
13 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Performance monitor counters: Interplay between safety and security in complex cyber-physical systems / Carelli,
Alberto; Vallero, Alessandro; Di Carlo, Stefano. - In: IEEE TRANSACTIONS ON DEVICE AND MATERIALS
RELIABILITY. - ISSN 1530-4388. - STAMPA. - 19:1(2019), pp. 73-82. [10.1109/TDMR.2019.2898882]

Original

Performance monitor counters: Interplay between safety and security in complex cyber-physical systems

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TDMR.2019.2898882

Terms of use:

Publisher copyright

©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2731948 since: 2019-05-02T16:37:26Z

Institute of Electrical and Electronics Engineers Inc.

IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY, VOL. XX, NO. XX, XXX XXXX 1

Performance Monitor Counters: interplay between
safety and security in complex Cyber-Physical

Systems
Alberto Carelli, Student Member, IEEE, Alessandro Vallero, Member, IEEE,

and Stefano Di Carlo, Senior Member, IEEE

Abstract—Recent years have witnessed the growth of the
adoption of Cyber-Physical Systems (CPSs) in many sectors such
as automotive, aerospace, civil infrastructures and healthcare.
Several CPS applications include critical scenarios, where a
failure of the system can lead to catastrophic consequences.
Therefore, anomalies due to failures or malicious attacks must
be timely detected. This paper focuses on two relevant aspects
of the design of a CPS: safety and security. It analyzes in a
specific scenario how the Performance Monitor Counters (PMCs)
available in several commercial microprocessors can be from the
one hand a valuable tool to enhance the safety of a system
and, on the other hand, a security backdoor. Starting from
the example of a PMC based safety mechanism, the paper
shows the implementation of a possible attack and eventually
proposes a strategy to mitigate the effectiveness of the attack
while preserving the safeness of the system.

Index Terms—hardware security, safety, performance monitor-
ing counters, cyber-physical systems.

I. INTRODUCTION

CYBER-PHYSICAL Systems (CPSs) are the root of a
fourth industrial revolution [1]. “Cyber-physical systems

are physical and engineered systems whose operations are
monitored, coordinated, controlled and integrated by a com-
puting and communication core” [2]. A CPS integrates pro-
cessing units, sensors and actuators, enabling the interaction
of the computing infrastructure with the physical world. The
Internet of Things (IoT) forms a foundation for this cyber-
physical systems revolution [1]. All devices of a CPS and
different CPSs are interconnected in order to create a network
enabling billions of systems and devices to interact and share
information. Thanks to their ability of transforming traditional
processes by integrating technologies from various sectors,
CPSs are bringing innovation to many industries including:
automotive and aerospace, chemical processes, smart energy
and water grids, healthcare, manufacturing and transporta-
tion [2]–[5]. Several of these application domains involve
the control of critical infrastructures providing services that
constitute the technological backbone of our society [6]. These
infrastructures can damage themselves, people, or properties
when they are improperly used [7], and this improper use can

A. Carelli, A. Vallero and S. Di Carlo are with the Department of Control
and Computer Engineering, Politecnico di Torino, Torino, 10129 Italy, e-mail:
stefano.dicarlo@polito.it.

Copyright c©2019 IEEE. Personal use of this material is permitted. How-
ever, permission to use this material for any other purposes must be obtained
by sending a request to pubs-permissions@ieee.org.

be either the result of a failure of one of their components or
an intentional attempt to corrupt their behavior.

Safety and security are therefore two critical properties of
every CPS, both sharing identical goals: protecting the CPS
from hazards due to accidental failures (safety) or due to
intentional attacks (security) [8], [9]. In this context, there is a
recognized request to consider them under a unified view when
designing and operating complex CPSs [7], [8], [10], [11].
This is particularly important every time a security mechanism
may negatively impact the safety of the system or vice versa
[12].

This paper analyzes in a specific scenario how the Perfor-
mance Monitor Counters (PMCs) available in several com-
mercial microprocessors may have severe implications on the
interplay of safety and security of a CPS.

PMCs can be used for several purposes including perfor-
mance modeling and optimization, debugging, benchmarking,
and in-field monitoring (see Section II). This paper is partic-
ularly interested in this last category of uses. The integration
of computing and physical elements in a CPS introduces a
vast range of design and operational constraints. Among them,
CPSs often require to operate under real-time constraints [7].
PMCs are an effective instrument to detect timing violations
in multiprocessor systems. The timing of different tasks can
be profiled by recording time related PMCs (e.g., the Clock
Cycle Counter - CCC and the L1 Data Cache-Miss counter
- DCM in the Intel architectures) over several executions in
order to build a model of the behavior of the system. This can
be done either by setting simple thresholds [13]–[15] or by
exploiting machine learning models [16]. The model can then
be used at run-time to detect anomalies.

However, time related PMCs have been exploited to perform
different classes of attacks (see Section II). These PMCs can
be used to implement the side-channel attack described by
Bonneau and Mironov in [17], which is able to discover the
secret key of the Advanced Encryption Standard (AES) cipher.

This paper proposes a mitigation strategy able to increase
the complexity of this attack and discusses its interplay with
the effect on a selected safety mechanism. Among the different
safety techniques against timing violations, for its simplicity,
this paper focuses on the methodology proposed by Esposito
et al. in [13]. This technique builds a simple timing model for
different tasks based on two thresholds.

The proposed attack mitigation technique is based on the
application of a PMC poisoning schema. The poisoning alters

Stefano Di Carlo

Stefano Di Carlo

IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY, VOL. XX, NO. XX, XXX XXXX 2

the value distribution of the PMCs in such a way to harden
the work of the attacker while preserving those properties that
allow detecting timing violations in the system.

This paper extends the preliminary results published by the
authors in [18] by presenting a generalized technique able to
protect both the CCC and the DCM counter.

Based on the concepts presented in this paper, different
poisoning schemas can be derived in order to work with differ-
ent monitoring techniques. However, it is hard to generalize
the impact of the poisoning on each schema. This must be
evaluated case by case and is out of the scope of this paper.

A set of experiments was carried out to evaluate the impact
of the proposed attack mitigation technique on the safety
and security of a sample node executing different tasks.
Experiments consider both synthetic tasks hard to monitor and
tasks taken from the MiBench benchmarks [19]. The node uses
the AES cipher (victim of the attack) to encrypt information.
MiBench benchmarks were selected since they implement a set
of typical algorithms employed in several embedded systems
and have been also used in several reliability evaluation studies
[20]–[23]. Results show the capability of the proposed tech-
nique in increasing the complexity of the attack considering
both the CCC and the DCM counters, while introducing a
low impact on the timing violation detection capability of
the system. The technique proposed in this paper outperforms
results published in [18] both in terms of better security and
reduced impact on the safety of the system.

The paper is organized as follows: Section II overviews
related work on the use of PMCs both in the safety and security
domain, while Section III describes the architecture of the
considered CPS. Section IV introduces the proposed attack
mitigation technique and Section V reports the validation
results. Finally, Section V-C concludes this paper.

II. BACKGROUND

PMCs are special registers available in most microprocessor
architectures. They allow monitoring of several classes of
events including branch predictions, cache hits/misses and pro-
cess timing. Monitoring of events through PMCs has a variety
of uses in application development, including performance
modeling and optimization, debugging, and benchmarking
[24]–[27]. The privileges required to access these counters
depend on both the processor architecture and the operating
system (OS). However, during application development, the
designer has usually full control on the development envi-
ronment and a full access to the available PMCs does not
represent a security threat as considered in this paper.

When moving to in-field applications, access to PMCs
requires to carefully consider the interplay between safety and
security.

A set of applications evaluate predefined PMCs signatures
in order to detect failures or attacks. PMCs can be exploited
as a valuable tool for the development of software based self
test (SBST) routines [28]. The capability of monitoring cache-
misses through PMCs (DCM counter) was used in [29] to
perform SBST of cache memories. In this type of approaches,
an exact value of the counter is expected at the end of the test

routine. PMCs signatures were successfully exploited to detect
firmware modifications in a CPS controlling a power grid in
[30]. For this class of PMC uses, poisoning techniques such
as the ones presented in this paper cannot be applied, since
they would prevent the deterministic behavior of the counters
for selected processes.

Nevertheless, there is a large class of techniques that try to
build models of the behavior of the system based on statistical
off-line PMC profiling. These models can be used in-field to
detect different types of anomalies.

Xia et al. employed the PMCs to monitor the control-
flow integrity of software applications [31]. By analyzing
the branch instructions behavior, they were able to detect
deviations from the correct control flow.

Yilmaz [32] proposed a technique for faults localization in
software applications. By off-line profiling the number of ex-
ecuted instructions considering correct and faulty executions,
they were able to build a behavioral model of the software
able to detect in-field applications differentiating from the
model. A similar technique from the same authors based on the
monitoring of the function execution time was also presented
in [33].

The authors of [14] used the PMCs to estimate the Worst-
Case Execution Time (WCET) for safety-critical applications.

In [15], WCET-aware Performance Monitoring Units were
proposed for safety certification in the automotive domain.

In [13] PMCs were used to detect faults causing deadline
violations in multi-core systems.

A set of 10 PMCs was analyzed in [16] to build a machine
learning model based on Supported Vector Machines (SVM)
able to detect different types of anomalies.

In this category of approaches, poisoning techniques such
as the one presented in this paper can potentially be applied.
Nevertheless, the actual impact of the poisoning strongly
depends on the target technique and it is hard to generalize. For
this reason this paper focuses on a selected technique presented
in [13] to show the interplay between safety and security in a
specific case.

When considering the use of PMCs to perform attacks,
most related publications focus on the cache behavior during
encryption with the AES algorithm. Bernstein was able to
remotely recover the complete AES key exploiting timing
information related to cache accesses [34]. Bounneau and
Mironov performed a similar attack with a reduced number
of samples to recover the AES key when applied to Intel
architectures [17]. PMCs were employed as source of side-
channel information also to attack encryption algorithms on
AMD platforms in [35]. Side-channel attacks were possible
also for asymmetric key cryptography, as reported in [36]. The
attack, carried out on Intel platforms, targeted a 1024 bit key
of RSA and exploited the monitoring of branch-miss events.

Proper defense measures can be taken if the attack is
detected. The authors of [37] proposed a generic detection
mechanism, using a pre-trained classifier, able to deal with a
variety of micro architectural side-channel attacks, including
also cache-based attacks. However, rather than reacting to an
attack, it is important to work on proactive techniques able to
prevent or increase the complexity of the attack.

Stefano Di Carlo

IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY, VOL. XX, NO. XX, XXX XXXX 3

Our previous work proposed a first attempt to protect the
CCC counter against the Bounneau and Mironov attack taking
into account the impact on the safety of the system [18].
However, as analyzed in this paper, the same technique is
unable to properly protect the DCM counter. This paper moves
forward by presenting a generalized technique able to protect
both counters with a reduced impact on the safety of the
system.

III. CPS ARCHITECTURE

A. CPS and node architecture

Fig. 1 shows the general CPS architecture considered in
this paper, which is a typical Supervisory Control and Data
acquisition (SCADA) system. Computing nodes perform local
computations and are responsible for controlling a network of
sensors and actuators managing the operations of the physical
infrastructure. Special monitoring nodes coordinate the work
of a set of computing nodes by constantly exchanging data and
information with them. Depending on the application, CPSs
provide a wide set of specifications against which the systems
must operate. Several manufacturing plants employ nodes
based on low-end microprocessors either running bare-metal
applications or old desktop operating systems [7]. However,
the increasing complexity of the controlled infrastructures is
quickly moving these systems toward more complex micro-
processor architectures [38].

Sensors and
actuators

…

Monitoring
node

Computing
Node

Fig. 1: Generic architecture of the considered CPS.

Fig. 2 shows the conceptual architecture of a generic com-
puting node.

The node runs an operating system providing a set of
services required to accomplish different application tasks.
The number and type of tasks depends on the available
sensors/actuators and on the function the node has to imple-
ment. Moreover, tasks must be executed under given timing
constraints [7]. Overall, the goal of the executed tasks is
to acquire data from sensors, elaborate raw data and en-
crypt/decrypt payloads to communicate with other nodes. Data
exchanged with external nodes (e.g., monitoring nodes) are
encrypted with a symmetric key by an appropriate service
module integrated in the OS. In general, any task running at
the application level can request the OS services.

Services

PCMs

A
pp

lic
at

io
ns

O
pe

ra
tin

g
Sy

st
em

uP
ro

ce
ss

or

Sensors and Actuators

PCM service Encryption service
KEY

Tasks Safety Tasks
Malicious

Task

Attacker

Fig. 2: Generic architecture of the considered computing node.

B. Safety task

As discussed in Section II, different safety mechanisms to
control the correct operation of the node can be implemented
as additional safety tasks at the application level (Fig. 2). The
safety task considered in this paper (based on the technique
proposed in [13]) exploits PMCs profiling and on-line moni-
toring to detect faults causing abnormal execution times of a
task. Overall, the considered safety technique consists of two
phases named: (i) off-line phase and (ii) on-line phase.

During the off-line phase, each task is profiled over several
executions in order to analyze the distribution of the values
assumed by the considered PMCs. Two PMCs strictly related
to the execution time of an application are considered in this
study: the Clock Cycle Counter (CCC) and the L1 Data Cache-
Miss counter (DCM).

In principle, the value of a PMC for a given task with given
inputs and execution environment, should provide determinis-
tic and reproducible values. However, in complex multi-core
systems as the ones considered in this paper, several complex
often-unknown HW/SW interactions that are hard to predict
(e.g., out-of-order execution models in which instructions are
executed in a non-deterministic order, the memory hierarchy
featuring different levels of cache memories that determine
non-deterministic data access profiles, bus arbitration and
in general all controllers, etc.) may introduce variability in
the PMC values. Different inputs across different executions
of a task are another source of variability of the observed
PMCs. Therefore, the values measured for a PMC across
different executions can be considered as a random variable
X , characterized by an empirical Cumulative Density Function
(CDF), FX(x) (see Fig. 3).

Based on the collected profiles, each task can be associated
to three operating areas reflecting the state of the system:
safe area, critical area and warning area. Two thresholds are
defined to separate the aforementioned operating areas: WTH

and CTH (see Fig. 3). These thresholds are chosen by selecting
the confidence level for the warning area (CW) and for the
critical area (CC). Confidence levels can be chosen arbitrarily
during the design phase. Strict confidence levels increase the
number of false positives and the performance overhead due
to a larger number of recovery operations. Wide levels may
not detect all failures of the system. In details, WTH and CTH
can be computed by solving the following inequalities looking

Stefano Di Carlo

IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY, VOL. XX, NO. XX, XXX XXXX 4

SA
FE
 A
RE
A

W
A
RN
IN
G
 A
RE
A

CR
IT
IC
A
L
A
RE
A

Fig. 3: CDF of DCM counter of the Susan-Smoothing
MiBench benchmarks [19] computed profiling 100,000 exe-
cutions of the task.

at the collected profiles:

P (X > WTH) < CW ⇒ FX(WTH) > 1− CW (1)

P (X > CTH) < CC ⇒ FX(WTH) > 1− CC (2)

During the on-line phase, the safety task monitors the PMCs
of every task in order to determine in which area the execution
can be mapped. The task state is then classified as follows:
• safe direct: if the value of the PMC is below the warning

threshold.
• critical direct: if the value of the PMCs is above the

critical threshold. In this case a recovery action must be
issued;

• warning: if the value of the PMCs is between the warning
and the critical threshold. In this case, if this conditions is
detected α consecutive times the task is marked as critical
warning, otherwise it is classified as safe warning.

The choice of α is related to the probability that the system
is in a safe state after α consecutive warning classifications
denoted as P (FPα). P (FPα) is obtained during the process
profiling of the off-line phase. According to [13] α can be
calculated as:

α =
ln(1− P (FPα))

ln(F (CTH)− F (WTH))
(3)

C. Attack model

Securing the CPS architecture presented in Fig. 1 is an
important task. This paper focuses on an attacker interested
in recovering the AES encryption key of a node to carry out
malicious actions. We suppose the attacker is not interested
in denial-of-service attacks, because they disrupt the offered
services and prevent the control of the CPS. A successful
attack on a node may spread the infection to every node, thus
compromising the whole system. In the case all nodes share

the same secret key, the whole system would be immediately
compromised when a single node is compromised. When the
secret key is different for every node, the same malicious task
could target another node and the attack could be repeated
until all nodes composing the CPS are under control of the
attacker.

Looking at the architecture of the node reported in Fig. 2,
we assume that enough effort has been carried out to secure
the hardware OS level of the node. This includes securing the
secret key and the encryption/decryption service. Nevertheless,
we assume that the attacker may exploit user level vulnera-
bilities to inject a malicious task (e.g., a virus or a malware)
within a node. The attack could be undertaken on a specific
node because the attacker could have gained physical access to
it, or because that specific node offers unique vulnerabilities.
The malicious task is a user application that can exploit the
computational resources of the node as well as the services
offered by the OS of the node. Therefore, the attacker can
probe the PMCs, trigger the encryption process and send the
information to a remote entity that can process them off-line
in order to perform the attack.

Despite PMCs are a force point from the safety perspective,
they represent a weak point from the security standpoint. They
expose the system to timing attacks, a category of side-channel
attacks [34]. PMCs can therefore be considered as a double
edged weapon. This paper focuses on the side-channel attack
presented by Bonneau and Mironov in [17], which targets the
AES encryption algorithm.

The theory exploited to perform the attack is based on the
concept of cache-collisions during the final round of the AES
encryption cypher.

For performance reasons, the algebraic operations of a
software-implemented AES cypher are combined in precom-
puted values stored in different lookup tables. Thus, the
encryption can be considered as a sequence of table lookups.
As all data of a program, these tables are loaded in the L1
data cache memory during the encryption process. If the data
is already loaded in the cache memory, a lookup produces a
cache-hit. On the other hand, when the data cannot be found in
the cache memory, the lookup generates a cache-miss, which
will take on average more time to be served since it requires
to access data from a slower memory level. Depending on the
organization of the cache, each cache line may store multiple
table entries. A cache-collision occurs when a pair of different
lookups targets the same cache line and for sure does not
generate a cache-miss.

Being able to detect when a collision occurs is important
for the attacker, since it gives a clue of which element of the
table has been accessed.

Let us denote with i and j the index of two bytes of a
generic 16 bytes ciphertext (0 ≤ i, j ≤ 15), with ci and cj
their respective values, and let us consider the encryption time
(i.e., CCC counter) as available information. As described in
[17], the first goal of the attacker is to record in a data structure
the timing data for random ciphertexts (samples) for several
pairs (ci , cj). The data structure is organized as follows:

t[i, j,∆] = CCCk (4)

Stefano Di Carlo

IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY, VOL. XX, NO. XX, XXX XXXX 5

where ∆ = ci ⊕ cj and CCCk is the encryption time of
the kth collected sample. If multiple data are collected for
the same entry of the table, the average time is recorded.
According to [17], if a cache-collision occurs the following
equality becomes true:

ki ⊕ kj = ci ⊕ cj (5)

As discussed before, when a collision occurs, the encryption
time should be significantly lower that the cases in which there
is no collision. To succeed in the attack, the attacker has to
find one value ∆

′

i,j for each i, j such that:

t[i, j,∆
′

i,j] < CCC (6)

where CCC is the average encryption time over all col-
lected samples. We denote this as collision condition. In this
case ∆

′

i,j becomes an accurate guess for the true value ki⊕kj .
This reduces the space of possible values of ki ⊕ kj that
an attacker has to test to recover the key. Several further
optimizations are proposed by [17] to reduce the number
of samples required to perform the attack. Nevertheless, the
general concept of the attack remains the same.

When using the CCC timer, the attacker exploits the timing
as an indirect measure of the number of cache-misses. The
correlation between the CCC timer and the number of cache
misses is the key factor. In the Pentium 3 processor analyzed
by [17] this correlation was very high and therefore a low
number of samples (216) was enough to perform the attack.
With a more complex Pentium IV Xeon processor, [17] found
that, due to a lower correlation, the number of samples
required to perform the attack increased to 219. We analyzed
this correlation for the Core i7 processor considered in this
paper. Due to the complexity of this processor, there is very
low correlation between the timing and the number of cache-
misses. This means that most of the collected samples are
actually not useful for the attack and a significantly higher
number of samples is required to recover the key (227).
Nevertheless, the attack is still possible.

Based on this consideration, if a direct measure of the
number of cache-misses is available to the attacker (through
the DCM counter), a significantly lower number of samples
should be enough to recover the key as confirmed by the
experimental results provided in Section V.

The possibility to access the PMCs by the malicious task,
that includes timing and cache access information, opens a
path to properly implement this attack in the node architecture
presented in Fig. 2.

IV. ATTACK MITIGATION

The success of the attack introduced in Section III-C de-
pends on the PMC samples collected by the malicious task.
To achieve its goal, the attacker has to statistically analyze the
distribution of the different samples.

The main idea proposed in this paper to counteract this
attacker is to modify the PMC service implemented at the OS
level of Fig. 2. Each PMC reading is poisoned in order to
obfuscate the statistical properties of the PMC:

PMC ′ = cf(PMC) (7)

where PMC ′ is the corrupted PMC reading, PMC is the cor-
rect PMC reading, and cf(PMC) is the corruption function
that is a function of the value of the counter.

However, this corruption may jeopardize the capability of
the safety task described in Section III-B to detect timing
violations. This may potentially create both false negatives
(i.e., undetected time violations) or false positives (i.e., safe
conditions detected as violations). Therefore the corruption
level must be carefully considered both from the security and
from the safety standpoint.

It is worth recalling that, in the proposed architecture, the
PMC service is considered secure (see section III-C) and
represents the only user access point to the PMCs.

The collision condition introduced in equation (6) tells
us that samples with PMC values (i.e., CCC or DCM) sig-
nificantly lower than the average value computed over all
collected samples are the ones actually important to recover
the key. To obfuscate the properties of these samples, one
option is to alter their values in such a way to violate the
collision condition, leaving the remaining values unaffected
by the poisoning.

To identify the values to alter, we exploit the CDF obtained
profiling the PMCs from the encryption service. Fig. 4 reports
the CDF computed profiling the CCC counter over 100,000
samples.

Fig. 4: CDF of the CCC counter for the encryption service.
Vertical lines represent the position of the selected thresholds.
CollTH is set here in order to identify the lowest 5% samples.

The proposed solution is to set a threshold (CollTH) in
such a way to identify the lowest x% samples of the CDF.
Based on CollTH , it is possible to identify a collision area
delimited by the lowest collected sample (MIN) and CollTH .
Every sample falling in the collision area is moved to a random
position of a different area called poisoning area (Fig. 4) by
defining the corruption function of eq. (7) according to the
following equation:

cf(PMC) =

{
PMC (PMC < MIN) ∨ (PMC > CollTH)

U(µ+ ε, ub) MIN ≤ PMC ≤ CollTH
(8)

Stefano Di Carlo

IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY, VOL. XX, NO. XX, XXX XXXX 6

where PMC is the value of the counter, MIN is the lowest
sample collected when profiling the encryption service and µ
is the average value of the PMC over all samples collected
during the profiling of the encryption service.

The upper bound of the poisoning area (ub) must not exceed
two times the value of the minimum collected sample. This
is motivated by the fact that, as described in [17], one of the
techniques exploited by the attacker to optimize the attack
is to discard samples higher than two times the minimum,
considering them as outliers.

The lowest bound of the poisoning is instead defined by
the ε parameter in order to create a guard band between the
average (µ) and the beginning of the poisoning area. This
is required since the effect of the corruption is to increase
the average of the collected samples. The guard band can be
empirically computed and must be large enough to guarantee
that, even after the application of the poisoning, the corrupted
samples are higher than the new average.

The decision of how many samples to corrupt (i.e., the
selection of CollTH) and the size of the guard band (i.e.,
the selection of ε and ub) is a trade-off between security
and amount of corruption. Higher values of CollTH and ε
increase the poisoning level and therefore the complexity of
the attack (see Section V). However, increased poisoning levels
may have a negative effect on those safety techniques that
rely on the PMC to detect anomalies. Therefore, the selection
of these parameters must be carefully analyzed considering
the interplay between safety and security as will be discussed
in Section V where the different values of poisoning will
be selected in relation to the safety technique presented in
Section III-B.

It is important to highlight that, a single corruption level is
used for all tasks in the system. This translates into a very sim-
ple implementation at the OS level. Moreover, this simplicity
opens up a path for possible hardware implementations of this
technique that would relax some of the limitations currently
imposed in the attack model. Nevertheless, this hardware
implementation is out of the scope of this paper and will be
considered in future extension of this research project.

As discussed in Section III-C, the proposed technique does
not guarantee by proof the prevention of the considered attack.
Differently, it increases the complexity of the attack that,
in this case, translates in the requirement of collecting an
increased number of samples in order to discover the secret
key. This is an important result. In general a careful design
of a CPS under the security domain would supply a limited
operational lifetime of the encryption key, as well as key
replacement policies. In this paper we do not consider how the
different keys are generated or derived from previous keys , nor
how they are distributed among the nodes of the CPS. Several
techniques do exist in this domain [39], [40]. Instead we would
like to discuss the impact of the proposed technique on the
lifetime of the key. Experimental data (see Section V-B) show
that the proposed approach significantly increases the number
of samples required to perform the attack. Without considering
the additional time required to analyze the samples (this can
be carried out off-line with the support of high-performace

computing facilities) the time required to collect additional
samples has a positive impact on the possible lifetime of a key,
thus reducing the overhead associated to the key generation
and distribution.

V. EXPERIMENTAL RESULTS

A. Experimental setup

To show the proposed approach at work, we evaluated the
attack mitigation technique on a sample computing node.

To account for the fact that CPSs cannot constantly update
their hardware architecture, we selected for our experiments a
board equipped with a powerful but relatively old Intel Core
i7-720QM CPU (released in Sept. 2009). This processor is
based on the Intel first generation Nehalem microarchitecture.
It embeds 4 cores, each equipped with a 64KB L1 cache (32
KB L1 data and 32 KB L1 instruction) and a 256KB L2 cache.
Finally, the processor implements a 6MB shared L3 cache.

The poisoning technique was evaluated considering six
different values of CollTH , each defined in order to identify
the lowest x% samples (x ∈ {5%, 7.5%, 10%, 12.5%, 15%})
obtained when profiling the encryption service (see Sec-
tion IV). For this purpose, the encryption service was pro-
filed collecting 100,000 samples. To define the poisoning
area taking into account the considered safety technique, we
selected ε = WAES

TH − µAES (see equation(8) and Table I).
This value is by construction large enough to guarantee a
guard band as requested by our methodology. Moreover, to
explore the impact of the size of the poisoning area on
the effectiveness of the proposed technique, we evaluated
different values for the upper bound of this area: ub ∈
{ 2·MIN

16 , 2·MIN
8 , 2·MIN

4 , 2·MIN
2 , 2 ·MIN},

To simulate the execution of different tasks we selected a
set of 13 benchmarks from the MiBench benchmark suite
[19] executed on a Linux operating system (kernel 3.11).
These benchmarks represent typical algorithms implemented
in several embedded systems sectors:
• Automotive/Industrial: susan-edges (edges), susan-

corners (corners), susan-smoothing (smooth), quick sort
(qsort), basic math tests (bscmath);

• Consumer: jpeg encoder (cjpeg), jpeg decoder (djpeg);
• Office: string search (strsrc);
• Network and Security: Dijkstra’s algorithm (dijkstra),

Secure Hash Algorithm (sha);
• Telecommunications: Fast Fourier Transform (fft), AD-

PCM encoder (rcaudio), ADPCM decoder (rdaudio).
Each task was profiled as described in Section III-B by

collecting the value of the CCC and DCM counters over
100,000 executions. Input data for each task were taken from
the ”small” data set provided with the MiBench suite [19].

The collected profiles were used to compute WTH , CTH
and the average PMC value (µ) of each task for the two
considered counters as reported in Table I. The confidence
levels to compute the two thresholds were set to CW = 4%
and CC = 0.6% and according to equation (3) α = 3.

For the CCC counter, Table I shows a clear separation
of several orders of magnitude between WTH , CTH and µ
of the encryption service (AES) and the ones of all other

Stefano Di Carlo

IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY, VOL. XX, NO. XX, XXX XXXX 7

TABLE I: Results of the profiling of the selected benchmarks.
This also includes the profiling of the encryption service
(AES).

CCC counter DCM counter
Benchmark WTH CTH µ WTH CTH µ
AES 3.58e2 3.96e2 5.59e2 7.37e1 7.70e1 7.90e1
bscmath 5.35e6 5.50e6 6.21e6 1.69e1 2.30e1 2.60e1
cjpeg 1.20e7 2.64e7 2.95e7 3.31e4 3.33e4 3.36e4
corners 6.84e5 1.38e6 1.39e6 9.27e2 1.04e3 1.05e3
dijkstra 1.44e7 1.46e7 1.67e7 5.45e4 5.51e4 5.59e4
djpeg 3.38e6 8.01e6 8.11e6 6.73e3 6.96e3 7.23e3
edges 1.25e6 2.36e6 2.37e6 1.37e3 1.59e3 1.61e3
fft 3.54e5 4.04e5 4.32e5 3.78e3 4.10e3 4.31e3
qsort 1.70e7 3.27e7 3.28e7 4.18e5 4.19e5 4.21e5
rcaudio 2.15e9 4.12e9 4.27e9 1.84e9 3.54e9 3.66e9
rdaudio 2.15e9 4.12e9 4.27e9 1.80e9 3.46e9 3.58e9
sha 2.94e6 5.64e6 5.64e6 2.45e2 3.19e2 3.58e2
smooth 7.38e6 1.47e7 1.47e7 2.74e2 3.56e2 3.89e2
strsrc 1.26e5 3.24e5 3.24e5 1.49e2 1.75e2 2.05e2
synth01 2.69e2 3.96e2 5.33e2 4.84e1 7.70e1 7.80e1
synth02 2.88e2 3.96e2 5.36e2 6.38e1 7.70e1 7.80e1
synth03 3.35e2 3.96e2 5.34e2 5.58e1 7.70e1 7.80e1

benchmarks. Therefore, according to equation (8) and as will
be analyzed in Section V-C the poisoning technique should
have minimum impact on the monitoring capability of the
safety task. Even if the gap is reduced for some benchmarks,
the same separation can be observed when considering the
CCC counter.

In order to better analyze how the safety task could be
impacted by the presented poisoning technique for tasks with
PMC profiles similar to the ones of the encryption service, a
set of three synthetic profiles (synth01, synth02, and synth03
in Table I) was generated. These profiles contain random
PMC values with a distribution that resembles the one of the
encryption service.

To perform the attack, we adapted the C code presented
in [17] available on the repository [41]. For each PMC, we
collected 3 sets of samples on the node under attack. Each
set contains 230 = 1, 073, 741, 824 samples, with the related
ciphertext of 16 byte. The samples were transferred to a remote
workstation equipped with an Intel XEON E5-2680 2.70GHZ
to be processed and attacked. For each set, the attack consisted
in corrupting the samples and performing the attack. For each
set we performed 3 repetitions of corruption and attack.

To analyze the behavior of the safety task, we profiled both
the CCC and the DCM counters over 100,000 executions
of each benchmark from Table I. After the profiling was
completed we generated 1,000 traces for each benchmark
(each of them composed of 100,000 samples) applying the
same corruption levels used to perform the attack. All samples
of each trace were classified according to the technique
discussed in Section III-B.

To show the improvements of the attack mitigation tech-
nique proposed in this paper, we compared it with results ob-
tained performing a similar analysis but applying our previous
technique proposed in [18].

B. Attack mitigation results

The attack complexity can be measured for an attacker as
the number of PMC samples needed to retrieve the encryption

key.
Fig. 5 shows the number of samples required to perform the

attack for the CCC counter for the two considered techniques.

(a) Results obtained using the poisoning technique presented in
Section IV. Gray spots indicated the failure of the attack.

(b) Results obtained by applying the poisoning technique presented
in [18] using different scaling factors .

Fig. 5: Number of samples to perform the attack for the
CCC counter. Blue, orange and yellow data report the average
values of the 3 repetitions of the experiment for each of the
3 considered sets of samples, while green values report the
global average.

The number of samples required to retrieve the encryption
key without any PMC poisoning is on average ∼ 135, 000, 000
samples. This defines the baseline of the attack.

Fig. 5a shows that, regardless of the size of the collision
(x axis) and poisoning area (y axis), the attack always fails
after analyzing 230 samples when applying the proposed attack
mitigation technique. This is a significant improvement with
respect to results obtained applying the technique proposed
in [18] (Fig. 5b). In this last case, the attacker is in general
able to recover the key with less samples while introducing a
higher level of corruption of the counter.

While it is impossible to prove that for an increased number
of samples the attack would not succeed, it is important to
highlight that the amount of data the attacker has to collect
passes from ∼2.5GB for the baseline up to ∼20GB when 230

samples are collected. In a real scenario these data must be
collected in a stealthy way, without draining all the resources

Stefano Di Carlo

IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY, VOL. XX, NO. XX, XXX XXXX 8

of the system. Therefore, this could require a significant
amount of time that, coupled with the use of key replacement
keys (see Section IV), may further help counteracting the
attacker.

Fig 6 reports a similar analysis for the DCM counter.
The attack against the unaltered set of samples requires on
average 524, 288 samples to discover the key. This value is
significantly lower than the one required to perform the attack
using the CCC counter.

When looking at samples collected for the two considered
PMCs (i.e., CCC and DCM), we noticed, as expected, that
DCM samples are more stables (i.e., they have a lower
variance). Differently, as discussed in Section III-C, the CCC
counter is affected by several complex HW/SW interactions
that are in general hard to predict. These interactions introduce
variations in the timing behavior of the application across
different executions, creating a higher variance in the observed
values of the CCC timer and reducing its correlation with the
number of cache misses (see Section III-C). This motivates
the reduced number of samples required to perform the
attack using DCM. The higher stability of this PMC makes
it difficult to protect using the technique proposed in [18].
Even with very high scaling factors (Fig. 6b), the poisoning
technique proposed in [18] is unable to introduce sufficient
improvements from the security point of view. Moreover, this
high poisoning would introduce an unacceptable corruption
from the safety point of view. More in details, we observed
that with this technique the altered samples maintain a similar
allocation with respect to the average value, i.e., the majority
of the original samples lower than the average remain lower
than the average even after the alteration. They therefore retain
the information exploited by the attacker to recover the key.

Differently, the technique proposed in this paper (Fig. 6a)
is able to efficiently protect also the DCM counter. As for the
CCC counter, the attack always fails with the only exception
of the extreme cases in which both the collision area and the
poisoning area are strongly reduced. Nevertheless, even in this
cases we observe significant improvements in the number of
samples required to perform the attack.

To summarize, the proposed attack mitigation technique,
provides optimal results from the security perspective, con-
sidering both DCM and CCC counters.

C. Safety results

Figs. 7 and 8 show, for each task, the number of exe-
cutions that fall in the different safety states introduced in
Section III-B for the CCC and DCM counter, respectively.
Subfigures are associated to the different safety states: safe
direct (Figs. 7a and 8a), critical direct (Figs. 7b and 8b), safe
warning (Figs. 7c and 8c), and critical warning (Figs. 7d and
8d). Results are provided for different corruption levels of
the CCC and DCM counters, averaging the results over 1,000
repetitions of the analysis.

Looking at the figures it is clear that the MiBench tasks
are not impacted by the alteration of both the CCC and DCM
counters for all considered percentage sizes of the collision
area (x axis). For all cases we used the largest poisoning

(a) Results obtained using the poisoning technique presented in
Section IV. Gray spots indicated the failure of the attack.

(b) Results obtained by applying the poisoning technique presented
in [18] using different scaling factors

Fig. 6: Number of samples to perform the attack for the
DCM counter. Blue, orange and yellow data report the average
values of the 3 repetitions of the experiment for each of the
3 considered sets of samples, while green values reports the
global average.

area (i.e., ub = 2 ·MIN). This is favored by the fact that
WTH and CTTH of all these tasks are significantly different
when compared to the considered poisoning windows and is a
significant improvement with respect to the results presented
in [18].

Some changes can be observed only when looking at the
synthetic benchmarks.

Looking at the CCC counter, in the worst case (synth02)
the number of safe direct classifications drops from 96,018
to 77,035 generating 18,985 potential fault positives. This is
partially compensated by an increment of 3,884 safe warning
cases. Nevertheless, the remaining 15,101 cases out of the
100,000 total executions represent false positives that must
be handled. This impacts the performance of the system due
to an increased number of recovery actions required during
in field operations. A similar analysis can be carried out for
the DCM counter. By construction, no false negatives can be
introduced by the proposed technique, since the corruption is
always introduced as an additive positive factor.

Stefano Di Carlo

IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY, VOL. XX, NO. XX, XXX XXXX 9

Even if this may look a negative result, it is important to
recall that the profiles of the synthetic benchmarks have been
specifically generated to resemble those of the encryption ser-
vice. Therefore they represent an extreme worst case situations
difficult to encounter in real applications. These results must be
only considered as examples to better show the critical aspects
that should be carefully taken into account when designing a
CPS in which both safety and security must be guaranteed as
described in this paper.

This paper studied the interplay of two challenging aspects
of the design of a CPS: safety and security. It focused on
the role that the PMCs have when implementing mechanisms
able to enhance the safety of the system and, on the other
hand, the risks they introduce when looking at the security of
the system. Starting from the example of a PMC based safety
mechanism, and from the implementation of a security attack,
the paper proposed an attack mitigation strategy. Two different
PMC were analyzed and an extensive experimental campaign
shows the effectiveness of the proposed attack mitigation tech-
nique for both considered counters. This provides interesting
suggestions on how a designer should decide which PMC can
be securely exposed to the application software.

REFERENCES

[1] K. Carruthers, “Internet of things and beyond: Cyber-physical systems,”
IEEE Internet of Things Newsletter, vol. 10, 2014.

[2] R. Rajkumar, I. Lee, L. Sha, and J. Stankovic, “Cyber-physical systems:
The next computing revolution,” in Design Automation Conference, June
2010, pp. 731–736.

[3] M. Bhrugubanda, “A Review on Applications of Cyber Physical Sys-
tems,” International Journal of Innovative Science, Engineering &
Technology, vol. 2, no. 6, pp. 728–730, June 2105.

[4] H. Chen, “Applications of cyber-physical system: a literature review,”
Journal of Industrial Integration and Management, vol. 2, no. 03, p.
1750012, 2017.

[5] L. Wang and X. V. Wang, Cloud-Based Cyber-Physical Systems in
Manufacturing. Springer, 2018.

[6] J. Ding, Y. Atif, S. F. Andler, B. Lindström, and M. Jeusfeld, “CPS-based
Threat Modeling for Critical Infrastructure Protection,” SIGMETRICS
Perform. Eval. Rev., vol. 45, no. 2, pp. 129–132, Oct. 2017.

[7] M. Wolf and D. Serpanos, “Safety and Security in Cyber-Physical
Systems and Internet-of-Things Systems,” Proceedings of the IEEE, vol.
106, no. 1, pp. 9–20, Jan 2018.

[8] G. Sabaliauskaite and A. P. Mathur, “Aligning cyber-physical system
safety and security,” in Complex Systems Design & Management Asia.
Springer, 2015, pp. 41–53.

[9] T. Novak and A. Treytl, “Functional safety and system security in
automation systems - a life cycle model,” in 2008 IEEE International
Conference on Emerging Technologies and Factory Automation, Sept
2008, pp. 311–318.

[10] L. Piètre-Cambacédès and C. Chaudet, “The SEMA referential
framework: Avoiding ambiguities in the terms “security”
and “safety”,” International Journal of Critical Infrastructure
Protection, vol. 3, no. 2, pp. 55–66, 2010. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1874548210000247

[11] L. Piètre-Cambacédès and M. Bouissou, “Cross-fertilization between
safety and security engineering,” Reliability Engineering &
System Safety, vol. 110, pp. 110–126, 2013. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0951832012001913

[12] ——, “Modeling safety and security interdependencies with BDMP
(Boolean logic Driven Markov Processes),” in Systems Man and Cyber-
netics (SMC), 2010 IEEE International Conference on. IEEE, 2010,
pp. 2852–2861.

[13] S. Esposito, M. Violante, M. Sozzi, M. Terrone, and M. Traversone,
“A Novel Method for Online Detection of Faults Affecting Execution-
Time in Multicore-Based Systems,” ACM Trans. Embed. Comput. Syst.,
vol. 16, no. 4, pp. 94:1–94:19, May 2017.

[14] J. Nowotsch, M. Paulitsch, D. Bühler, H. Theiling, S. Wegener, and
M. Schmidt, “Multi-core Interference-Sensitive WCET Analysis Lever-
aging Runtime Resource Capacity Enforcement,” in 2014 26th Euromi-
cro Conference on Real-Time Systems, July 2014, pp. 109–118.

[15] E. Mezzetti, L. Kosmidis, J. Abella, and F. J. Cazorla, “High-Integrity
Performance Monitoring Units in Automotive Chips for Reliable Timing
V and V,” IEEE Micro, vol. 38, no. 1, pp. 56–65, January 2018.

[16] M. F. B. Abbas, S. P. Kadiyala, A. Prakash, T. Srikanthan, and Y. L.
Aung, “Hardware performance counters based runtime anomaly detec-
tion using svm,” in 2017 TRON Symposium (TRONSHOW), Dec 2017,
pp. 1–9.

[17] J. Bonneau and I. Mironov, “Cache-collision timing attacks against
AES,” in International Workshop on Cryptographic Hardware and
Embedded Systems. Springer, 2006, pp. 201–215.

[18] A. Carelli, A. Vallero, and S. Di Carlo, “Shielding Performance Monitor
Counters: a double edge weapon for safety and security,” in 24th IEEE
International Symposium on On-Line Testing and Robust System Design,
2018.

[19] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown, “MiBench: A free, commercially representative
embedded benchmark suite,” in Proceedings of the Fourth Annual IEEE
International Workshop on Workload Characterization. WWC-4 (Cat.
No.01EX538), Dec 2001, pp. 3–14.

[20] A. Vallero, A. Savino, G. Politano, S. D. Carlo, A. Chatzidimitriou,
S. Tselonis, M. Kaliorakis, D. Gizopoulos, M. Riera, R. Canal, A. Gon-
zalez, M. Kooli, A. Bosio, and G. D. Natale, “Cross-layer system
reliability assessment framework for hardware faults,” in 2016 IEEE
International Test Conference (ITC), Nov 2016, pp. 1–10.

[21] A. Chatzidimitriou, M. Kaliorakis, D. Gizopoulos, M. Iacaruso, M. Pip-
ponzi, R. Mariani, and S. D. Carlo, “RT Level vs. Microarchitecture-
Level Reliability Assessment: Case Study on ARM(R) Cortex(R)-A9
CPU,” in 2017 47th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks Workshops (DSN-W), June 2017, pp.
117–120.

[22] A. Savino, A. Vallero, and S. D. Carlo, “ReDO: Cross-Layer Multi-
Objective Design-Exploration Framework for Efficient Soft Error Re-
silient Systems,” IEEE Transactions on Computers, pp. 1–1, 2018.

[23] M. Kaliorakis, D. Gizopoulos, R. Canal, and A. Gonzalez, “MeRLiN:
Exploiting Dynamic Instruction Behavior for Fast and Accurate
Microarchitecture Level Reliability Assessment,” in Proceedings of the
44th Annual International Symposium on Computer Architecture, ser.
ISCA ’17. New York, NY, USA: ACM, 2017, pp. 241–254. [Online].
Available: http://doi.acm.org/10.1145/3079856.3080225

[24] E. Novillo and P. Lu, “On-line debugging and performance monitoring
with barriers,” in Proceedings 15th International Parallel and Dis-
tributed Processing Symposium. IPDPS 2001, April 2001, pp. 8 pp.–.

[25] S. Moore, D. Terpstra, K. London, P. Mucci, P. Teller, L. Salayandia,
A. Bayona, and M. Nieto, “Papi deployment, evaluation, and exten-
sions,” in 2003 User Group Conference. Proceedings, June 2003, pp.
349–353.

[26] M. Domı́nguez-Morales, P. Iñigo, J. L. Font, D. Cascado, G. Jimenez,
F. Dı́az, J. L. Sevillano, and A. Linares-Barranco, “Frames-to-aer effi-
ciency study based on cpus performance counters,” in Proceedings of the
2010 International Symposium on Performance Evaluation of Computer
and Telecommunication Systems (SPECTS ’10), July 2010, pp. 141–148.

[27] A. Kandalintsev, R. L. Cigno, D. Kliazovich, and P. Bouvry, “Profiling
cloud applications with hardware performance counters,” in The Interna-
tional Conference on Information Networking 2014 (ICOIN2014), Feb
2014, pp. 52–57.

[28] G. Theodorou, N. Kranitis, A. Paschalis, and D. Gizopoulos, “Software-
based self-test for small caches in microprocessors,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 33,
no. 12, pp. 1991–2004, Dec 2014.

[29] A. Paschalis and D. Gizopoulos, “Effective software-based self-test
strategies for on-line periodic testing of embedded processors,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 24, no. 1, pp. 88–99, Jan 2005.

[30] X. Wang, C. Konstantinou, M. Maniatakos, and R. Karri, “ConFirm:
Detecting firmware modifications in embedded systems using Hardware
Performance Counters,” in 2015 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), Nov 2015, pp. 544–551.

[31] Y. Xia, Y. Liu, H. Chen, and B. Zang, “CFIMon: Detecting violation of
control flow integrity using performance counters,” in Dependable Sys-
tems and Networks (DSN), 2012 42nd Annual IEEE/IFIP International
Conference on. IEEE, 2012, pp. 1–12.

Stefano Di Carlo

IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY, VOL. XX, NO. XX, XXX XXXX 10

0% 1% 5% 7.5% 10% 12.5% 15%
x (%)

80000

85000

90000

95000

100000

Nu
m

be
r o

f e
xe

cu
tio

ns
Safe - Direct

Tasks
bscmath
cjpeg
corners
dijkstra
djpeg
edges
fft
qsort
rcaudio
rdaudio
sha
smooth
strsrc
synth01
synth02
synth03

(a)

0% 1% 5% 7.5% 10% 12.5% 15%
x (%)

0

1000

2000

3000

4000

Nu
m

be
r o

f e
xe

cu
tio

ns

Critical - Direct
Tasks

bscmath
cjpeg
corners
dijkstra
djpeg
edges
fft
qsort
rcaudio
rdaudio
sha
smooth
strsrc
synth01
synth02
synth03

(b)

0% 1% 5% 7.5% 10% 12.5% 15%
x (%)

0

2500

5000

7500

10000

12500

15000

Nu
m

be
r o

f e
xe

cu
tio

ns

Safe - Warning
Tasks

bscmath
cjpeg
corners
dijkstra
djpeg
edges
fft
qsort
rcaudio
rdaudio
sha
smooth
strsrc
synth01
synth02
synth03

(c)

0% 1% 5% 7.5% 10% 12.5% 15%
x (%)

0

500

1000

1500

2000

Nu
m

be
r o

f e
xe

cu
tio

ns

Critical - Warning
Tasks

bscmath
cjpeg
corners
dijkstra
djpeg
edges
fft
qsort
rcaudio
rdaudio
sha
smooth
strsrc
synth01
synth02
synth03

(d)

Fig. 7: Impact of the CCC corruption on the safety state classification of each benchmark

[32] C. Yilmaz, “Using hardware performance counters for fault localization,”
in 2010 Second International Conference on Advances in System Testing
and Validation Lifecycle, Aug 2010, pp. 87–92.

[33] C. Yilmaz, A. Paradkar, and C. Williams, “Time will tell,” in 2008
ACM/IEEE 30th International Conference on Software Engineering,
May 2008, pp. 81–90.

[34] D. J. Bernstein, “Cache-timing attacks on AES,” [Online]
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf, 2005.

[35] L. Uhsadel, A. Georges, and I. Verbauwhede, “Exploiting Hardware
Performance Counters,” in 2008 5th Workshop on Fault Diagnosis and
Tolerance in Cryptography, Aug 2008, pp. 59–67.

[36] S. Bhattacharya and D. Mukhopadhyay, “Who watches the watchmen?:
Utilizing Performance Monitors for Compromising keys of RSA on Intel
Platforms,” in International Workshop on Cryptographic Hardware and
Embedded Systems. Springer, 2015, pp. 248–266.

[37] M. Alam, S. Bhattacharya, D. Mukhopadhyay, and S. Bhattacharya,
“Performance Counters to Rescue: A Machine Learning based safeguard
against Micro-architectural Side-Channel-Attacks.”

[38] H. Hassan, L. T. Yang, J. Xue, and E. Villar,
“Special issue on: “Heterogeneous architectures for Cyber-
physical systems (HACPS)”,” Microprocessors and Microsys-
tems, vol. 52, pp. 333–334, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0141933117301874

[39] E. Barker and A. Roginsky, “Recommendation for cryptographic key
generation,” NIST Special Publication, vol. 800, p. 133, 2012.

[40] J. Zhang and V. Varadharajan, “Wireless sensor network key man-
agement survey and taxonomy,” Journal of network and computer
applications, vol. 33, no. 2, pp. 63–75, 2010.

[41] J. Bonneau, “aes cache,” https://github.com/jcb82/aes cache, 2014.

Alessandro Vallero (S’15) received a Ph.D. in
computer engineering from Politecnico di Torino in
Italy and a M.Sc. degree in electronic engineering
from the University of Illinois at Chicago, US,
and Politecnico di Torino, Italy. Currently he is a
postdoc at the Department of Control and Computer
Engineering of Politecnico di Torino in Italy. His
research interests focus on system level reliability
and reliable reconfigurable systems.

Alberto Carelli (S’18) received a M.Sc. in computer
engineering from Politecnico di Torino in Italy.
Currently he is a Ph.D. student at the Department of
Control and Computer Engineering of Politecnico
di Torino in Italy. His research interests focus on
hardware security and reliability for cyber-physical
systems and critical infrastructures.

Stefano Di Carlo

IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY, VOL. XX, NO. XX, XXX XXXX 11

0% 1% 5% 7.5% 10% 12.5% 15%
x (%)

30000

40000

50000

60000

70000

80000

90000

100000

Nu
m

be
r o

f e
xe

cu
tio

ns
Safe - Direct

Tasks
bscmath
cjpeg
corners
dijkstra
djpeg
edges
fft
qsort
rcaudio
rdaudio
sha
smooth
strsrc
synth01
synth02
synth03

(a)

0% 1% 5% 7.5% 10% 12.5% 15%
x (%)

0

10000

20000

30000

40000

50000

60000

70000

Nu
m

be
r o

f e
xe

cu
tio

ns

Critical - Direct
Tasks

bscmath
cjpeg
corners
dijkstra
djpeg
edges
fft
qsort
rcaudio
rdaudio
sha
smooth
strsrc
synth01
synth02
synth03

(b)

0% 1% 5% 7.5% 10% 12.5% 15%
x (%)

1750

2000

2250

2500

2750

3000

3250

Nu
m

be
r o

f e
xe

cu
tio

ns

Safe - Warning
Tasks

bscmath
cjpeg
corners
dijkstra
djpeg
edges
fft
qsort
rcaudio
rdaudio
sha
smooth
strsrc
synth01
synth02
synth03

(c)

0% 1% 5% 7.5% 10% 12.5% 15%
x (%)

0

200

400

600

800

1000

Nu
m

be
r o

f e
xe

cu
tio

ns

Critical - Warning
Tasks

bscmath
cjpeg
corners
dijkstra
djpeg
edges
fft
qsort
rcaudio
rdaudio
sha
smooth
strsrc
synth01
synth02
synth03

(d)

Fig. 8: Impact of the DCM corruption on the safety state classification of each benchmark

Stefano Di Carlo (SM’00-M’03-SM’11) received a
M.Sc. degree in computer engineering and a Ph.D.
degree in information technologies from Politecnico
di Torino, Italy, where he is a tenured Associate
professor. His research interests include DFT, BIST,
and dependability. He has coordinated the EU-FP7
CLERECO on Cross- Layer Early Reliability Es-
timation for the Computing cOntinuum. Di Carlo
has published more than 170 papers in peer re-
viewed IEEE and ACM journals and conferences.
He regularly serves on the Organizing and Program

Committees of major IEEE and ACM conferences. He is a golden core
member of the IEEE Computer Society and a senior member of the IEEE.

Stefano Di Carlo

