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Abstract—Recent years have witnessed the growth of the
adoption of Cyber-Physical Systems (CPSs) in many sectors such
as automotive, aerospace, civil infrastructures and healthcare.
Several CPS applications include critical scenarios, where a
failure of the system can lead to catastrophic consequences.
Therefore, anomalies due to failure or malicious attacks must
be timely detected. This paper focuses on two relevant aspects
of the design of a CPS: safety and security. In particular, it
studies how performance monitor counters (PMCs) available in
modern microprocessors can be from the one hand a valuable
tool to enhance the safety of a system and, on the other hand, a
security backdoor. Starting from the example of a PMC based
safety mechanism, the paper shows the implementation of a
possible attack and eventually proposes a strategy to mitigate
the effectiveness of the attack while preserving the safeness of
the system.

Index Terms—safety, security, cyber physical systems, perfor-
mance counters.

I. INTRODUCTION

The increasing adoption of Cyber-Physical Systems (CPSs)
employing IoT devices is a matter-of-fact. A CPS is a system
controlling a physical process. A CPS integrates processing
units, sensors and actuators enabling the interaction of the
computing infrastructure with the physical world. All devices
of a CPS are interconnected in order to create a network
enabling the different nodes to exchange information. The
main task of such devices is to acquire knowledge on a
physical process.

The application of CPSs is becoming pervasive and will
drive innovation in many sectors such as aerospace, automo-
tive, chemical process, civil infrastructures, energy, healthcare,
manufacturing and transportation [1], [2]. In this context,
CPSs are becoming a significant and mandatory element
of several critical infrastructures [3]. Critical infrastructures
constitute the technological backbone of our society. However,
the consequences of a misbehavior of such complex systems
can lead to catastrophic consequences. The misbehavior can
be the result of a failure of one of their components, or an
intentional attempt to corrupt their behavior.

In this context, both safety and security aim at the same
goal. Safety aims at avoiding hazards due to accidental fail-
ures, while security focuses on protecting the system from
intentional attacks [4]. The boundary between safety and
security is becoming thinner and there is a recognized request
to jointly strengthen both of them. This is exacerbated by the
fact that security solutions may have a negative effect on the
safety properties of the system and vice versa [5].

Given this premise, this paper focuses on the safety and
security implications introduced by the availability of different
Performance Monitor Counters (PMCs) in modern micropro-
cessors employed in CPSs. PMCs are an effective instrument
to detect timing violations in multiprocessor systems and other
types of physical failures. However, at the same time, they
have been exploited to perform different classes of attacks
(see Section II for related work on the use of PMCs in the
safety and security domain).

In particular, this paper analyzes the application of the
safety technique proposed in [6] in the context of a complex
CPS. This technique exploits PMCs to monitor the duration
of a process in order to prevent deadline violations during
the execution of different tasks. However, the need to access
the PMCs introduces a serious security vulnerability. The
same PMCs used to guarantee safety of the system can be
used to implement the attack described by Bonneau in [7].
This attack exploits the PMCs to discover the secret key of
an Advanced Encryption Standard (AES) cipher potentially
violating the confidentiality of a system using this encryption
algorithm. Eventually, this paper proposes a strategy to alter
the readings of the PMCs at the user level in order to mitigate
the side-channel attack, while preserving the effectiveness of
the considered safety mechanism.

In our experiments, we evaluated the impact of the proposed
security mitigation technique on the safety and security of
a CPS executing 7 MiBench benchmarks [8] and the AES
encryption, victim of the attack. The ultimate goal of our
experiments is to show how the proposed technique enables
to maintain the safety level of the system while mitigating the
effect of the considered attack.

II. BACKGROUND

PMCs are special registers available on most microprocessor
architectures. They are used to monitor events such as branch
predictions, cache hits/misses, process timing, etc.. The set
of events that can be monitored depends on the target mi-
croprocessor. The privileges required to access these counters
depend on both the processor architecture and the operating
system (OS).

PMCs are commonly used for detailed run-time profiling
of application/OS software. An accurate software profiling en-
ables performance improvement or prediction of performance
degradation [9]. PMCs have been employed in [10] to monitor
the control flow integrity of software applications by analyzing



branch instructions, thus detecting deviations from the correct
control flow. In [6] PMCs are used to detect faults causing
deadline violations in multicore systems. The authors of [11]
focus the estimation of WCET through PMCs for safety-
critical applications. In [12], WCET-aware PMUs are proposed
for safety certification in the automotive domain.

Considering the security domain PMCs were adopted to
detect firmware modifications [13]. However, different threats
are linked with PMCs. Indeed, each monitored event represents
a possible source of side-channel information that can be
exploited by a malicious attacker. Most related works in this
domain, focuses on the cache behavior during the encryption
with the AES algorithm. The author of [14] is able to recover
the complete AES key remotely exploiting timing information
related to cache accesses. The timing attack performed in [7]
requires a reduced number of samples to recover the AES key
when applied to Intel architectures. PMCs have been employed
as source of side-channel information also to attack encryption
algorithms on AMD platforms in [15]. Side-channel attacks are
possible also for asymmetric key cryptography, as reported
in [16]. The attack, carried out on Intel platforms, targets
a 1024 bit key of RSA and exploits branch-miss events.
Proper defense measures can be taken if the attack is detected.
The authors of [17] propose a generic detection mechanism,
using a pre-trained classifier, able to deal with a variety of
microarchitectural side-channel attacks, including also cache-
based attacks.

III. CPS ARCHITECTURE

A. CPS and node architecture
Fig. 1 shows the general CPS architecture considered in

this paper. It is composed of a master node, called monitor,
linked to a set of slave nodes. The monitor is the central
unit controlling the network. It constantly communicates with
the slave nodes, exchanging data with them. The monitor
is responsible for checking the responsiveness of each slave
node. Moreover, it decides the actions the CPS must carry out
when interacting with the physical world. This is accomplished
by sending commands to the actuators of the slave nodes based
one the received sensor data.

Fig. 1: The CPS architecture scheme

Fig. 2 shows the conceptual architecture of the slave nodes.
They are computational units able to communicate with the
monitor. Each node is directly connected to a set of sensors
and actuators. The sensors read the raw data of the cyber-
physical system, while the actuators execute the commands

received from the node. Each slave node is equipped with
an OS in charge of providing a set of services required to
accomplish different real-time tasks. Each node has a certain
number of tasks to complete, which is an intrinsic property of
the node itself. The number of tasks depends on the available
sensors and actuators and on the function the node has to
satisfy. The data exchanged with the monitor is encrypted with
a symmetric key by an appropriate service module integrated
in the OS. In general, any task running at the application level
can request the OS services.

Fig. 2: The node architecture

Different safety mechanisms to control the correct operation
of the node can be implemented as additional safety tasks at
the application level, potentially exploiting PMCs to carry out
their activity. The next section will introduce the specific safety
mechanism considered in this paper.

B. Safety task

The safety task considered in this paper is based on the
process monitoring technique presented by Esposito et al. in
[6]. The goal of the implemented technique is the online
detection of faults potentially able to cause deadline misses
of the tasks executed by the node. Overall, the considered
safety technique consists of two phases:

1) Off-line phase: all critical tasks executed on the node are
profiled off-line in order to generate their execution time
profile. This is accomplished by recording the PMCs
over several concurrent executions of the different tasks.
From the analysis of the application profiles a set of
thresholds for the considered PMCs is generated. As an
outcome of this phase, a set of thresholds for the PMCs
are computed.

2) On-line phase: all critical tasks are monitored through
the values of their PMCs, based on the thresholds
computed during the off-line phase. Every time a task
violates one of the thresholds a proper warning or error
is issued to highlight a potential hazard. This may in
turn trigger the activation of a recovery mechanism.

Further details about the implementation of this safety
mechanisms will be provided in section IV where mitigation
techniques against PMCs-based security attacks will be intro-
duced.



C. Attack model

Securing the CPS architecture presented in Fig. 1 is an
important task. This paper focuses on an attacker interested in
recovering the encryption key of a node to carry out malicious
actions. We suppose the attacker is not interested in denial-of-
service attacks, because they disrupt the offered services and
prevent the control of the CPS. A successful attack on a node
may spread the infection to every node, thus compromising
the whole system. In the case all nodes share the same secret
key, the whole system would be immediately compromised
when a single node is compromised. When the secret key is
different for every node, the same malicious task could target
another node and the attack could be repeated until all nodes
composing the CPS are under control of the attacker.

Looking at the architecture of the node reported in Fig. 2,
we assume that enough effort has been carried out to secure the
hardware and software architecture (OS and application level
tasks) of the node. This includes securing the secret key and
the encryption/decryption service. Nevertheless, we assume
that the attacker may exploit user level vulnerabilities to inject
a malicious task (e.g., a virus or a malware) within a node.
The attack could be undertaken on a specific node because the
attacker could have gained physical access to it, or because
that specific node offers unique vulnerabilities. The malicious
task is a user application that can exploit the computational
resources of the node as well as the services offered by the
OS of the node, thus it can probe the PMCs and trigger the
encryption process.

The possibility to access the PMCs makes the system
vulnerable to timing attacks, a category of side-channel attacks
that exploit time measurements as source of side-channel infor-
mation [14]. PMCs are the force point of safety mechanisms,
although they represent a weak point of the system from a
security perspective. They can therefore be considered as a
double edged weapon.

This paper focuses on the side-channel attack presented
by Bonneau et al. in [7], which targets the AES encryption
algorithm. The attack, exploits timing information related to
the memory access in the final round of the AES encryption.
More specifically, the encryption time is influenced by the data
locality of the final round S-box in the cache memory. In [7]
the attack is implemented looking at the L1 data or L2 cache
access profile. The attacker chooses a random initial key. It
then runs several iterations evolving the key, performing and
collecting a large number of encryption processes. The key
evolves according to the encryption time and to the ciphertext.
Each encryption process is defined as a sample. A large
number of samples is collected in order to give the evolution
a statistical meaning. The process ends when the correct key
is found.

The possibility to access the PMCs by the malicious task,
that includes timing and cache access information, opens a
path to properly implement this attack in the node architecture
presented in Fig. 2.

IV. ATTACK MITIGATION

The success of the Bonneau attack introduced in sec-
tion III-C depends on the PMCs readings carried out by the
malicious task. A possible mitigation strategy for this attack
consists of corrupting these readings of a proper quantity in
order to make the attack fail. However, this corruption may
jeopardize the capability of the safety tasks that rely on the
PMCs to detect anomalies due to system’s failures.

This section proposes a methodology to corrupt the PMCs
in order to mitigate the Bonneau attack, while keeping under
control the impact of the corruption on the detection capability
of the safety task introduced in section III-B.

To explain how the PMCs can be corrupted, let us start from
the description of how the considered safety mechanism can
be implemented in the proposed scenario.

During the offline phase (see section III-B), the user tasks
are profiled and information about their execution time is
collected looking at the PMCs (e.g., clock cycle counter).
The values measured by a PMC for the different processes
can be considered as a random variable X , characterized by
an empirical Probability Density Function (PDF), fX(x), and
an empirical Cumulative Distribution Function (CDF), FX(x).
This assumption is justified by the intrinsic non-determinism
of the computing platform. In fact, modern microprocessors
implement out-of-order execution models in which instruc-
tions are executed in a non-deterministic order. Moreover, the
memory hierarchy featuring different levels of cache memories
determines non-deterministic data access profiles. Finally bus
arbitration, memory controllers and other architectural com-
ponents are characterized by non-deterministic behaviors.

Based on the collected profiles, each task can be associated
to three operating areas reflecting the state of the system: safe
area, critical area and warning area.

Two thresholds are defined to separate the aforementioned
operating areas: TW and TC . These thresholds are chosen
starting from two confidence levels CW and CC . Confidence
levels can be chosen arbitrarily during the design phase. Strict
confidence levels can increase the number of false positives
and the performance overhead due to a larger number of
recovery operations. Wide levels may not detect all failures of
the system. In details, TW and TC can be computed by solving
the following inequalities looking at the collected profiles:

P (X > TW ) < CW ⇒ FX(TW ) > 1− CW (1)

P (X > TC) < CC ⇒ FX(TC) > 1− CC (2)

During the on-line phase (see section III-B), the safety task
monitors the execution time of every task in order to determine
in which area it is located and if a recovery action is required.
The decision process relies on the value of the PMCs and
on the values of the thresholds identified during the off-line
phase. The system state is then classified as follows:

• safe: if the value of the PMCs is below the warning
threshold. In this case the system is considered safe and
it keeps working normally;



• critical: if the value of the PMCs is above the critical
threshold. In this case the system is considered unsafe
and a proper recovery actions must be issued;

• warning: if the value of the PMCs is between the warning
and the critical threshold. In this case the system is
considered safe and it keeps working normally. However,
if the system is classified as warning α consecutive times,
it is then considered as critical.

The choice of α is related to the probability that the system
is in a safe state after α consecutive warning classifications
denoted as P (FPα). This indicates a false positive event.
P (FPα) is obtained during the process profiling of the off-line
phase. We report from [6] the formula to compute α:

α =
ln(1− P (FPα))

ln(F (TC)− F (TW ))
(3)

Starting from this premise, we propose to modify the PMC
service implemented at the OS level of Fig. 2 in order to
expose a corrupted value of each PMC defined as:

PMC = PMC + c (4)

where PMC is the corrupted PMC reading, PMC is the
correct PMC reading, and c is the corruption level. It is worth
to recall here that, in the proposed architecture, the PMC
service is considered secure (see section III-C) and represents
the only user access point to the PMCs.

The corruption level c is computed as a uniformly dis-
tributed random variable defined as:

c = U(0, s× (µ− TW )/2) (5)

where µ is the average value of the measured PMC of a user
process profiled during the off-line phase and s is a scaling fac-
tor for the middle point between µ and TW . As a result, every
time a performance counter related to a user process is read,
the corruption level changes. This consequently randomizes
the differences between the PMC readings, which are at the
base of the implementation of the Bonneau attack described
in section III-C.

The corruption level is tailored on the µ and TW of each
process and it is bounded by the scaling factor s. This
limits the increase of false positives and the impact on the
performance of the system. The adoption of s plays a key role
in the proposed methodology allowing to trade-off security
and safety as will be described in the next section presenting
experimental results. Simpler value alterations are possible,
however they might not adequately counteract the discussed
attack.

V. EXPERIMENTAL RESULTS

To show the proposed approach at work, we evaluated
as a case study a slave node running 7 tasks based on
different MiBench benchmarks [8]: cjpeg, djpeg, fft, qsort,
susan smoothing, susan edges and susan corners. The system
runs on top of a Linux OS, for which a PMC service and an
AES encryption service (which is the victim of the Bonneau
attack) were implemented. The hardware employed for the

analysis is an Intel Core i7 CPU Q720 running at 1.6GHz. The
PMC considered for the experiments is the clock cycle counter,
in order to detect longer-than-expected execution time.

Fig. 3 reports the CDFs of the considered PMC for the
different tasks (off-line profiling). Results were obtained col-
lecting 100K samples for each profiled task in order to provide
statistical meaning. For every profiled process the average
value µ and the two thresholds, TW and TC , are reported. The
confidence levels chosen for each process are CC = 0.6%, to
determine the TC , and CW = 5% to determine TW . Each
process is characterized by a different CDF. Therefore, the
distance among µ, TW and TC changes accordingly. Based
on this setup, we expect different behaviors of the safety task
for each process and a different behavior when the readings
of the PMC are corrupted.

According to section IV, the classification of the state of
each task is influenced by two main parameters: s and α.
To evaluate the impact of these two factors, we started by
comparing, for a constant α = 3, the behavior of the safety
task with our without PMC corruption for s between 0.2 and
0.8. Since the PMC corruption is randomly generated, its
effect for each task has been evaluated averaging results of
1K repetitions on the collected 100K samples.

Fig. 4 reports the percentage of task samples classified as
safe. As expected, all tasks follow a similar trend: increasing
values of s underestimate the percentage of safe classifications.
However, the degradation is not the same from a quantitative
point of view. For instance, the degradation of fft and cjpeg is
very different. Both tasks have a percentage of safe samples
very close to 99% in the case without corruption (red bars).
However, fft seems to be very resilient to corruption, loosing
less than 0.04 percentile points (p.p.) in the case s = 0.8,
while cjpeg decreases of more than 1.5 p.p..

A better insight to analyze the causes of this behavior
is provided in Fig. 5. The percentage of samples classified
as error is reported as a stacked bar graph, considering the
samples classified directly in the critical state (Err) and the
ones first classified as warning and later evaluated as critical
(WrnToErr). On average, the contribution to the total amount
OF samples in critical state is distributed equally between
Err and WrnToErr, with a slight predominance of Err. This
is expected since both parameters grow proportionally with
the increase of the corruption factor s. However, in some
benchmarks Err grows faster than WrnToErr. For example,
they increase by 0.8 p.p. for Err and 0.2 p.p. for WrnToErr
in djpeg. The opposite happens in other cases, e.g., in cjpeg,
0.3 p.p. for Err and 1.2 p.p. for WrnToErr. Such different
behaviors are attributed to the trend of the CDF in the region
close to the left of the two thresholds: TW and TC . Looking
at the CDF of djpeg near TC , the curve is not flat. This means
that there are several samples in this region. When the PMC is
corrupted, the CDF is shifted to the right by a small quantity,
while the thresholds do not move. As a result, there is a
moderate increase of Err (0.8 p.p. in djpeg). For other tasks
whose CDF is almost flat near TC , the increase of Err is very
small. This is the case of edges (0.03 p.p.).
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Fig. 3: Cumulative density function of the task execution timing distributions collected during the off-line phase.
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The distribution of those samples that were not directly
classified in the safe state is shown in Fig. 6. Samples are
divided into three categories: Err, WrnToErr and the samples
classified as warning at first and later evaluated as safe
(WrnToOk). Corrupting the PMCs translates into a right shift
of their CDFs increasing Err and warning. In general, since
the left side of TW is more populated than the one of TC , the

increase of warning is higher than the one of Err. However,
a small part of warning is later evaluated as critical. This is
deduced by edges, where the number of warning raises by 4
p.p. when the corruption factor is equal to 0.8, while WrntoErr
grows by just 0.4 p.p.. This is a good aspect of the adopted
safety mechanism where the effect of α mitigates the negative
effect of the PMC corruption.
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Fig. 6: Percentage of samples not directly classified as safe.

The proposed methodology increases the number of pre-
dicted critical samples. This translates into a growth of re-
covery actions to be performed even if not required. Since
recovery takes time, a performance degradation is introduced.
Fig. 7 quantifies the percentage of recovery actions due to
false positives with respect to the number of required recovery
actions when the PMCs are not corrupted. As expected, the
degradation rises as the corruption is higher. The cjpeg has the
highest degradation (44.5% with s = 0.2 and 149.5% with
s = 0.8), the degradation is almost negligible for fft (0.7%
with s = 0.2 and 4.2% with s = 0.8), while in the average
case the degradation is in between 12.9% and 55.8%.

Finally, experiments were repeated keeping the corruption
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Fig. 7: Ratio between recovery actions due to false positives
and recovery actions detected without corrupting the PMCs.

fixed (s = 0.5) and changing the value of α. The percentage
of recovery actions due to false positives with respect to the
number of required recovery action when the PMCs are not
corrupted is reported in Fig. 8. A common trend cannot be
identified. Therefore, the impact of α on the performance
degradation introduced by the proposed methodology must
be computed individually for every benchmark. However, the
maximum difference we measured is lower than 20.3p.p. for
cjpeg, and in the average case is 4.6p.p..
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Fig. 8: Ratio between recovery actions due to false positives
(s = 0.5 and changing α) and in the case without corruption.

From a security perspective, we analyzed the ability of
performing the attack both on the unprotected and on the pro-
tected version of the node. The malicious task was consistently
able to perform the attack using about 65M samples. Given
the computational complexity required to perform the attack
that limits the number of possible repetitions, we simulated
the protected system with the lowest PMC corruption s = 0.2
and s = 0.4, representing the best conditions for the attacker
(lower corruption values). In the first case the attack was able
to recover the key in the protected application with 163M
samples, while with 204M samples in the second case, thus
proving the effectiveness of the PMCs shielding technique.

VI. CONCLUSION

This paper studied the interplay of two challenging aspects
of the design of a CPS: safety and security. It focused on the
role that the PMCs have when implementing mechanisms able
to enhance the safety of the system and, on the other hand, the
risks they introduce when looking at the security of the system.

Starting from the example of a PMC based safety mechanism,
and from the implementation of a security attack, the paper
proposed an attack mitigation strategy. Experimental results
showed the effectiveness of the proposed technique to increase
the complexity of the attack while preserving the safeness of
the system.
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