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AN OPTIMAL IMPROVEMENT FOR THE HARDY INEQUALITY

ON THE HYPERBOLIC SPACE AND RELATED MANIFOLDS

ELVISE BERCHIO, DEBDIP GANGULY, GABRIELE GRILLO, AND YEHUDA PINCHOVER

Abstract. We prove optimal improvements of the Hardy inequality on the hyperbolic
space. Here, optimal means that the resulting operator is critical in the sense of [19],
namely the associated inequality cannot be further improved. Such inequalities arise from
more general, optimal ones valid for the operator Pλ := −∆HN −λ where 0 ≤ λ ≤ λ1(H

N )
and λ1(H

N) is the bottom of the L
2 spectrum of −∆HN , a problem that had been studied

in [5] only for the operator Pλ1(HN ). A different, critical and new inequality on HN ,
locally of Hardy type, is also shown. Such results have in fact greater generality since
there are shown on general Cartan-Hadamard manifolds under curvature assumptions,
possibly depending on the point. Existence/nonexistence of extremals for the related
Hardy-Poincaré inequalities are also proved using concentration-compactness technique
and a Liouville comparison theorem. As applications of our inequalities we obtain an
improved Rellich inequality and we derive a quantitative version of Heisenberg-Pauli-Weyl
uncertainty principle for the operator Pλ.

1. Introduction

The Hardy inequality on (Euclidean) domains has been studied intensively for the last
few decades. Much of the interest has centered on optimal improvements of the inequality
and the effect of the domain on the Hardy constant. Its generalization to Riemannian
manifolds was intensively pursued after the seminal work of Carron [15], see for instance
[5, 7, 18, 29, 30, 31, 40]. Let (M,g) be a Riemannian manifold and let ̺(x) be a weight
function satisfying the Eikonal equation |∇g̺| = 1 and ∆g̺ ≥ C

̺
where C > 0 a positive

constant. By [15] there holds

∫

M

|∇gu|2 dvg ≥
(

C − 1

2

)2 ∫

M

u2

̺2
dvg ∀ u ∈ C∞

c (M \ ̺−1{0}). (1.1)

In case of Cartan-Hadamard manifold M of dimension N (namely, a manifold which is
complete, simply-connected, and has everywhere non-positive sectional curvature), the ge-
odesic distance function d(x, x0), where x0 ∈M , satisfies all the assumptions of the weight

̺ and the above inequality holds with best constant
(

N−2
2

)2
, see [31]. In particular, consid-

ering the most important example of Cartan-Hadamard manifold, namely the hyperbolic
space HN , inequality (1.1) reads

∫

HN
|∇HNu|2 dvHN ≥

(

N − 2

2

)2 ∫

HN

u2

r2
dvHN , ∀ u ∈ C∞

c (HN \ {x0}) (1.2)

with r := d(x, x0) and x0 ∈ HN is a fixed pole.
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The effect of curvature has been exploited in [29, 30, 31, 40] to improve inequality (1.1)
(in the sense of adding nonnegative terms in the right side of the inequality) on Cartan-
Hadamard manifolds. This is in contrast to what happens in the Euclidean setting where the

operator −∆RN−
(

N−2
2

)2 1
|x|2 is known to be critical in RN \{0} (see [19]) and improvements

of such quadratic form inequality are not possible. However, there is a huge literature about
improved Hardy inequalities on bounded Euclidean domains after the seminal works of Brezis
and Marcus [10] and Brezis and Vazquez [11]. See also [12, 13, 14, 20, 21, 22, 23, 26] and
references therein. We now describe qualitatively the contributions given in the present
paper.

• Critical improvements of the Hardy inequality with optimal constant. It is

known that the operator, −∆HN −
(

N−2
2

)2 1
r2

is subcritical operator in HN \ {x0}, and the

existence of a remainder term for inequality (1.2) involving a multiple of the L2-norm is
also known by [40]. Furthermore, a new type of improvement of (1.2), and more generally
of (1.1) on Cartan-Hadamard manifolds, has been recently provided in [31] by showing that
more curvature implies more powerful improvements, see Remark 2.2 below. Nevertheless,
as far we are aware, the criticality of the resulting “improved” operators has never been
studied.

The first goal of the present paper is to address this topic by looking for a weight V ≥ 0
such that the following improved Hardy inequality holds true

∫

HN
|∇HNu|2 dvHN ≥

(

N − 2

2

)2 ∫

HN

u2

r2
dvHN +

∫

HN
V u2 dvHN ∀u ∈ C∞

c (HN ) (1.3)

and the associated operator −∆HN −
(

N−2
2

)2 1
r2

− V is critical in HN \ {x0}. Hence, the
inequality is not true when V is replaced by W ≥ V , W 6= V , and this is the reason why we
will call such V an optimal weight. In this respect we note that for any second-order elliptic
subcritical operator P in HN , and any compactly supported, positive perturbation V of P
in HN , there always exists λ0 s.t. P − λ0V is critical in HN (see [37]). So qualitatively we
aim at finding a potential that is as large as possible at infinity and such that inequality
(1.3) is not improvable.

In Theorem 2.2 below we show that an optimal radial weight V ≥ 0 such that (1.3) holds
is

V (r) = (N − 2) +
(N − 2)(N − 3)

4
g(r) , (1.4)

where g(r) = r coth r−1
r2

> 0 and r > 0. In particular, g satisfies g(r) ∼ 1
3 as r → 0+

and g(r) ∼ 1
r
as r → +∞. It is clear from (1.4) that V (r) yields, as a byproduct, an L2

improvement of the Hardy inequality (1.2) and we point out that, to our knowledge, the
constant N − 2 we get in front of the L2-term is greater than the existing known bounds
in literature, cf. [40]. Though, except for N = 3, the optimality of the weight V does not
imply that N−2 is the best constant in obvious sense. It is also interesting to note that our
optimal inequality is closely related to the improved Hardy inequality studied in [31], we
refer to Remark 2.2 for a detailed discussion. Here we only mention that the main result on
the Hardy inequality given in [31], when considered on HN , follows as a particular case of
our results. Also the extension of our results to more general Cartan-Hadamard manifolds is
obtained under less restrictive assumptions than in [31]. Indeed, we only require curvature
bound in the radial direction, see Section 4 and, besides, we allow for curvature bounds
varying with the point.
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• Hardy-type improvements of the Poincaré inequality. It is worth noting that the
weight V (r) in (1.4) originates from a suitable family of Hardy weights improving Poincaré-
type inequalities on HN with N ≥ 2. Indeed, the validity of the Poincaré inequality (or
L2-gap ineq.) on HN with best constant

λ1(H
N ) := inf

u∈C∞
c (HN )\{0}

∫

HN |∇HNu|2 dvHN
∫

HN u
2 dvHN

=

(

N − 1

2

)2

, (1.5)

makes it natural to inquire whether, for any given λ ≤ λ1(H
N ), a Hardy-type inequality

associated to the family of nonnegative operators Pλ := −∆HN − λ holds. More precisely,
for any λ ≤ λ1(H

N ), one looks for functions Vλ ≥ 0 such that the following inequality holds
true

∫

HN
|∇HNu|2 dvHN − λ

∫

HN
u2 dvHN ≥

∫

HN
Vλ u

2 dvHN ∀u ∈ C∞
c (HN ) (1.6)

and the operator Pλ−Vλ is critical in HN \{x0} so that (1.6) does not hold for anyWλ ≥ Vλ,
Wλ 6= Vλ.

When λ = λ1(H
N ) and N ≥ 3, a weight such that the above condition is satisfied is known

to exist. More precisely, inequality (1.6) holds with λ = λ1(H
N ) and

Vλ1(HN )(r) =
1

4

1

r2
+

(N − 1)(N − 3)

4

1

sinh2 r
. (1.7)

Furthermore, the operator Pλ1(HN ) − Vλ1(HN ) is critical in HN . The inequality has been

shown first in [2] and then, with different methods, adaptable to larger classes of manifolds,
in [5], where criticality has also been shown. We refer the interested reader to [6] and [7]
for higher order and Lp version of inequality (1.6) for λ = λ1, respectively, and to [9] for
other functional inequalities in the same setting but involving the Green’s function of the
Laplacian.

Hence, a further goal of this work is to complete the study of (1.6) for λ < λ1(H
N )

and to address the criticality issue when N = 2, a case which was not dealt with in [5].
Clearly, from the validity of (1.6) with λ = λ1(H

N ) and Vλ = Vλ1(HN ) as given above, it

is readily deduced that for any λ < λ1(H
N ) an optimal radial weight for Pλ is V λ(r) =

(λ1(H
N ) − λ) + Vλ1(HN )(r). In Theorem 2.1 below we provide a second optimal radial

weight Vλ which coincides with Vλ1(HN ) if λ = λ1(H
N ), while it gives inequality (1.3) with

the weight in (1.4) if λ = N − 2. Moreover, for N ≥ 3 and any λ ≤ λ1(H
N ), Vλ satisfies

Vλ(r) ∼
(

N − 2

2

)2 1

r2
as r → 0+ .

The same asymptotic holds for V λ, hence both Vλ and V λ tend to reproduce the classical
Hardy weight near the origin but it can be shown that Vλ is larger than V λ, see Remark
2.1 below. Clearly, when N = 2 one cannot expect an improvement with a Hardy term like
in higher dimensions. Indeed, near the origin we have

Vλ(r) ∼
(1 +

√
1− 4λ)(1 + 3

√
1− 4λ)

12
as r → 0+

for any λ ≤ λ1(H
2) = 1

4 .

• A new critical quadratic form inequality on the hyperbolic space. We shall show
the validity of a new quadratic form inequality on HN , which is locally of Hardy type. The
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inequality reads
∫

HN
|∇HNu|2 dvHN ≥

(

N − 2

2

)2 ∫

HN

u2

sinh2 r
dvHN +

1

4

∫

HN

u2

sinh2 r(log(tanh r
2 ))

2
dvHN

+
N(N − 2)

4

∫

HN
u2 dvHN ,

(1.8)

It will also be shown that the operator

−∆HN −
(

N − 2

2

)2 1

sinh2 r
− 1

4 sinh2 r(log(tanh r
2 ))

2
− N(N − 2)

4

is critical in HN \ {x0} and the constant N(N−2)
4 is sharp in the obvious sense. For a

somewhat related inequality on the geodesic ball and for radial functions, see [17, Prop.
1.8], optimality issues not being discussed there.

• General Cartan-Hadamard manifolds. It is important to comment that all the
above results in fact hold under the curvature bound KR ≤ −1, KR being the sectional
curvature in the radial direction of a Cartan-Hadamard manifold with a pole (or, with
some modifications, if KR ≤ −c < 0), see Theorem 4.1 and its Corollaries. We have so
far stated them in the special case of Hn for greater readability only. In fact, Theorem
4.1 proves suitable integral inequalities even under more general curvature bounds that
can depend on the point. Inequality (1.8) can be extended to general Cartan-Hadamard
manifolds as well, in fact a new critical inequality is proved in Theorem 4.4. It is important
to stress that such inequality will be shown under the assumption that curvature is strictly
negative at infinity, more precisely it can be allowed to vanish as the distance from a given
pole tends to infinity but not faster than quadratically.

• Existence of extremals for optimal inequalities. Coming back to inequality (1.6)

with N ≥ 3, we also take the different attitude of fixing Vλ(r) =
I(λ)
r2

and looking for the
best constant I = I(λ) > 0 such that (1.6) holds. In other words, the following infimum
problem arises

I(λ) := inf
u∈C∞

c (HN )\{0}

∫

HN |∇u|2 dvHN − λ
∫

HN u
2 dvHN

∫

HN
u2

r2
dvHN

. (1.9)

Clearly, I(0) =
(

N−2
2

)2
while, by (1.7), I(λ1(H

N )) = 1
4 .

In Theorems 2.4 and 2.5 we investigate existence/non existence of extremals of I(λ) for
any λ ∈ [0, λ1(H

N )]. Furthermore, we provide a lower and an upper bound of the maximum

value of λ such that I(λ) =
(

N−2
2

)2
, namely of the best constant in front of the L2-type

remainder term for (1.2).

• Further results. The rest of the paper is, on one hand, devoted to present a further
remarkable application of (1.6), namely the derivation of suitable quantitative versions
of Heisenberg-Pauli-Weyl uncertainty principle for the shifted Laplacian in the hyperbolic
setting; the corresponding inequalities should be compared with those obtained in [29, 30,
31]. Besides, we also generalize the Hardy-type inequalities to more general ones in which
the energy term may involve weights as well, and also prove improved, weighted Rellich
inequalities in the spirit of [5], with optimal Rellich term.
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• Plan of the paper. The paper is organized as follows. In Section 2 we state Theorem 2.1
in HN , namely our family of optimal inequalities (1.6), and some interesting inequalities
derived from Theorem 2.1, among which the inequality (1.3) associated to the weight (1.4).
Finally we state Theorems 2.4 and 2.5 related to the study of existence/non existence
of extremals for (1.9). Section 3 is devoted to the application of Theorem 2.1 to obtain
the above mentioned quantitative versions of Heisenberg-Pauli-Weyl uncertainty principle
involving the shifted Laplacian in the hyperbolic space setting. In Section 4, we discuss the
extension of our results to general Cartan-Hadamard manifolds. Sections 6, 7 and 8 are
devoted to the proofs of the statements of Sections 2 and 4. Finally, in the Appendix we
state some Hardy-Maz’ya type inequalities in dimension 2 related with the inequalities of
Section 2.

2. Main results

We start by providing a suitable family of optimal Hardy weights for the operators Pλ :=
−∆HN −λ. We comment here and once for all that, although stated for functions compactly
supported away from the pole, most inequalities also holds without such requirement by
density arguments: in fact, e.g. in the next Theorem formula (2.1) holds without such
requirement if N ≥ 3.

Theorem 2.1. Let N ≥ 2. For all λ ≤ λ1(H
N ) =

(

N−1
2

)2
and all u ∈ C∞

c (HN \{x0}) there
holds

∫

HN
|∇HNu|2 dvHN − λ

∫

HN
u2 dvHN

≥ (γN (λ) + 1)2

4

∫

HN

u2

r2
dvHN +

γN (λ)(γN (λ) + 1)

2

∫

HN
g(r)u2 dvHN

+
(N − 1 + γN (λ))(N − 3− γN (λ))

4

∫

HN

u2

sinh2 r
dvHN ,

(2.1)

where γN (λ) :=
√

(N − 1)2 − 4λ and g is defined by

g(r) =
r coth r − 1

r2
> 0. (2.2)

The function g is strictly decreasing and satisfies

g(r) ∼ 1

3
as r → 0+ and g(r) ∼ 1

r
as r → +∞ .

Besides, the operator −∆HN − λ− Vλ(r) with the positive potential Vλ being given by

Vλ(r) :=
(γN (λ) + 1)2

4

1

r2
+
γN (λ)(γN (λ) + 1)

2
g(r)

+
(N − 1 + γN (λ))(N − 3− γN (λ))

4

1

sinh2 r

(2.3)

is critical in HN \ {x0} in the sense that the inequality

∫

HN
|∇HNu|2 dvHN − λ

∫

HN
u2 dvHN ≥

∫

HN
V u2 dvHN ∀u ∈ C∞

c (HN \ {x0})

is not valid for all u ∈ C∞
c (HN \ {x0}) given any V 	 Vλ.
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Remark 2.1 (Asymptotics of Vλ). We investigate here the behavior of Vλ at zero and at
infinity. For any λ ≤ λ1(H

N ), there holds

Vλ(r) =

(

N − 2

2

)2 1

r2
+RN (λ) + o(r) as r → 0+ ,

where RN (λ) := (λ1(H
N )−λ)+ 2

3

√

λ1(HN )− λ− (N−1)(N−3)
12 and the map (−∞, λ1(H

N )] ∋
λ 7→ RN (λ) is decreasing. Hence, among the weights Vλ, Vλ1(HN ), is the “smallest” near the

origin. On the other hand, if we consider the weights V λ(r) = (λ1(H
N ) − λ) + Vλ1(HN )(r)

as defined in the Introduction, we have that

V λ(r) =

(

N − 2

2

)2 1

r2
+RN (λ) + o(r) as r → 0+ ,

where RN (λ) := (λ1(H
N ) − λ) − (N−1)(N−3)

12 . Since RN (λ) < RN (λ) for any λ < λ1(H
N ),

we conclude that Vλ is larger than V λ near the origin.

We also note that when N = 2 the first term in the above expansion of Vλ vanishes,
furthermore λ1(H

2) = 1
4 and we have

Vλ(r) =
(1 +

√
1− 4λ)(1 + 3

√
1− 4λ)

12
+ o(r) as r → 0+ .

Let us turn to the asymptotic behavior at infinity. For any N ≥ 2, there holds

Vλ(r) ∼
γN (λ)(γN (λ) + 1)

2r
if λ < λ1(H

N ) and Vλ1(HN )(r) ∼
1

4r2
as r → +∞

while

V λ(r) ∼ (λ1(H
N )− λ) as r → +∞ .

Hence, for λ < λ1(H
N ), V λ is larger than Vλ near infinity.

The above difference in the behavior at infinity of Vλ(r) between λ = λ1 and λ < λ1 might
be related to a well known phenomenon for the Euclidean Laplacian, where λ1(R

N ) = 0.
The Hardy weight 1

|x|2 is at the borderline of short/long range potentials at infinity for −∆

in RN . In particular, the potential (1 + |x|)−α is a small perturbation of the −∆ in RN

for N ≥ 3 if and only if α > 2 (see for example the discussion in [19, Example 1.1]). On
the other hand, for λ < 0 the potential (1 + |x|)−α is a small perturbation of −∆ − λ in
RN if and only if α > 1. We do not claim that 1

r
for λ < λ1(H

N ) is a border line potential
in the hyperbolic setting, however it would be interesting to further investigate the (sharp)
borderline behavior of the potential at infinity in HN for λ < λ1(H

N ).

In the following we highlight some remarkable inequalities derived from Theorem 2.1 by
making specific choices of the parameters involved. The basic idea behind our choices is
either to maximize the constant in front of the , namely to maximize the gain at infinity,
or to maximize the constant in front of the classical Hardy weight 1

r2
, namely to maximize

the gain at the origin.

The maximum value of the constant in front of the L2-term is clearly achieved for λ =
λ1(H

N ). Since γN (λ1(H
N )) = 0, for this choice of λ the constant in front of the function

g(r) in (2.3) vanishes so that Vλ coincides with the potential in (1.7) which was introduced
in [2, 5]. Therefore, (2.1) includes the sharp Poincaré inequality of [5, Theorem 2.1].

Next we consider the constant (γN (λ)+1)2

4 in front of the weight 1
r2

in (2.3). For N ≥ 3 its
value cannot exceed the Hardy constant and its maximum is achieved for γN (N−2) = N−3,
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namely for λ = N − 2. For this choice of λ the coefficient in front of the term involving
1

sinh2 r
vanishes and Theorem 2.1 yields the following sharp Hardy inequality on HN .

Corollary 2.2. Let N ≥ 3. For all u ∈ C∞
c (HN \ {x0}) there holds

∫

HN
|∇HNu|2 dvHN ≥

(

N − 2

2

)2 ∫

HN

u2

r2
dvHN + (N − 2)

∫

HN
u2 dvHN

+
(N − 2)(N − 3)

2

∫

HN
g(r)u2 dvHN , (2.4)

where g(r) is as given in (2.2). Besides, the operator

−∆HN −
(

N − 2

2

)2 1

r2
− (N − 2)− (N − 2)(N − 3)

2
g(r)

is critical in HN \ {x0} in the sense that the inequality

∫

HN
|∇HNu|2 dvHN ≥

∫

HN
V u2 dvHN ∀u ∈ C∞

c (HN \ {x0})

is not valid for all u ∈ C∞
c (HN \{x0}) given any V 	

(

N−2
2

)2 1
r2
+(N−2)+ (N−2)(N−3)

2 g(r).

Moreover, the constant
(

N−2
2

)2
is sharp by construction, while the constants (N − 2) and

(N−2)(N−3)
2 are “jointly” sharp in the sense that that no inequality of the form

∫

HN
|∇HNu|2 dvHN ≥

(

N − 2

2

)2 ∫

HN

u2

r2
dvHN

+
(N − 2)(N − 3)

2

∫

HN
g(r)u2 dvHN + c

∫

HN
u2 dvHN

holds for all u ∈ C∞
c (HN \ {x0}) when c > N − 2. Similarly, no inequality of the form

∫

HN
|∇HNu|2 dvHN ≥

(

N − 2

2

)2 ∫

HN

u2

r2
dvHN +(N−2)

∫

HN
u2 dvHN +c

∫

HN
g(r)u2 dvHN ,

holds for all u ∈ C∞
c (HN \ {x0}) when c > (N−2)(N−3)

4 .

Remark 2.2. Several contributions are available about Hardy inequality on the hyperbolic
space see e.g. [15, 18, 29, 30, 40]. Yet, its improvements and related criticality issues still
present open problems. In [40], for N ≥ 3, the authors show that
∫

HN
|∇HNu|2 dvHN ≥ (N − 2)2

4

∫

HN

u2

r2
dvHN + CN

∫

HN
u2 dvHN u ∈ C∞

c (HN ), (2.5)

where CN ≥ N−1
4 . The explicit value of CN is not known and there is no information whether

we can add more remainder terms in R.H.S of the inequality. See also [29, Theorem 3.1] for
a Euclidean L2-type improvement of inequality (1.2).

More recently, a new type of improved Hardy inequality has been proved in [31, The-
orem 4.1]. In terms of the function g(r) defined in Theorem 2.1, the inequality in [31,
Theorem 4.1] reads:
∫

HN
|∇HNu|2 dvHN ≥

(

N − 2

2

)2 ∫

HN

u2

r2
dvHN +

(N − 1)(N − 2)

2

∫

HN
g(r)u2 dvHN , (2.6)
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for N ≥ 3 and all u ∈ C∞
c (HN ). By noting that g(r) ≤ 1

3 for every r > 0, it is readily de-
duced that inequality (2.6) follows from our inequality (2.4). Hence in particular inequality
(2.4) is stronger than that of (2.6) proved in [31, Theorem 4.1].

For what remarked above, although Theorem 2.2 does not provide the best constant for the
L2-remainder term, it contributes to a significant improvement of the known literature on
this topic. See Theorems 2.4 and 2.5 below and the related discussion for further interesting
consequences of Theorem 2.2.

Remark 2.3. Corollary 2.2 follows by Theorem 2.1 by taking λ = N − 2 in the potential
given in (2.3), so that the coefficient in front of 1

r2
assumes its maximum value, meanwhile

the coefficient in front of g(r) is positive, while the last term in the expression of the weight
Vλ vanishes. Besides, when N − 2 < λ ≤ λ1(H

N ), then γN (N − 2) < N − 3 and all
the coefficients in the definition (2.3) are nonnegative, and even positive if λ 6= λ1(H

N ).
Instead, when λ < N − 2, the coefficient in front of 1

r2
in (2.3) still increases but since

γN (N − 2) > N − 3 the coefficient in front of 1
sinh2 r

becomes negative. However, since
1
r2
> 1

sinh2 r
for r > 0, Vλ is still positive, indeed we have

Vλ(r) ≥
(

N − 2

2

)2 1

sinh2 r
+
γN (λ)(γN (λ) + 1)

2
g(r) .

As already explained in Remark 2.1, these weights become larger and larger near the origin
as λ decreases.

Going on with our analysis of consequences of Theorem 2.1, we focus on the case N = 2
that was not studied in [5]. Taking N = 2 in (2.3), for any λ ≤ 1/4, we get

Vλ(r) :=
(
√
1− 4λ+ 1)2

4

(

1

r2
− 1

sinh2 r

)

+
(
√
1− 4λ)(

√
1− 4λ+ 1)

2
g(r) .

In particular, for λ = λ1(H
2) = 1

4 , Theorem 2.1 yields the following sharp improved Poincaré
inequality:

Corollary 2.3. For all u ∈ C∞
c (H2 \ {x0}) there holds :

∫

H2

|∇H2u|2 dvH2 − 1

4

∫

H2

u2 dvH2 ≥ 1

4

∫

H2

(

1

r2
− 1

sinh2 r

)

u2 dvH2 . (2.7)

Moreover, the operator, −∆H2− 1
4− 1

4

(

1
r2

− 1
sinh2 r

)

is critical in H2\{x0}, i.e. the inequality
∫

H2

|∇H2u|2 dvH2 − 1

4

∫

H2

u2 dvH2 ≥
∫

H2

Wu2 dvH2 ∀u ∈ C∞
c (H2 \ {x0})

is not valid for any W 	 1
4

(

1
r2

− 1
sinh2 r

)

.

In particular, all the constants in (2.7) are sharp. In particular, no inequality of the form
∫

H2

|∇H2u|2 dvH2 − 1

4

∫

H2

u2 dvH2 ≥ C

∫

H2

(

1

r2
− 1

sinh2 r

)

u2 dvH2 ∀u ∈ C∞
c (H2 \ {x0})

holds when C > 1
4 .
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In the next results we change our point of view, taking the attitude of fixing the Hardy
weight for the operator −∆HN − λ to be I

r2
for some I > 0 and investigating the properties

of the best constant. In other words, for any 0 ≤ λ ≤ λ1(H
N ), we study the infimum

problem (1.9) which also reads

∫

HN
|∇HNu|2 dvHN − λ

∫

HN
u2 dvHN ≥ I(λ)

∫

HN

u2

r2
dvH2 ∀u ∈ C∞

c (H2 \ {x0}) . (2.8)

We have already remarked that I(0) =
(

N−2
2

)2
and I(λ1(H

N )) = 1
4 . Since the map λ 7→ I(λ)

is non increasing and concave, hence continuous, the following number is well-defined

λ̂N := max

{

λ ∈ [0, λ1(H
N )] : I(λ) =

(

N − 2

2

)2
}

. (2.9)

Namely, λ̂N is the best constant in front of the L2-term such that (2.5) holds.

When N = 3, the Hardy constant and the Poincaré constant are both equal to 1
4 . Hence,

from Theorem 2.2 (or [5, Theorem 2.1], see also [5, Remark 2.2]) it follows that λ̂3 =
λ1(H

3) = 1 and the following statement holds:

Theorem 2.4. Let N = 3. For any λ ≤ 1, I(λ) = 1
4 and the infimum in (1.9) is not

achieved, i.e. the inequality in (2.8) is strict for u 6= 0.

For higher dimensions the situation is more complicated and we have the following :

Theorem 2.5. Let N > 3 and let λ̂N be as defined in (2.9). Then,

N − 2 ≤ λ̂N < min

{

λ1(H
N ), N − 2 +

(N − 2)(N − 3)

6

}

and the following three cases occur:

(i) for 0 ≤ λ ≤ λ̂N , I(λ) =
(

N−2
2

)2
and the infimum in (1.9) is not achieved, i.e. the

inequality in (2.8) is strict for u 6= 0;

(ii) for λ̂N < λ < λ1(H
N ),

(

1+2
√
λ1(HN )−λ
2

)2

< I(λ) <
(

N−2
2

)2
and the infimum in

(1.9) is achieved by a unique (up to a change of sign) positive function u ∈ H1(HN );
in particular, the corresponding operator is critical.

(iii) for λ = λ1(H
N ), I(λ1(H

N )) = 1
4 and the infimum in (1.9) is not achieved, i.e. the

inequality in (2.8) is strict for u 6= 0.

Remark 2.4. Note that for N ≥ 6 there holds

min

{

λ1(H
N ), N − 2 +

(N − 2)(N − 3)

6

}

= N − 2 +
(N − 2)(N − 3)

6
.

Open problems related to Theorem 2.5:

- Theorem 2.5 does not give the explicit value of λ̂N . The strict inequality in the lower
bound provided for I(λ) in the statement (ii) of Theorem 2.5 and the inequality





1 + 2

√

λ1(HN )− λ̂N

2





2

≤
(

1 + 2
√

λ1(HN )− (N − 2)

2

)2

=
(N − 2)2

4



10 ELVISE BERCHIO, DEBDIP GANGULY, GABRIELE GRILLO, AND YEHUDA PINCHOVER

suggest the conjecture that λ̂N > N − 2 but we do not have a proof of this fact;

- By Theorem 2.5 it is readily deduced that the operator

−∆HN − λ− I(λ)

r2
,

is critical for λ̂N < λ < λ1(H
N ) while it is subcritical for 0 ≤ λ < λ̂N and for λ = λ1(H

N )
(subcriticality for λ = λ1(H

N ) comes from [5, Theorem 2.1], namely from the existence of
the weight (1.7)). We do not have a proof of the subcriticality/criticality of the operator

when λ = λ̂N .

2.1. A second Hardy-type inequality on the hyperbolic space and a further upper
bound on λ̂N . Now we study a different Hardy-type inequality on the hyperbolic space
which resembles the classical Hardy one near the pole x0. It is quite natural to consider a
Hardy weight related to the defining function of HN as a model manifold, namely to the
quantity sinh r, that behaves like r near pole and decays exponentially near infinity. We
shall produce an optimal Hardy-type inequality, in particular we have the following result.

Theorem 2.6. Let N ≥ 3. For all u ∈ C∞
c (HN \ {x0}) there holds

∫

HN
|∇HNu|2 dvHN ≥

(

N − 2

2

)2 ∫

HN

u2

sinh2 r
dvHN +

1

4

∫

HN

u2

sinh2 r(log(tanh r
2))

2
dvHN

+
N(N − 2)

4

∫

HN
u2 dvHN , (2.10)

Besides, the operator

−∆HN −
(

N − 2

2

)2 1

sinh2 r
− 1

4 sinh2 r(log(tanh r
2 ))

2
− N(N − 2)

4
(2.11)

is critical in HN \ {x0} in the sense described in Theorem 2.1. Moreover, the constant
N(N−2)

4 is sharp in the sense that no inequality of the form

∫

HN
|∇HNu|2 dvHN ≥

(

N − 2

2

)2 ∫

HN

u2

sinh2 r
dvHN + c

∫

HN
u2 dvHN

holds for all u ∈ C∞
c (HN \ {x0}) when c > N(N−2)

4 .

As an immediate consequence, we get the following result.

Corollary 2.7. Let N ≥ 3 and let λ̂N be as defined in (2.9). Then:

λ̂N ≤ N(N − 2)

4
.

Remark 2.5. One sees that N(N−2)
4 < N − 2 + (N−2)(N+3)

6 iff N < 6, whereas of course
N(N−2)

4 < λ1(H
N ) for all N . Hence, the above corollary provides a better upper bound for

λ̂N than in Remark 2.4 for dimension N = 4, N = 5.
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3. Heisenberg-Pauli-Weyl uncertainty principle for the shifted Laplacian

in the hyperbolic space

In this section we state some quantitative versions of Heisenberg-Pauli-Weyl uncertainty
principle (HPW) that can be derived from Theorem 2.1. Firstly we recall that HPW
principle in the hyperbolic setting reads

(∫

HN
|∇HNu|2 dvHN

)(∫

HN
r2u2 dvHN

)

≥ N2

4

(∫

HN
u2 dvHN

)2

(3.1)

for all u ∈ C∞
c (HN \ {x0}). The constant N2

4 is sharp and the equality is not attained
for u 6= 0. We refer to [31] for a description of a complete scenario of HPW principle on
complete Riemannian manifolds.

For what remarked in the Introduction, one may wonder what happens if we replace
the first term in (3.1) with the quadratic form associated to the family of nonnegative
operators Pλ = −∆HN − λ with λ ≤ λ1(H

N ). Clearly, the related best constant must be
nonincreasing with respect to λ. In Corollary 3.1 below we provide a lower bound for the
constant which reflects this monotonicity property. Indeed, by combining Theorem 2.1 with
Cauchy-Schwarz inequality, one immediately obtains the following quantitative version of
HPW principle in HN :

Corollary 3.1. Let N ≥ 2. For all u ∈ C∞
c (HN \ {x0}),

• if λ ≤ N − 2 there holds

(∫

HN

(

|∇HNu|2 − λu2
)

dvHN

) (∫

HN
r2u2 dvHN

)

≥
(

N − 2

2

)2(∫

HN
u2 dvHN

)2

;

• if N − 2 < λ ≤ λ1(H
N ) there holds

(∫

HN

(

|∇HNu|2 − λu2
)

dvHN

) (∫

HN
r2u2 dvHN

)

≥ (γN (λ) + 1)2

4

(∫

HN
u2 dvHN

)2

where γN (λ) is as defined in Theorem 2.1.

Notice that when λ = λ1(H
N ) and N ≥ 3, Corollary 3.1 was already known from [7].

However, since the map λ ∈ [N − 2, λ1(H
N )] 7→ (γN (λ)+1)2

4 decreases from
(

N−2
2

)2
to 1

4 ,

the validity of the HPW principle for λ = λ1(H
N ) does not yield the HPW principle for

λ < λ1(H
N ).

When N ≥ 3 and λ > N − 2, by repeating the same argument of Corollary 3.1, but with
a finer exploitation of Theorem 2.1, we derive the following improved HPW principle:

Corollary 3.2. Let N ≥ 3 and N − 2 < λ ≤ λ1(H
N ). For all u ∈ C∞

c (HN \ {x0}), there
holds

(
∫

HN

(

|∇HNu|2 − λu2
)

dvHN

) (
∫

HN
r2u2 dvHN

)

≥ (γN (λ) + 1)2

4

(
∫

HN
u2 dvHN

)2

+

(
∫

HN
r2u2 dvHN

)

×

×
(∫

HN

(

γN (λ)(γN (λ) + 1)

2
g(r) +

(N − 1 + γN (λ))(N − 3− γN (λ)

4 sinh2 r

)

u2dvHN

)
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where g(r) > 0 and 0 ≤ γN (λ) < N − 3 are as defined in Theorem 2.1.

The proof of Corollary 3.2 is similar to that of Corollary 3.3 below, hence we omit it.

Coming back to Corollary 3.1, for λ = 0 it yields a weaker inequality than (3.1). Nev-
ertheless, in the spirit of Corollary 3.2, a finer exploitation of Theorem 2.1 yields a more
powerful quantitative HPW principle in HN :

Corollary 3.3. Let N ≥ 2. For all u ∈ C∞
c (HN \ {x0}) there holds

(
∫

HN
|∇HNu|2 dvHN

)(
∫

HN
α(r) r2u2 dvHN

)

≥ N2

4

(
∫

HN
u2 dvHN

)2

, (3.2)

with

α(r) =
1

1 + 2(N−1)
N2 r2

(

Ng(r)− 2
sinh2 r

) > 0

and g(r) > 0 as defined in Theorem 2.1. Moreover, there exists R = R(N) > 0 such that

α(r) ≥ 1 ∀ 0 ≤ r ≤ R and α(r) < 1 ∀ r > R. (3.3)

It is worth noting that, even if we do not know whether the inequality in Corollary 3.3 is
sharp, the behavior of the function α(r) outlined in (3.3) indicates that inequality (3.2) does
not follow from (3.1). Even more, inequality (3.2) becomes more powerful than inequality
(3.1) for functions having support outside the ball BR(0).

Proof of Corollary 3.3. It suffices to notice that, by Cauchy-Schwarz inequality and Theo-
rem 2.1 for λ = 0 :

∫

HN
u2 dvHN =

∫

HN

|u|
√

V0(r)
|u|
√

V0(r) dvHN

≤
(∫

HN

u2

V0(r)
dvHN

)
1
2
(∫

HN
|u|2V0(r) dvHN

)
1
2

≤
(∫

HN

u2

V0(r)
dvHN

)
1
2
(∫

HN
|∇HNu|2 dvHN

)
1
2

,

where V0(r) =
N2

4

(

1
r2

− 1
sinh2 r

)

+ (N−2)2

4
1

sinh2 r
+ N(N−1)

2 g(r) . Inserting the value of V0 in

the formula above and defining α(r) = N2

4V 2
0 (r)r2

we obtain (3.2). Also by rewriting V0 we

obtain α(r) as defined in the statement and hence, using the fact that α(r) < 1 ⇔ Ng(r) >
2

sinh2 r
, we obtain R = R(N) > 0 such that (3.3) holds true. �

4. Improved Hardy inequalities on general Cartan-Hadamard manifolds

In the present section we state a generalization of the improved Hardy inequality of Theo-
rems 2.1 and 2.6 to more general manifolds under suitable curvature assumptions. Denote
by KR the sectional curvature in the radial direction of a Riemannian manifold with a pole
x0. We assume throughout the bound

KR(x) ≤ −G(r(x)) ≤ 0 ∀x ∈M, (4.1)
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where G is a given function and r(x) = d(x, x0). In particular, we are assuming that M is
Cartan-Hadamard. We also define ψ to be the solution to the Cauchy problem

{

ψ′′(r)−G(r)ψ(r) = 0 r > 0,

ψ(0) = 0, ψ′(0) = 1.
(4.2)

Clearly, by the sign assumption on G, ψ is positive convex function, and in particular by
the initial condition we have ψ(r) ≥ r for all r ≥ 0. One can adapt the present results to
manifolds with pole being positively curved somewhere, under suitable smallness conditions.

We shall use the well-known strategy of constructing barriers using Hessian comparison
and equations posed on the Riemannian model Mψ associated to ψ constructed above.
Namely, we consider the N -dimensional Riemannian manifold Mψ admitting a pole x0,
whose metric is given in spherical coordinates by

ds2 = dr2 + ψ2(r) dω2, (4.3)

where dω2 is the standard metric on the sphere SN−1. The coordinate r represents the
Riemannian distance from the pole x0, see e.g. [27, 35] for further details. For Riemannian
models the curvature condition in (4.1) holds with an equality. Clearly, for ψ(r) = r one
has Mψ = RN , while for ψ(r) = sinh r one has Mψ = HN .

Now we are in a position to state the counterpart of Theorem 2.1 under more general
curvature conditions.

Theorem 4.1. Let N ≥ 2 and let M be an N -dimensional Cartan-Hadamard manifold

such that the curvature condition (4.1) holds. Let ψ be defined in (4.2) and let λ ≤
(

N−1
2

)2
.

Then, for all u ∈ C∞
c (M \ {x0}), there holds

∫

M

|∇Mu|2 dvg ≥
(γN (λ) + 1)2

4

∫

HN

u2

r2
dvg +

∫

M

V λ
ψ u

2 dvg (4.4)

where γN (λ) :=
√

(N − 1)2 − 4λ and

V λ
ψ :=

[

N − 1 + γN
2

ψ′′

ψ
+
γN (γN + 1)

2

(

rψ
′

ψ
− 1

r2

)

+
(N − 1 + γN )(N − 3− γN )

4

(

ψ′

ψ

)2
]

.

Furthermore, the inequality (4.4) is sharp in the sense that the operator

−∆M − (γN (λ) + 1)2

4

1

r2
− V λ

ψ ,

is critical in M \ {x0} when M coincides with the Riemannian model Mψ.

A special case of the above construction is the situation in which the curvature bound is
simply KR(x) ≤ −c for some c > 0. Let us denote Cut{x0} the cut locus of x0. In this case,
it is readily checked that the solution of (4.2) is given by ψ(r) =

√
c sinh(

√
cr). Writing

(4.4) with ψ(r) =
√
c sinh(

√
cr), from Theorem 4.1 we derive the following analogue of

the improved inequality (2.1) on Cartan-Hadamard manifolds having sectional curvature
bounded above by a negative constant:

Corollary 4.2. Let N ≥ 3 and let M be a Cartan-Hadamard manifold with pole x0 such

that KR(x) ≤ −c for some c > 0. Let λ ≤
(

N−1
2

)2
. Then the following improved Hardy

inequality holds
∫

M

|∇Mu|2 dvg − λ c

∫

M

u2 dvg
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≥ (γN (λ) + 1)2

4

∫

M

u2

r2
dvg +

γN (λ)(γN (λ) + 1)

2

∫

M

gc(r)u
2 dvg (4.5)

+ c
(N − 1 + γN (λ))(N − 3− γN (λ)

4

∫

M

u2

sinh2(
√
cr)

dvg ,

for all u ∈ C∞
c (M \ {x0}), where gc(r) := r

√
c(coth(

√
cr)−1)

r2
.

Although the following is a particular case of Corollary 4.2 (for λ = (N − 2)), we state
explicitly this case for its special significance in improving the sharp Hardy inequality.

Corollary 4.3. Let N ≥ 3 and let M be a Cartan-Hadamard manifold with pole x0 such
that KR(x) ≤ −c for some c > 0. Then the following improved Hardy inequality holds

∫

M

|∇Mu|2 dvg ≥
(

N − 2

2

)2 ∫

M

u2

r2
dvg

+ c(N − 2)

∫

M

u2 dvg +
(N − 2)(N − 3)

2

∫

M

gc(r)u
2 dvg

for all u ∈ C∞
c (M), where gc(r) :=

r
√
c(coth(

√
cr)−1)

r2
.

Clearly, g1(r) = g(r) with g(r) as defined in Theorem 2.1.

Remark 4.1. One can consider in an almost explicit way other classes of curvature bounds
in (4.1). For example, if the manifold satisfies the curvature bound (4.1) with G(r) ∼ Cr2a

as r → +∞ for some a > −1, one can take ψ(r) ∼ Aebr
a+1

, see e.g. [24, Sect. 2.3]. In this
case, the potential V λ

ψ in Theorem 4.1 satisfies, if a > 0,

V λ
ψ (r) ∼ λ(a+ 1)2b2r2a as r → +∞.

The case a = 0 has been dealt with in the previous Corollaries. If a ∈ (−1, 0) the leading
term is a pure Hardy one. The case a < −1 which is qualitatively Euclidean and in fact
yields a pure Hardy potential, and the case a = −1 which gives rise to functions ψ of a
different kind (see again [24]), are left to the reader.

Moreover, if the curvature bound is written in terms of the quantity −C(1+ r2)a instead,
for all r and for an appropriate value of C, ψ can be written explicitly, see the calculations
in [8, Appendix A].

Our final result in this section is an analogue of Theorem 2.6 on general Cartan-Hadamard
manifolds.

Theorem 4.4. Let N ≥ 2 and let M be an N -dimensional Cartan-Hadamard manifold
such that the curvature condition (4.1) holds. Let ψ be defined in (4.2) and assume that
1/ψ is integrable at infinity. Denote

1

Θ(r)
:=

∫ +∞

r

1

ψ(s)
ds (4.6)

and consider the nonnegative potential Uψ

Uψ(r) :=
(N − 2)2

4

[ψ′(r)]2 − 1

ψ2(r)
+
N − 2

2

ψ′′(r)
ψ(r)

. (4.7)
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Then for all u ∈ C∞
c (M \ {x0}) there holds

∫

M

|∇Mu|2 dvg ≥
(

N − 2

2

)2 ∫

M

u2

ψ2(r)
dvg +

∫

M

Uψ(r)u
2 dvg

+
1

4

∫

M

Θ2(r)

ψ2(r)
u2 dvg ,

(4.8)

Moreover, (4.8) is sharp in the sense that the operator

−∆M −
(

N − 2

2

)2 1

ψ2(r)
− Uψ(r) − Θ2(r)

4ψ2(r)
(4.9)

is critical in M \ {x0} when M coincides with the Riemannian model Mψ.

Remark 4.2. • The quantities appearing in the potential Uψ defined in (4.7) have a
clear geometrical meaning: in fact,

Krad
π,r = −ψ

′′

ψ
and Htan

π,r = −(ψ′)2 − 1

ψ2

where Krad
π,r (resp. Htan

π,r ) denotes sectional curvature relative to planes containing
(resp. orthogonal to) the radial direction in the Riemannian model associated to ψ.
Clearly, Uψ is nonnegative given the assumed sign condition on the curvature.

• Theorem 4.4 shows that the results of Theorem 2.6 also hold when the radial sec-
tional curvature satisfies KR ≤ −1 anywhere. Of course, a variant of Theorem 2.6
can be stated by applying Theorem 4.4 when KR ≤ −c < 0 proceeding as in the
proof of Corollary 4.2.

• The results of Theorem 4.4 do not hold on general Cartan-Hadamard manifolds,
because of the request that 1/ψ is integrable at infinity. In fact, this request amounts
qualitatively to requiring that curvature is negative enough at infinity. In particular,
the required condition does not hold on RN . In fact, it can be shown by constructing
explicitly an appropriate ψ (see [24]), that for example, it is enough that KR satisfies
an upper curvature bound outside a ball in terms of the quantity −c/r2, where c > 0.

5. Weighted Hardy and Rellich inequality on the hyperbolic space

This section is devoted to state some further applications of our Hardy inequality, namely
the derivation of suitable improved weighted Hardy and Rellich inequalities. The statements
should be compared with those contained in [30], here the novelty of the improvement lies
in adding a remainder term involving the function g(r) as defined in Theorem 2.1. Starting
with the weighted Hardy inequality we have:

Theorem 5.1. Assume that N − 2− 2α > 0. For all u ∈ C∞
c (HN \ {x0}) there holds

∫

HN

|∇HNu|2
r2α

dvHN ≥ (N − 2− 2α)2

4

∫

HN

u2

r2α+2
dvHN + (N − 2)

∫

HN

u2

r2α
dvHN

+

(

(N − 2)(N − 3)

2
− (N − 1)α

)
∫

HN

g(r)

r2α
u2 dvHN , (5.1)

where g(r) is as defined in (2.2). Moreover, the constant (N−2−2α)2

4 is sharp in the obvious
sense.
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Remark 5.1. We note that the coefficient in front of the last term in (5.1) is positive

provided that α ≤ (N−2)(N−3)
2(N−1) . Nevertheless, for α > (N−2)(N−3)

2(N−1) , by recalling that g(r) ≤ 1
3

for every r > 0, we infer that

(N − 2)

∫

HN

u2

r2α
dvHN +

(

(N − 2)(N − 3)

2
− (N − 1)α

)
∫

HN

g(r)

r2α
u2 dvHN

≥
(

(N − 2)(N + 3)

6
− (N − 1)α

3

)∫

HN

u2

r2α
dvHN >

2(N − 2)

3

∫

HN

u2

r2α
dvHN ,

for N−2−2α > 0. Hence, inequality (5.1) still gives an improvement of the weighted Hardy
inequality. Also see ([40, Theorem 4.2]).

Next we state a weighted Rellich inequality

Theorem 5.2. Let 0 < α < N−2
2 . For all u ∈ C∞

c (HN \ {x0}) there holds:
∫

HN

|∆HNu|2
r2α−2

dvHN ≥ (N − 2− 2α)2(N − 2 + 2α)2

16

∫

HN

u2

r2α+2
dvHN

+
(N − 2− 2α)(N − 2 + 2α)(N − 2)

2

∫

HN

u2

r2α
dvHN

+
(N−2−2α)(N−2+2α)

2

(

(N−2)(N−3)

2
−(N−1)α

)∫

HN

g(r)

r2α
u2dvHN ,

(5.2)

where g(r) is defined in (2.2). Moreover, the constant (N−2−2α)2(N−2+2α)2

16 is sharp in the
obvious sense.

Taking α = 1 in (5.2), one has the following improved Rellich inequality:

Corollary 5.3. Let N > 4. For all u ∈ C∞
c (HN \ {x0}) there holds:

∫

HN
(∆HNu)

2 dvHN ≥ N2(N − 4)2

16

∫

HN

u2

r4
dvHN +

N(N − 2)(N − 4)

2

∫

HN

u2

r2
dvHN

+
N(N − 4)(N2 − 7N + 8)

4

∫

HN
g(r)

u2

r2
dvHN , (5.3)

where g(r) is defined in (2.2). Moreover, the constant N2(N−4)2

16 is sharp in the obvious
sense.

6. Proof of Theorems 2.1 and 2.6

We begin the proof by establishing the following lemma.

Lemma 6.1. Let N ≥ 2 and let Ψ(r) := rα(sinh r)β, where α and β are real parameters.
Then Ψ satisfies the following equation

−∆HNΨ = −α(α − 1)
Ψ

r2
− (2αβ + (N − 1)α)

coth r

r
Ψ− β(β +N − 2)

Ψ

sinh2 r

− (β2 + (N − 1)β)Ψ in HN \ {x0} . (6.1)

Moreover if we assume that α = −
(

β + N−2
2

)

, then (6.1) yields

−∆HNΨ = A(β)
Ψ

r2
+B(β)

coth r

r
Ψ+ C(β)

Ψ

sinh2 r
+D(β)Ψ in HN \ {x0} , (6.2)



AN OPTIMAL IMPROVEMENT FOR THE HARDY INEQUALITY 17

where A(β) = − (β + [(N − 2)/2]) (β + (N/2)) , B(β) = (β + [(N − 2)/2]) (2β +N − 1),
C(β) = −β (β +N − 2) and D(β) = −β (β +N − 1) . In particular, since

A(β) +B(β) + C(β) =

(

N − 2

2

)2

,

(6.2) yields

−∆HNΨ ∼
(

N − 2

2

)2 Ψ

r2
+D(β)Ψ as r → 0+.

Proof. The expression of hyperbolic laplacian in radial choordinates, enables us to write

−∆HNΨ = −Ψ′′(r)− (N − 1) coth rΨ′(r) in HN \ {x0} .
Since, for r > 0,

Ψ′(r) = α
Ψ(r)

r
+ β coth rΨ(r),

and

Ψ′′(r) = α(α − 1)
Ψ(r)

r2
+ 2αβ

coth r

r
Ψ(r) + β(β − 1)

Ψ(r)

sinh2 r
+ β2Ψ(r) ,

we obtain

−∆HNΨ = −
[

α(α− 1)
Ψ(r)

r2
+ 2αβ

coth r

r
Ψ(r) + β(β − 1)

Ψ(r)

sinh2 r

+(N − 1)α
coth r

r
Ψ(r) + (N − 1)βΨ(r) + (N − 1)β

Ψ(r)

sinh2 r
+ β2Ψ(r)

]

in HN \{x0}. Now, rearranging the above terms, the proof of (6.1) and (6.2) follows directly
by substituting the value of α in (6.1). �

An application of Lemma 6.1 yields

Lemma 6.2. Let N ≥ 2. For all λ ≤ λ1(H
N ) =

(

N−1
2

)2
and r > 0, set

Ψλ(r) := r−
N−2

2

(

sinh r

r

)−N−1+γN (λ)

2

,

where γN (λ) :=
√

(N − 1)2 − 4λ. Then Ψλ satisfies the following equation

−∆HNΨλ − λΨλ = Vλ(r)Ψλ in HN \ {0} , (6.3)

with Vλ(r) as given in (2.3).

Proof. Let g(r) be as defined in Theorem 2.1. Then (6.2) can be rewritten as follows

−∆HNΨ =

(

β +
N − 2

2

)2 Ψ

r2
+ 2

(

β +
N − 2

2

)(

β +
N − 1

2

)

g(r)Ψ

− β(N − 2 + β)
Ψ

sinh2 r
− β(N − 1 + β)Ψ . (6.4)

Now the proof follows by substituting β = −N−1+γN (λ)
2 in (6.4) and denoting by Ψλ the

corresponding function. �
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We now turn to the criticality issue. We exploit [38, Theorem 1.7] regarding a Liouville
comparison principle for two nonnegative Schrödinger operators. For the reader convenience
we quote below the theorem in the particular case where the principal part of the two
operators is the laplacian.

Theorem 6.3. [38, Theorem 1.7] Let N ≥ 1 and Ω be a domain in RN or any noncompact
Riemannian manifold. Consider two Schrödinger operators defined on Ω of the form

Qj := −∆+Wj , j = 0, 1,

such that Wj ∈ Lploc(Ω;R) for some p > N
2 .

Assume that the following assumptions hold true:

(1) The operator Q1 is critical in Ω. Denote by Φ be its ground state.

(2) Q0 is nonnegative in Ω, and there exists a real function Ψ ∈ H1
loc(Ω) such that

Ψ+ 6= 0, and Q0Ψ ≤ 0 in Ω, where u+(x) := max{0, u(x)}.
(3) The following inequality holds:

(Ψ+)
2(x) ≤ CΦ2(x) a.e. in Ω,

where C > 0 is a positive constant.

Then the operator Q0 is critical in Ω and Ψ is its ground state.

Recently the above result is extended to more general settings. We refer to [3] for further
details.

We have now all the tools necessary for the proof of our main theorem.

Proof of Theorem 2.1. The proof of the inequality rests on supersolution technique.
The construction of a supersolution (in fact a solution in the case at hand) for the desired
equation directly follows from Lemma 6.2 which states that, for all λ ≤ λ1(H

N ), the function
Ψλ, as defined there, is a positive solution of (6.3). Moreover, Ψλ ∈ H1

loc(H
N \ {x0}), and

hence the required inequality (2.1) follows using the Allegretto-Piepenbrink theorem [16,
Theorem 2,12].

Next, by invoking Theorem 6.3, we show that Ψλ is the ground state of −∆HN −λ−Vλ(r)
with Vλ(r) as given in (2.3). For this, following the notation of Theorem 6.3, we consider
the operators defined in HN \ {x0}:

Qj := −∆HN +Wj , j = 0, 1,

where

W0 = −λ− Vλ and W1 = −λ1(HN )− Vλ1(HN ) .

Clearly, Wj ∈ Lploc(H
N \ {x0};R) for any p > 1. By [5, Theorem 2.1] we know that when

N ≥ 3 the operator Q1 is critical in HN \ {x0} and the corresponding ground state is

Ψλ1(r) = Φ(r) := r−
N−2

2

(

sinh r
r

)−N−1
2 . The same statement holds for N = 2 but we

postpone the proof to the end of the section. As concerns the operator Q0, by Lemma 6.2,

we know that Ψλ(r) = r−
N−2

2

(

sinh r
r

)−N−1+γN (λ)

2 ∈ H1
loc(H

N \ {x0}) satisfies Q0Ψλ = 0.
Moreover, for all N ≥ 3, we have

(

Ψλ(r)

Φ(r)

)2

=
( r

sinh r

)γN (λ)
≤ 1 for all r > 0 , (6.5)
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since γN (λ) ≥ 0 for 0 ≤ λ ≤ λ1(H
N ). Therefore, all the assumptions of Theorem 6.3

are satisfied and we conclude that Q0, namely the operator −∆HN − λ − Vλ, is critical in
HN \ {x0} for all 0 ≤ λ ≤ λ1(H

N ) and Ψλ is its ground state.

To complete the proof we still have to show that the operatorQ1 is also critical in dimension
two. To this aim we show that the equation Q1u = 0 admits a ground state in H2 \ {x0},
namely a positive solution of minimal growth in a neighborhood of infinity in H2 \{x0}, see
[39, Section 1]. When N = 2 the function Φ defined above reads Φ(r) =

(

r
sinh r

)
1
2 . Let f be

a smooth radial function in H2 \ {x0}, also exploiting Lemma 6.1, one can verified that

−∆HN (Φ(r)f(r)) =
1

4

(

1 +
1

r2
− 1

sinh r2

)

Φ(r)f(r)−
(

f ′′(r) +
N − 1

r
f ′(r)

)

Φ(r) .

From the above computations it follows that two linearly independent solutions of the
equation Q1u = 0 are given explicitly by :

Φ(r) =
( r

sinh r

)
1
2

and Φ(r) =
( r

sinh r

)
1
2
log r,

hence Φ is a positive global solution while Φ changes sign. Since Φ is a positive solution of
Q1u = 0 near infinity of H2 \ {x0} and

lim
r→0

Φ(r)

|Φ(r)| = lim
r→+∞

Φ(r)

Φ(r)
= 0 ,

by [19, Proposition 6.1] we conclude that Φ is a positive solution of minimal growth in a
neighborhood of infinity in H2 \ {x0} and hence a ground state of the equation Q1u = 0.
Namely, Q1 is critical in H2 \{x0}. By (6.5) and Theorem 4.3, it follows that Ψλ is a ground
state of Q0. This completes the proof.

Proof of Theorem 2.6. The proof is divided into two steps. It rests on the explicit con-
struction of solutions and then using the result of [19] we derive an optimal Hardy weight
for the related operator.

Step 1 : It is an immediate consequence of Lemma 6.1 that u0(r) := (sinh r)
2−N

2 satisfies
the following equation :

Hu0 := −∆HNu0 − (N − 2)2

4

1

sinh2 r
u0 − N(N − 2)

4
u0 = 0. (6.6)

Now we shall construct a second solution. Let us define v(r) = (sinh r)
N−2

2 w(r), where w
solves (6.6). Then, v satisfies the following equation

v′′(r) + coth rv′(r) = 0.

This immediately implies either v(r) = log
∣

∣tanh r
2

∣

∣ or constant. Therefore two indepen-

dent positive solutions of the equation Hu = 0 are u0(r) = (sinh r)
2−N

2 and u1(r) =

−(sinh r)
2−N

2 log
∣

∣tanh r
2

∣

∣ .

Step 2 : Now we evoke [19] for the construction of an optimal Hardy weight involving
two independent positive solutions. Using the above two positive solutions of the equation
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Hu = 0, we obtain the following optimal Hardy weight (in the sense of [19])

W :=
1

4

∣

∣

∣

∣

∇ log

(

u1
u0

)∣

∣

∣

∣

2

=
1

4

1

sinh2 r(log(tanh r
2))

2
,

for the operator H. In particular, H −W is critical.

Sharpness: To prove the sharpness of the constant N(N−2)
4 , let us fix some notations.

Denote the cone of all positive solutions of the equation P u = 0 in HN by CP (HN ), where
P denotes any second order elliptic operator. Define for a nonnegative potential V ,

λ0(P, V,H
N ) := sup{λ ∈ R : CP−λV (H

N ) 6= ∅},
and

λ∞(P, V,HN ) := sup{λ ∈ R : ∃K ⋐ HN s.t. CP−λV (H
N \K) 6= ∅}.

Clearly λ0(P, V,H
N ) ≤ λ∞(P, V,HN ).

From [19], we also know that the above optimal Hardy weight W satisfies

λ0(H −W,W,HN \ {x0}) = λ∞(H −W,W,HN \ {x0}) = 0.

Furthermore, λ = 1 is the best constant in a neighborhood of infinity of HN for the inequality
H − λW ≥ 0.

Since, W (r) → 0 as r → ∞, we conclude that for any ε > 0 there exists a compact set Kε

containing x0 such that

0 ≤ λ0(H, 1,H
N \ {x0}) ≤ λ0(H, 1,H

N \Kε) ≤ λ0(H −W,W,HN \Kε) + ε = ε.

Therefore, λ0(H, 1,H
N \{x0}) = 0. Hence, N(N−2)

4 is the best constant in the above sense,
and the proposition is proved.

7. Optimality issues: proof of Theorems 2.4 and 2.5.

7.1. Proof of Theorem 2.4. Let N = 3. It is a well known fact that the equality in the
Hardy inequality (1.2) is never achieved in H1(HN ) for any N ≥ 3, hence the infimum for
I(0) is never achieved. Therefore, it is enough to consider 0 < λ ≤ λ1(H

3). Furthermore,

we have already seen that λ̂3 = λ1(H
3) = 1, hence I(λ) = 1

4 for every 0 ≤ λ ≤ 1, where I(λ)
is defined by (1.9). For 0 < λ < 1 it is easy to see that minimizers do not exist. Indeed,
suppose for some 0 < λ0 < 1 there exists a minimizer uλ0 ∈ H1(H3) for I(λ0), then any λ̄
with λ0 < λ̄ < 1 yields

1

4
=

∫

HN |∇HNuλ0 |2 dvHN − λ0
∫

HN u
2
λ0

dvHN
∫

HN
u2λ0
r2

dvHN

>

∫

HN |∇HNuλ0 |2 dvHN − λ̄
∫

HN u
2
λ0

dvHN
∫

HN
u2
λ0
r2

dvHN

≥ 1

4
,

a contradiction. Alternatively, we note that the subcriticality of the operator −∆HN − λ−
I(λ) 1

r2
for λ0 < λ̄ < 1 readily implies nonexistence of minimizers. To complete the proof
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it remains to show that minimizers do not exist also for λ = 1. From the proof of Theorem

2.1 we see that Ψλ1(H3)(r) =
√
r

sinh r satisfies

−∆H3Ψλ1(H3) −Ψλ1(H3) =
1

4

Ψλ1(H3)

r2
in H3 \ {x0},

and Ψλ1(H3) is the unique ground state to the corresponding equation. Since Ψλ1(H3) /∈
H1(H3), I(λ) does not admit a minimizer. This completes the proof.

7.2. Proof of Theorem 2.5. Let N > 3. We start by noting that from Theorem 2.2 we

have λ̂N ≥ N − 2. Furthermore, I(N − 2) is not achieved. Indeed, the operator

−∆HN − (N − 2)2

4

1

r2
+ (N − 2)

is subcritical in HN \ {x0}, since the proof of Theorem 2.1 implies that the function

ΨN−2(r) = r
N−2

2 (sinh r)2−N is a positive supersolution of the Euler-Lagrange equation
associated to I(N − 2) and it is not the ground state.

As concerns the upper bound for λ̂N , it also follows as a corollary of Theorem 2.1. Indeed,
since λ̂N ≥ N − 2, from the definition of λ̂N we have

∫

HN
|∇HNu|2 dvHN ≥

(

N − 2

2

)2 ∫

HN

u2

r2
dvHN + λ̂N

∫

HN
u2 dvHN

=

(

N − 2

2

)2 ∫

HN

u2

r2
dvHN + (N − 2)

∫

HN
u2 dvHN

+ (λ̂N − (N − 2))

∫

HN
u2 dvHN .

Therefore, combining the fact that g(r) ≤ 1
3 with the criticality issue of Theorem 2.1, we

readily infer that

λ̂N − (N − 2) <
(N − 2)(N − 3)

6
.

Proof of (i).

For 0 < λ < λ̂N , the operator −∆HN − (N−2)2

4
1
r2

− λ is subcritical in HN \ {x0}, and hence,
there is no minimizer associated to the related functional inequality.

Assume now λ = λ̂N . This is the most delicate case. We adapt to our setting the Euclidean
approach of constructing suitable “subsolution” to show non-achievement of the Hardy
constant, see for instance [1]. Suppose, by contradiction, that there exists a minimizer

û ∈ H1(HN ) of I(λ̂N ) = (N−2)2

4 , then it satisfies the equation

−∆HN û− λ̂N û− (N − 2)2

4

û

r2
= 0 a.e. in HN \ {0} .

Without loss of generality, by standard symmetrization on the hyperbolic space, see [4], we
may assume û is radial and nonnegative. Furthermore, being superharmonic, û turns out
to be positive by the Strong Maximum Principle [25].
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Let δ < −1/2 and ϕδ(x) = |x|−N−2
2 log( 1

|x|)
δ ∈ H1(BR) for 0 < R < 1/e. By computing

in hyperbolic radial coordinates, for r ∈ (0, R) one has

−∆HNϕδ − λ̂N ϕδ −
(N − 2)2

4

ϕδ
r2

=
ϕδ

r2(log r)2

[

δ(1 − δ)− λ̂Nr2(log r)2 − δ(N − 1)r2 log r

+(N − 1)

(

coth r − 1

r

)(

N − 2

2
r(log r)2 + δr log r

)]

.

Set now 0 < R1 < 1/e (not depending on δ!) such that for all r < R1 we have

(N − 1)

(

coth
1

e
− e

)

N − 2

2
r (log(r))2 <

1

4
.

Since | log r| ≤ N−2
2 (log r)2 for r < 1/e and N ≥ 4, for r < R1 we infer

δ(1 − δ)− λ̂Nr2(log r)2 − δ(N − 1)r2 log r

+ (N − 1)

(

coth r − 1

r

)(

N − 2

2
r(log r)2 + δr log r

)

≤ δ(1 − δ) + (N − 1)

(

coth
1

e
− e

)

N − 2

2
r(log r)2(1− δ)

≤ δ(
3

4
− δ) +

1

4
≤ −3

8
.

Hence,

−∆HNϕδ − λ̂N ϕδ −
(N − 2)2

4

ϕδ
r2

< 0 in BR1 \ {0} .

Set M(δ) = û(R1)
ϕδ(R1)

and ψδ(r) := û(r)−M(δ)ϕδ(r). Then, ψδ ∈ H1
0 (BR1) and satisfies

−∆HNψδ − λ̂N ψδ −
(N − 2)2

4

ψδ
r2

> 0 in BR1 \ {0} .

Set now ψ−
δ = min{ψδ , 0} and ψ+

δ = max{ψδ , 0}, we have that ψ−
δ , ψ

+
δ ∈ H1

0 (BR1). By

multiplying the above inequality by ψ−
δ , using the fact ψ = ψ+

δ + ψ−
δ and recalling the

definition of λ̂N in (2.9), we get

0 ≥
∫

BR1

(

−∆HNψδ − λ̂N ψδ −
(N − 2)2

4

ψδ
r2

)

ψ−
δ dvHN

=

∫

BR1

|∇ψ−
δ |2 dvHN − λ̂N

∫

BR1

(ψ−
δ )

2 dvHN − (N − 2)2

4

∫

BR1

(ψ−
δ )

2

r2
dvHN ≥ 0 .

Hence, ψ−
δ = 0. In particular, ψδ > 0 and in turn û(r) > M(δ)ϕδ(r) for 0 < r < R1.

Finally, letting δ → δ̄ := −1
2 we readily get a contradiction since M

(

δ̄
)

> 0 (due to the fact
that û is positive and R1 does not depend on δ) and

+∞ >

∫

BR1

û2

r2
dvHN ≥M2

(

δ̄
)

∫

BR1

ϕ2
δ̄

r2
dvHN = +∞ .

Proof of (ii). Let λ < λ1(H
N ). Exploiting the Poincaré inequality (1.5), in the sequel we

will endow the space H1(HN ) with the equivalent norm:
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||u||λ :=

[∫

HN

(

|∇HNu|2 − λu2
)

dvHN

]
1
2

, u ∈ C∞
c (HN ) . (7.1)

Since, by inequality (2.8) we know that the embedding H1(HN ) →֒ L2(HN , 1
r2
dvHN ) is

continuous but not compact, the existence of a minimizer to I(λ) does not follow straight-

forwardly. When λ̂N < λ < λ1(H
N ), we overcome this difficulty by adapting to our setting

the approach of [34]. To this aim, the crucial tool will be the following concentration
compactness lemma in the hyperbolic setting.

Lemma 7.1. For λ < λ1(H
N ), let H1(HN ) be endowed with the norm (7.1). Furthermore,

let {un} be a bounded sequence in H1(HN ) such that: un ⇀ u ∈ H1(HN ),

(

|∇HNun|2 − λu2n
)

dvHN ⇀∗ µ and
u2n
r2

dvHN ⇀∗ ν in the sense of measures. (7.2)

Then, there holds

µ ≥
(

|∇HNu|2 − λu2
)

dvHN + µ0δ0

ν =
u2

r2
dvHN + ν0δ0,

where δ0 is the Dirac measure centered at x0, and 0 ≤ ν0 ≤ µ0
4

(N−2)2 .

Proof. The proof is divided into two steps.

Step 1: Since {un} is bounded in H1(HN ), (2.8) implies that {un
r
} is bounded in L2(HN ).

Then,

un ⇀ u in H1(HN ) , un → u in L2
loc(H

N ) and
un
r
⇀

u

r
in L2(HN ) ,

up to a subsequence. Denoting vn := un − u, it is then readily seen that

vn ⇀ 0 in H1(HN ) , vn → 0 in L2
loc(H

N ) and
vn
r
⇀ 0 in L2(HN ) .

On the other hand, for Φ ∈ C∞
c (HN ) we have

∫

HN
Φ
(

|∇HNun|2 − λu2n
)

dvHN =

∫

HN
Φ
(

|∇HNu|2 − λu2
)

dvHN

+

∫

HN
Φ
(

|∇HNvn|2 − λv2n
)

dvHN

+ 2

∫

HN
Φ (∇vn · ∇u+ vnu) dvHN

and
∫

HN
Φ
u2n
r2

dvHN =

∫

HN
Φ
u2

r2
dvHN +

∫

HN
Φ
v2n
r2

dvHN + 2

∫

HN
Φ
vn u

r2
dvHN .

Hence, taking the limit and recalling (7.2), for all Φ ∈ C∞
c (HN ) we conclude that

∫

HN
Φdµ =

∫

HN
Φ
(

|∇HNu|2 − λu2
)

dvHN +

∫

HN
Φdµ1

and
∫

HN
Φdν =

∫

HN
Φ
u2

r2
dvHN +

∫

HN
Φdν1 ,
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where

(

|∇HN vn|2 − λv2n
)

dvHN ⇀∗ µ1 and
v2n
r2

dvHN ⇀∗ ν1 in the sense of measures.

Step 2: For what showed in step 1, we may take u = 0 in the following. Namely, we assume
that {un} is such that

un ⇀ 0 in H1(HN ) , un → 0 in L2
loc(H

N ) and
un
r
⇀ 0 in L2(HN )

and

(

|∇HNun|2 − λu2n
)

dvHN ⇀∗ µ and
u2n
r2

dvHN ⇀∗ ν in the sense of measures.

For Φ ∈ C∞
c (HN ), we apply the Hardy inequality (1.2) to the functions {Φun} and we get

(N − 2)2

4

∫

HN

(Φun)
2

r2
dvHN ≤

∫

HN
|∇HN (Φun)|2 dvHN

=

∫

HN
Φ2(|∇HNun|2 − λu2n) dvHN +

∫

HN
(∇HNΦ)

2u2n dvHN

+ 2

∫

HN
(Φ∇HNΦ)(un∇HNun) dvHN + λ

∫

HN
Φ2 u2n dvHN ,

Passing to the limit in the above inequality we conclude that
∫

HN
Φ2dν ≤ 4

(N − 2)2

∫

HN
Φ2dµ for all Φ ∈ C∞

c (HN ). (7.3)

Then, a proper modification of the standard concentration compactness lemma [32, 33]
yields that there exist a sequence of points xi ∈ HN and two sequences of positive constants
ci and c̄i such that ν =

∑+∞
i=1 ciδxi and µ ≥ ∑+∞

i=1 c̄iδxi , where δxi is the Dirac measure

centered at xi. On the other hand, choosing Φ ∈ C∞
c (HN ) with supp(Φ) = K, a compact

set, such that x0 6∈ K, we have that
∫

HN

Φ2u2n
r2

dvHN ≤ C

∫

K

u2n dvHN → 0,

since un → 0 in L2
loc(H

N ). Therefore the measure ν is only concentrated at x0 and we
conclude that ν = ν0δ0 and µ ≥ µ0δ0, for some positive constants ν0 and µ0. Furthermore,
inequality (7.3), together with standard measure theory arguments, gives

ν(B(x0, ε)) ≤
4

(N − 2)2
µ(B(x0, ε)),

where ε > 0 and B(x0, ε) denotes the ball with centre x0 and radius ε. Finally, the arbi-
trariness of ε implies

ν0 ≤
4

(N − 2)2
µ0. �

The next lemma is devoted to study the tightness of the measure defined above.

Lemma 7.2. In the same assumptions of Lemma 7.1, as n→ ∞ there holds
∫

HN

u2n
r2

dvHN =

∫

HN

u2

r2
dvHN + ν0 + o(1).
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Proof. By the definition of convergence of measure we have

∫

HN

u2n
r2
f dvHN =

∫

HN

u2

r2
f dvHN + f(x0)ν0 + o(1) ∀f ∈ C∞

c (HN ). (7.4)

Let ε > 0, since 1
r2

→ 0 as r → ∞, there exists Rǫ >> 1 such that 1
r2
< ε ∀ r > Rε. Thus

∫

HN

(

u2n
r2

− u2

r2

)

dvHN − ν0 =

∫

B(x0,Rε)

(

u2n
r2

− u2

r2

)

dvHN − ν0

+

∫

HN\B(x0,Rε)

(

u2n
r2

− u2

r2

)

dvHN .

Using the fact that {un} is a bounded sequence inH1(HN ) together with Poincaré inequality,
the last integral can be estimated as follows:

∫

HN\B(x0,Rε)

(

u2n
r2

− u2

r2

)

dvHN ≤ ε

(∫

HN
u2n dvHN +

∫

HN
u2 dvHN

)

≤ Cε.

Let us choose Ψ ∈ C∞
c (HN ) such that Ψ = 1 in B(x0, Rε) and supp Ψ := B(x0, 2Rε), then

we have

∣

∣

∣

∣

∣

∫

B(x0,Rε)

(

u2n
r2

− u2

r2

)

dvHN − ν0

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∫

B(x0,2Rε)
Ψ

(

u2n
r2

− u2

r2

)

dvHN − ν0

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫

B(x0,2Rε)\B(x0,Rε)
Ψ

(

u2n
r2

− u2

r2

)

dvHN

∣

∣

∣

∣

∣

.

Therefore, using (7.4) for the first term and the fact that un → u in L2
loc(H

N ) for the last
term, we conclude that

∫

B(x0,Rε)

(

u2n
r2

− u2

r2

)

dvHN − ν0 −→ 0, n→ ∞

and the proof follows. �

We are now ready to prove the existence issue of Theorem 2.5-(ii). For λ̂N < λ < λ1(H
N ),

let {un} be a minimising sequence for I(λ) such that
∫

HN

u2n
r2

dvHN = 1 and

∫

HN
(|∇HNun|2 − λu2n) dvHN = I(λ) + o(1) as n→ +∞ .

Then, up to a subsequence, the assumptions of Lemma 7.1 are satisfied and using Lemma 7.2
one can write

I(λ)

(
∫

HN

u2

r2
dvHN + ν0

)

≥
∫

HN
(|∇HNu|2 − λu2) dvHN + µ0 + o(1) as n→ +∞

and recalling the definition of I(λ) we get I(λ)ν0 ≥ µ0 ≥ (N−2)2

4 ν0. Since λ > λ̂N , we know

that I(λ) < (N−2)2

4 . Therefore, we get a contradiction unless unless µ0 = ν0 = 0. Hence, we
get
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∫

HN

u2

r2
dvHN = 1 and

∫

HN
(|∇HNu|2 − λu2) dvHN = I(λ) .

Namely, u 6= 0 is a minimizer for I(λ). As already remarked in the proof of (i), up to
replacing u with |u| and by maximum principle arguments, we may always assume that
any minimizer has constant sign in HN \ {x0}. Once this noted, the uniqueness follows
immediately. Otherwise, by taking a suitable linear combination of two minimizers, one
may define a minimizer which changes sign, a contradiction.

To conclude the proof of statement (ii), we still have to show the lower bound for I(λ).

Using Theorem 2.1, it follows that for any λ̂N < λ < λ1(H
N ) we have

I(λ) ≥
(

1 + 2
√

λ1(HN )− λ

2

)2

.

Since I(λ) is achieved, the inequality is strict otherwise we contradict the criticality issue
of Theorem 2.1.

Proof of (iii).

The proof relies on the fact that operator L := −∆HN − (N−1)2

4 − 1
4r2 is subcritical. Indeed,

we have already remarked in the proof of Theorem 2.1 that Φ(r) =
(

r
sinh r

)
N−1

2 r
2−N

2 is a

positive supersolution to the equation Lu = 0 in HN \ {x0} which is not a solution. Hence,
a minimizer for I(λ) = 1

4 cannot exist.

8. General Cartan-Hadamard manifolds: proof of Theorems 4.1, 4.4

We first recall some known facts. Let (M,g) be a Riemannian manifold. Take a point
(pole) x0 ∈M and denote Cut{x0} the cut locus of x0. We can define the polar coordinates
inM \Cut∗{x0}, where Cut∗{x0} = Cut{x0}∪{x0}. Indeed, to any point x ∈M \Cut∗{x0}
we can associate the polar radius r(x) := dist(x, x0) and the polar angle θ ∈ SN−1, such
that the minimal geodesics from x0 to x starts at x0 to the direction θ. The Riemannian
metric g in M \ Cut∗{x0} in the polar coordinates takes the form

ds2 = dr2 + ai,j(r, θ)dθiθj ,

where (θ1, . . . , θN−1) are coordinates on SN−1 and ((ai,j))i,j=1,...,N is a positive definite
Matrix. Let a := det(ai,j), B(x0, ρ) = {x := (r, θ) : r < ρ}. Then in M \ Cut∗{x0} we have

∆M =
1√
a

∂

∂r

(√
a
∂

∂r

)

+∆∂B(x0,r) =
∂2

∂r2
+m(r, θ)

∂

∂r
+∆∂B(x0,r), (8.1)

where ∆∂B(x0,r) is the Laplace-Beltrami operator on the geodesic sphere ∂B(x0, r) and

m(r, θ) is a smooth function on (0,∞) × SN−1 which represents the mean curvature of
∂B(x0, r) in the radial direction. For radial functions, namely functions depending only on
r, if M is the Riemannian model Mψ defined in Section 4, the above expression reads

∆Mψ
=

1

(ψ(r))N−1

∂

∂r

[

(ψ(r))N−1 ∂

∂r
(r)

]

=
∂2

∂r2
+ (N − 1)

ψ′(r)
ψ(r)

∂

∂r
, (8.2)

where ψ is as defined by (4.2).

The following Hessian comparison principle relates (8.1) and (8.2):
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Lemma 8.1. [27, 28] Let M be as in Theorem 4.1. The mean curvature of ∂B(x0, r) in
the radial direction satisfies

m(r, θ) ≥ (N − 1)
ψ′(r)
ψ(r)

for all r > 0 and θ ∈ SN−1.

Proof of Theorem 4.1. We follow the same idea of the proof of Theorem 2.1, we define the

function Ψλ(r) := r−
N−1+γN (λ)

2

(

ψ(r)
r

)2−N
and on the Riemannian model Mψ we compute

−∆Mψ
Ψλ(r) =

(γN (λ) + 1)2

4

Ψλ

r2
+ V λ

ψ (r)Ψλ in Mψ \ {x0} ,

where V λ
ψ is defined as in the statement of Theorem 4.1. On the other hand, we claim that

Ψ′
λ(r) =

Ψλ

2rψ

(

(1 + γN (λ))ψ(r) − (N − 1 + γN (λ))rψ
′(r)
)

≤ 0 for r > 0 .

In fact, this is clearly true for r close to zero, whereas we notice that
(

(1 + γN (λ))ψ(r) − (N − 1 + γN (λ))rψ
′(r)
)′

= −[(N − 1 + γN (λ))r ψ
′′(r) + (N − 2)ψ′(r)] ≤ 0

since ψ is increasing and convex. Combining this fact with Lemma 8.1, by (8.1) we infer

−∆MΨλ ≥ −∆Mψ
Ψλ .

Hence, since Ψλ ∈ H1
loc(M \ {x0}), the Allegretto-Piepenbrink theorem [16, Theorem 2,12]

implies (4.4).

The proof of the criticality of the operator −∆Mψ
− (γN (λ)+1)2

4r2
−V λ

ψ (r) inMψ \{x0} follows
by arguments similar to the one applied in the proof of Theorem 2.1, hence we omit the
details. We only mention that one has to exploit the fact that, by [5, Theorem 2.5], it is

known that the operator −∆Mψ
− 1

4r2
−V λ1ψ (r) is critical inMψ \{x0} and the corresponding

ground state is Φ(r) = Ψλ1(r), where λ1 = (N −1)2/4. Finally, we note that since ψ(r) > r

for r > 0 by construction, we can show that the quotient
(

Ψλ(r)
Φ(r)

)2
is bounded, exactly as

done in (6.5) in the hyperbolic setting. �

Proof of Theorem 4.4. We proceed with steps similar to the ones given in the proof of

Theorem 2.6. First, we notice that by a direct computation the function u0 := ψ
2−N

2 is a
solution to the equation

−∆Mψ
u− (N − 2)2

4ψ2
u− Uψ u = 0. (8.3)

We look for a second independent, positive solution to the same equation. If we set v =

ψ
N−2

2 w with w satisfying (8.3), by another direct computation it turns out that v must
satisfy

v′′ +
ψ′

ψ
v′ = 0.

This yields that another positive, independent solution of equation (8.3) is found by taking,
under the running assumptions,

v(r) =
1

Θ(r)
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with Θ as defined in (4.6). Notice that both solutions are decreasing. Hence they give rise
to supersolutions of the corresponding equation on M by Hessian comparison. We then
perform the construction of the optimal weight given in [19] starting from the two positive
solutions u0 and u0v, see [19], thus yielding the stated inequality on M and criticality on
Mψ.

Remark 8.1. It turns out from [28, Proposition 3.1] that the subcriticality of −∆Mψ
in

Mψ is equivalent to the following

∫ +∞

r

1

(ψ(s))N−1
ds < +∞. (8.4)

Moreover, under (4.1), it can be shown easily that (8.4) is a weaker assumption than (4.6).
Therefore, assuming (8.4) we can associate a natural Hardy weight for the operator −∆Mψ

.

It is easy to see u0 = 1 and u1 =
∫ +∞
r

1
(ψ(s))N−1 ds are two independent positive solutions of

−∆Mψ
= 0 in Mψ.

Therefore using [19], an optimal Hardy weight W̃ψ for the operator −∆Mψ
is given by

W̃ψ =
1

4

(

(ψ(r))1−N
∫ +∞
r

(ψ(s))1−Nds

)2

.

In the hyperbolic space HN , W̃sinh has the following asymptotic which should be compared
with the statement of Theorem 2.1 for λ = λ1(H

N ):

W̃sinh(r)
∼
r→0

(N − 2)2

4r2
and W̃sinh(r)

∼
r→∞

(N − 1)2

4
+

(N − 1)(N + 3)

N + 1
e−2r + ◦(e−2r).

9. Weighted Hardy and Rellich inequalities: proof of Theorems 5.1 and 5.2

9.1. Proof of Theorem 5.1. We consider u ∈ C∞
c (HN\{x0}) and define

u(x)

rα
= Ψ(x)v(x).

Then we compute

|∇HNu|2
r2α

= |∇HNΨ|2v2 + |∇HNv|2 Ψ2 + 2 vΨ 〈∇HNΨ,∇HNv〉+ 2α
uru

r2α+1
− α2 u2

r2α+2
.

Now integrating above and by integration by parts we obtain

∫

HN

|∇HNu|2
r2α

dvHN =

∫

HN

(−∆HNΨ)

Ψ

u2

r2α
dvHN +

∫

HN
|∇HN v|2 Ψ2 dvHN

− α2

∫

HN

u2

r2α+2
dvHN

+ α(2α + 1)

∫

SN−1

(∫ ∞

0

u2

r2α+2
(sinh r)N−1 dr

)

dσ

− (N − 1)α

∫

SN−1

(∫ ∞

0

u2

r2α+1
coth r (sinh r)N−1 dr

)

dσ

≥
∫

HN

(−∆HNΨ)

Ψ

u2

r2α
dvHN + (α2 − (N − 2)α)

∫

HN

u2

r2α+2
dvHN
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− (N − 1)α

∫

HN

g(r)

r2α
u2 dvHN .

Here in particular we insert Ψ := ΨN−2, as defined in the proof of Theorem 2.1, in the
above to obtain the desired result (5.1). The sharpness of the constant follows immediately

by exploiting the test function of type Φ(r) := r
2−N

2 combining with a proper cut off as in
the case of classical Hardy inequality on the hyperbolic space (see [40, Theorem 3.1]).

9.2. Proof of Theorem 5.2. The proof is based on a suitable combination of Theorem
5.1 with some ideas taken from the proof of [30, Theorem 3.1]. More precisely, starting
from the inequality

−∆HN
1

r2α
≥ 2α(N − 2− 2α)

r2α+2
for α > 0 ,

multiplying both sides by u2 ∈ C∞
c (HN \ {x0}) and integrating over HN , one gets

−
∫

HN

u∆HNu

r2α
dvHN ≥

∫

HN

|∇HNu|2
r2α

dvHN + α(N − 2− 2α)

∫

HN

u2

r2α+2
dvHN .

Then, for any ε > 0, by Young’s inequality there holds
∫

HN

|∆HNu|2
r2α−2

dvHN ≥ 4ε

∫

HN

|∇HNu|2
r2α

dvHN + (4εα(N − 2− 2α)− 4ε2)

∫

HN

u2

r2α+2
dvHN .

A combination of the above inequality with (5.1) yields
∫

HN

|∆HNu|2
r2α−2

dvHN ≥ 4ε

(

(N − 2− 2α)2

4
+ α(N − 2− 2α)− ε

)
∫

HN

u2

r2α+2
dvHN

+ 4ε(N − 2)

∫

HN

u2

r2α
dvHN

+ 4ε

(

(N − 2)(N − 3)

2
− (N − 1)α

)∫

HN

g(r)

r2α
u2 dvHN .

Finally, by maximizing the coefficient in front of the first term on the right hand side,

one gets ε = (N−2−2α)(N−2+2α)
8 . By inserting this value in the above inequality, the proof

follows.

Appendix: Improved hardy inequality in two dimensional Euclidean Space

This section is devoted to state certain improved Hardy inequalities in two dimensional
Euclidean space. The results can be obtained from a direct application of Theorem 2.3 after
suitable transformations.

Let B be the Euclidean unit ball. From Theorem 2.1 and conformal invariance of the
Dirichlet norm in dimension two, i.e.,

∫

HN |∇HNu|2 dvHN =
∫

B
|∇u|2 dx, where dx denotes

the Euclidean volume element, we derive the following result.

Corollary 9.1. For all λ ≤ λ1(H
2) = 1

4 and all u ∈ C∞
0 (B) the following inequality holds

∫

B

|∇u|2 dx− λ

∫

B

(

2

1− |x|2
)2

u2 dx ≥ (9.1)

(
√
1− 4λ+ 1)2

4

∫

B







1
(

log
(

1−|x|
1+|x|

))2 −
(

1− |x|2
2|x|

)2







(

2

1− |x|2
)2

u2 dx,
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+
(
√
1− 4λ)(

√
1− 4λ+ 1)

2

∫

B

g̃(|x|)
(

2

1− |x|2
)2

u2 dx ,

where dx denotes the Euclidean volume and g̃(|x|) := g
(

log
(

1−|x|
1+|x|

))

with g > 0 as defined

in Theorem 2.1. In particular, for λ = λ1(H
2) = 1

4 , inequality (9.1) reads as
∫

B

|∇u|2 dx− 1

4

∫

B

(

2

1− |x|2
)2

u2 dx

≥ 1

4

∫

B







1
(

log
(

1−|x|
1+|x|

))2 −
(

1− |x|2
2|x|

)2







(

2

1− |x|2
)2

u2 dx

and the constant 1/4 in the right hand side in the above inequality is sharp.

Remark 9.1. The inequality (9.1) can be compare with optimal Leray inequality, (cf. [19,
Example 13.2]). Note that the weight in the left hand side of (9.1) has a singularity only
at the boundary of the ball but on the other hand we have a subcriticality of the resulting
operator unlike in the case of classical Leray inequality.

By considering the upper half space model for H2, namely R2
+ = {(x, y) ∈ R×R+} endowed

with the Riemannian metric
δij
y2
. Theorem 2.1 yields the following improved Hardy-Maz’ya-

type inequality in the half space in dimension two:

Corollary 9.2. For all λ ≤ λ1(H
2) = 1

4 and all u ∈ C∞
c (H2 \ {x0}) there holds

∫

R+

∫

R
|∇u|2 dxdy − λ

∫

R+

∫

R

u2

y2
dxdy

≥ (
√
1− 4λ+ 1)2

4

∫

R+

∫

R

(

1

d2
− 1

sinh2 d

)

u2

y2
dxdy

+
(
√
1− 4λ)(

√
1− 4λ+ 1)

2

∫

R+

∫

R
g(d)

u2

y2
dxdy,

where (x, y) ∈ R × R+, d = d(x, y) := cosh−1
(

1 + (y−1)2+|x|2
2y

)

and g > 0 is as defined in

Theorem 2.1.

In particular, for λ = λ1(H
2) = 1

4 , inequality (9.2) reads as
∫

R+

∫

R
|∇u|2 dxdy − 1

4

∫

R+

∫

R

u2

y2
dxdy ≥ 1

4

∫

R+

∫

R

(

1

d2
− 1

sinh2 d

)

u2

y2
dxdy, (9.2)

and the constant 1/4 in the right hand side of (9.2) is sharp.

Hence, (9.2) provides an optimal nonstandard remainder term for the Hardy-Maz’ya in-
equality in dimension two, see [5] for the case N ≥ 3.
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