is
performed according to the following syntax:
<ONTOLOGY_NAME>.<ID_WITHIN_THE_ONTOLOGY>

Inside each MODULE, BiSDL allows description of:
• the behavioral domain, which is used to describe the

algorithmic behavior of the module. Depending on the
abstraction level of the module, it can describe Petri Nets
dynamics, or high-level biological functionalities;

• the structural domain, which is composed of an inter-
connection of other modules. This domain allows their
instantiation and declaration of how they are intercon-
nected. Again, depending on the abstraction level, this
domain can be used to describe a wide range of struc-
tures: from interactions between biological sub-systems
to network motifs implemented as Petri Nets, without any
biological reference.

• the spatial domain: BiSDL allows placement of each
module of the system in a 3D grid. This feature can be
used to model biological districts, to model movement,
speed, or to trigger location-based biological constraints.

Following the biological identification of the module, the
ENTITIES sub-section instantiates all entities that will be
used inside the module. ENTITIES can be considered the
module’s components. Their interaction is what defines the
behavior of the module. Each entity will be linked to an actual

implementation (MODULE) in the INIT section. ENTITIES
can be of three types:

• ENTITY: a module implemented in one of the libraries
declared in the PACKAGE section;

• PLACE: a Petri Nets place;
• CHANNEL: a communication component that allows the

synchronous communication between two different Petri
Nets.

Thanks to these three types of elements, the internal archi-
tecture of a module can hierarchically use both the Petri Nets
formalism elements and/or other modules. Petri Nets transi-
tions, which are the mechanism that enables the dynamics of
Petri Nets, will be introduced later in the PROCESSES section.
In an ideal hierarchical model, only the lowest level modules
will explicitly reflect the Petri Nets formalism.

After being instantiated, each entity must be initialized
in the INIT section. In particular, for each ENTITY it is
necessary to declare its actual origin within one of the included
libraries, and to set, if present, the required parameters. In
the case of a PLACE, the INIT section is used to set a
name, the initial token marking (the type of token(s), their
value, and their quantity), and the ontology id. Tokens can
be of type int, float, double, string, black token (no type),
or a complete module (user-defined or taken from one of the
included libraries).

Another attribute that can be set in the INIT section for
entities of type ENTITY is the relative speed at which they
must be simulated. The speed can be a fraction or a multiple
of the time unit, which will be used during simulation. This
unit will be chosen as the time cycle of the faster module in
the model.

For both ENTITY and PLACE modules it is also possible
to specify a location within the BiSDL 3D grid (the grid is
always present, and when the user doesn’t provide coordinates
then default coordinates are assigned to entities).
CHANNEL entities, which are used to create communication

channels between different networks (even at different hierar-
chical levels) are not included in this section because they are
used as arguments for PROCESSES implementations.

After instantiating and initializing all entities of the model,
the PROCESSES section is used to create the behavioral
domain of the model. In particular, this section defines the
dynamic relationships and functions between entities, the
transformations that can be applied to each entity, and the rules
by which the behavioral model works. A typical behavioral
rule is a Petri Nets transition, which can be defined as follows:
PROCESS(keyword:entities_declaration,

keyword:entities_declaration,...,
{transition function}, delay(N))

The keyword:entities_declaration pairs are
used to specify the input/output properties of the transition:
the keyword, which can be IN, OUT, or BI, specifying
the direction of the arcs from/to the entities listed in the
entities_declaration as:
{entity name[arcs_number],...,
entity name[arcs_number]}

Incoming (IN) arcs are responsible for consuming tokens
from places, whereas outgoing arcs (OUT) are responsible for
producing tokens into a place; bidirectional arcs (BI) are used
to perform a check on tokens presence inside a place.

Transitions, according to the Petri Nets formalism, have
both enabling and activation functions, which can be specified
in the transition function parameter. The time that
needs to elapse from the enabling to the activation of the
transition is set by the delay(N) attribute as a fraction of
the time unit defined in the INIT section.
CHANNEL entities use a particular transition firing function,

which must be associated with a different transition in another
network. The channel has two main properties: the direction of
the activation and the direction of the token exchange. To set
the direction of the activation it is necessary to specify which
is the transition that starts the communication (the down-link)
and which is the transition that receives the communication
in a synchronous way (the up-link). If no specification about
value or type of tokens is made, random tokens are exchanged
through the channel.

The PROCESS block described above is a simple construct,
directly related to the Petri Nets formalism, mostly used to
build library modules. Obviously, the PROCESSES section
is also used to define higher-level complex relations between
modules available in the libraries and defined in the PACKAGE
section. In this case the syntax is simply the process function
name followed by the required arguments. Typically, these
arguments are the entities that need to be put in relation. All
these functions usually involve, at the low level, manipulation
of tokens.

III. RESULTS

In this section we will present an example of a BiSDL
modeling of the RAS/RAF/MAPK signaling pathway shown
in Figure 2. The pathway is part of a much bigger model but
we believe it is enough, in this paper, to show the modeling
potential of the BiSDL language.

EGFR
rec

GRB2/
505

RAS

EGF
sig

EGFR
rec
act

GRB2/
505
act

RAS
act

MPK1

MPK1
act

RAS
gene

GRB2/
505

gene

EGFR
rec

gene

transcription

activation

degradation

Extra-cellular

Fig. 2. RAS/RAF/MAPK signalling pathway

In summary, after a regulatory cascade, the pathway is
responsible for the generation of the Map Kinase Kinase active

protein. The pathway is activated when an extracellular EGF-
like signal binds with its receptor (transcribed from the EGFR-
like receptor gene). The binding activates the EGFR-like
receptor, which then binds and activates the GRB2/505 protein.
This protein reacts with and activates the RAS protein, which
finally binds and activates the MPK1 protein generating the
final MPK1 activated protein. Physiologic protein degradation
is specified for MPK1 activated, only.

In the BiSDL description of the regulatory cascade of the
pathway we want to include the transcription, activation, and
degradation mechanisms. Figure 3 shows the code of the
top-level description of the pathway model. First of all, the
code includes the PathwayRegulations library (which
includes the basic blocks discussed later in his section), and the
ontologies that will be used to uniquely identify the biological
entities in the model.

In the MODULE declaration the code defines the model
interface, i.e., the set of entities that constitute the input/output
interface of the module. In this case the interface is composed
of four entities: an EGF-like signal, the MPK1 protein and
its activated form, and an EGFR-like receptor. Then, after
linking the model to a unique entry in one of the included
ontologies, the code lists, in the ENTITIES section, all the
entities required to model the pathway: the RAS and GRB-
2/505 proteins (with their activated forms), and an EGFR-like
activated receptor protein.

The INIT section is then used to link each of these entities
to an actual model. In this case each entity is linked to
a simple_protein model. As shown in Figure 4, the
simple_protein is modeled as a simple place in a Petri
Net. The simple_protein model requires, as parameters,
the name of the protein, an ID from one of the included
ontologies, and a token type. In this example, each protein
is initialized with three black tokens (the standard Petri Nets
tokens). Therefore, the INIT section creates five separate
places (one for each protein) containing three tokens each. The
reason for initializing the places with three tokens is simple.
As shown later in this section, the activation of a protein
takes place when at least four tokens are present in each
input place (four is a arbitrarily chosen number, it does not
have any biological correlation). The last token in the ”protein
place” is generated by the transcription module, which models
the transcription of a gene into the corresponding protein. In
this way are able to simulate all mechanisms of the pathway,
from the transcription of genes, through the activation of their
proteins, to the degradation of the final product.

The relationships among the five entities are modeled in the
PROCESSES section. The three transcription processes, model
the fact that the RAS, GRB-2/505, and EGFR-likeRec proteins
are actually transcribed by their respective genes. As shown
in Figure 4, the transcription module creates a new place
modeled by the simple_gene module. Therefore, with
the three transcription processes, the model includes
three additional places, each initialized with one black token,
modeling the genes that transcribe the required proteins. The
PROCESSES section of the transcription model contains only

PACKAGE PathwaysRegulations
ONTOLOGY Proteins =
”https://research.bioinformatics.udel.edu/pro/entry/PR%3A”
ONTOLOGY Gene =
”https://www.ncbi.nlm.nih.gov/gene?cmd=Retrieve&dopt=full_
report&list_uids=”
ONTOLOGY PathwayOntology =
“http://bioportal.bioontology.org/ontologies/PTS/?p=classes
&conceptid=http%3A%2F%2Fscai.fraunhofer.de%2FPWDICT%23”

MODULE RAS_RAF_MAPK_sig_path (ENTITY EGF-like_signal,
 ENTITY mpk_1_act,
 ENTITY mpk_1,
 ENTITY EGFR-likeRec)

 BIOLOGICAL REFERENCE
 PathwayOntology.ID0176

 ENTITIES
 ENTITY RAS, RAS_act, EGFR-likeRec_act
 ENTITY GRB-2/505, GRB-2/505_act

 INIT
 GRB-2/505 = simple_protein(“GRB2/505”,
 Proteins.000008220,
 black_token()*3)
 RAS = simple_protein(“RAS”,Proteins.000013743,
 black_token()*3)

 GRB-2/505_act = simple_protein(“GRB-2/505_act”,
 Proteins.000008220,black_token()*3)

 RAS_act = simple_protein(“RAS_act”,
Proteins.000013743,black_token()*3)

 EGFR-likeRec_act = simple_protein(“EGFR-likeRec_act”,
 Proteins.000006933,black_token()*3)

 PROCESSES
 transcription(RAS, Gene.3845)
 transcription(EGFR-likeRec, Gene.1956)
 transcription(GRB-2/505, Gene.2885)
 activation(EGFR-likeRec, EGF-like_signal,
 EGFR-likeRec_act)
 activation(GRB-2/505, EGFR-likeRec_act,
 GRB-2/505_act)
 activation(RAS, GRB-2/505_act, RAS_act)
 activation(mpk_1, RAS_act, mpk_1_act)
 degradation(mpk_1_act, 100)
END

Fig. 3. RAS/RAF/MAPK signalling pathway BiSDL model

one process that models a transition that can be read as: “if
a token is present in the ’gene’ place, then a new token is
generated in the ’protein’ place”.

After creating the transcription model, the main signaling
module creates the activation processes. An activation
process models the transformation of a protein into its ac-
tive form. As shown again in Figure 4, the activation
module requires three entities to participate in the process:
the protein in its inactive form (protein_to_activate),
an activated protein (protein_active) that enables the
activation mechanism, and the final output protein in its
active form (protein_act). The only process in the
module is a transition, which creates a token in the
protein_act place when at least four tokens are present
in the protein_to_activate and protein_active
places.

The last process included in the signaling pathway model
is the degradation process, which is used to model the
mpk_1_act degradation. This process consumes one token
from the ”input” protein place every 100 simulation cycles.

A prototype version of a BiSDL compiler is currently able
to translate BiSDL models into executable Python code based
on the SNAKES1 library [16].

The BiSDL compiler is able to translate each BiSDL module
into a Python class by extending one of the basic classes of the
SNAKES library. Figure 5 shows the automatically generated

1an efficient library for the design and simulation of Petri-Nets

MODULE simple_protein(STRING name, STRING ID, TOKEN token)
 BIOLOGICAL REFERENCE
 ID
 ENTITIES
 PLACE protein
 INIT
 protein.name = name
 protein.token(token)
END

MODULE simple_gene (STRING name, TOKEN token, STRING ID)
 BIOLOGICAL REFERENCE
 ID
 ENTITIES
 PLACE gene
 INIT
 gene.name = name
 gene.token(token)
END

MODULE transcription (ENTITY protein, STRING ID)
 ENTITIES
 PLACE gene
 INIT
 gene = simple gene(protein.name + ”_wt”,ID,
 black_token())
 PROCESSES
 process(BI:{gene}, OUT:{protein})
END

MODULE degradation (ENTITY protein, INT n)
 PROCESSES
 process(IN:{protein}, delay(n))
END

MODULE activation (ENTITY protein_to_activate,
 ENTITY protein_active,
 ENTITY protein_act)
 PROCESSES
 process(BI:{protein_active[4],protein_to_activate[4]},
 IN:{protein_to_activate}, OUT:{protein_act})
END

Fig. 4. BiSDL library elements

Python code of the transcription process.

class transcription:
 def __init__(self ,protein,ID,net):

 gene = simple_gene(protein.module_place.name + "_wt",
 ID, [BlackToken()], net)

 process_func0=ProcessFunction()

 net.process("transcription", process_func0,
 output_places = [protein], bidir_places=[gene])

Fig. 5. Python code of the transcription processa

The compiled Python model of the BiSDL system can
then be executed to simulate the dynamics of the system.
This in turns allow biologists to run ”what if” simulations,
where, ”faults” (e.g., mutations, or errors in some biological
mechanisms) can be introduced in the code to understand their
impact on the system’s dynamics.

IV. CONCLUSION

BiSDL is an ongoing effort to create a new language able
to model complex biological use cases. BiSDL is intended
to overcome several weaknesses of existent languages and
to group their strengths. Whereas other languages are based
on the XML syntax, we chose a much more human-readable
format to make the language biologist-friendly. BiSDL enables
description of geometry and mobility of entities involved in
the model, and it is based on a hierarchical organization.

REFERENCES

[1] COMBINE, “The COMBINE standards,” [Online] https://co.mbine.org/
standards, Aug. 2018.

[2] C. Chaouiya, D. Bérenguier, S. M. Keating, A. Naldi, M. P. Van Iersel,
N. Rodriguez, A. Dräger, F. Büchel, T. Cokelaer, B. Kowal et al., “Sbml
qualitative models: a model representation format and infrastructure to
foster interactions between qualitative modelling formalisms and tools,”
BMC systems biology, vol. 7, no. 1, p. 135, 2013.

[3] C. M. Lloyd, M. D. Halstead, and P. F. Nielsen, “Cellml: its future,
present and past,” Progress in Biophysics and Molecular Biology,
vol. 85, no. 2, pp. 433 – 450, 2004, modelling Cellular and Tissue
Function. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S007961070400015X

[4] R. C. Cannon, P. Gleeson, S. Crook, G. Ganapathy, B. Marin, E. Piasini,
and R. A. Silver, “Lems: a language for expressing complex biological
models in concise and hierarchical form and its use in underpinning
neuroml 2,” Frontiers in neuroinformatics, vol. 8, p. 79, 2014.

[5] P. Gleeson, S. Crook, R. C. Cannon, M. L. Hines, G. O. Billings,
M. Farinella, T. M. Morse, A. P. Davison, S. Ray, U. S. Bhalla et al.,
“Neuroml: a language for describing data driven models of neurons and
networks with a high degree of biological detail,” PLoS computational
biology, vol. 6, no. 6, p. e1000815, 2010.

[6] R. N. Goldberg, M. Cary, and E. Demir, “Biopax a community standard
for pathway data sharing,” Nature Biotechnology, vol. 28, no. Nature
Biotechnology, 2010.

[7] M. Galdzicki, K. P. Clancy, E. Oberortner, M. Pocock, J. Y. Quinn,
C. A. Rodriguez, N. Roehner, M. L. Wilson, L. Adam, J. C. Anderson
et al., “The synthetic biology open language (sbol) provides a commu-
nity standard for communicating designs in synthetic biology,” Nature
biotechnology, vol. 32, no. 6, p. 545, 2014.

[8] R. S. Cox, C. Madsen, J. A. McLaughlin, T. Nguyen, N. Roehner,
B. Bartley, J. Beal, M. Bissell, K. Choi, K. Clancy et al., “Synthetic
biology open language (sbol) version 2.2. 0,” Journal of integrative
bioinformatics, vol. 15, no. 1, 2018.

[9] R. Valk, “Object petri nets: Using the nets-within-nets paradigm, ad-
vanced course on petri nets 2003 (j. desel, w. reisig, g. rozenberg, eds.),
3098,” Appendix A: Proof of Theorem, vol. 3, 2003.

[10] R. Bardini, G. Politano, A. Benso, and S. D. Carlo, “Using multi-level
petri nets models to simulate microbiota resistance to antibiotics,” in
2017 IEEE International Conference on Bioinformatics and Biomedicine
(BIBM), Nov 2017, pp. 128–133.

[11] R. Bardini, A. Benso, S. Di Carlo, G. Politano, and A. Savino, “Using
nets-within-nets for modeling differentiating cells in the epigenetic land-
scape,” in International Conference on Bioinformatics and Biomedical
Engineering. Springer, 2016, pp. 315–321.

[12] R. Bardini, G. Politano, A. Benso, and S. Di Carlo, “Multi-level and
hybrid modelling approaches for systems biology,” Computational and
Structural Biotechnology Journal, 2017.

[13] D. L. Perry, VHDL (2Nd Ed.). New York, NY, USA: McGraw-Hill,
Inc., 1993.

[14] Gene Ontology Consortium, “Gene ontology,” [Online] http://www.
geneontology.org/, Aug. 2018.

[15] BioPortal, “Pathway onthology,” [Online] http://bioportal.bioontology.
org/ontologies/PW?p=classes&conceptid=root, Aug. 2018.

[16] F. Pommereau, “Snakes: a flexible high-level petri nets library (tool
paper),” in International Conference on Applications and Theory of Petri
Nets and Concurrency. Springer, 2015, pp. 254–265.

