
17 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Multi-faceted microarchitecture level reliability characterization for NVIDIA and AMD GPUs / Vallero, Alessandro;
Tselonis, Sotiris; Gizopoulos, Dimitris; Di Carlo, Stefano. - ELETTRONICO. - 2018:(2018), pp. 1-6. (Intervento
presentato al convegno 36th IEEE VLSI Test Symposium, VTS 2018 tenutosi a San Francisca, CA (USA) nel 22-25
April 2018) [10.1109/VTS.2018.8368665].

Original

Multi-faceted microarchitecture level reliability characterization for NVIDIA and AMD GPUs

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/VTS.2018.8368665

Terms of use:

Publisher copyright

©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2731945 since: 2019-05-02T16:25:48Z

IEEE Computer Society

Multi-faceted Microarchitecture Level Reliability
Characterization for NVIDIA and AMD GPUs

Alessandro Vallero§ , Sotiris Tselonis, Dimitris Gizopoulos* and Stefano Di Carlo§
§ Politecnico di Torino, {stefano.dicarlo | alessandro.vallero}@polito.it * University of Athens, dgizop@di.uoa.gr

Abstract – State-of-the-art GPU chips are designed to deliver extreme
throughput for graphics as well as for data-parallel general purpose
computing workloads (GPGPU computing). Unlike computing for
graphics, GPGPU computing requires highly reliable operations.
Since provisioning for high reliability may affect performance, the
design of GPGPU systems requires the vulnerability of GPU
workloads to soft-errors to be jointly evaluated with the
performance of GPU chips. We present an extended study based on
a consolidated workflow for the evaluation of the reliability in
correlation with the performance of four GPU architectures and
corresponding chips: AMD Southern Islands and NVIDIA
G80/GT200/Fermi. We obtained reliability measurements (AVF and
FIT) employing both fault injection and ACE-analysis based on
microarchitecture-level simulators. Apart from the reliability-only
and performance-only measurements, we propose combined metrics
for performance and reliability that assist comparisons for the same
application among GPU chips of different ISAs and vendors, as well
as among benchmarks on the same GPU chip.

Keywords – GPGPU; microarchitecture simulator; reliability;
performance; fault injection; throughput.

I. INTRODUCTION
Graphics Processing Units (GPUs) are a powerful computing
platform for both graphics and general-purpose, data-parallel and
computing-intensive applications. GPUs are increasingly used in
applications where reliability and performance are a top tier
concern [2]. Trading-off reliability and performance is therefore a
key aspect of GPU based systems [1]. Reliability analysis for these
systems is challenging. It requires accurate and fast techniques
able to carefully trade-off between analysis time and accuracy of
the reported measurements. Moreover, it must produce results able
to guide the system designers in the selection and development of
efficient error protection mechanisms. Apart from the use of
physical error injections [3][4], simulation-based techniques are
the preferred solution to analyze the reliability of GPU systems.
Two reliability estimation methodologies for GPUs have been
established in this field similarly to the CPU domain: (i) fault
injection [5][6][7][15][21] and (ii) Architectural Correct
Execution (ACE) analysis [15][22].

This paper presents the results of an extended study aiming at
characterizing the main factors (hardware and software) that
influence the reliability of GPU chips in the presence of soft-
errors. The study focuses on errors in the register file and in the
local/shared memory1. These arrays are among the biggest arrays
of the GPU and are therefore prone to be affected by radiation
induced soft-errors. Even if some of these arrays are often
delivered with hardware-protection techniques such as Error
Correction Codes (ECC), these can incur performance and energy
overheads and hence may not be enabled by users in selected
applications [6]. Moreover, they may be protected with an ECC

1 Local memory is the AMD terminology while shared memory is the NVIDIA
terminology for the same memory type.

scheme that cannot cover the expected cardinality of faults.
Therefore, evaluating the reliability of even protected arrays is an
important task. The paper considers several important factors
including: correlation between reliability and performance, size of
the hardware structures, resource occupancy and execution
scheduling. Different reliability assessment methodologies are
used to identify trade-offs between analysis time and accuracy of
results. GPUs from different vendors, architectures and
programming models are compared: AMD Southern Islands and
NVIDIA G80/GT200/Fermi. Reliability of all devices is analyzed
running the same set of benchmarks written using the typical
development framework for each architecture: OpenCL2 for the
AMD GPU and CUDA3 for the NVIDIA GPUs. Simulations have
been performed using a microarchitecture-level simulation. The
framework includes tools to perform both soft-error fault injection
campaigns and ACE-analysis. Microarchitecture-level simulators
provide a good accuracy for the considered hardware structures as
demonstrated for CPUs in [10] and, at the same time, they
significantly improve the simulation throughput compared to RTL
models that are often not publicly available.

To our knowledge, this is the first work that extensively
compares the reliability correlated with the performance of some
of most important GPU families with different microarchitecture,
Instruction Set Architecture (ISA) and computational model using
the same set of benchmarks and employing the two most
prominent reliability evaluation methodologies. Preliminary
results in this direction have been recently discussed in [11]. Such
a multidimensional study delivers significant insights on:
differences in GPU vulnerability estimations between fault
injection experiments and ACE analysis; variations in the
vulnerability of specific hardware components and benchmarks
among different GPU architectures; joint evaluation of reliability
and performance to support designers and programmers when
evaluating different GPUs and workloads.

II. RELIABILITY EVALUATION FRAMEWORK
Simulations on the two GPU families have been carried out

using two tools named GUFI and SIFI. GUFI, previously
presented in [6], is a micro-architectural level fault injector based
on GPGPU-Sim (v3.2.2) [19]. It has been developed to perform
reliability analysis on NVIDIA GPUs. GUFI has been extended
for the purposes of our study to perform ACE-based analysis. SIFI
is a fault injection and ACE analysis tool developed to characterize
AMD GPUs [15]. SIFI is built on top of Mult2Sim (v4.2) and
supports the Southern Island assembly language [13]. For both
tools, reliability is analyzed looking at the low-level assembly code
running on the real hardware. Therefore, for NVIDIA GPUs, the
SASS assembly is used instead of the intermediate and device-
independent PTX assembly. We made this choice to study the

2 https://www.khronos.org/opencl/
3 https://www.geforce.com/hardware/technology/cuda

vulnerability of the actual physical registers (instead of the virtual
PTX registers), allowing for a fair comparison of NVIDIA and
AMD chips. This study focuses on soft-errors in memory
elements. Addressing the impact of these faults is extremely
relevant since GPUs include a large number of big memory arrays.

Several reliability metrics are considered. The architectural
vulnerability factor (AVF) of a hardware structure is the main
considered reliability metric. The AVF is the probability that a bit-
flip (soft-error) at the target structure manifests as a visible error
in the computation (output corruption, crash). It jointly considers
hardware and software masking effects. To evaluate the masking
properties independently from the occupancy, the concept of
AVFUtil is used [5]. The AVFUtil is the probability that a soft-error
in hardware structure that is actually used by the program causes
an error in the computation. The AVF can be expressed in terms
of the AVFUtil and the occupancy, that is the percentage of the
hardware structures actually used by the running program, as:
AVF = AVF%&'(× Occupancy. By combining the AVF and the
raw soft-error rate (�i) of every hardware structure, the GPU
failures in time rate (FITGPU) can be computed as: FIT34% =
∑ AVF' × λ' × #bit'' , where #bit' is the number of memory
elements of the hardware structure i. Finally, a system designer or
a programmer can be provided with a broader idea of the system
performance and reliability for any given workload when
combined metrics are used. Such a metric can be the executions
per failure (EPF) defined as the number of executions of a
benchmark before a failure manifests: EPF = 	EIT/FIT34% [15],
[18]. EIT (executions in time) is the number of complete correct
executions of a benchmark in 109 hours of device operation.
Another metric that can be defined to jointly evaluate reliability
and performance is the instructions per failure (IPF). The IPF
measures the instruction throughput of a benchmark before a
failure manifests instead of the number of complete program
executions per failure like in the EPF case. IPF is defined as: IPF =
IIT	/	FIT34% where IIT (instructions in time) is the number of
instructions executed in 109 hours.

A. Fault injection campaigns
Both GUFI and SIFI, the tools exploited in this paper, perform

fault injection experiments following the flow reported in Fig. 1.A,
which is composed of three macro phases.

The fault generation phase creates the list of faults (fault pool)
to inject. The application is profiled to identify the time intervals
in which the GPU is active and to gather information about the
executed kernels. This is used to speed up the simulation injecting
faults only during active intervals. After that, the fault pool is
generated randomly selecting for each fault its time (i.e., the clock
cycle it manifests) and the specific memory element to corrupt.
During the fault injection phase, each fault is injected, and the
behavior of the system is observed. Fault injections are simulated
in parallel to save time, exploiting concurrent executions. As soon
as the simulation of a fault completes, the output of the
computation is analyzed (fault classification). If the computation
ends properly and its output is correct, the fault is classified as
masked. Otherwise, it is classified as not masked. To improve the
injection throughput, faults that target idle resources (i.e.,
resources not used in the context of the application) are not
simulated since they can be directly classified as masked. These
faults are named non-util faults since they do not affect the AVFUtil

computation. When all faults are classified, the AVF and the
AVFUtil can be computed as reported in Fig. 1.B.

Fig. 1. Fault injection campaign workflow

B. ACE Analysis
ACE (Architecturally Correct Execution) analysis estimates

the AVF simulating a single run of the program. It is therefore a
very fast analysis that however has reduced accuracy with respect
to fault injection. ACE analysis is based on the fact that not all
entries of a hardware structure (e.g., registers of the register file)
influence the output of the system. The AVF of the structure can
therefore be estimated by determining which entry affects the
system’s output (ACE resources) and which does not (un-ACE
resources). Fig. 2.A summarizes the implemented ACE analysis
workflow for the register file that follows the approach presented
in [8] and [9] for CPU memory arrays. A similar approach is
implemented for the other hardware structures.

Fig. 2. Register File ACE analysis workflow

Each GPU kernel is analyzed separately and then results are
aggregated. For each kernel, the number of registers assigned to
each work-group (#vwg) is first computed as explained in [20]. All
registers not assigned to any work-group are classified as idle and
marked as un-ACE, while the others are profiled during the
execution of the kernel. During the time intervals (i.e., clock
cycles) between a read and a write operation (read-to-write
intervals), and between two consecutive write operations (write-
to-write intervals) a register can be safely considered un-ACE
(Fig. 2.B). In all other cases, it is marked as ACE. The ACE factor
of each work-group (ACE@A), i.e., the work-group average number
of ACE registers per clock cycle, can be computed as reported in
Fig. 2.C where wgEFG is the number of clock cycles required to
execute the work-group and ACEEFGHIJAHK is the number of clock
cycles in which the register i is ACE. At this point, the ACE factors
of every work-group of the kernel must be aggregated to obtain the
ACE factor of the compute unit (ACEL%). To perform this
computation, we build a timing diagram representing the time
window of every work-group executed by the compute unit (CU).

Fault Window Profiler
Fault generation

Fault Generator
Fault pool

Fault
strikes idle

res.?

Inject fault
NO

YES

Fault injection

Masked

Output
correct?

Not Masked Masked

Fault classification

NO YES

(A) (B)

AVF =
#not�masked

#faults

AVFUtil =
#not�maskedUtil

#faultsUtil

Register ACE Factor WG ACE Factor CU ACE Factor Register file AVF

Access
profile

for each
kernel

READ WRITE
WRITE WRITE
WRITE READ
READ READ

Un-ACE
Un-ACE

ACE
ACE

AVF calculation

AVF =

P#CU
j ACECUj

#kclk

(A)

(B) (C)

(D)
ACECUj =

#kclkX

i=1

ACEwg(i)

#VRF

AVF =

P#CU
j=1 ACECUj

#kclk

ACEwg =

#vwgX

i=1

ACEclk�reg�i

wgclk

An example is shown in Fig. 2.D, where 4 work-groups (WG1 –
WG3) are executed and the number of concurrent work-groups is
2. For each work-group and each clock cycle the diagram reports
the related ACEwg. Based on the timing diagram of each work-
group, the ACEMN timing diagram is computed by summing up the
ACEOP of the scheduled blocks at each clock cycle divided by the
number #VQR	of registers per compute unit (Fig. 2.C). The AVF of
the entire register file running the selected application can be
finally computed as the sum of the AVF of all CUs divided by the
number #kclk of clock cycles required to execute the GPU kernel
(Fig. 2.C). The AVFUtil of the register file can be computed in a
similar way, but the ACEMN timing diagram is divided by the
number of utilized registers of the running work-groups at each
clock cycle (#rf-used), instead of dividing it by the total number of
registers of the register file. In the example of Fig. 2.D, considering
#rf=32 and #kclk=7, the AVF can be computed as AVFST =
U

VW
X
U

VW
X
U

VW
X
YY

VW
X
YV

VW
X
YV

VW
X
Z

VW

[
= 0.3 (30%). Assuming that each work-

group consists of 3 work-items and each work-item utilizes 4
registers then a work-group utilizes 3x4=12 registers. Considering
the timing of the work-groups the number of utilized registers at
each clock cycle is always 24, apart for the last cycle where it is
12. Consequently, the AVFUtil can be computed as AVF_`KF_ST =
U

Wb
X
U

Wb
X
U

Wb
X
YY

Wb
X
YV

Wb
X
YV

Wb
X
Z

YW

[
= 0.45 (45%).

The accuracy of the ACE analysis could be increased by taking
into account the presence of data processed by dead instructions
(i.e., not contributing to the output results) and logic masking (i.e.,
logical and arithmetic operations resulting in masking of the fault)
[8] [9]. From our simulations, we noticed that dead data in the
selected benchmarks represent a negligible portion of the
application (less than 0.5%). Therefore, neglecting them does not
introduce a significant loss of accuracy while reducing the analysis
time. Logic masking instead may have an impact on the accuracy.
However, its inclusion in the ACE computation significantly
increases the complexity of the analysis and therefore has not been
implemented in this study. ACE analysis is mainly exploited here
for its fast simulation time and we are interested in understanding
the difference in accuracy with respect to the fault injection.

III. RELIABILITY EVALUATION

A. Experimental setup

We analyzed 4 GPU chips with different architectures: AMD
HD RadeonTM 7970 (Southern Islands architecture), NVIDIA
QuadroTM FX 5600 (G80 architecture), NVIDIA QuadroTM
FX5800 (GT200 architecture) and NVIDIA GeforceTM GTX 480
(Fermi architecture). We used 10 benchmarks: 7 available both in
the CUDA SDK4 and AMD-APP SDK5 and 3 from the Rodinia
benchmarks [16]. All benchmarks have equivalent OpenCL and
CUDA implementations. Table 1 summarizes the characteristics
of the CUs of the considered GPU chips. Since manufacturing data
are not public, the raw bit soft-error rate per cell (λ) has been
estimated from literature data [17]. The error rate is normalized to
1E-3 for the 90nm SRAM cell. For all chips, we measured the
AVF of the general-purpose register file (RF) and the local
memory (LM) using both Fault Injection (FI) and ACE Analysis
(ACE). For the FI experiments, we applied statistical fault

4 https://developer.nvidia.com/cuda-toolkit-42-archive

sampling [12]. Considering the size of the targeted structures, to
reach a 2.88% error margin with 99% confidence level, 2,000 fault
injection experiments were conducted for each hardware
component of each GPU architecture. Every benchmark was
executed with the same input data-set for all considered GPU
devices. The data-sets were chosen to maximize and stress the use
of the CUs. However, since this significantly increases the
simulation time when considering multiple CUs, following the
approach used by Farazmand et al. [5], we scaled the analysis
considering a single CU.

Table 1: CU details of the target GPU architecture

 Chip name QuadroTM FX
5600

QuadroTM
FX5800

GeforceTM
GTX 480

HD RadeonTM
7970

 Technology 90 nm 55 nm 40 nm 28 nm
 λ FIT/bit 1E-3 0.72E-3 0.52E-3 0.32E-3
 Vendor NVIDIA NVIDIA NVIDIA AMD
 Architecture G80 GT 200 Fermi S. Islands

Register file 32KB 64KB 128KB 256KB
Local memory 16KB 16KB 48KB 64KB
SIMD Units 1 1 2 4

Max
#wg 8 8 8 40

#wavefronts 24 32 48 40
#work-items 768 1024 1536 1840

B. Experimental results
The two charts in Fig. 3 report the AVF for RF and LM

computed using both FI and ACE analysis. By analyzing RF (Fig.
3.A), we observe significant differences in the AVF depending
both on the hardware platform and on the executed benchmarks.
Overall, for all benchmarks the HD Radeon 7970 is the chip with
the lowest RF vulnerability while the Quadro FX 5600 is the one
with the highest vulnerability. Looking at a single hardware
platform, the difference in the AVF for the different benchmarks
is the result of the way the software stresses the resource and is
able to be resilient to the injected faults. Instead, when looking at
the same benchmark executed on the different chips we can note a
strong correlation of the AVF with the occupancy (red bullets).
Considering RF, based on their average occupancy, the
architectures can be ordered as follows: HD Radeon 7970
(12.89%), GTX480 (37%), Quadro FX5800 (50%), Quadro FX
5600 (57%). This trend holds for all benchmarks with the
exception of histogram in which the RF occupancy of the GTX480
is 35% while the one of Quadro FX5800 is only 26%. The
occupancy of a resource is therefore a strong indicator to predict
the AVF trend for a single application executed on different chips.
However, it does not provide information on the actual AVF
values. In fact, benchmarks with similar occupancy have
significantly different AVFs (e.g., backprop and scan in Fig. 3.A).
This is an important finding obtained from the analysis of our
simulations. It confirms that occupancy is not the only contribution
to AVF but the particularities of the access patterns from each
benchmark are also important. When considering the AVF of LM
(Fig. 3.B), while the correlation between AVF and the occupancy
of the resource still holds, a clear AVF variation trend between the
four chips valid for all benchmarks cannot be identified. This
suggests that the way this resource is used strongly depends on the
executed application code. In particular, the AVF of the HD
Radeon 7970 is significantly higher than the one of the other
architectures for histogram, where occupancy is 100%. In the scan
and reduction benchmarks the vulnerability is almost equal for all

5 http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-
parallel-processing-app-sdk/

architectures, while Quadro FX 5800 has a slightly higher AVF for
backprop and dwt where its occupancy is 22% and 53%,
respectively. Not all benchmarks actually use the local memory,
this is the case of gaussian, kmeans and vactoadd.

Fig. 3. AVF measured by fault injection (FI) and ACE.

Fig. 4. AVF Util measured by fault injection (FI) and ACE.

To discuss vulnerability decoupled from the occupancy of the
resources, we can use the AVFUtil measurements reported in Fig.
4. Again, both diagrams present AVFUtil based on both FI and ACE
analysis for all considered GPU models. The AVFUtil is mainly
influenced by the software logic masking and the different ISAs of
the GPU chips. Therefore, it is hard to observe a clear trend or
correlation in its value between NVIDIA and AMD architectures.
However, it is interesting to note that the three NVIDIA chips,
which implement similar native ISAs and use the same
programming model, have very similar AVFUtil for each
benchmark. Apart from the different LM and RF size, which in
turn influence the number of vulnerable resources leading to
different vulnerabilities (Fig. 6), the NVIDIA GPUs employ
different wavefront scheduling mechanisms (warps in
NVIDIA/CUDA terminology). Each SIMD unit can accommodate
a different number of wavefronts. Changing the number of resident
wavefronts changes the scheduling process. This leads to a
variation of the vulnerability timing windows for both registers
and memory words. An increment of the time a wavefront has to
wait before being scheduled leads to a longer exposure of a critical
resource to a fault. Moreover, the number of wavefronts that a

single CU can concurrently execute is another factor that
influences the wavefront scheduling. The CUs of NVIDIA Quadro
FX 5600 and NVIDIA Quadro FX 5800 can schedule a single
wavefront at a time while the CUs of NVIDIA GeForce GTX 480
process two wavefronts in parallel. This difference significantly
influences the ACE analysis results for the AVFUtil of RF (Fig.
4.A), which measures reliability on the basis of the vulnerable
timing windows of the used memory elements. This does not apply
to LM since it is shared among all wavefronts of the same CU. In
particular, for some benchmarks, the two NVIDIA Quadro chips
show very close values while the NVIDIA GeForce chip features
a different value in benchmarks gaussian, histogram, kmeans and
transpose.

Fig. 3 and Fig. 4 also allow us to compare AVF estimations
obtained with FI and ACE analysis. Such a comparison must
consider two main aspects: the measurement accuracy and the time
required to perform the analysis. Regarding the accuracy, it is well-
known from the literature that the error margin and the confidence
interval of statistical fault injection are determined by the number
of injected fault. Differently form FI, the accuracy of the ACE
analysis cannot be quantified even if it is well known that it
delivers pessimistic evaluations. This trend is confirmed for RF,
where FI estimates lower AVF compared to ACE analysis (Fig.
3.A and Fig. 4.A). The error is strongly benchmark dependent. In
particular, in our ACE analysis, to be very fast, we do not consider
the program logical masking of faults. Fig. 3.B shows that ACE
analysis AVF overestimation is lower for LM than for RF. This
can be explained since RF and LM are used in a different way by
the work-items of an application. LM is significantly slower than
RF. For this reason, LM is mainly used to move data from/to RF,
where logic and arithmetic operations take place. Consequently,
logic masking effects not detected by ACE analysis are more
relevant in RF than in LM. The only exceptions to this trend are
histogram and backprop. For these two benchmarks, the ACE
analysis introduces a higher error. This can be explained looking
at the AVFUtil (Fig. 4). Their AVFUtil significantly changes
depending on the evaluation method (FI or ACE analysis).
Although the error between AVFUtil based on FI and AVFUtil based
on ACE analysis is higher for backprop than histogram, histogram
occupies more intensely the local memory compared to backprop.
Thus, even if histogram features the second highest difference in
LM AVFUtil (for different methods of evaluation), its high local
memory occupancy leads to the highest difference in AVF
depending on the evaluation method. Among the different
benchmarks, backprop, is the one presenting the highest AVF
overestimation between FI and ACE analysis for both RF and LM,
respectively 3.3 and 1.1 times higher (Fig. 3). On average, the
overestimation of the AVF and AVFUtil made by ACE analysis
with respect to FI is respectively 95% and 80% for RF, while
15.9% and 17.4% for LM. It is also interesting to remark that, for
some combinations of benchmarks and architectures, we observe
that ACE analysis slightly underestimates AVF. This applies to
HD Radeon for dwtHaar1D (0.35 p.u. – percentile units),
histogram (0.38 p.u.) and reduction (0.93 p.u.) and to Quadro FX
5800 for reduction (0.31 p.u.). Finally, in case of the scan
benchmark we observe a singularity: ACE analysis underestimates
the AVFUtil (88.9% for FI against 85.2% of ACE analysis).
Nevertheless, this difference is very close to the 2.88% error
margin of fault injection.

In terms of simulation time, the single-run ACE analysis offers
significantly better performance compared to FI. Table 2

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0%
10%
20%
30%
40%
50%
60%
70%

R
ad

. 7
97

0
FX

 5
60

0
FX

 5
80

0
G

TX
 4

80
R

ad
. 7

97
0

FX
 5

60
0

FX
 5

80
0

G
TX

 4
80

R
ad

. 7
97

0
FX

 5
60

0
FX

 5
80

0
G

TX
 4

80
R

ad
. 7

97
0

FX
 5

60
0

FX
 5

80
0

G
TX

 4
80

R
ad

. 7
97

0
FX

 5
60

0
FX

 5
80

0
G

TX
 4

80
R

ad
. 7

97
0

FX
 5

60
0

FX
 5

80
0

G
TX

 4
80

R
ad

. 7
97

0
FX

 5
60

0
FX

 5
80

0
G

TX
 4

80
R

ad
. 7

97
0

FX
 5

60
0

FX
 5

80
0

G
TX

 4
80

R
ad

. 7
97

0
FX

 5
60

0
FX

 5
80

0
G

TX
 4

80
R

ad
. 7

97
0

FX
 5

60
0

FX
 5

80
0

G
TX

 4
80

R
ad

. 7
97

0
FX

 5
60

0
FX

 5
80

0
G

TX
 4

80

backpropdwtHaar1Dgaussian histogram kmeans matrixMul reduction scan transposevectoradd average

O
cc

up
an

cy

AV
F

(a) Register File

AVF-FI AVF-ACE Occupancy

0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%

R
ad

. 7
97

0
FX

 5
60

0
FX

 5
80

0
G

TX
 4

80
R

ad
. 7

97
0

FX
 5

60
0

FX
 5

80
0

G
TX

 4
80

R
ad

. 7
97

0
FX

 5
60

0
FX

 5
80

0
G

TX
 4

80
R

ad
. 7

97
0

FX
 5

60
0

FX
 5

80
0

G
TX

 4
80

R
ad

. 7
97

0
FX

 5
60

0
FX

 5
80

0
G

TX
 4

80
R

ad
. 7

97
0

FX
 5

60
0

FX
 5

80
0

G
TX

 4
80

R
ad

. 7
97

0
FX

 5
60

0
FX

 5
80

0
G

TX
 4

80
R

ad
. 7

97
0

FX
 5

60
0

FX
 5

80
0

G
TX

 4
80

R
ad

. 7
97

0
FX

 5
60

0
FX

 5
80

0
G

TX
 4

80
R

ad
. 7

97
0

FX
 5

60
0

FX
 5

80
0

G
TX

 4
80

R
ad

. 7
97

0
FX

 5
60

0
FX

 5
80

0
G

TX
 4

80

backpropdwtHaar1Dgaussian histogram kmeans matrixMul reduction scan transposevectoradd average

O
cc

up
an

cy

AV
F

(b) Local memory

AVF-FI AVF-ACE Occupancy

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

R
ad

. 7
97

0
FX

 5
60

0
FX

 5
80

0
G

TX
 4

80
R

ad
. 7

97
0

FX
 5

60
0

FX
 5

80
0

G
TX

 4
80

R
ad

. 7
97

0
FX

 5
60

0
FX

 5
80

0
G

TX
 4

80
R

ad
. 7

97
0

FX
 5

60
0

FX
 5

80
0

G
TX

 4
80

R
ad

. 7
97

0
FX

 5
60

0
FX

 5
80

0
G

TX
 4

80
R

ad
. 7

97
0

FX
 5

60
0

FX
 5

80
0

G
TX

 4
80

R
ad

. 7
97

0
FX

 5
60

0
FX

 5
80

0
G

TX
 4

80
R

ad
. 7

97
0

FX
 5

60
0

FX
 5

80
0

G
TX

 4
80

R
ad

. 7
97

0
FX

 5
60

0
FX

 5
80

0
G

TX
 4

80
R

ad
. 7

97
0

FX
 5

60
0

FX
 5

80
0

G
TX

 4
80

R
ad

. 7
97

0
FX

 5
60

0
FX

 5
80

0
G

TX
 4

80

backprop dwtHaar1D gaussian histogram kmeans matrixMul reduction scan transpose vectoradd average

AV
F

U
TI

L

(a) Register File

AVF UTIL - FI AVF UTIL - ACE

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

R
ad

. 7
97

0
FX

 5
60

0
FX

 5
80

0
G

TX
 4

80
R

ad
. 7

97
0

FX
 5

60
0

FX
 5

80
0

G
TX

 4
80

R
ad

. 7
97

0
FX

 5
60

0
FX

 5
80

0
G

TX
 4

80
R

ad
. 7

97
0

FX
 5

60
0

FX
 5

80
0

G
TX

 4
80

R
ad

. 7
97

0
FX

 5
60

0
FX

 5
80

0
G

TX
 4

80
R

ad
. 7

97
0

FX
 5

60
0

FX
 5

80
0

G
TX

 4
80

R
ad

. 7
97

0
FX

 5
60

0
FX

 5
80

0
G

TX
 4

80
R

ad
. 7

97
0

FX
 5

60
0

FX
 5

80
0

G
TX

 4
80

R
ad

. 7
97

0
FX

 5
60

0
FX

 5
80

0
G

TX
 4

80
R

ad
. 7

97
0

FX
 5

60
0

FX
 5

80
0

G
TX

 4
80

R
ad

. 7
97

0
FX

 5
60

0
FX

 5
80

0
G

TX
 4

80

backprop dwtHaar1D gaussian histogram kmeans matrixMul reduction scan transpose vectoradd average

AV
F

U
TI

L

(b) Local memory

AVF UTIL - FI AVF UTIL - ACE

quantifies this benefit comparing the simulation time of ACE
analysis with the number of fault Injections Per Hour (IPH) that
we were able to simulate for each benchmark employing both
GUFI and SIFI. However, it is important to remember that this
benefit must be traded-off with the reduced accuracy delivered by
ACE analysis and with the capability of FI to precisely quantify
the error margin of the computed metrics. Nevertheless, looking at
the results provided in Fig. 3 and Fig. 4, it is clear that, despite its
lower accuracy, ACE analysis is very efficient in providing a
rough idea about the vulnerability of a hardware component or the
differences between benchmarks in a very short simulation time.
Overall, from our analysis we can conclude that ACE analysis
represents a good characterization technique for LM, since it
combines good accuracy and low computation time, whereas it is
less suitable for RF given the higher inaccuracy. In the remaining
of this section discussions will focus on results obtained resorting
to fault-injection experiments.

Table 2. Simulation time required to perform the reliability analysis
Benchmark SIFI GUFI

ACE time (s) IPH ACE time (s) IPH
backprop 3 1200 13 277
dwt 9 400 1 3600
gaussian 29 124 37 97
histogram 173 21 44 82
kmeans 24 150 90 40
matrixMul 21 171 20 180
reduction 4 900 4 900
scan 5 720 2 1800
transpose 2 1800 6 600
vectoradd 39 92 5 720
AVERAGE 30.9 557.8 22.2 829.6

Fig. 5 combines the AVF of the different hardware structures
with the raw bit soft-error rate of the technology (λ) used to build
the different chips (see Table 1). The result is the global FITGPU.
The figure breaks down the contribution of RF and LM to the
global FITGPU. Interestingly, the contribution of LM is
significantly lower than the one of RF for most benchmarks in
which this memory array is used. Understanding the motivations
for the variation of the FIT rate is not simple since it depends on
the fabrication technology, the size of the hardware structures and
their vulnerability for each benchmark. In general, the
combination of the technology node and the size of the structure
seems to be the predominant factors. In our experimental setup, the
size of RF is bigger than the one of LM and we observe a higher
number of failures caused by faults in RF for all benchmarks and
architectures except for histogram. In the histogram benchmark,
which has an intense use of LM, the LM AVF is much higher than
the one of RF and represents the main contribution to the FIT. In
histogram, LM is used as a read-only memory, so all the Util
resources are always ACE. Moreover, the GPU architectures
whose hardware components are larger have the potential to better
exploit their intrinsic parallelism, since the number of parallel
work-items is also influenced by the availability of resources for
the execute kernels. Executing more work-items concurrently
increases the number of potentially vulnerable resources. More
specifically, this trend can be evicted from Fig. 6 for NVIDIA
architectures. However, Radeon 7970, featuring the largest
components, shows an opposite behavior in some cases,
highlighting the influence of compilers on vulnerable resources.

The bigger size of a GPU hardware component naturally
makes it more vulnerable to soft-errors. However, it increases the
execution parallelism and thus improves performance. Therefore,
as discussed in Section II, to combine the reliability evaluation

with the performance profile of each benchmark and GPU chip we
analyzed the EPF (Fig. 7) and the IPF (Fig. 8) metrics because FIT
alone (Fig. 5) does not take into account the amount of work
carried out by the GPUs before a failure arises. EPF incorporates
the execution time and FIT for a program, while IPF also includes
information about the instruction throughput of GPUs when
executing an application.

Table 3 shows for each benchmark (rows) and architecture
(cols) the execution time (cycles) as well as the number of
executed instructions required to compute EPF and IPF.

Fig. 5. Breakdown of Failures in Time (FIT) rate using the AVF measurements

from Fault Injection.

Fig. 6. Vulnerable resources in bits.

The IPF for a particular benchmark is proportional to the EPF
and to the instruction throughput. Since this throughput strongly
depends on the target execution device, to fairly compare different
GPU architectures we must look at the EPF instead of IPF. The
IPF is instead useful for evaluating the reliability of different
programs on the same GPU chip. On the one hand, the EPF metric
is useful to the architects who can quantify the effectiveness of a
hardware-based error protection technique which can be applied to
their designs (if needed) along with a performance cost at the early
design stages. Larger EPF numbers show a larger number of
executions before a failure and different protection mechanisms
can deliver different improvements in the FIT rates and can also
have different impact on performance. Combining performance
and reliability measurements in the EPF metric delivers a broader
view for decision-making. This could be for instance important
when evaluating real-time applications that are not continuously
executed, but they are scheduled once every time period. On the
other hand, IPF is useful to the programmers who want to quantify
the effectiveness of software redundancy-based protection
techniques which can be applied to their programs running on the
same architecture, thereby correlating the error resilience of their
applications at a performance cost. IPF summarizes both the
performance cost and the resilience improvement.

In Fig. 7, using the EPF to compare the different architectures,
we can identify that the HD Radeon is in general the best choice
for the selected benchmarks with the exception of histogram, scan
and transpose. Using the IPF to compare different benchmarks on

0

50

100

150

200

250

R
ad

. 7
97

0
F

X
 5

60
0

F
X

 5
80

0
G

T
X

 4
80

R
ad

. 7
97

0
F

X
 5

60
0

F
X

 5
80

0
G

T
X

 4
80

R
ad

. 7
97

0
F

X
 5

60
0

F
X

 5
80

0
G

T
X

 4
80

R
ad

. 7
97

0
F

X
 5

60
0

F
X

 5
80

0
G

T
X

 4
80

R
ad

. 7
97

0
F

X
 5

60
0

F
X

 5
80

0
G

T
X

 4
80

R
ad

. 7
97

0
F

X
 5

60
0

F
X

 5
80

0
G

T
X

 4
80

R
ad

. 7
97

0
F

X
 5

60
0

F
X

 5
80

0
G

T
X

 4
80

R
ad

. 7
97

0
F

X
 5

60
0

F
X

 5
80

0
G

T
X

 4
80

R
ad

. 7
97

0
F

X
 5

60
0

F
X

 5
80

0
G

T
X

 4
80

R
ad

. 7
97

0
F

X
 5

60
0

F
X

 5
80

0
G

T
X

 4
80

backprop dwtHaar1D gaussian histogram kmeans matrixMul reduction scan transpose vectoradd

F
IT

Failures in Time

FIT regfile - FI FIT lmem - FI

0

50000

100000

150000

200000

250000

R
ad

. 7
97

0
FX

 5
60

0
FX

 5
80

0
G

TX
 4

80
R

ad
. 7

97
0

FX
 5

60
0

FX
 5

80
0

G
TX

 4
80

R
ad

. 7
97

0
FX

 5
60

0
FX

 5
80

0
G

TX
 4

80
R

ad
. 7

97
0

FX
 5

60
0

FX
 5

80
0

G
TX

 4
80

R
ad

. 7
97

0
FX

 5
60

0
FX

 5
80

0
G

TX
 4

80
R

ad
. 7

97
0

FX
 5

60
0

FX
 5

80
0

G
TX

 4
80

R
ad

. 7
97

0
FX

 5
60

0
FX

 5
80

0
G

TX
 4

80
R

ad
. 7

97
0

FX
 5

60
0

FX
 5

80
0

G
TX

 4
80

R
ad

. 7
97

0
FX

 5
60

0
FX

 5
80

0
G

TX
 4

80
R

ad
. 7

97
0

FX
 5

60
0

FX
 5

80
0

G
TX

 4
80

backprop dwtHaar1D gaussian histogram kmeans matrixMul reduction scan transpose vectoradd

Vulnerable resources

Vulnerable registers Vulnerable local memory

the same architecture (Fig. 8), we can instead notice that for HD
Radeon, backprop and gaussian have higher IPF than the other
benchmarks while gaussian has the higher IPF when executed on
Quadro FX5600, Quadro FX 5800 and GTX 480. Metrics that
combine reliability and performance have also the potential to help
comparing CPUs and GPUs. In particular, while the IPF is a raw
throughput of work (instructions per failure occurrence) the EPF
is a complete execution rate per failure occurrence, which is very
useful if one wants to compare different processing elements like
CPUs and GPUs [18].

Table 3. Execution time and instructions

Benchmark HD Radeon
7970

Quadro FX
5600

Quadro FX
5800

GeForce GTX
480

 Freq (MHz) 925 337.5 325 700
backprop cycles/ 94376/ 423594 369855 206834

inst. 2108160 10312032
dwt cycles 41072 44998 39412 25859

inst. 1839075 1180042
gaussian cycles 5862543 561060 555732 541687

inst. 7308189 5488224
histogram cycles 3198537 1031394 1029746 885491

inst. 20029440 21784328
kmeans cycles 913526 1278216 1267144 1397604

inst. 31930960 35984844
matrixMul cycles 269591 439591 400594 299346

inst. 10924032 15007744
reduction cycles 27836 47377 47086 27231

inst. 312736 854719
scan cycles 123763 18707 16572 19721

inst. 3025801 468720
transpose cycles 50862 98911 82821 49942

inst. 733184 2818048
vectoradd cycles 31687 29219 21603 30225

inst. 1523712 638976

Fig. 7. Executions per Failure (EPF).

Fig. 8. Instructions per Failure.

IV. CONCLUSIONS
We have presented a multi-faceted comprehensive reliability

assessment framework for state-of-the-art AMD and NVIDIA
GPUs. Reliability measurements have been performed using both
fault injection and ACE analysis to reveal the differences between
the two approaches. We used 10 benchmarks to compare the
vulnerability of the AMD/OpenCL versions and the
NVIDIA/CUDA versions. We also proposed two combined

performance/vulnerability metrics (EPF and IPF) that report the
throughput of complete executions per failure or the throughput of
individual instructions per failure. These metrics provide a wider
picture of the GPU quality of execution and can be employed to
compare different GPU chips for the same application or different
programs on the same GPU chip. The proposed framework can be
flexibly to jointly assess reliability and performance of further
GPU configurations, any OpenCL and CUDA workload and, of
course, to assist designers in making decisions for hardware- based
or software-based error protections techniques in GPUs.

ACKNOWLEDGMENT
This research has been supported by the 7th Framework Program of the European
Union through the CLERECO Project, under Grant Agreement 611404.

REFERENCES
[1] G. H. Asadi et al. "Balancing Performance and Reliability in the Memory

Hierarchy," ISPASS 2005, pp. 269-279
[2] P. Rech et al. "Impact of GPUs Parallelism Management on Safety-Critical

and HPC Applications Reliability," DSN 2014, pp. 455-466.
[3] P. Rech et al., "Neutron-Induced Soft Errors in Graphic Processing

Units," REDW 2012, pp. 1-6.
[4] I. S. Haque et al. "Hard Data on Soft Errors: A Large-Scale Assessment of

Real-World Error Rates in GPGPU," CCGrid 2012, pp. 691-696.
[5] N. Farazmand et al. “Statistical fault injection-based AVF analysis of a GPU

architecture,” SELSE, 2012.
[6] B. Fang et al. "GPU-Qin: A methodology for evaluating the error resilience

of GPGPU applications," ISPASS 2014, pp. 221-230.
[7] S. Tselonis et al. "GUFI: A framework for GPUs reliability

assessment," ISPASS 2016, pp. 90-100.
[8] S. S. Mukherjee et al. “A systematic methodology to compute the

architectural vulnerability factors for a high-performance microprocessor,”
MICRO-36, pp. 29–40.

[9] A. Biswas et al. “Computing architectural vulnerability factors for address-
based structures,” ISCA’05, pp. 543.

[10] A. Chatzidimitriou et al. “RT Level vs. Microarchitecture Level Reliability
Assessment: Case Study on ARM Cortex-A9 CPU”, DSN 2017.

[11] A. Vallero et al. “Microarchitecture Level Reliability Comparison of
Modern GPU Designs: First Findings”, ISPASS 2017.

[12] R. Leveugle et al. " Design, Automation & Test in Europe Conference &
Exhibition. DATE 2009, pp. 502-506.

[13] R. Ubal et al. "Multi2Sim: A simulation framework for CPU-GPU
computing," PACT 2012, pp. 335-344.

[14] N. J. Wang et al., “Examining ACE analysis reliability estimates using fault-
injection,” ISCA 2007, pp. 460-469.

[15] A. Vallero et al., “SIFI: AMD Southern Island GPU Microarchitectural
Level Fault Injector”. IOLTS 2017.

[16] S. Che et al., "Rodinia: A benchmark suite for heterogeneous
computing," IISWC 2009, pp. 44-54.

[17] E. Ibe et al. "Impact of Scaling on Neutron-Induced Soft Error in SRAMs
From a 250 nm to a 22 nm Design Rule," IEEE Transactions on Electron
Devices, vol. 57, no. 7, pp. 1527-1538, July 2010.

[18] A. Chatzidimitriou et al. "Performance-aware reliability assessment of
heterogeneous chips," IEEE 35th VLSI Test Symposium 2017. VTS 2017,
Las Vegas, NV, USA, pp. 1-6.

[19] A. Bakhoda et al. "Analyzing CUDA workloads using a detailed GPU
simulator," ISPASS 2009, pp. 163-174.

[20] AMD accelerated parallel processing opencl optimization guide available.
[Online]. Available: http://amd- dev.wpengine.netdna-
cdn.com/wordpress/media/ 2013/12/AMD OpenCL Programming
Optimization Guide.pdf

[21] S. K. S. Hari et al., “Sassifi: An architecture-level fault injection tool for gpu
application resilience evaluation,” ISPASS 2017, pp. 249–258. �

[22] J.Tan et al. "Analyzing soft-error vulnerability on GPGPU
microarchitecture," IISWC 2011, pp. 226-23.

1E+12

1E+13

1E+14

1E+15

1E+16

1E+17

R
ad

. 7
97

0
F

X
 5

60
0

F
X

 5
80

0
G

T
X

 4
80

R
ad

. 7
97

0
F

X
 5

60
0

F
X

 5
80

0
G

T
X

 4
80

R
ad

. 7
97

0
F

X
 5

60
0

F
X

 5
80

0
G

T
X

 4
80

R
ad

. 7
97

0
F

X
 5

60
0

F
X

 5
80

0
G

T
X

 4
80

R
ad

. 7
97

0
F

X
 5

60
0

F
X

 5
80

0
G

T
X

 4
80

R
ad

. 7
97

0
F

X
 5

60
0

F
X

 5
80

0
G

T
X

 4
80

R
ad

. 7
97

0
F

X
 5

60
0

F
X

 5
80

0
G

T
X

 4
80

R
ad

. 7
97

0
F

X
 5

60
0

F
X

 5
80

0
G

T
X

 4
80

R
ad

. 7
97

0
F

X
 5

60
0

F
X

 5
80

0
G

T
X

 4
80

R
ad

. 7
97

0
F

X
 5

60
0

F
X

 5
80

0
G

T
X

 4
80

R
ad

. 7
97

0
F

X
 5

60
0

F
X

 5
80

0
G

T
X

 4
80

backprop dwtHaar1D gaussian histogram kmeans matrixMul reduction scan transpose vectoradd average

Executions per Failure

EPF-FI

1E+19

1E+20

1E+21

1E+22

1E+23

R
ad

. 7
97

0
F

X
 5

60
0

F
X

 5
80

0
G

T
X

 4
80

R
ad

. 7
97

0
F

X
 5

60
0

F
X

 5
80

0
G

T
X

 4
80

R
ad

. 7
97

0
F

X
 5

60
0

F
X

 5
80

0
G

T
X

 4
80

R
ad

. 7
97

0
F

X
 5

60
0

F
X

 5
80

0
G

T
X

 4
80

R
ad

. 7
97

0
F

X
 5

60
0

F
X

 5
80

0
G

T
X

 4
80

R
ad

. 7
97

0
F

X
 5

60
0

F
X

 5
80

0
G

T
X

 4
80

R
ad

. 7
97

0
F

X
 5

60
0

F
X

 5
80

0
G

T
X

 4
80

R
ad

. 7
97

0
F

X
 5

60
0

F
X

 5
80

0
G

T
X

 4
80

R
ad

. 7
97

0
F

X
 5

60
0

F
X

 5
80

0
G

T
X

 4
80

R
ad

. 7
97

0
F

X
 5

60
0

F
X

 5
80

0
G

T
X

 4
80

R
ad

. 7
97

0
F

X
 5

60
0

F
X

 5
80

0
G

T
X

 4
80

backprop dwtHaar1D gaussian histogram kmeans matrixMul reduction scan transpose vectoradd average

Instructions per Failure

IPF - FI

