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Abstract – State-of-the-art GPU chips are designed to deliver extreme 
throughput for graphics as well as for data-parallel general purpose 
computing workloads (GPGPU computing). Unlike computing for 
graphics, GPGPU computing requires highly reliable operations. 
Since provisioning for high reliability may affect performance, the 
design of GPGPU systems requires the vulnerability of GPU 
workloads to soft-errors to be jointly evaluated with the 
performance of GPU chips. We present an extended study based on 
a consolidated workflow for the evaluation of the reliability in 
correlation with the performance of four GPU architectures and 
corresponding chips: AMD Southern Islands and NVIDIA 
G80/GT200/Fermi. We obtained reliability measurements (AVF and 
FIT) employing both fault injection and ACE-analysis based on 
microarchitecture-level simulators. Apart from the reliability-only 
and performance-only measurements, we propose combined metrics 
for performance and reliability that assist comparisons for the same 
application among GPU chips of different ISAs and vendors, as well 
as among benchmarks on the same GPU chip.  

Keywords – GPGPU; microarchitecture simulator; reliability; 
performance; fault injection; throughput. 

I.  INTRODUCTION 
Graphics Processing Units (GPUs) are a powerful computing 
platform for both graphics and general-purpose, data-parallel and 
computing-intensive applications. GPUs are increasingly used in 
applications where reliability and performance are a top tier 
concern [2]. Trading-off reliability and performance is therefore a 
key aspect of GPU based systems [1]. Reliability analysis for these 
systems is challenging. It requires accurate and fast techniques 
able to carefully trade-off between analysis time and accuracy of 
the reported measurements. Moreover, it must produce results able 
to guide the system designers in the selection and development of 
efficient error protection mechanisms. Apart from the use of 
physical error injections [3][4], simulation-based techniques are 
the preferred solution to analyze the reliability of GPU systems. 
Two reliability estimation methodologies for GPUs have been 
established in this field similarly to the CPU domain: (i) fault 
injection [5][6][7][15][21] and (ii) Architectural Correct 
Execution (ACE) analysis [15][22].  

This paper presents the results of an extended study aiming at 
characterizing the main factors (hardware and software) that 
influence the reliability of GPU chips in the presence of soft-
errors. The study focuses on errors in the register file and in the 
local/shared memory1. These arrays are among the biggest arrays 
of the GPU and are therefore prone to be affected by radiation 
induced soft-errors. Even if some of these arrays are often 
delivered with hardware-protection techniques such as Error 
Correction Codes (ECC), these can incur performance and energy 
overheads and hence may not be enabled by users in selected 
applications [6]. Moreover, they may be protected with an ECC 

                                                        
1 Local memory is the AMD terminology while shared memory is the NVIDIA 
terminology for the same memory type. 

scheme that cannot cover the expected cardinality of faults. 
Therefore, evaluating the reliability of even protected arrays is an 
important task. The paper considers several important factors 
including: correlation between reliability and performance, size of 
the hardware structures, resource occupancy and execution 
scheduling. Different reliability assessment methodologies are 
used to identify trade-offs between analysis time and accuracy of 
results. GPUs from different vendors, architectures and 
programming models are compared: AMD Southern Islands and 
NVIDIA G80/GT200/Fermi. Reliability of all devices is analyzed 
running the same set of benchmarks written using the typical 
development framework for each architecture: OpenCL2  for the 
AMD GPU and CUDA3 for the NVIDIA GPUs. Simulations have 
been performed using a microarchitecture-level simulation. The 
framework includes tools to perform both soft-error fault injection 
campaigns and ACE-analysis. Microarchitecture-level simulators 
provide a good accuracy for the considered hardware structures as 
demonstrated for CPUs in [10] and, at the same time, they 
significantly improve the simulation throughput compared to RTL 
models that are often not publicly available.  

To our knowledge, this is the first work that extensively 
compares the reliability correlated with the performance of some 
of most important GPU families with different microarchitecture, 
Instruction Set Architecture (ISA) and computational model using 
the same set of benchmarks and employing the two most 
prominent reliability evaluation methodologies. Preliminary 
results in this direction have been recently discussed in [11]. Such 
a multidimensional study delivers significant insights on: 
differences in GPU vulnerability estimations between fault 
injection experiments and ACE analysis; variations in the 
vulnerability of specific hardware components and benchmarks 
among different GPU architectures; joint evaluation of reliability 
and performance to support designers and programmers when 
evaluating different GPUs and workloads. 

II. RELIABILITY EVALUATION FRAMEWORK 
Simulations on the two GPU families have been carried out 

using two tools named GUFI and SIFI. GUFI, previously 
presented in [6], is a micro-architectural level fault injector based 
on GPGPU-Sim (v3.2.2) [19]. It has been developed to perform 
reliability analysis on NVIDIA GPUs. GUFI has been extended 
for the purposes of our study to perform ACE-based analysis. SIFI 
is a fault injection and ACE analysis tool developed to characterize 
AMD GPUs [15]. SIFI is built on top of Mult2Sim (v4.2) and 
supports the Southern Island assembly language [13]. For both 
tools, reliability is analyzed looking at the low-level assembly code 
running on the real hardware. Therefore, for NVIDIA GPUs, the 
SASS assembly is used instead of the intermediate and device-
independent PTX assembly. We made this choice to study the 

2 https://www.khronos.org/opencl/ 
3 https://www.geforce.com/hardware/technology/cuda 



vulnerability of the actual physical registers (instead of the virtual 
PTX registers), allowing for a fair comparison of NVIDIA and 
AMD chips. This study focuses on soft-errors in memory 
elements. Addressing the impact of these faults is extremely 
relevant since GPUs include a large number of big memory arrays.  

Several reliability metrics are considered. The architectural 
vulnerability factor (AVF) of a hardware structure is the main 
considered reliability metric. The AVF is the probability that a bit-
flip (soft-error) at the target structure manifests as a visible error 
in the computation (output corruption, crash). It jointly considers 
hardware and software masking effects. To evaluate the masking 
properties independently from the occupancy, the concept of 
AVFUtil is used [5]. The AVFUtil is the probability that a soft-error 
in hardware structure that is actually used by the program causes 
an error in the computation. The AVF can be expressed in terms 
of the AVFUtil and the occupancy, that is the percentage of the 
hardware structures actually used by the running program, as: 
AVF = AVF%&'( × Occupancy. By combining the AVF and the 
raw soft-error rate (�i) of every hardware structure, the GPU 
failures in time rate (FITGPU) can be computed as: FIT34% =
∑ AVF' × λ' × #bit'' , where #bit' is the number of memory 
elements of the hardware structure i. Finally, a system designer or 
a programmer can be provided with a broader idea of the system 
performance and reliability for any given workload when 
combined metrics are used. Such a metric can be the executions 
per failure (EPF) defined as the number of executions of a 
benchmark before a failure manifests: EPF = 	EIT/FIT34% [15], 
[18]. EIT (executions in time) is the number of complete correct 
executions of a benchmark in 109 hours of device operation. 
Another metric that can be defined to jointly evaluate reliability 
and performance is the instructions per failure (IPF). The IPF 
measures the instruction throughput of a benchmark before a 
failure manifests instead of the number of complete program 
executions per failure like in the EPF case. IPF is defined as: IPF =
IIT	/	FIT34% where IIT (instructions in time) is the number of 
instructions executed in 109 hours. 

A. Fault injection campaigns 
Both GUFI and SIFI, the tools exploited in this paper, perform 

fault injection experiments following the flow reported in Fig. 1.A, 
which is composed of three macro phases.  

The fault generation phase creates the list of faults (fault pool) 
to inject. The application is profiled to identify the time intervals 
in which the GPU is active and to gather information about the 
executed kernels. This is used to speed up the simulation injecting 
faults only during active intervals. After that, the fault pool is 
generated randomly selecting for each fault its time (i.e., the clock 
cycle it manifests) and the specific memory element to corrupt.  
During the fault injection phase, each fault is injected, and the 
behavior of the system is observed. Fault injections are simulated 
in parallel to save time, exploiting concurrent executions. As soon 
as the simulation of a fault completes, the output of the 
computation is analyzed (fault classification). If the computation 
ends properly and its output is correct, the fault is classified as 
masked. Otherwise, it is classified as not masked. To improve the 
injection throughput, faults that target idle resources (i.e., 
resources not used in the context of the application) are not 
simulated since they can be directly classified as masked. These 
faults are named non-util faults since they do not affect the AVFUtil 

computation. When all faults are classified, the AVF and the 
AVFUtil can be computed as reported in Fig. 1.B. 

 
Fig. 1. Fault injection campaign workflow 

B. ACE Analysis 
ACE (Architecturally Correct Execution) analysis estimates 

the AVF simulating a single run of the program. It is therefore a 
very fast analysis that however has reduced accuracy with respect 
to fault injection. ACE analysis is based on the fact that not all 
entries of a hardware structure (e.g., registers of the register file) 
influence the output of the system. The AVF of the structure can 
therefore be estimated by determining which entry affects the 
system’s output (ACE resources) and which does not (un-ACE 
resources). Fig. 2.A summarizes the implemented ACE analysis 
workflow for the register file that follows the approach presented 
in [8] and [9] for CPU memory arrays. A similar approach is 
implemented for the other hardware structures. 

 
Fig. 2. Register File ACE analysis workflow  

Each GPU kernel is analyzed separately and then results are 
aggregated. For each kernel, the number of registers assigned to 
each work-group (#vwg) is first computed as explained in [20]. All 
registers not assigned to any work-group are classified as idle and 
marked as un-ACE, while the others are profiled during the 
execution of the kernel. During the time intervals (i.e., clock 
cycles) between a read and a write operation (read-to-write 
intervals), and between two consecutive write operations (write-
to-write intervals) a register can be safely considered un-ACE 
(Fig. 2.B). In all other cases, it is marked as ACE. The ACE factor 
of each work-group (ACE@A), i.e., the work-group average number 
of ACE registers per clock cycle, can be computed as reported in 
Fig. 2.C where wgEFG is the number of clock cycles required to 
execute the work-group and ACEEFGHIJAHK is the number of clock 
cycles in which the register i is ACE. At this point, the ACE factors 
of every work-group of the kernel must be aggregated to obtain the 
ACE factor of the compute unit (ACEL%). To perform this 
computation, we build a timing diagram representing the time 
window of every work-group executed by the compute unit (CU). 
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An example is shown in Fig. 2.D, where 4 work-groups (WG1 – 
WG3) are executed and the number of concurrent work-groups is 
2. For each work-group and each clock cycle the diagram reports 
the related ACEwg. Based on the timing diagram of each work-
group, the ACEMN timing diagram is computed by summing up the 
ACEOP of the scheduled blocks at each clock cycle divided by the 
number #VQR	of registers per compute unit (Fig. 2.C). The AVF of 
the entire register file running the selected application can be 
finally computed as the sum of the AVF of all CUs divided by the 
number #kclk of clock cycles required to execute the GPU kernel 
(Fig. 2.C). The AVFUtil of the register file can be computed in a 
similar way, but the ACEMN timing diagram is divided by the 
number of utilized registers of the running work-groups at each 
clock cycle (#rf-used), instead of dividing it by the total number of 
registers of the register file. In the example of Fig. 2.D, considering 
#rf=32 and #kclk=7, the AVF can be computed as AVFST =
U
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= 0.3 (30%). Assuming that each work-

group consists of 3 work-items and each work-item utilizes 4 
registers then a work-group utilizes 3x4=12 registers. Considering 
the timing of the work-groups the number of utilized registers at 
each clock cycle is always 24, apart for the last cycle where it is 
12. Consequently, the AVFUtil can be computed as AVF_`KF_ST =
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= 0.45 (45%).  

The accuracy of the ACE analysis could be increased by taking 
into account the presence of data processed by dead instructions 
(i.e., not contributing to the output results) and logic masking (i.e., 
logical and arithmetic operations resulting in masking of the fault) 
[8] [9]. From our simulations, we noticed that dead data in the 
selected benchmarks represent a negligible portion of the 
application (less than 0.5%). Therefore, neglecting them does not 
introduce a significant loss of accuracy while reducing the analysis 
time. Logic masking instead may have an impact on the accuracy. 
However, its inclusion in the ACE computation significantly 
increases the complexity of the analysis and therefore has not been 
implemented in this study. ACE analysis is mainly exploited here 
for its fast simulation time and we are interested in understanding 
the difference in accuracy with respect to the fault injection. 

III. RELIABILITY EVALUATION 

A. Experimental setup 

We analyzed 4 GPU chips with different architectures: AMD 
HD RadeonTM 7970 (Southern Islands architecture), NVIDIA 
QuadroTM FX 5600 (G80 architecture), NVIDIA QuadroTM 
FX5800 (GT200 architecture) and NVIDIA GeforceTM GTX 480 
(Fermi architecture). We used 10 benchmarks: 7 available both in 
the CUDA SDK4 and AMD-APP SDK5 and 3 from the Rodinia 
benchmarks [16]. All benchmarks have equivalent OpenCL and 
CUDA implementations. Table 1 summarizes the characteristics 
of the CUs of the considered GPU chips. Since manufacturing data 
are not public, the raw bit soft-error rate per cell (λ) has been 
estimated from literature data [17]. The error rate is normalized to 
1E-3 for the 90nm SRAM cell. For all chips, we measured the 
AVF of the general-purpose register file (RF) and the local 
memory (LM) using both Fault Injection (FI) and ACE Analysis 
(ACE). For the FI experiments, we applied statistical fault 

                                                        
4 https://developer.nvidia.com/cuda-toolkit-42-archive 

sampling [12]. Considering the size of the targeted structures, to 
reach a 2.88% error margin with 99% confidence level, 2,000 fault 
injection experiments were conducted for each hardware 
component of each GPU architecture. Every benchmark was 
executed with the same input data-set for all considered GPU 
devices. The data-sets were chosen to maximize and stress the use 
of the CUs. However, since this significantly increases the 
simulation time when considering multiple CUs, following the 
approach used by Farazmand et al. [5], we scaled the analysis 
considering a single CU. 

Table 1: CU details of the target GPU architecture 

 Chip name QuadroTM FX 
5600  

QuadroTM 
FX5800  

GeforceTM 
GTX 480  

HD RadeonTM 
7970  

 Technology 90 nm 55 nm 40 nm 28 nm 
  λ  FIT/bit 1E-3 0.72E-3 0.52E-3 0.32E-3 
 Vendor NVIDIA NVIDIA NVIDIA AMD 
 Architecture G80 GT 200 Fermi S. Islands 

Register file 32KB 64KB 128KB 256KB 
Local memory 16KB 16KB 48KB 64KB 
SIMD Units 1 1 2 4 

Max 
#wg 8 8 8 40 

#wavefronts 24 32 48 40 
#work-items 768 1024 1536 1840 

B. Experimental results 
The two charts in Fig. 3 report the AVF for RF and LM 

computed using both FI and ACE analysis. By analyzing RF (Fig. 
3.A), we observe significant differences in the AVF depending 
both on the hardware platform and on the executed benchmarks. 
Overall, for all benchmarks the HD Radeon 7970 is the chip with 
the lowest RF vulnerability while the Quadro FX 5600 is the one 
with the highest vulnerability. Looking at a single hardware 
platform, the difference in the AVF for the different benchmarks 
is the result of the way the software stresses the resource and is 
able to be resilient to the injected faults. Instead, when looking at 
the same benchmark executed on the different chips we can note a 
strong correlation of the AVF with the occupancy (red bullets). 
Considering RF, based on their average occupancy, the 
architectures can be ordered as follows: HD Radeon 7970 
(12.89%), GTX480 (37%), Quadro FX5800 (50%), Quadro FX 
5600 (57%). This trend holds for all benchmarks with the 
exception of histogram in which the RF occupancy of the GTX480 
is 35% while the one of Quadro FX5800 is only 26%. The 
occupancy of a resource is therefore a strong indicator to predict 
the AVF trend for a single application executed on different chips. 
However, it does not provide information on the actual AVF 
values. In fact, benchmarks with similar occupancy have 
significantly different AVFs (e.g., backprop and scan in Fig. 3.A). 
This is an important finding obtained from the analysis of our 
simulations. It confirms that occupancy is not the only contribution 
to AVF but the particularities of the access patterns from each 
benchmark are also important. When considering the AVF of LM 
(Fig. 3.B), while the correlation between AVF and the occupancy 
of the resource still holds, a clear AVF variation trend between the 
four chips valid for all benchmarks cannot be identified. This 
suggests that the way this resource is used strongly depends on the 
executed application code. In particular, the AVF of the HD 
Radeon 7970 is significantly higher than the one of the other 
architectures for histogram, where occupancy is 100%. In the scan 
and reduction benchmarks the vulnerability is almost equal for all 

5 http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-
parallel-processing-app-sdk/ 



architectures, while Quadro FX 5800 has a slightly higher AVF for 
backprop and dwt where its occupancy is 22% and 53%, 
respectively. Not all benchmarks actually use the local memory, 
this is the case of gaussian, kmeans and vactoadd. 

 

 
Fig. 3. AVF measured by fault injection (FI) and ACE. 

 

 
Fig. 4. AVF Util measured by fault injection (FI) and ACE. 

To discuss vulnerability decoupled from the occupancy of the 
resources, we can use the AVFUtil measurements reported in Fig. 
4. Again, both diagrams present AVFUtil based on both FI and ACE 
analysis for all considered GPU models. The AVFUtil is mainly 
influenced by the software logic masking and the different ISAs of 
the GPU chips. Therefore, it is hard to observe a clear trend or 
correlation in its value between NVIDIA and AMD architectures. 
However, it is interesting to note that the three NVIDIA chips, 
which implement similar native ISAs and use the same 
programming model, have very similar AVFUtil for each 
benchmark. Apart from the different LM and RF size, which in 
turn influence the number of vulnerable resources leading to 
different vulnerabilities (Fig. 6), the NVIDIA GPUs employ 
different wavefront scheduling mechanisms (warps in 
NVIDIA/CUDA terminology). Each SIMD unit can accommodate 
a different number of wavefronts. Changing the number of resident 
wavefronts changes the scheduling process. This leads to a 
variation of the vulnerability timing windows for both registers 
and memory words. An increment of the time a wavefront has to 
wait before being scheduled leads to a longer exposure of a critical 
resource to a fault. Moreover, the number of wavefronts that a 

single CU can concurrently execute is another factor that 
influences the wavefront scheduling. The CUs of NVIDIA Quadro 
FX 5600 and NVIDIA Quadro FX 5800 can schedule a single 
wavefront at a time while the CUs of NVIDIA GeForce GTX 480 
process two wavefronts in parallel. This difference significantly 
influences the ACE analysis results for the AVFUtil of RF (Fig. 
4.A), which measures reliability on the basis of the vulnerable 
timing windows of the used memory elements. This does not apply 
to LM since it is shared among all wavefronts of the same CU. In 
particular, for some benchmarks, the two NVIDIA Quadro chips 
show very close values while the NVIDIA GeForce chip features 
a different value in benchmarks gaussian, histogram, kmeans and 
transpose.  

Fig. 3 and Fig. 4 also allow us to compare AVF estimations 
obtained with FI and ACE analysis. Such a comparison must 
consider two main aspects: the measurement accuracy and the time 
required to perform the analysis. Regarding the accuracy, it is well-
known from the literature that the error margin and the confidence 
interval of statistical fault injection are determined by the number 
of injected fault. Differently form FI, the accuracy of the ACE 
analysis cannot be quantified even if it is well known that it 
delivers pessimistic evaluations. This trend is confirmed for RF, 
where FI estimates lower AVF compared to ACE analysis (Fig. 
3.A and Fig. 4.A). The error is strongly benchmark dependent. In 
particular, in our ACE analysis, to be very fast, we do not consider 
the program logical masking of faults. Fig. 3.B shows that ACE 
analysis AVF overestimation is lower for LM than for RF. This 
can be explained since RF and LM are used in a different way by 
the work-items of an application. LM is significantly slower than 
RF. For this reason, LM is mainly used to move data from/to RF, 
where logic and arithmetic operations take place. Consequently, 
logic masking effects not detected by ACE analysis are more 
relevant in RF than in LM. The only exceptions to this trend are 
histogram and backprop. For these two benchmarks, the ACE 
analysis introduces a higher error. This can be explained looking 
at the AVFUtil (Fig. 4). Their AVFUtil significantly changes 
depending on the evaluation method (FI or ACE analysis). 
Although the error between AVFUtil based on FI and AVFUtil based 
on ACE analysis is higher for backprop than histogram, histogram 
occupies more intensely the local memory compared to backprop. 
Thus, even if histogram features the second highest difference in 
LM AVFUtil (for different methods of evaluation), its high local 
memory occupancy leads to the highest difference in AVF 
depending on the evaluation method. Among the different 
benchmarks, backprop, is the one presenting the highest AVF 
overestimation between FI and ACE analysis for both RF and LM, 
respectively 3.3 and 1.1 times higher (Fig. 3). On average, the 
overestimation of the AVF and AVFUtil made by ACE analysis 
with respect to FI is respectively 95% and 80% for RF, while 
15.9% and 17.4% for LM. It is also interesting to remark that, for 
some combinations of benchmarks and architectures, we observe 
that ACE analysis slightly underestimates AVF. This applies to 
HD Radeon for dwtHaar1D (0.35 p.u. – percentile units), 
histogram (0.38 p.u.) and reduction (0.93 p.u.) and to Quadro FX 
5800 for reduction (0.31 p.u.). Finally, in case of the scan 
benchmark we observe a singularity: ACE analysis underestimates 
the AVFUtil (88.9% for FI against 85.2% of ACE analysis). 
Nevertheless, this difference is very close to the 2.88% error 
margin of fault injection.  

In terms of simulation time, the single-run ACE analysis offers 
significantly better performance compared to FI. Table 2 
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quantifies this benefit comparing the simulation time of ACE 
analysis with the number of fault Injections Per Hour (IPH) that 
we were able to simulate for each benchmark employing both 
GUFI and SIFI. However, it is important to remember that this 
benefit must be traded-off with the reduced accuracy delivered by 
ACE analysis and with the capability of FI to precisely quantify 
the error margin of the computed metrics. Nevertheless, looking at 
the results provided in Fig. 3 and Fig. 4, it is clear that, despite its 
lower accuracy, ACE analysis is very efficient in providing a 
rough idea about the vulnerability of a hardware component or the 
differences between benchmarks in a very short simulation time. 
Overall, from our analysis we can conclude that ACE analysis 
represents a good characterization technique for LM, since it 
combines good accuracy and low computation time, whereas it is 
less suitable for RF given the higher inaccuracy. In the remaining 
of this section discussions will focus on results obtained resorting 
to fault-injection experiments. 

Table 2. Simulation time required to perform the reliability analysis  
Benchmark SIFI GUFI 

ACE time (s) IPH ACE time (s) IPH 
backprop 3 1200 13 277 
dwt 9 400 1 3600 
gaussian 29 124 37 97 
histogram 173 21 44 82 
kmeans 24 150 90 40 
matrixMul 21 171 20 180 
reduction 4 900 4 900 
scan 5 720 2 1800 
transpose 2 1800 6 600 
vectoradd 39 92 5 720 
AVERAGE 30.9 557.8 22.2 829.6 

Fig. 5 combines the AVF of the different hardware structures 
with the raw bit soft-error rate of the technology (λ) used to build 
the different chips (see Table 1). The result is the global FITGPU. 
The figure breaks down the contribution of RF and LM to the 
global FITGPU. Interestingly, the contribution of LM is 
significantly lower than the one of RF for most benchmarks in 
which this memory array is used.  Understanding the motivations 
for the variation of the FIT rate is not simple since it depends on 
the fabrication technology, the size of the hardware structures and 
their vulnerability for each benchmark. In general, the 
combination of the technology node and the size of the structure 
seems to be the predominant factors. In our experimental setup, the 
size of RF is bigger than the one of LM and we observe a higher 
number of failures caused by faults in RF for all benchmarks and 
architectures except for histogram. In the histogram benchmark, 
which has an intense use of LM, the LM AVF is much higher than 
the one of RF and represents the main contribution to the FIT. In 
histogram, LM is used as a read-only memory, so all the Util 
resources are always ACE. Moreover, the GPU architectures 
whose hardware components are larger have the potential to better 
exploit their intrinsic parallelism, since the number of parallel 
work-items is also influenced by the availability of resources for 
the execute kernels. Executing more work-items concurrently 
increases the number of potentially vulnerable resources. More 
specifically, this trend can be evicted from Fig. 6 for NVIDIA 
architectures. However, Radeon 7970, featuring the largest 
components, shows an opposite behavior in some cases, 
highlighting the influence of compilers on vulnerable resources.  

The bigger size of a GPU hardware component naturally 
makes it more vulnerable to soft-errors. However, it increases the 
execution parallelism and thus improves performance. Therefore, 
as discussed in Section II, to combine the reliability evaluation 

with the performance profile of each benchmark and GPU chip we 
analyzed the EPF (Fig. 7) and the IPF (Fig. 8) metrics because FIT 
alone (Fig. 5) does not take into account the amount of work 
carried out by the GPUs before a failure arises. EPF incorporates 
the execution time and FIT for a program, while IPF also includes 
information about the instruction throughput of GPUs when 
executing an application.  

Table 3 shows for each benchmark (rows) and architecture 
(cols) the execution time (cycles) as well as the number of 
executed instructions required to compute EPF and IPF.  

 
Fig. 5. Breakdown of Failures in Time (FIT) rate using the AVF measurements 

from Fault Injection.  

 
Fig. 6. Vulnerable resources in bits. 

The IPF for a particular benchmark is proportional to the EPF 
and to the instruction throughput. Since this throughput strongly 
depends on the target execution device, to fairly compare different 
GPU architectures we must look at the EPF instead of IPF. The 
IPF is instead useful for evaluating the reliability of different 
programs on the same GPU chip. On the one hand, the EPF metric 
is useful to the architects who can quantify the effectiveness of a 
hardware-based error protection technique which can be applied to 
their designs (if needed) along with a performance cost at the early 
design stages. Larger EPF numbers show a larger number of 
executions before a failure and different protection mechanisms 
can deliver different improvements in the FIT rates and can also 
have different impact on performance. Combining performance 
and reliability measurements in the EPF metric delivers a broader 
view for decision-making. This could be for instance important 
when evaluating real-time applications that are not continuously 
executed, but they are scheduled once every time period. On the 
other hand, IPF is useful to the programmers who want to quantify 
the effectiveness of software redundancy-based protection 
techniques which can be applied to their programs running on the 
same architecture, thereby correlating the error resilience of their 
applications at a performance cost. IPF summarizes both the 
performance cost and the resilience improvement.  

In Fig. 7, using the EPF to compare the different architectures, 
we can identify that the HD Radeon is in general the best choice 
for the selected benchmarks with the exception of histogram, scan 
and transpose. Using the IPF to compare different benchmarks on 
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the same architecture (Fig. 8), we can instead notice that for HD 
Radeon, backprop and gaussian have higher IPF than the other 
benchmarks while gaussian has the higher IPF when executed on 
Quadro FX5600, Quadro FX 5800 and GTX 480. Metrics that 
combine reliability and performance have also the potential to help 
comparing CPUs and GPUs. In particular, while the IPF is a raw 
throughput of work (instructions per failure occurrence) the EPF 
is a complete execution rate per failure occurrence, which is very 
useful if one wants to compare different processing elements like 
CPUs and GPUs [18].  

Table 3. Execution time and instructions 

Benchmark  HD Radeon 
7970 

Quadro FX 
5600 

Quadro FX 
5800 

GeForce GTX 
480 

 Freq (MHz) 925   337.5   325   700  
backprop cycles/ 94376/ 423594 369855 206834 

inst. 2108160 10312032 
dwt cycles 41072 44998 39412 25859 

inst. 1839075 1180042 
gaussian cycles 5862543 561060 555732 541687 

inst. 7308189 5488224 
histogram cycles 3198537 1031394 1029746 885491 

inst. 20029440 21784328 
kmeans cycles 913526 1278216 1267144 1397604 

inst. 31930960 35984844 
matrixMul cycles 269591 439591 400594 299346 

inst. 10924032 15007744 
reduction cycles 27836 47377 47086 27231 

inst. 312736 854719 
scan cycles 123763 18707 16572 19721 

inst. 3025801 468720 
transpose cycles 50862 98911 82821 49942 

inst. 733184 2818048 
vectoradd cycles 31687 29219 21603 30225 

inst. 1523712 638976 

 
Fig. 7. Executions per Failure (EPF). 

 
Fig. 8. Instructions per Failure. 

IV. CONCLUSIONS 
We have presented a multi-faceted comprehensive reliability 

assessment framework for state-of-the-art AMD and NVIDIA 
GPUs. Reliability measurements have been performed using both 
fault injection and ACE analysis to reveal the differences between 
the two approaches. We used 10 benchmarks to compare the 
vulnerability of the AMD/OpenCL versions and the 
NVIDIA/CUDA versions. We also proposed two combined 

performance/vulnerability metrics (EPF and IPF) that report the 
throughput of complete executions per failure or the throughput of 
individual instructions per failure. These metrics provide a wider 
picture of the GPU quality of execution and can be employed to 
compare different GPU chips for the same application or different 
programs on the same GPU chip. The proposed framework can be 
flexibly to jointly assess reliability and performance of further 
GPU configurations, any OpenCL and CUDA workload and, of 
course, to assist designers in making decisions for hardware- based 
or software-based error protections techniques in GPUs. 
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