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Abstract 

Autonomous Driving is one of the main subjects of academic 

research and one important trend in the automotive industry. With the 

advent of self-driving vehicles, the interest around trajectory planning 

raises, in particular when a customer-oriented analysis is performed, 

since more and more the carmakers will have to pay attention to the 

handling comfort. 

With that in mind, an experimental approach is proposed to assess the 

main characteristics of human driving and gain knowledge to 

enhance quality of autonomous vehicles. Focusing on overtaking 

maneuvers in a highway environment, four comfort indicators are 

proposed aiming to capture the key aspects of the chosen paths of a 

heterogeneous cohort. 

The analysis of the distribution of these indicators (peak to peak 

lateral acceleration, RMS lateral acceleration, Smoothness and Jerk) 

allowed the definition of a human drive profile. These characteristics 

were then transferred to the simulation environment to create a 

pseudo-natural trajectory planning strategy, via polynomial fitting 

and spline optimization. This strategy differs from the standard 

approach of trajectory planning, where absolute minimums of cost 

functions are pursued. 

The polynomial and spline fitting techniques reached satisfactory 

results and are evaluated as valid procedures to imitate a natural 

human behavior in a simulation environment (also applicable to 

control the trajectory of AD systems) and raise a question about 

whether a human-like behavior can be subjectively perceived as 

better driving, despite not presenting optimized comfort indicators. 

Introduction 

Autonomous Driving (AD) is one of the most prominent subjects of 

research and development in the automotive field of today. Side by 

side with electric and hybrid powertrain, light weight construction, 

connected vehicles and sharing economy, the development of self-

driving vehicles has its place among the main trends in the next few 

years [2, 4-6]. SAE determines the intelligence level and automation 

capabilities of vehicles, ranking them from 0 to 5, being Level 0 

(Fully manual vehicle) and level 5th (Human driving is eliminated) 

[1]. So far, only Level 4 (No human interaction required) autonomous 

driving have been completely achieved, and exclusively for closed 

traffic system, such as freeways. Urban traffic represents a more 

demanding challenge due to its complexity, such as pedestrian and 

non-regulated road condition. Therefore, as expected, the building of 

knowledge starts with more controlled environments, to then proceed 

to more intricate conditions. 

Among the topics of interest, one particularly undecided is the 

standard (or most likely group of standards) to objectively distinguish 

between a good and a bad self-driving system. The current tests to 

assess the handling performance of an automobile are, justifiably, 

based upon the feeling and response of the driver [17]. Nevertheless, 

with the advancement of autonomous driving, this paradigm may 

shift towards a more comfort-based scenario. Certainly, comfort is 

already the subject of study of many areas within the vehicle design, 

such as NVH (Noise, Vibration and Harshness), but these areas 

should enlarge their scope to evaluate also the driving style and 

handling comfort of the autonomous vehicle. In another words, the 

burden of bad driving will be transferred from human to machine, 

compelling the OEMs to carefully take it into account. A specific 

topic that will help tackling this issue is the trajectory planning. 

This paper has the objective of studying the handling comfort of 

overtaking maneuvers in a highway environment, to then build a 

notion around trajectory planning strategies, parameterized not by 

typical vehicle dynamics variables, but by comfort indicators. To do 

that, a group of comfort performance indicators and an experimental 

setup are proposed, as well as optimization and fitting techniques that 

will allow the evaluation of virtual trajectories. 

Stepping in the state-of-the-art of science and engineering, the 

partnerships among carmakers and academic research groups shall be 

a valuable path to obtain important results. This paper shows an 

example of this kind of cooperation between FCA and the Politecnico 

di Torino. 

Comfort Performance Indicators 

The analysis of vehicle comfort performance for AD vehicles is a 

very challenging field, because of the novelty of this activity in the 

recent years. It is widely recognized, however, the importance of 

solid objective indicators to measure the comfort performance of 

systems. 

Before presenting the indicators treated in this paper, it is essential to 

investigate the state of the art for the evaluation of the human comfort 

perceived. 

Studies about human behavior and trajectory planning underline how 

human behavior [7] is strictly connected to the acceleration perceived 

and its variation, also known as jerk. It is reported in [8,9] that the 

human trajectory planning, in fact, follows the minimization of 

parameters similar to the jerk. 

This aspect is reflected also in the choice of the cost function for the 

trajectory planning in AD systems; in fact, as it is described in [10] 

normal practice for trajectory planning is the use the cost functions 

about jerk minimization.  
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It is important to highlight the aspect of novelty of this paper, in 

which, beyond working on techniques to minimize such indicators, 

the human factor is experimentally evaluated to create a real (and in a 

further looking more natural) point of comparison to the ideal path. 

After this discussion, it is possible to show the indicators selected for 

this analysis: 

 Peak to peak values (p2p): applicable to lateral 

acceleration, lateral jerk, steering angle and yaw rate, peak 

values have been selected because they represent the 

impulsiveness of the maneuver. 

 Root Mean Square (RMS): also applicable to lateral 

acceleration, lateral jerk, steering angle and yaw rate, this 

indicator gives information about the performances among 

all the duration of the excitation on human bodies, like is 

typically done in NVH analysis.  

 Smoothness: Smoothness instead comes from [11] where it 

was used to compare human and AI drivers, and it is 

defined as:  

 

  𝑆𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠−1 = ∫
�́�(𝑡)2

√(�̇�(𝑡)2 + �̇�(𝑡)2)

𝑇

0

 (1) 

 

Where: �́� is the derivative of the curvature and it is 

normalized according to the longitudinal speed of the 

vehicle. It is necessary to highlight that this indicator 

differs from RMS because the value is not divided by the 

time, so is just a sum of all discomfort issue happening 

during the maneuver. 

 Jerk cost function: reflects this former aspect, in fact, as 

well as the Smoothness, is an absolute integral value 

without any time normalization. It represents the controller 

goodness, that is one of the possible cost functions that 

could be used in minimization algorithms. [7] 

The use of yaw rate and steering angle, typically adopted in handling 

judgment, seems to be in opposition to the hypothesis of no 

distinction between driver and vehicle, since driving style is going to 

be an integral aspect of the car. In this scenario become necessary 

understand also the correlation between input and output and 

integrate the handling vehicle characteristic in the comfort evaluation 

process, and therefore these indicators are not included in the 

analysis.  

Experimental Field 

One of the targets of this paper is to assess the real performance of 

drivers in terms of comfort indicators, during overtaking maneuvers. 

The exploitation of this task has been performed starting form an 

experimental test campaign: more than 800 overtake maneuvers have 

been analyzed, thanks to the contribution of 7 different drivers (Table 

1), running on two different vehicles. The 7 drivers (with different 

gender, profession, age and driver experience) were chosen to verify 

if those parameters generate variation in the driving style and if those 

differences could be appreciated through the selected performance 

indicators. 

Table 1. Drivers’ characteristics 

Driver Age Gender Occupation 

Driver 1 20-30 M Researcher 

Driver 2 20-30 M Student 

Driver 3 20-30 F Student 

Driver 4 30-50 M Researcher 

Driver 5 50-70 F Professor 

Driver 6 >70 M Retiree 

Driver 7 30-50 M FCA Technician 

The scenario selected for those tests was the highway between Torino 

and Mondovì, because of its long straights and because in this 

segment the traffic conditions are not so heavy, allowing the 

execution of several maneuvers with certain freedom in choosing the 

trajectory. FCA provided the sensorized vehicles, and the procedure 

was simple: each driver must drive according to his personal style 

focusing the attention only on the speed limits and the other Road 

Laws. 

.  

Figure 1. The highway route used for road testing 

No extra sensors, except a standard GPS antenna, were mounted on 

the vehicle. Most of the information had been collected from CAN 

network, through a CAN Network Logger. The vehicle dynamics 

data like accelerations, Yaw Rate, steering angle come from the 

sensors embedded on the vehicle, used by vehicle ECU to manage 

Passive Safety Systems like ABS and ESP. In Table 2 are reported 

the specification about the accuracy of sensors used. 

All the data collected was used in the analysis, but for the evaluation 

of the different performance indicators on the maneuver the signal 

used were the lateral acceleration (form CAN Networks) and the 

speed (from GPS Antenna). The other information was used to get a 

check about the truth of acceleration and speed information and for 

the identification of overtake maneuver. 

 

 
Table 2. Sensors specifications 

Yaw rate [�̇�] 

Resolution 0.1 deg/s 

Measuring range -100 +100 deg/s 

accuracy -5 +5 % 

Noise RMS 0.1 0.2 deg/s 
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Lateral 

acceleration 

[ay] 

resolution 0.05 m/s2 

Measuring range -18 +18 m/s2 

accuracy -5 +5 % 

Noise RMS 0.05 0.1 m/s2 

Steering angle 

[δ] 

resolution 0.1 deg 

Measuring range -720 +720 deg 

accuracy 1.4 2.8 deg 

GPS 

Absolute positioning 

Accuracy (CEP) 
3 m 

Relative Accuracy 0.01 % 

speed accuracy 0.5 km/h 

 

GPS system, as descripted in Table 2 is not differential (as in DGPS) 

but its accuracy was enough to describe the trajectory, as can be seen 

from the blue lines reported in Figure 3. The absolute accuracy has 

lower importance respect to the relative accuracy, since the main 

interest are brief maneuvers. The trajectory have been derived 

directly form geometric transformation from Latitude and Longitude 

coordinates, expressed in Equations (2) and (3). 

𝑋 = √
𝑅∗cos(𝑙𝑎𝑡)∗cos(𝑙𝑜𝑛)

1−𝑒2∗sin(𝑙𝑎𝑡)
  (2) 

𝑌 = √
𝑅∗cos(𝑙𝑎𝑡)∗sin(𝑙𝑜𝑛)

1−𝑒2∗sin(𝑙𝑎𝑡)
  (3) 

Where: lat and lon stand for latitude and longitude coordinates 

converted in radians, R is the Earth radius and e the Earth 

eccentricity. 

Looking to the testing procedure, in Figure 2 is reported a schematic 

representation of the maneuver that drivers should execute with the 

relative nomenclature choose for the different phases of the 

maneuver. 

The criteria for the extrapolation of the different maneuver are crucial 

to have a correct evaluation of the lane change especially in the 

cumulated index. In fact, the addition of noise component coming 

from straight parts would return a higher value of the indicators that 

does not reflect the actual discomfort level of the maneuver. 

Nowadays it is very difficult to gather a standard criterion regarding 

the definition of lane change, in terms of cut-out start and cut-out end 

for experimental road tests. 

A specific procedure, based on internal reference and correlations of 

the available data, has been proposed and used. In particular, the 

analysis was focused on the first lane change that have been called 

cut-out maneuver. In the post-processing analysis, the cut-out start 

was identified as 1,5 s before the motion of the steering wheel from 

the cruise position (that was approximately centered, except from 

some specific parts of the road with bends of very large radius) to an 

angle superior to 0.2°. The cut-out end was defined looking at the 

yaw rate finding the first moment followed by a stabilized part, 

objectively traduced to a stable interval (ranging between ±0.25 

deg/s) for at least 0,8 s. When it was reached a stable value, around 

the null rotation, it means that the vehicle is running again on a 

straight segment, so the maneuver can be considered as expired. In 

this step the use of trajectory from GPS was crucial to check if the 

cut-out maneuver limits have been defined correctly. 

Figure 3 shows the main variables considered in the analysis of one 

particular maneuver: In particular: Trajectory (lateral displacement) 

from GPS (blue line); Cut-out start and cut-out end (black solid dots); 

Steering wheel threshold position (red solid dots); Longitudinal speed 

of the vehicle throughout the maneuver (up-left plot); Steering angle 

(red line) and the moment in which it overcomes the threshold (black 

circle in the up-right plot); Time history of the lateral acceleration 

and of the yaw rate (low-left and low-right plots respectively). In the 

yaw rate outline, it is possible to appreciate that the end of maneuver 

corresponds with a stabilized signal.   

 

 

Figure 2. Maneuver summary  

 

Figure 3. Example of lane change with cut-out extrapolation criteria  

Experimental Results and the Human Driving 

Profile 

Once the overtake maneuvers were identified among the raw data, the 

indicators presented before were evaluated and used for the 

classification of the different overtakes, selected among all the 

drivers that performed this experiment. 
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Figures 4 and 5 show some relevant results. In figure 4 is represented 

for each overtake maneuver the smoothness (in blue) and the peak to 

peak indicator (in red) related to the lane change duration. Looking at 

those indicators and their distribution, it can observed a wide range of 

results with no apparent correlation between the factors. This 

correlation could be expected since a longer maneuver theoretically 

demands higher accelerations and a less smooth path to be 

completed, but it became clear that other factors not connected with 

the elapsed time have bigger influence. 

 

Figure 4. Comfort indicator vs. duration of the cut-out plot: smoothness (left) 

and p2p lateral acceleration 

 

Figure 5. Experimental classification 

Several stratifications were performed to come up with systematic 

differences and correlations based on gender, age, experience, 

occupation and so on. Nevertheless, the widespread shape of the 

distribution is maintained across the various segmentations. 

Figure 5 reports the distribution of three performance indicators and 

the duration of the cut-out. 

Most of the maneuvers tends to be grouped around a central value 

(median), corresponding to the red line. This relative concentration is 

useful to build a point of comparison for the human driving profile 

described as function of the perceived handling comfort of the 

overtake. 

This notion has two main possible applications: to serve as point of 

comparison (or even minimum acceptable performance) for the 

development of AD vehicles and assess their expected perceived 

handling comfort; or to be a target for AD systems that would not be 

focused on minimize the indicators, but to imitate the natural 

behavior of a normal driver.  

The former is most intuitive path to take (and indeed, the great part of 

articles discussing trajectory planning aim to overcome human 

performance with mathematical optimization), since the latter would 

implicate some sort of evidence that a natural maneuver is perceived 

as better despite its not-optimal comfort indicator. However, as an 

academic investigation, it is thought provoking to pursue an 

alternative way and try to replicate the experimental data with 

artificially created trajectories based on the comfort indicators as 

tuning parameters, giving the paper a novelty factor and opening a 

thread of research that might find some worthy future developments. 

Trajectory planning and Minimization 

Algorithm 

Starting from experimental data and its analysis, the attention is 

briefly shifted to simulation and mathematical environment to define 

a robust trajectory planning algorithm capable to work according to 

the guidelines provided by the real human profile. 

Before starting to the comparison of the virtual trajectory and the real 

trajectory may be interesting to spend some words about trajectory 

planning. This is a widely explained topic, several papers have been 

produced like.[12–16] 

The first approach used for trajectory planning is a simple fifth order 

polynomial Equation (4), because it is more robust in terms of 

simplicity and in terms of mathematical properties, (for example a 

polynomial is always continuous and derivable). 

 

𝑦(𝑡) = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡
2 + 𝑎3𝑡

3 + 𝑎4𝑡
4 + 𝑎5𝑡

5  (4) 

The general idea in this case is to evaluate the coefficients to obtain a 

mathematical description of the trajectory. For this reason, it is 

generally necessary to fix the boundary conditions and solve 

analytically the problem. 

In literature, it is possible to find several examples [16] where it was 

enough to fix just speed and position at the begin and at the end of 

the maneuver as boundary conditions to define the trajectory. 

Moreover, in this case study, this approach is not enough, so two 

more constraints are requested by the higher order. The solution was 

the definition the values of accelerations at the boundaries. As a 

result, the boundary condition selected in the first part of the study 

were the following: 

 

 

{
  
 

  
 
𝑦(0) = 0

�̇�(0) = 0

�̈�(0) = 0

𝑦(𝜏) = 𝑊

�̇�(𝜏) = 0

�̈�(𝜏) = 0

 (5) 

Where W is the width of the lane and τ is the duration of the 

maneuver. Eq (5) refers to lateral motion and it correlates to the 

longitudinal speed profile. For the sake of simplicity, it is supposed 

henceforward that the ego vehicle keep constant speed motion along 

the x-direction. 

The analytical solutions of (4) through the six boundary conditions 

(5) bring to the definition of the different coefficient “ai” of the 

polynomial equation. The result at this point is parametric since the 
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time duration of the maneuver τ is not defined. At the end this is the 

only parameter that can be arbitrary chosen, so it is the only DOF that 

can be used for trajectory tuning, using this approach. 

In Figure 6, it is possible to appreciate this parameterizations since 

they are represented 3 trajectories with 3 different values of  τ. It is 

possible to note how the duration of the lane change can affect the 

result, but it is clear that this unique DOF allows extending the 

trajectory improving comfort but without any change in the shape.  

This unique DOF represent a drawback when a fitting procedure it is 

required, because for example it is possible, for example, to impose a 

certain value for the acceleration p2p value (correlated directly to τ), 

but all the other maneuver characteristics are constrained.   

For this reason, it was realized that more flexibility had been required 

in order to fit experimental data, so the attention was shifted to the 

possibility to investigate different shapes introducing a more complex 

algorithm for the trajectory definition.  

 

Figure 6. Polynomial trajectories  

A possible solution could be to define no more a single polynomial 

but a spline and consequently the analytical solution became no more 

available. This is the reason why the solution adopted for the virtual 

trajectory planning was a fifth order spline evaluated through the 

minimization of a cost function. 

The introduction of the spline in fact allow the use of N DOF, the 

number N represent the number of points (called Nodes) where the 

spline must pass through. 

To overcome the absence of a single mathematical solution and get a 

description of a trajectory trough a polynomial spline, it is necessary 

the application of a minimization problem according to a cost 

function. This approach has been used in several case studies like 

[7,10,16] and according to [8] the best cost function.  

As disclaimed before those algorithms are generally built up to get an 

optimum related to the minimization of the lateral acceleration or the 

jerk. Nevertheless, in this case study, the target is the replication in 

virtual environment of a trajectory coming from experimental data. 

Consequently, it was built up a cost function (Equation (6)) that 

starting from a generic spline is changes it shape in order to minimize 

the gap from the average data collected and fitting experimental data 

as much as possible. 

𝑦(𝑡) =

{
 
 

 
 

𝑎00 + 𝑎01𝑡 +⋯+ 𝑎05𝑡
5 𝑡 < 𝑡10

𝑎10 + 𝑎11(𝑡 −  𝑡10) +⋯+ 𝑎15(𝑡 − 𝑡10)
5  𝑡10 < 𝑡 < 𝑡20 

…
…
…

𝑎𝑛0 + 𝑎𝑛1(𝑡 − 𝑡𝑛−1) + ⋯+ 𝑎𝑛5(𝑡 − 𝑡𝑛−1)
5𝑡𝑛−1 < 𝑡 < 𝑡𝑛

 (6) 

Large differences among the various maneuvers have been noted as 

well as the random error of GPS introduced unexpected deformations 

(sometime some spikes have been noted in the signal). For this 

reason, to identify a possible average maneuver from experimental 

data, the solution was to define the ideal trajectory on the base of the 

performance indicators rather than its shape.  

The mathematical tool that has been used was the optimizer block, 

showed in Figure 7, of Altair Activate. It receives as input the spline 

N nodes that are shown in Figure 8, that those nodes are interpolated 

using a fifth order spline, like the one in (6), to get the trajectory. 

Smoothness, acceleration peak to peak and RMS are evaluated, the 

square difference among those indicators and the experimental 

average represent the cost function that was minimized by the 

software. 

The optimizing loop process is stopped once a local minimum is 

reached. In this specific case the loop is stopped after about 105 

iterations with the same value up to the 5th significant digit. In this 

way, there are N DOF where N is the number of nodes as it is 

possible to appreciate from Figure 8 and this allows to define the 

optimum shape. 

 

Figure 7. Scheme of the minimization algorithm 

 

Figure 8. Spline DOF and main features 

To improve performance and efficiency of simulation it was crucial 

to reduce as much as possible the constraints that the software must 

consider in the optimization process. The set of points was redefined 

Indicators average 
difference 
minimization 
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imposing the clamped boundary condition on two straight parts 

before the actual lane change (represented by the green squares). The 

red points are the limits of the lane change start and end; while the N 

point in the middle (schematized with red arrow) are free to move 

according to the algorithm process.  

The results are showed in Figure 9 and as can be seen, give important 

hints about which shape reduce the minimum the cost function so 

under the hypothesis of this case study is the best according to 

comfort. It is interesting to focus the attention to the fact that the 

shape is changed from the single polynomial since the comfort 

optimized spline is no more symmetric and show small overshoots at 

the beginning and at the end. This aspect has been commonly found 

also in experimental trajectory, the black line, in fact, comes directly 

from the experimental maneuver average and shows this tendency. 

Those overshoots have been investigated in dept and the conclusion 

of the study was that actually drivers tend to naturally execute this 

kind of maneuver even if they reduce it as much as possible. 

 

 

Figure 9. Trajectory comparison 

Numerical vs. Experimental Trajectories 

From virtual trajectory tuning activity, it is possible to conclude that 

even if from experimental data post processing it wasn’t possible to 

identify an average shape and the virtual trajectory had to be 

developed using the indicators it is possible to find some connection 

among virtual and experimental ones like the overshoot and the not 

symmetric lane change. 

The use of spline increase complexity but provide a more tunable 

result. The point is now to evaluate an average maneuver that can in 

such a way summarize all the overtaking maneuvers collected up to 

now. In this way, it is possible to have a virtual trajectory that can 

represent the experimental data. For sure is not easy to get a correct 

average of everything; starting from figure 10 it is possible to 

appreciate that a large part of maneuvers are in the range of 6-9 

seconds with a certain value of discomfort expressed thanks to the 

value of the smoothness or the lateral acceleration peaks or even the 

RMS. 

It was discussed how the spline trajectory because of its better 

tunability can describe a wider typology of trajectories allowing to 

get theoretically several different shapes. Nevertheless, the question 

at this point is to understand which kind of trajectory can be more 

representative of the maneuver collected during the experimental test. 

 

Figure 10. Maneuver duration 

 
Figure 11. Simulation acceleration profiles 

Figures 11 and 12 show a comparison among simulation and real a 

profile in terms of lateral acceleration and trajectory. It is possible to 

understand how the spline trajectory trajectories could be more 

representative of a real profile respect to the polynomial. 
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The reason is obvious related to the higher degree of freedom 

allowed by spline trajectory respect to the polynomial where it is only 

possible to tune the duration to fit just one parameter.  

So, the focus have been shifted to the performance indicators 

evaluated for both trajectories typologies compared with 

experimental data and shown in Figure 12 to understand which 

simulation are more in line with experimental results. 

 

Figure 12. Simulation indicators compared with experimental ones 

The same tendency is confirmed also with this analysis where spline 

performance indicators appear more in line with experimental data. 

Some major differences have been reported by RMS, the hypothesis 

is that these indicators may include some noise related to external 

excitation phenomena like wind, wake or other aerodynamic effect or 

ground irregularities that cannot be reproduced in virtual 

environment. Both methods are reliable and perfectly suitable to the 

implementation in simulation environment, with some benefits and 

drawbacks. 

On one side it was demonstrated that in terms of fidelity the spline 

must be preferred, basically because of the overshoot and non-

symmetric behavior. While for preliminary computation, the best 

approach should be the single polynomial expression because of its 

simplicity.  

Conclusions 

This paper has the objective of studying the handling comfort of 

overtaking maneuvers in a highway environment, then, building a 

know-how about trajectory planning strategies, parameterized not by 

typical vehicle dynamics variables, but by comfort indicators. The 

motivation to do so, is to strengthen the knowledge around 

Autonomous Driving Trajectory Planning with a customer-oriented 

mindset, a strategy considered essential since the vehicle is going to 

be also responsible for the ‘bad driving’ discomfort. 

Taking advantage of the partnership between FCA and Politecnico di 

Torino, an experimental setup was developed and more than 800 

overtakes were recorded. The cohort included drivers with high 

heterogeneity and a simple experimental procedure was imposed to 

permit the most natural behavior of the drivers in terms of style and 

trajectory planning. Using objective post-processing strategies, the 

raw data was treated, and the authors were able to identify the 

maneuvers and classify them in terms of four main comfort 

indicators: peak to peak lateral acceleration, RMS lateral 

acceleration, smoothness and jerk. 

Analyzing the distribution of these overtakes, the authors were not 

capable of find any statistically relevant correlation between comfort 

and the characteristics of the drivers, neither between factors such 

duration of the maneuver or longitudinal speed. Nonetheless, the 

histograms show a clear concentration of the indicators around the 

median value, indicating that these values can be representative of a 

human driving profile.  

At this point it was decided to pursue an alternative path to the paper: 

instead of creating trajectory planning strategies to optimize the 

comfort indicators (as performed countlessly by other studies) and 

compare them with the experimental data, the authors used the 

natural driving parameters to tune the trajectories and artificially 

build a pseudo-natural path. The polynomial and spline fitting 

techniques reached satisfactory results and are evaluated as valid 

procedures to imitate a natural human behavior in a simulation 

environment (and therefore also applicable to control the trajectory of 

AD systems). It is yet to be defined if this methodology shall bring 

any advantages in terms of subjective evaluation of AD handling 

comfort. 

Future works can help answering the two important questions that 

remain: Are there external or internal factors that allow to explain 

and correlate the widespread data of experimental comfort indicators? 

Can a pseudo-natural trajectory based on the human driving profile 

be perceived as better than an optimized trajectory. 
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ABS Anti-lock Braking System 

AD Autonomous Driving 

ADAS Advanced Driver-Assistance Systems 

CAN Controller Area Network 

DOF Degree of Freedom 

DGPS Differential Global Positioning System 

ECU Electronic Control Unit 

ESP Electronic Stability Program 

GPS Global Positioning System 

FCA Fiat Chrysler Automobiles 

IT Information Technology  

NVH Noise and Vibration Harshness 

P2P Peak to Peak 

RMS Root Mean Square 
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