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Abstract

The interactions between a fluid, such as water or air, and a deformable surface, such
as rock, ice or sand, create marvellous natural patterns. The desert dunes generated
by the winds, the cave speleothems shaped by thin water films and the sediment
patterns on a river bed are just some examples. The branch of fluid mechanics
devoted to the study of these patterns is the so-called morphodynamics. In this thesis,
some morphological patterns from different natural environments are analytically
modelled through stability analysis. This mathematical approach, commonly used to
study every morphological pattern, addresses the stability of the spatially uniform
solution to a small spatial perturbation. In unstable conditions, the perturbation
grows in time to eventually form a finite-amplitude pattern. This thesis focuses on
alternate bars, which are macro-scale river patterns, and on some small-scale ice and
karst patterns.
In first place, bar formation in rivers with considerable amount of suspended load
is investigated. Closed forms relations for the wavelength (linear stability analy-
sis) and the finite amplitude (weakly nonlinear analysis through Center Manifold
Projection) are achieved. Results show that suspension plays a destabilizing role in
bar instability and it affects both the bar wavelength and amplitude. The theoretical
outcomes are validated with field observations. In second place, the conditions for
vegetation spreading on finite-amplitude bars are mathematically framed in a model
that also includes flow stochasticity. Flow unsteadiness is identified as the main
factor discouraging vegetation growth, up to the point that, above a certain threshold,
plant spread is completely inhibited. Comparison with field data demonstrates that
the model captures the physical conditions heralding the transition between bare and
vegetated fluvial states.
Small-scale patterns in karst and glacial environments are usually generated by a
falling liquid film. In some cases, the resulting patterns are so similar that a unified
approach for the two environments is possible. This happens in the case of the longi-
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tudinally oriented organ-pipe-like structures, called flutings, which are widespread
in caves and in ice-falls. In this thesis, an analytical model for fluting formation
is proposed and closed form relations for the wavelength and the finite-amplitude
(linear and weakly nonlinear analyses) are provided. The theoretical results are
confirmed by numerical simulations of the fully nonlinear equations.
The last part of this thesis deals with the problem of icicle formation. Recent experi-
ments have revealed that small amounts of dissolved impurities are required for radial
ripples to appear on icicle surface. This is contrary to existing theories, which would
predict ripples on icicles formed by pure water. The theoretical model here proposed
shows that icicles made by pure water do not develop ripples. Moreover, some
considerations on the reason why dissolved impurities drive the ripple instability are
presented.
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Chapter 1

Introduction

1.1 Brief overview on morphodynamics

The beauty and richness of nature have inspired and amused humankind since pre-
historical times, when the first groups of men drew animals and landscapes in the
caves in which they sheltered. Throughout all human history, the plethora of different
natural environments has influenced cultures, arts, scientific discoveries and, more in
general, the anthropological evolution of mankind. In the current time, which is now
accepted to be called the Anthropocene, this influence has somehow reversed and
human-activities are strongly impacting Earth’s ecosystems worldwide (e.g., Crutzen
(2006); Lewis and Maslin (2015); Waters et al. (2016)). Besides the orientation of the
nature-humans feedbacks and the ethical questions that may arise, a deeper physical
understanding of natural environments remains a crucial challenge for scientists and
an opportunity for improvement for every social community.

All natural ecosystems, from the northern glaciers to the tropical forests, from
the underground caves to the mountains peaks, from the ocean floors to the sand
deserts, are strongly influenced, and partially shaped, by two key natural elements:
water and air. Even though water and air are the most common fluids in nature, and
also the most important as every living being relies on them to survive, their physical
behavior is far to be clear. The reason is that is fluids are composed by microscopic
particles that randomly travel in space by subsequent collisions. A slightly different
initial condition for just one of the particles may lead to drastic changes in the
macroscopic motion of the fluid. This is why weather forecast are so unreliable on
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(b)(a)

(c) (d)

5 km

Fig. 1.1 Eolian dunes. (a) Barchan dunes in Paracas National Park, Perù (©George Steinmetz).
(b) Transverse dunes in the Great Grand Sea, Egypt (NASA satellite photo). (c) Star dunes
in Namibia (©James Parker). (d) Sand patterns on Mars (photo from NASA). The light blue
macro-scale pattern is a dune, the smaller scales patterns are ripples.

the long term! This complex behavior of fluids is referred to as chaos in the theory of
dynamical system (Wiggins, 2003) and as turbulence in fluid-mechanics. Although
turbulence has been broadly studied in the last centuries from the seminal experiment
of Reynolds (1883), it has still many aspects that need to be unveiled (e.g., Pope
(2000); Wilcox (1998)).

When a fluid, such as water or air, interacts with a movable solid boundary, such
as ice, rock or sand, a further element of complexity is added to the problem. The
fluid flow may trigger the transport of sediment particles (e.g., Charru et al. (2013);
Lancaster (2013); Seminara (2010)), melting-freezing processes (e.g., Camporeale
and Ridolfi (2012a); Chen and Morris (2013)), or the erosion-dissolution of cohesive
surfaces (e.g., Dreybrodt (2012); Ford and Williams (2013)), thus modifying the solid
boundary. The alteration in the solid boundary affects in turn the fluid flow, triggering
a chain of subsequent feedbacks. If these feedbacks are such to annihilate each other
(stability), the solid boundary remains flat, on the opposite, if such feedbacks enhance
each other (instability), the solid boundary develops into a very ordered wavy pattern.
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(b)(a)

(c) (d)

Fig. 1.2 Eolian microscale patterns. (a) Sand ripples in the Death Valley, California. (b)
Ripples on Mars (NASA image). (c) Snow ripples in Eldorado Peak, Washington, USA. (d)
Sastrugi in Norway.

In nature, there is a multitude of fascinating morphological patterns induced by fluid
flows and the branch of fluid mechanics devoted to the study of these patterns is
called morphodynamics.

Eolian sand dunes in the desert are one of the most renowned example of macro-
scale morphological pattern. The wind-sediment interactions responsible for dune
formation depend on many environmental parameters, such as the wind intensity
and direction, the presence of unmovable obstacles and the sediment particle size
(e.g., Lancaster (2013); Pye and Tsoar (2008)). Consequently, dunes exhibit various
enchanting geometries, e.g., photos of barchan, transverse and star dunes are reported
in Fig. 1.1a-c. The research on sand dunes has implications that range from defining
the sources of dust storm (Sweeney et al., 2016), to the effect of desertification on
anthropic activities (Heshmati and Squires, 2013; Wang et al., 2008), and, exceptio-
nally, to astrophysics. In fact, the dunes spotted on Mars’ surface (see Fig. 1.1d) have
allowed evaluations on wind regimes (Bridges et al., 2012) and seasonal variability
(Ayoub et al., 2014) on the Red Planet.

On smaller scales, wind generates numerous and variegated patterns. Eolian
action on non-cohesive sediment leads to the formation of sand ripples (Andreotti
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(a)

(c)

(b)(a) (c)

(d) (e)

Fig. 1.3 Cave patterns driven by thin water films. (a) Crenulations in the Chifley cave,
Australia. (b) Scallops. (c) Meandering draperies (©Dave Bunnel). (d) Cave ripples in the
Bossea Cave, Italy (photo courtesy of Bartolomeo Vigna). (e) Flutings on flowstone in Soreq
Cave, Israel.

et al. (2006), Fig. 1.2a), which are very common in deserts and coastal beaches,
and have also been detected on Mars dunes (Silvestro et al. (2010), Fig. 1.2b).
Remarkably similar ripples can be observed on snow surfaces (Filhol and Sturm
(2015); Kosugi et al. (1992), Fig. 1.2c). Another ice pattern created by the wind are
the sastrugi, or yardangs (Goudie (2007), Fig. 1.2d).

Water is the most important modeller of Earth’s surface. From the steep moun-
tain valleys to the flat land, fresh water running downhill develops landforms and
sediment patterns through processes of erosion and deposition (Charru et al., 2013;
Seminara, 2010). All coasts worldwide are dynamically modelled by the salty water
of seas and oceans (Blondeaux, 2001; De Swart and Zimmerman, 2009; Ribas et al.,
2015). Underground caves are shaped by aqueous solutions that trigger dissolution
and precipitation of cohesive surfaces such as limestone or dolostone (Dreybrodt,
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(b)(b)(a) (c)

Fig. 1.4 Ice patterns driven by melting water. (a) Ripples on the surface of icicles (Chen and
Morris, 2013). (b) Snow ripples on the Chardonney glacier, Italy (Camporeale and Ridolfi,
2012a). (c) Supraglacial channel in Greenland.

2012). Glacier and ice surfaces are carved by melting water through heat transport
phenomena (e.g., Camporeale and Ridolfi (2012a); Chen and Morris (2013)).

In caves, precipitation-dissolution processes driven by thin water films (some
micrometers thick) shape different types of speleothems, which are karst forma-
tions typically generated in limestone or dolostone caves (Meakin and Jamtveit,
2009). Since speleothem morphogenesis can last thousands of years (Proctor et al.,
2000), speleothems are silent repositories of past climates and their importance as
palaeo-climate proxy is growing among geologists (Baker et al., 1998; Fairchild
et al., 2006; McDermott, 2004). Although the hydro-geochemical aspects of cave
speleogenesis are well-known (Dreybrodt, 2012; Ford and Williams, 2013), a mathe-
matical approach to the morphodynamic modelling of these water-driven patterns
has been introduced only recently. For example, in the case of crenulations, i.e., the
sub-centimetre ripples on stalactites surface (Camporeale and Ridolfi (2012b), Fig.
1.3a), scallops (Claudin et al. (2017), Fig. 1.3b) and flutings, the organ-like vertical
structures (Camporeale (2015), Fig. 1.3d). Many other speleothems, among which
draperies (Martín-Pérez et al. (2012), Fig. 1.3c) and cave ripples (see Fig. 1.3e), still
lack a quantitative modelling.

Through a remarkable parallelism, the ice environment is able to generate very
similar patterns which are driven by melting-freezing processes, again regulated
by the interaction with thin water films. Notice, for example, the analogy between
ripples on the surface of icicles (Chen and Morris (2013); Ueno et al. (2009a), Fig.
1.4a) and the crenulations on stalactites (Fig. 1.3a), or the similarity of ice ripples
(Camporeale and Ridolfi (2012a); Yokokawa et al. (2016), Fig. 1.4b) with their cave
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(b)(a)

(c) (d)

Fig. 1.5 Sea sediment patterns. (a) Pearlescent sand bar in the Caicos Islands, Caribbean
Sea. Notice the submerged dunes on the bar. (b) High-angle wave instability in Conception
Bay, Namibia. Eolian desert dunes are also present. (c) Sand ripples in the Cayman Islands,
Carribean sea. (d) Beach cusps in Arcachon’s Bay, France.

counterparts (Fig. 1.3e). At bigger scale, the interaction of turbulent water with ice
creates astonishing patterns, as supra-glacial streams (Mantelli et al. (2015); Parker
(1975b), Fig.1.4c).

The interaction between water and sediment is the most widespread worldwide,
and also the more investigated in the scientific literature (e.g., Blondeaux (2001);
Charru et al. (2013); De Swart and Zimmerman (2009); Ribas et al. (2015); Seminara
(2010)). Every stream and sea exerts drag forces on the non-cohesive material, such
as sand or gravel, whose motion, in turn, alters the water flow. The results are
marvellous sediment patterns, which range over many temporal and spatial scales.

In seas and oceans, the flow currents generated by tides or winds drive diffe-
rent phenomena both in the offshore and the nearshore regions (Blondeaux, 2001;
De Swart and Zimmerman, 2009; Dronkers, 2005; Ribas et al., 2015). Offshore, com-
mon sediment features are sand banks (Huthnance, 1982; Tambroni and Blondeaux,
2008), sand waves (Besio et al., 2006) and sand ridges (Blondeaux et al., 2009),
which are, respectively, inclined, perpendicular and parallel to the formative currents.
These offshore features are macroscale sediment patterns, with length scales order
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(b)(a)

(c)

100 m

Fig. 1.6 River meso- and large-scale patterns. (a) Meandering river in Turkey. The locations
of the cutoff events are recognizable from the green meadows with horse-shoe shape. (b)
The Tagliamento River, which is one of the last naturally braided river in Italy (Bertoldi et al.,
2009). (c) Alternate bars in the Arc River, France.

of tens of kilometres and time scales order of centuries (van de Meene and van Rijn,
2000). Nearshore, typical morphologies are the bars (Blondeaux (2001); Zhang
and Sunamura (1995), Fig. 1.5a) and the high-angle wave instability (Ashton et al.
(2001), Fig. 1.5b). On the sandy shorelines, other common patterns are the sand
ripples (Blondeaux et al. (2000), Fig. 1.5c) and the beach cusps (Werner and Fink
(1993), Fig. 1.5d).

Rivers provide one of the greatest collection of morphodynamic phenomena.
River patterns can be classified in small-, meso-, or large-scale depending on their
typical wavelengths, scaling with flow depth, channel width, or some larger scale
(Seminara, 2010). Patterns of different spatial, and temporal, scales may coexist, but
they usually require distinct theoretical tools to be investigated.

River meanders and braided patterns are example of large scale morphologies.
Meandering rivers (Fig. 1.6a) can be assimilated to planar curves evolving under two
contrastating actions: the continuous elongation induced by the local bed erosion and
the sudden and sproadic shortening due to cutoff events (Camporeale et al., 2005;
Liverpool and Edwards, 1995). This sequence of elongation and shortening phases
is impacted by several external forcings, such as flow variability, riparian vegetation
and anthropic actions (Perucca et al., 2007; Visconti et al., 2010).
Braided rivers have complex and astonishingly beautiful geometries (Fig. 1.6b),
characterized by sediment islands emerging from a network of water channels. This
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complexity causes the stream dynamics to be strongly nonlinear (Murray and Paola,
1994; Parker et al., 2011), especially in the areas of flow bifurcation and merging
occurring at the edges of the islands (Federici and Paola, 2003). Moreover, this
complexity is also responsible for the richness of different environments in the
riverbed, which ranges from the main channel with high flow discharge to the death
zones basically at rest (Kemp et al., 2000).

A variety of small-scale patterns arise as instability of the uniform riverbed
(Allen, 1982; Seminara, 2010). The mechanism that drives the instability is a
phase lag between the bottom perturbation and the sediment flux (Colombini, 2004;
Gradowczyk, 1968). This phase lag determines if the perturbation of the riverbed
grows or decays in time and if the morphological features travel downstream (e.g.,
ripples and dunes) or upstream (e.g., antidunes). However, evaluating this phase lag
is not an easy task as the sediment interface is affected by many mechanisms such as
particle inertia (Parker, 1975a), suspension (Richards, 1980), flow separation (Best,
2005) and particle saltation (Charru et al., 2013). Another element of complexity is
that all these small-scale patterns can be two-dimensional, with straight crests, or
three-dimensional, with curved crests (Best, 2005; Colombini and Stocchino, 2012).

Bars are the most famous example of meso-scale river patterns (e.g., Bertoldi
et al. (2009); Blondeaux and Seminara (1985); Crosato et al. (2012); Siviglia et al.
(2013)). They can be classified in free and forced. Free bars grow as an instability
of the riverbed to any spatial perturbation and they migrate downstream. Forced
bars develop in the presence of a natural or anthropic obstacle, as a meander or a
groyne, and they are steady. Moreover, free bars are ulteriorly classified in: alternate
bars (Fig. 1.6c), which are a regular sequences of rifles and pools separated by
diagonal fronts, and multiple bars in braided rivers (Fig. 1.6b). Alternate free bars
have longitudinal scale around ten times the river width, transverse scale constrained
by the river width and amplitude with similar scales to the flow depth. Bars are the
equilibrium result between secondary flows, which destabilize the flat riverbed, and
gravity, which tends to stabilize it (Blondeaux and Seminara, 1985; Federici and
Seminara, 2006). This equilibrium is strongly dependent on the channel geometry,
so that, as a general rule, narrow channels do not exhibit bars, while alternate and
multiple bars appear in wider channels.

In recent years, the morphodynamic field has been extended to include the
fundamental role of vegetation in shaping the landscape. This has given rise to the
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emerging discipline of ecomorphodynamics, in which vegetation is not only seen as
a passive element affecting fluid flow and sediment transport (Baptist et al., 2007;
Rominger et al., 2010), but also as an active element within the whole dynamics
(Bennett and Simon, 2004). In ecomorphodynamics research, fluid flow, sediment
transport and vegetation dynamics are the three fundamental elements that interact
through a chain of complex feedbacks on different spatial and temporal scales
(Camporeale et al., 2013; Vesipa et al., 2017). These interactions determine the
morphodynamics of rivers (Bertoldi et al., 2014; Siviglia and Crosato, 2016) and,
for example, the shape of aeolian dunes in coastal and semi-arid regions (Kutiel
et al., 2004; Nield and Baas, 2008). In rivers, riparian and riverbed vegetation affects
the flow field (Bennett et al., 2008) and the processes of sediment transport and
deposition (Ishikawa et al., 2003). Moreover, plants act as chemical filters improving
the water quality (Dosskey et al., 2010) and plant roots affect the mechanical and
hydraulic soil properties, stabilizing landforms and river banks (Gyssels et al., 2005).
On the other hand, fluid dynamics controls vegetation growth through seed dispersal
(Merritt and Wohl, 2002), provision of water and nutrients (Sabater et al., 2000),
uprooting by erosion (Edmaier et al., 2011) and creation of new depositional sites
for plant colonization (Stella et al., 2013). Furthermore, the water regimes can
influence root architecture (Pasquale et al., 2012), which is determinant for the
survival of pioneering vegetation (Perona et al., 2012). The research on these complex
interactions and feedbacks involves multidisciplinary knowledge from hydrology,
hydraulic, geomorphology and ecology and, due to the broad applications, it is
attracting an increasing number of scientists (see Vesipa et al. (2017) for a recent
review).

1.2 The mathematical approach to morphological in-
stabilities

The governing equations for morphological systems are partial differential equations
(pdes) arising from physical conservation laws: the Navier-Stokes equations for the
fluid dynamics and an evolution equation for the solid boundary. The generic system
of pdes reads

∂tU = G(U,∂xU,∂xxU...R), (1.1)
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where U is the vector of the state variables, x is the vector of spatial coordinates, t is
time and R is a generic control parameter, which depends on the environment consi-
dered. From the system of pdes (1.1), to theoretically extract reliable informations is
not an easy task (Charru, 2011; Cross and Hohenberg, 1993). The common analytical
approach to study morphodynamic patterns is the so-called stability analysis, which
addresses the stability of the steady and spatially uniform solution U0 (∂tU0=0) to
small perturbations.

As a physical example, we can imagine the spatially uniform solution U0 as
a completely flat riverbed made of sand particles (ideally neglecting the sand
roughness). If the water flow is sufficiently strong, a sand particle can be drag-
ged and transported above another sand particle, thus introducing a small spatial
perturbation in the riverbed. This spatial irregularity of the riverbed affects in turn
the water flow, that might enhance the accumulation (excavation) of sand particles
on the crest (through) of the riverbed perturbation. If this happens, the uniform
solution (the flat riverbed) is said to be unstable, the perturbation grows in time and
the non-equilibrium spatial pattern develops (see Figures 1.1-1.6).

Mathematically, the vector of the state variables is recast as the sum of the
uniform steady solution U0 and a small perturbation U1, as follows

U = U0 +U1. (1.2)

By substituting (1.2) in (1.3) and truncating to quadratic nonlinearities, one obtains
the weakly nonlinear system for the perturbation

∂tU1 = LU1 +N(U1)+O(U3
1), (1.3)

in which L is the linear matrix and N(U1) contains all second order nonlinearities.

At this point, it is convenient to write the small perturbation in the Fourier space,

U1 ∝ A(t)eikx, (1.4)

where k is the wavenumber, which for morphological instabilities is usually one- or
two-dimensional, and A(t) is the complex amplitude of the perturbation. In pattern
formation, a good approximation of the amplitude dynamics in time is given by the
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Fig. 1.7 Generic results from the stability analysis. (a) Amplitude dynamics in time as
described by the Stuart-Landau eq. (1.5). (b-c) Behaviour of the growth rate versus the
wavenumber in stable (light blue), neutral (green) and unstable (red) conditions. Instabilities
of type I (panel b) and II (panel c) in the classification of Cross and Hohenberg (1993).

Stuart-Landau equation
∂t A = ω A+Ξ|A|2A. (1.5)

A graphical example of the amplitude dynamics, as described by the Stuart-Landau
equation (1.5), is given in Fig. 1.7a.

1.2.1 Linear analysis

When A is very small, the nonlinear term in (1.5) is negligible and the amplitude
essentially grows exponentially A∝eω t . Analogously, N(U1) can be neglected in
the system (1.3), which reduces to

(L−ω I)U1 = 0, (1.6)

where I is the identity matrix. Imposing |(L−ω I) |=0, one obtains the dispersion
relation

f (ω,k,R) = 0. (1.7)

The dispersion relation (1.7) links the wavenumber k and the control parameter
R to the complex frequency ω , whose real part determines the growth rate of the
perturbation. If ωr >0, the perturbation grows in time to form the morphological
pattern. The dispersion relation (1.7) usually reveals that the instability develops
when the system is brought away from equilibrium by increasing R. When R>
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Rc, where Rc is the threshold critical value, the system is unstable to a band of
infinitesimal perturbations. Among these perturbations, the one that grows faster,
determines the pattern wavenumber ks . In Fig. 1.7 b-c, typical behaviors of the
growth rate ωr versus the wavenumber k are reported. The difference in the two
panels regards the critical wavenumber kc. In the first case (panel b), kc has a finite
value and there is a range of unstable wavenumber that does not span from zero, as it
happens for example in river bar instability (Blondeaux and Seminara, 1985). This is
the type I instability in the classification suggested by Cross and Hohenberg (1993).
In the second case (panel c), kc=0 and the range of unstable wavenumbers spans
from zero. This means that the low modes and the subharmonics of the fundamental
ks are linearly unstable and may destabilse the growth of the fundamental (Cheng
and Chang, 1990, 1992). This is the type II instability in the classification suggested
by Cross and Hohenberg (1993) and is the common instability in problems with
thin liquid films (Craster and Matar, 2009; Kalliadasis et al., 2011). Notice that, in
both cases, ωr =0 for k=0 because the system (1.1) arises from physical laws of
conservation (the Navier-Stokes equation).

1.2.2 Weakly nonlinear analysis

When A is no longer infinitesimal, nonlinear effects became predominant and dampen
the perturbation growth expected by the linear theory. To evaluate the nonlinear
effects, one needs to solve the weakly nonlinear system (1.3). In the study of
morphological instabilities, the classical analytical approach to do so has always
been the multiple-scaling (e.g., Colombini et al. (1987); Ji and Mendoza (1997);
Tambroni and Blondeaux (2008); Vittori and Blondeaux (1990)). Instead, in this
thesis, we have performed the weakly nonlinear analyses through the mathematichal
technique of Center Manifold Projection (CMP, Fujimura (1997); Guckenheimer and
Holmes (2013); Wiggins (2003)). This represents a novelty in the morphodynamics
field. The advantages of CMP with respect to multiscale theories are mainly two: i)
CMP is a more rigorous and simplified tool; ii) CMP furnishes an amplitude equation
that is not constrained around the critical point (Carr and Muncaster, 1983; Chang,
1994). The main result obtained through CMP is the Landau coefficient Ξ for eq.
(1.5). If Ξr< 0, the amplitude of the perturbation reaches a finite-value As (as shown
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in Fig. 1.7a), which reads

As =

√
−Ξr

ωr
. (1.8)

Alternatively, if Ξr > 0, two possibilities arise: i) the nonlinearities that dampen
the growth are higher order, so that a quintic Stuart-Landau equation is needed
(Fujimura, 1997) ii) the pattern does not saturate to a finite amplitude (as meanders
in rivers). Beyond the finite amplitude As, the weakly nonlinear analysis through
CMP allows to evaluate the influence that some modes, as the side-bands or the
subharmonics, have on the dynamics of the fundamental (Cheng and Chang, 1990,
1992). For example, the sideband stability analysis (Lin, 1974) determines the
stability of the finite-amplitude monochromatic fundamental to perturbations of
sideband wavenumbers. In multiscale theory, a similar result can be obtained by
using the Ginzburg-Landau equation instead of the Stuart-Landau equation (1.5).
The Ginzburg-Landau equation reads

∂t A = ω A+Ξ|A|2A+ϖ
∂ 2A
∂X2 , (1.9)

where the additional diffusive term (ϖ ∂ 2A/∂X2) introduces a spatial modulation in
the monochromatic finite-amplitude pattern. However, equation (1.9) is valid only in
a neighbourhood of the critical point, when the tangency condition (∂ωr/∂k)c=0
is satisfied. Such condition is not satisfied when the weakly nonlinear analysis
is performed around a generic point of the neutral stability curve instead of the
critical point, so when CMP is used. Furthermore, the Ginzburg-Landau equation is
erroneous for the type II instability (Fig. (1.7)c), as also in this case the nonlinear
analysis is performed around the neutral curve and not the critical point (basically
because Rc=kc= 0, Chang (1994)). The sideband stability analysis through CMP
generalizes the validity of (1.9). Moreover, the use of CMP in the sideband analysis
provides more reliable results as it also includes the effects of the low modes (k∼0)
in the instability of the fundamental (Cheng and Chang, 1990).

1.3 Thesis contents

This thesis is divided in two parts:
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1. Part I, composed of Chapter 2 and 3, regards the river environment with focus
on alternate bars (Fig. 1.6c).
In Chapter 2, alternate bar formation is investigated through linear and weakly
nonlinear analyses, including the effect of suspended load. The theoretical bar
wavelength and amplitude are consequently verified with field observations.
In Chapter 3, the possibility for vegetation to spread on alternate bar crests
depending on flow variability is analytically examined. This latter Chapter
describes a theory in which, for the first time, the three main cornerstone
of the emerging discipline of ecomorphodynamics (sediment transport, flow
stochasticity and vegetation dynamics) are linked in a whole. Also in this case,
the theory predictions are satisfactorily verified with field observations.

2. Part II, composed of Chapter 4 and 5, regards the cave and glacial environ-
ments, with focus on patterns shaped by thin water films.
In Chapter 4, fluting formation (Fig. 1.3d) is analytically investigated through
linear and weakly nonlinear analyses. The analytical results are validated
through numerical simulations.
In Chapter 5, we introduce a preliminary model, based on experimental evi-
dences, for the morphological evolution of the icicle surface (Fig. 1.4a).

The content of Chapter 3 has been developed in collaboration with the University
of Edinburgh (Prof. Paolo Perona). The model in Chapter 5 originates from a
collaboration with the University of Toronto (Prof. Stephen Morris and PhD. John
Ladan).

1.4 Novel contributions and publications

Parts of this work are discussed in the following publications:

1. Bertagni, M. B., & Camporeale, C. (2018). Finite amplitude of free alternate
bars with suspended load. Water Resources Research (Chapter 2)

2. Bertagni, M. B., Perona, P., & Camporeale, C. (2018). Parametric transitions
between bare and vegetated states in water-driven patterns. Proceedings of the
National Academy of Sciences, 115(32), 8125-8130 (Chapter 3)
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3. Bertagni, M. B., & Camporeale, C. (2017). Nonlinear and subharmonic
stability analysis in film-driven morphological patterns. Physical Review E,
96(5), 053115 (Chapter 4)

Chapter 5 will form the basis for another journal publication.



Part I: Alternate bars in rivers

Bars constitute the most important fluvial pattern, strongly influencing water flow
and any anthropogenic or natural activity in a river. Bars are the key elements
that trigger the meandering (Parker, 1976) and they cause localised erosion of
river banks (Visconti et al., 2010). Moreover, bars limit the navigability of river
channels and can play a fundamental role in river renaturalization by increasing the
bed channel area and favoring biodiversity (Gilvear and Willby, 2006). For these
reasons, river bars have been studied extensively over the last decades through field
observations (Bertoldi et al., 2009; Eekhout et al., 2013), experiments (Crosato et al.,
2012; Lanzoni, 2000), numerical simulations (Defina, 2003; Siviglia et al., 2013)
and analytical modelling (Blondeaux and Seminara, 1985; Colombini et al., 1987;
Schielen et al., 1993).

From classical theoretical investigations of shallow water equations coupled
with 2D sediment transport conservation (Exner equation), it is known that a base
plane bed becomes unstable when the aspect ratio β , which is the ratio between
the half channel width and the uniform flow depth, exceeds a critical value (β >βc)
(Blondeaux and Seminara, 1985). In such unstable conditions, any infinitesimal
spatial perturbation is able to trigger the development of the bar pattern. Bars have
been modeled, through this instability approach, by means of linear and weakly
nonlinear analyses (Blondeaux and Seminara, 1985; Callander, 1969; Colombini
et al., 1987; Parker, 1976; Schielen et al., 1993). In two noticeable works, the effect
of flow unsteadiness has been included (Hall, 2004; Tubino, 1991).

In the next two Chapters, we extend the research on alternate bars by addressing
two open issues:

1. the inclusion of suspended load in alternate bar modeling, with focus on
alternate bar finite amplitude (Chapter 2),
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2. the possibility for vegetation to spread on bar crests depending on flow varia-
bility (Chapter 3).



Chapter 2

Finite amplitude of free alternate
bars with suspended load

2.1 Introduction

The work described in this chapter has been partially derived from Bertagni and
Camporeale (2018).
The main geometrical features of alternate bars (wavelength and amplitude) depend
on the mutual interactions between hydrodynamics and sediment transport. Regardi-
ing sediment transport, most of the research in the last decades (e.g., Colombini et al.
(1987); Schielen et al. (1993)) has focused only on the role of bedload, neglecting
suspended load. This approximation is satisfactory for the standard conditions in
gravel-bed rivers, but it is not adequate for a correct morphodynamic modelling of
those river with very fine sediment.

The problem of coupling bar formation with suspended sediment was first ad-
dressed by Tubino et al. (1999), through a three-dimensional approach. The authors
showed that suspension has a strong quantitative effect on bar instability as it reduces
βc (i.e., the critical aspect ratio) and leads to longer wavelengths at criticality. Howe-
ver, the linear stability analysis was solved numerically, thus limiting the possibility
of additional analytical studies. A further advancement was made by Bolla Pittaluga
and Seminara (2003), who revisited some previously formally incorrect asympto-
tic approaches and demonstrated the validity of a depth-averaged river modeling
even in the presence of suspension. The main assumption is that advective and
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unsteady effects are smaller than gravitational settling and turbulent diffusion. Bars
instability was linearly and analytically investigated through this approach (Federici
and Seminara, 2006), and the semi-analytical results of Tubino et al. (1999) were
confirmed.

The main task of the present Chapter is to provide an analytical tool able to
compute the amplitude of alternate bars in presence of suspended load. To this aim,
the model of Federici and Seminara (2006) and the weakly nonlinear technique
of Center Manifold Projection (CMP) are adopted. This technique is based on the
assumption that the stable modes have fast dynamics, which can be projected onto the
slow dynamics of the quasi-neutral or weakly unstable mode (the alternate bar mode).
Eventually, a differential equation with closed-form coefficients is obtained, i.e., the
well-known Stuart-Landau equation, in which only the bar amplitude is involved.
Such an equation quantifies the nonlinear terms that dampen the exponential growth
that can be expected from the linear theory, and its stationary solution results to be
the finite amplitude As of alternate bars.

Validation of the analytical results has been performed considering field ob-
servations of alternate sandy bars available in literature. In particular, bathymetry
data from the Mississippi river (Ramirez and Allison, 2013) and a straight artificial
channel in the Netherlands (Eekhout et al., 2013) have been used. In addition, some
speculative considerations have been made pertaining to partial data on the Yellow
River in China (Ma et al., 2017).

This chapter is structured as follows: the mathematical framework is presented
in Sec. 2.2, together with the linear and the nonlinear analyses that lead to the Stuart-
Landau equation; the outcomes of the analytical theory are verified and discussed
with field data in Sec. 2.3; some concluding considerations are given in Sec. 2.4.
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Fig. 2.1 Graphic framework. (a-b) Aerial sketch and channel section. The superscript hat
refers to dimensional quantities and Â is the amplitude of the bar, i.e., the height of the bar
crest with respect to the flat bottom condition.

2.2 Mathematical model

2.2.1 Dimensionless Shallow Water and Exner equations

Dimensionless Exner and shallow water equations under quasi-steady approximation
(i.e., the flow adapts instantaneously to variations in the bed height) read as:

U∂sU +V ∂nU +Fr−2
∂s (D+η)+βD−1

τs = 0, (2.1)

U∂sV +U∂nV +Fr−2
∂n (D+η)+βD−1

τn = 0, (2.2)

∂s(U D)+∂n(V D) = 0, (2.3)

−ϒ

(
∂sQb

s +∂nQb
n

)
−∂sQs

s −∂nQs
n = ∂tη , (2.4)

with boundary conditions that impose a vanishing transversal flux of water and
sediment at the river banks

V = Qb,s
n = 0, (n =±1). (2.5)

In the system (2.1)-(2.5), s and n are the longitudinal and transversal coordinates,
see Fig. 2.1; U and V are the longitudinal and transversal depth-averaged velocities;
D and η are the water depth and bottom height; ∂ refers to partial derivative; τs

and τn are the two components of the bottom shear stress; Qb
s and Qb

n are the two
components of the bedload solid discharge; Qs

s and Qs
n refer to the suspended solid

discharge. Note that eqs. (2.1)-(2.5) have been made dimensionless through the



2.2 Mathematical model 21

following scaling:

(s,n) = (ŝ, n̂)/B̂, (U,V ) = (Û ,V̂ )/Û0,

(D,η) = (D̂, η̂)/D̂0, t = t̂ Û0/B̂, (2.6)

(Qb
s ,Q

b
n) = (Q̂b

s , Q̂
b
n)/

√
∆gd̂3, (Qs

s,Q
s
n) = (Q̂s

s, Q̂
s
n)/(Û0D̂0),

(τs,τn) = (τ̂s, τ̂n)/(ρÛ2
0 )

where the hat refers to dimensional quantities, B̂ is the channel half width, D̂0 and Û0

are the uniform flow depth and velocity, d̂ is the sediment particle diameter (granulo-
metry is assumed uniform), ρ the water density, g the gravitational acceleration and
∆=(ρs −ρ)/ρ ∼1.65 with ρs the sediment density. The dimensionless parameters
appearing in eqs. (2.1)-(2.5) are

Fr =
Û0√
gD̂0

, ϒ =

√
∆gd̂3

(1−λp)D̂0Û0
, β =

B̂
D̂0

, (2.7)

where Fr is the Froude number; ϒ is the dimensionless solid discharge; λp is the
porosity of the granular medium (around 0.3 for sand mixtures); and β is the aspect
ratio, which is the main parameter controlling bar instability. The closure relati-
onships for shear stress τ and bedload Qb, which depend on the relative roughness
ds= d̂/D̂0, are reported in Appendix A.1.

2.2.2 Inclusion of suspended load

Suspended load is accounted for in eq. (2.4) through the asymptotic approach derived
by Bolla Pittaluga and Seminara (2003) and successively adopted by Federici and
Seminara (2006) for the linear analysis of bar instability. Such an approach is based
on an asymptotic expansion of the exact solution of the advection-diffusion equation
for the sediment concentration, under the hypothesis that the flow is slowly varying.
Here the approach is briefly summarized. The dimensional advection-diffusion
equation for suspended sediment reads

∂t̂ C+Û∂ŝC+V̂ ∂n̂C+(Ŵ −Ŵs)∂ẑC = D̂z∂ẑẑC, (2.8)
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where ẑ and Ŵ are the dimensional vertical coordinate and velocity, and Ŵs is the
settling velocity of a sediment particle (see Appendix A.2.1. Only the the vertical
eddy diffusivity D̂z has been retained in eq. (2.8), as transversal and longitudinal
eddy diffusions provide a negligible contribution. The variables are scaled as follows

(s,n) = (ŝ, n̂)/L̂, (U,V ) = (Û ,V̂ )/Û0, W =
Ŵ B̂

D̂0Û0
, (2.9)

(D,z) = (D̂, ẑ)/D̂0, t = t̂ Û0/L̂, Dz =
D̂z

û∗ D̂0
,

where û∗ is the friction velocity and L̂ is the scale of the longitudinal variation of the
flow field, which in our problem is the bar wavelength. Using the scaling (2.9), the
advection-diffusion equation (2.8) reduces to

δ
′(∂tC+U∂sC+V ∂nC+∂zC) = ∂zC+

1
κ Z

∂zzC, (2.10)

where

δ
′ =

Û0 D̂0

Ŵs L̂
, (2.11)

and κ Z=Ŵs/û∗, being κ and Z the von Karman constant and the Rouse number
respectively. Notice that the parameter δ ′ is a small quantity for slowly varying
flows (Bolla Pittaluga and Seminara, 2003). This physically means that advective
and unsteady effects, l.h.s. of eq. (2.10), are smaller than gravitational settling and
turbulent diffusion, r.h.s. of eq. (2.10). Carrying out the expansion C=C(0)+δ ′C(1)

1 ,
the leading order problem reads

∂zC(0)+
1

κ Z
∂zzC(1) = 0. (2.12)

Eq. (2.12), coupled to a boundary condition of no flux of sediment in the air and
to an assumption of particle entrainment on the riverbed, yields the classical Rouse
profile for C(0). The order δ ′ problem reads

∂tC(0)+U∂sC(0)+V ∂nC(0)+∂zC(0) = ∂zC(1)+
1

κ Z
∂zzC(1), (2.13)

whose solution C(1) accounts for the non-equilibrium effect induced by spatial and
temporal variations of the flow field. Depth-averaging C=C(0)+δ ′C(1)

1 , one obtains
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the depth-averaged concentration ψ =ψ(0)+δ ′ψ
(1)
1 . Through some mathematical

manipulation, Bolla Pittaluga and Seminara (2003) found

ψ
(0) =

ψ̄0K0

1−λp
, ψ

(1) =
K1D(U∂sψ̄0 +V ∂nψ̄0)

1−λp
, (2.14)

where ψ̄0 is the depth-averaged concentration of the Rouse profile, while K0,1 are
functions of the relevant physical parameters (see Appendix A.2.2). The function
K1 had previously been obtained numerically (Bolla Pittaluga and Seminara, 2003;
Federici and Seminara, 2006), while here a completely analytical solution has been
adopted (see Appendix A.2.3 for further details).

In the bar formation problem, to avoid δ ′ to depend on the a-priori unknown bar
wavelength L̂, is convenient to use B̂ as a longitudinal scale (Federici and Seminara,
2006). This gives a slightly different parameter δ ,

δ = δ
′ L̂
B̂
=

Û0

Ŵs

1
β
, (2.15)

that is formally assumed to be small. In order to assure validity of the approach, the
parameter δ ′ has to be necessarily small (i.e., δ ≪ L̂/B̂).

Finally, the suspended load, with the dimensionless depth-averaged concentration
ψ reads

(Qs
s,Q

s
n) = D(U,V )(ψ(0)+δψ

(1)+O(δ 2)). (2.16)

Notice that, to address the closure relationships for suspended load, the Reynolds
particle Rp needs to be introduced

Rp =

√
∆gd̂3

ν
, (2.17)

where ν is the kinematic viscosity of water.

2.2.3 Stability analysis

Free alternate bars develop as an instability of the uniform flow solution to an
infinitesimal perturbation. Hence, the vector of the state variables U=(U,V,D,η) is
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recast as the sum of the base state U0 and a small perturbation U1 as follows:

U = U0 +U1 = (1,0,1,η0(s))+ (U1,V1,D1,Θ1), (2.18)

where η0=−Sβ s is the bed height at the base state, S is the river slope and Θ1 is
the bed height perturbation. By substituting (2.18) in the system (2.1)-(2.4) and
truncating to quadratic nonlinearities, one obtains:

L0 ∂tU1 = L1U1 +N(U1)+O(U3
1), (2.19)

where L1 is a linear differential operator; L0 is a matrix with null elements except
for the lower-right entry, which is 1; and N(U1) contains all the second order
nonlinearities. Notice that L0 arises from the quasi-steady approximation, i.e., the
fact that the only time derivative in the system (2.1)-(2.4) is the one for η . The Center
Manifold Projection technique requires the unknown U1 to be further expanded in
terms of the fm eigenfunctions through the following ansatz

U1(s,n, t) =
np

∑
p=−np

nm

∑
m=1

A[m,p](t) fm(pk,n)ei pk s, (2.20)

where k is the longitudinal wavenumber and A[m,p](t) is the generic amplitude of
the longitudinal mode p and lateral mode m. Such an expansion takes on slightly
different meaning for linear and nonlinear analyses, as explained hereafter.

2.2.4 Linear order

A linear analysis of the system (2.19) has already been investigated by Federici
and Seminara (2006) with the closure relationship for suspended load provided by
Bolla Pittaluga and Seminara (2003), thus it is only briefly reported here. In general,
linear analyses rely on the hypothesis that perturbations of different modes are
infinitesimally small, decoupled and grow/decay exponentially in time. Therefore,
if reference is made to the expansion (2.20), the only longitudinal harmonic of
interest is the fundamental one (p= 1). Each transversal harmonic m leads to a
decoupled problem (m=1 is an alternate bar mode, m=2 is a central bar mode) and
the amplitudes read A[m,p](t)∼ eωmt , where ωm is a complex number, whose real and
imaginary parts determine the growth rate and the angular phase. In order to satisfy
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the boundary conditions (2.5), the fm eigenfunctions are written as:

fm =


(
um,vm cot

(mπ

2 n
)
,dm,ηm

)
sin
(mπ

2 n
)
+ c.c., (m odd),(

um,vm tan
(mπ

2 n
)
,dm,ηm

)
cos
(mπ

2 n
)
+ c.c., (m even),

(2.21)

where c.c. means complex conjugate. If the closure relationships for suspended
sediment (2.14) are expanded in the perturbations of the state variables, one obtains:

ψ
(0) = ψ

(0)
0 (1+ t1U1 + t2D1), (2.22)

ψ
(1) = Kn (t3∂sU1 + t4∂sD1) , (2.23)

with ψ
(0)
0 and Kn defined as in Appendix A.2.2, while t1−4 are the same as Federici

and Seminara (2006). Moreover, τs, τn, Qb
s , Qb

n are written as a first-order Taylor
expansion of the state variable perturbation, as reported in Colombini et al. (1987).
By substituting (2.21)-(2.23) in the system (2.19) and linearizing (i.e., neglecting N),
one obtains:

(L0ωm −Lm
1 ) fm = 0, (2.24)

where the algebraic matrix Lm
1 is reported in Appendix A.3. After imposing |(L0ωm−

Lm
1 )|=0, the dispersion relation, and consequently the ωm eigenvalue, are obtained.

The analytical expression for ωm is reported in Appendix A.3. It should be noted
that, unlike Federici and Seminara (2006), we have not expanded the perturbations
(2.20) in the δ parameter, but we have instead solved the linearized problem directly.

The neutral condition for alternate bar formation is defined as the solution to
the dispersion relation that satisfies ω1,r = 0, where ω1,r is the growth rate for
alternate bars (the subscript r refers to the real part). This condition manifests as
a marginal curve in the (k,β ) plane, with a minimum at the critical point (kc,βc).
In Fig. 2.2a-b, neutral stability curves for alternate bar formation (m=1) and for
higher transversal modes (m= 2, m= 3) are reported for both the plane-bed and
dune covered configurations, which differ for the closure relationships reported in
Appendixes A.1 and A.2.2.
The behaviour of the alternate bar growth rate ω1,r versus k for different values of
β is reported in Fig. 2.2c. For β <βc, all perturbations decay in time (ω1,r <0).
For β =βc, the perturbation of wavenumber kc does not decay nor grow in time
(neutral critical condition). For β >βc, the growth rate becomes positive for a band of
wavenumbers that does not span from 0 1. For bar formation, we make the classical
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Fig. 2.2 Linear results. (a-b) The solid blue lines are the neutral stability curves for alternate
bar formation in plane and dune covered configurations, with the unstable domains emp-
hasized in gray (θ0 =0.5, ds =10−3, Rp =8). The dashed blue lines stand for the neutral
stability curves of higher transversal modes (m=2, m=3) and the solid red lines refer to the
case where only the bedload is considered. (c) Growth rate for alternate bars ω1,r versus the
wavenumber k for diffent values of β . ks is the wavenumber of maximal instability (black
dashed lines in panels (a) and (b)).

assumption of linear theories that the wavenumber of maximum instability ks, i.e.,
the fastest growing one, is the one that is most likely to be observed in nature. This
assumption has already been verified on gravel bars (Blondeaux and Seminara, 1985).
In Fig. 2.2a-b, the black dashed lines reveal the trend of ks, which increases almost
linearly with β .

The validity of the asymptotic approach (2.11)-(2.14) for suspended sediment is
verified by the condition β/ks ≫ Û0/(2π Ŵs), which is obtained by manipulation of
eq. (2.11). Usually, β/ks is one order of magnitude greater than the ratio between
velocities. In order to ensure continuity with previous works on sand bar instability,
the figures were obtained by fixing ds, Rp and the Shield stress in the unpertur-
bed condition θ0 (however, a different combination of parameters may be chosen).
Fig. 2.2 also shows how suspension influences the domain of instability (blue solid
lines) to a great extent, reducing both βc and kc, especially in the plane-bed case,
compared to the case where only bedload is considered (red lines).

This aspect is further explored in Fig. 2.3, where several neutral stability curves
are plotted for different parameter combinations in the plane-bed configuration.

1Bars instability corresponds to the type I-oscillatory instability of the classification suggested by
Cross and Hohenberg (1993).
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Fig. 2.3 Influence of suspension on sandbar linear instability for the plane-bed configuration.
(a-b) Neutral stability curves for different θ0 and Rp (ds=10−3). The addition of suspension
to bedload enhances bar instability, reducing βc and kc, especially for finer sediments (for
panel (a) d̂∼0.1mm and for panel (b) d̂∼0.5mm). The table on the right shows the influence
of suspension on the numerical outcomes of sandbar instability (usually a∼0.015).

Suspension is confirmed as a destabilizing mechanism that reduces βc and leads to
longer bars at the critical conditions (Federici and Seminara, 2006; Tubino et al.,
1999). In the case where only bedload is considered, three dimensionless parameters,
usually θ0, ds and β , define the problem, while suspension needs a fourth parameter
to characterize the suspended particle size, i.e., Rp from eq. (2.17). For this reason,
the red curves in panels (a) and (b) are the same, while the blue curves show that
the destabilizing effect of suspension is enhanced for finer sediments (d̂ ∼ 0.1mm
for panel (a) and d̂ ∼ 0.5mm for panel (b)). Some comparisons of how sediment
transport influences the linear results of bar instability are presented on the right of
Fig. 2.3. However, more precise considerations of general validity are jeopardized
by the high number of control parameters, the two possible initial bed configurations
(flat and dune covered), the instability of higher order transversal modes (central
bars) and the absence of closed form relationships for ks and the neutral stability
curve. Overall, as suspension becomes the main sediment transport mechanism,
neglecting it leads to incorrect predictions.

2.2.5 Weakly nonlinear order

In this section, we present a weakly nonlinear analysis performed through Center
Manifold Projection (CMP), with the aim of providing an analytical solution for
the finite amplitude of the fundamental mode (m=1). The CMP has been verified
as a powerful analytical method to simplify and rigorize the bifurcation analysis of
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multiple-scale theories. In fact, the amplitude equations can be more easily derived
and they are not constrained around the critical point, as they are in multiple-scale
theories (Carr and Muncaster, 1983). In addition, CMP can be applied to study
subharmonic and superharmonic instabilities (Armbruster et al., 1988; Bertagni and
Camporeale, 2017). A good theoretical introduction to CMP can be found in Wiggins
(2003), while the mathematical procedure, which we adopted, is shown concisely in
the work by Cheng and Chang (1992).

The first step requires finding the solution to the linear adjoint eigenvalue problem(
L�

0ω
∗
m −Lm,�

1

)
f�m = 0, (2.25)

where the star ∗ refers to complex conjugate, while the symbol � refers to the adjoint
operator. In this case, the internal product that defines the adjoint operator is

∫ 1

−1
(L x) ·y∗dn =

∫ 1

−1
x · (L �y)∗dn, (2.26)

where x and y are generic vectors. Through (2.26) and the boundary conditions (2.5),
one obtains that L0=L�

0 and L �
1 is the complex conjugate of L1 with the derivatives

in n switched in sign. After proper normalization, the eigenfunctions of the linear
problem fm and the adjoint eigenfunctions f�m become orthonormal with respect to
the internal product (2.26) with L =L0, so that

∫ 1

−1
(L0 fm) · f�,∗m′ dn = δmm′. (2.27)

Let us recall the expansion of the perturbation in terms of the linear eigenfunctions
(2.20). Unlike the linear analysis, when non-linearities are at play, the modes
are coupled. Therefore, in order to evaluate the dynamics of the nearly neutral
fundamental mode (p=m=1), it is necessary to consider the dynamics of the stable
modes (all other superharmonic and transversal modes). For the present analysis, the
expansion (2.20) has been truncated to second-order harmonics (np=nm=2), since
higher lateral and longitudinal harmonics provide a negligible contribution (it should
also be noted that A∗

[m,p]=A[m,−p]). By substituting (2.20) in the perturbation system
(2.19), taking the internal product with the adjoint eigenfunctions and collecting
the terms of the same Fourier modes, the equation for the nearly neutral amplitude
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(A[1,1]) and the two equations for the stable amplitudes (A[m,2]) are obtained

Ȧ1 = ω1(k)A1 +P1A∗
1A[1,2]+P2A∗

1A[2,2], (2.28)

Ȧ[m,2] = ωm(2k)A[m,2]+SmA2
1 + · · ·, (m = 1,2) (2.29)

where we have posed A1,1=A1. Eqs. (2.28)-(2.29) represent a Galerkin-type pro-
jection of the full equations truncated at the second order non-linearities. The ellipses
in the right hand side of eq. (2.29) refer to the omitted quadratic terms involving
interactions of the stable modes, while the derivation of the coefficients Pi,S j, which
follows the procedure introduced by Cheng and Chang (1992), is reported in Ap-
pendix A.4. The fundamental mode, in the unstable domain close to the the neutral
stability curve (see Fig. 2.2a-b), has a slow dynamics due to its weak instability. On
the other hand, the stable modes have fast dynamics and can thus be projected onto
the slow dynamics of the neutral or weakly unstable mode. Mathematically, this
means that A[m,2] can be recast as a non-linear combination of the neutral mode A1

and its complex conjugate A∗
1 as follows

A[m,2] = aA2
1 +bA1A∗

1 + cA∗2
1 , (2.30)

where the projection coefficients a,b,c still have to be determined and the expansion
has been truncated to O(A2

1) as the higher order corrections are negligible. The time
derivative of (2.30) reads:

Ȧ[m,2] = 2aȦ1A1 +b
(
Ȧ1A∗

1 + Ȧ∗
1A1
)
+2cȦ∗

1A∗
1. (2.31)

By substituting eqs. (2.28)-(2.29) and (2.30) in eq. (2.31), maintaining only the
leading order terms and collecting like powers of A1, A∗

1, one obtains

A2
1 [aωm(2k)+Sm −2aω1]+bA1A∗

1 [ωm(2k)−ω1 −ω
∗
1 ]

+ cA∗2
1 [ωm(2k)−2ω

∗
1 ] = 0. (2.32)

From (2.32), it is straightforward to conclude that b=c=0 and a=−Sm/(ωm(2k)−
2ω1), thus the stable amplitudes can be written as

A[m,2] ∼− Sm

ωm(2k)−2ω1(k)
A2

1. (2.33)
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Fig. 2.4 Nonlinear results. (a) Amplitude dynamics in time as described by the Stuart-Landau
eq. (2.34). (b-c) Contour plots for the dimensionless amplitude As, with a value that increases
from blue to green (the same cases as Fig. 2.2a-b). The black dashed lines refer to ks.

Finally, after substituting (2.33) into (2.28), the Stuart-Landau equation is obtained

Ȧ1 = (ω1 +Ξ |A1|2)A1, (2.34)

where Ξ is the complex Landau coefficient, whose analytical expression is reported in
Appendix A.4. Eq. (2.34) describes the time dynamics of the fundamental amplitude.
A graphical example of the amplitude dynamics, which refers to the real part of
the equation, is reported in Fig. 2.4a. Starting from an infinitesimal perturbation,
the amplitude initially grows exponentially through the ω1 eigenvalue as expected
from the linear analysis, then the rising effect of nonlinearities (Ξ|A1|2) dampens the
growth, until an equilibrium value is eventually reached.

This equilibrium stationary value can readily be obtained by setting Ȧ1,r = 0,
which gives, apart from the trivial solution, the finite amplitude As=

√
−ω1,r/Ξr.

The contour plots of As in the instability domain are presented in Fig. 2.4b-c for
plane and dune-covered bed configurations, respectively. In this case, the dune
presence leads to higher bars. However, this is not a general rule, since the dune
effect is negligible for other parameter combinations. The white areas in Fig. 2.4b-
c are due to positive values of Ξr, which means there is no damping effect of
nonlinearities, i.e., no saturation (this is a sign that a quintic-order Stuart-Landau
equation is formally needed). However, these areas correspond to modes that are
not observed in nature, as they grow much slower than ks, see Fig. 2.2c, and they
are easily destabilized by nonlinear interactions with neighborhood modes (Schielen
et al., 1993). Dimensionally speaking, the amplitude reads Âs=2AsD̂0, where the
pre-factor 2 is due to the complex conjugation.
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Fig. 2.5 Panels edited from Ramirez and Allison (2013)., (d-f) from Eekhout et al. (2013).
(a) Location of the study reach on the Mississippi river in Louisiana, USA. (b-c) Submerged
alternate bars revelead by the bathymetry and two cross-sections.

2.3 Validation and discussion of the results

From an experimental point of view, bedform formation characterized by a significant
fraction of sediment transport in suspension is a very complicated task. For this
reason, the conducted experiments have only focused on the role of bedload (e.g.,
Crosato et al. (2012)). In the laboratory experiments on bar patterns by Lanzoni
(2000), some tests exhibited a certain amount of suspended load. However, bedload
was still the main transport mechanism, and our theoretical predictions, which
include suspended load, are almost the same one would obtain with those theories
that only consider bedload (Colombini et al., 1987).

The lack of experimental data reduces the possibility of validating analytical and
numerical models to just the few field observations of sandy bars present in literature.
In the following, we focus on a reach of bathymetry of the Mississippi river (Ramirez
and Allison, 2013) and on a field experiment in a straight artificial channel in the
Netherlands (Eekhout et al., 2013). Some explicative figures regarding these two
field studies are reported in Fig. 2.5 and 2.6.

The four dimensionless parameters necessary to define each case study are repor-
ted in Tab. 2.1, together with the field measurements and the theoretical predictions
for the alternate bars. Closure relationships for sediment and suspended loads are
the one used throughout the paper and reported in appendixes A.1-A.2 (Meyer-Peter
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Fig. 2.6 Panels edited from Eekhout et al. (2013). (a) Location of the field experiment in
the Netherlands. (b) Aerial photo of the artificial channel. (c) Detrended bed topography
highlighting the six alternate bars at different times from the beginning of the experiment.

Muller formula for the bedload (Meyer-Peter and Müller, 1948) and the asymptotic
approach (2.11)-(2.14) for the suspended load (Bolla Pittaluga and Seminara, 2003)).
Finally, some speculative considerations are also made for partial data on the Yellow
River in China (Ma et al., 2017).

2.3.1 The Mississippi River

The Mississippi River is the third longest river in the world (considering the Missouri-
Jefferson), with a basin that covers one third of the United States, and it carries
several kilotons of suspended sediment a day (Mossa, 1996). A field work conducted
100 km upstream of the delta in the Gulf of Mexico by (Ramirez and Allison,
2013), examined a 20 km reach of bathymetry and imaged five submerged alternate
bars, which were usually obscured by murky water, see Fig. 2.5. These bars were
approximately 6 km long and had heights that varied from 16 m to 24 m (with
the height Ĥ measured from the bar trough to the bar crest and neglecting the
effect of the banks). Comparisons of the field measurements (subscript f) and
theoretical predictions (subscript t) of the present model are reported in Tab. 2.1. The
model results have been obtained by fixing the hydrodynamic and sediment physical
quantities to averaged values: Q̂=14′307 m3/s is the mean flow rate recorded in
the period 1961-2010; Û0=0.85 is the averaged velocity for mean flow conditions;
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Case θ0 ds(10−4) Rp β L̂ f (m) Ĥ f (m) δ ′ L̂t(m) ∆L Ĥt(m) ∆H

Miss. 0.66 0.113 13.6 20.6 6000 20 0.1
7500 25% 16 20%
6650 11% 7 65%

E1 0.94 12 13 20 55 0.27 0.08
70 27% 0.26 2%
58 6% 0.14 48%

E2 0.9 6 13 10.4 75 0.3 0.09
125 66% 0.35 17%
− > 100% − > 100%

Table 2.1 Data for the model validation. Miss. stands for the Mississippi River and E1, E2 for the artificial channel in the Netherlands after the
formative events Q̂1 and Q̂2. The subscripts f and t stand for f ield and theoretical, respectively. Ĥ is the height of the bar measured from
the bar trough to the bar crest and L̂ is the bar length. The small values of the δ ′ parameter prove the validity of the asymptotic approach
(2.11)-(2.14). ∆L (∆H) is the relative error between theoretical predicition and field measurement for the bar length (height). The model results
for the case in which suspension is added to the bedload are presented in blue (considering only bedload leads to the results in red). Bar
formation is not detected for E2 if the suspended load is not included.
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D̂=20 m is the averaged depth of the channel centreline; 2 B̂=825 m and d̂=0.225
mm (Ramirez and Allison, 2013). Moreover, the presence of 0.4 m high and 10 m
long dunes, which were detected by the bathymetry, has been superimposed. The
results show that the inclusion of suspension leads to longer and higher bars, which
match the observations more satisfactorily for the bar heights and less precisely for
the bar lengths. It should be pointed out that the constant values for the hydrodynamic
and sediment quantities are approximations of reality that is unsteady and noisy.
Moreover, other characteristics of this Mississippi reach differ from the model
hypotheses, e.g., the reach is not straight and it is influenced to a great extent by
anthropic activities that have not been considered in the present model. Nonetheless,
the linear and nonlinear outcomes seem to correctly predict both the length and
height of the bars.

2.3.2 The artificial channel in the Netherlands

The second field observations used to validate the model are the ones of Eekhout
et al. (2013). The authors monitored the morphological evolution of a 600 m straight
channel under unsteady flow conditions in the Netherlands for almost three years,
see Fig. 2.6. The sediment was fine sand with d̂=0.218 mm and the channel was 7.5
m wide, with a slope that adjusted from 1.8� at the beginning of the experiment to
0.9� at the end. Six alternate bars were observed in the final part of the reach after
the first survey, which was performed 250 days from the beginning of the experiment.
The bars were emerged for ordinary flows, and they became morphologically active
during the flood events. However, the duration of these events was not sufficient
to trigger migration of the bars, but only to adjust their amplitude and in second
place their wavelength. For this reason, the bars were classified as non-migrating
(steady) by the authors. From the hydrograph reported in Eekhout et al. (2013), it is
reasonable to suppose that the bar geometry was initially shaped by two formative
events of intensity Q̂1 ∼ 1 m3/s (days 150 and 210). Susbequently, bars became
higher and longer when two floods of Q̂2 ∼ 2 m3/s occured (around day 550). After
the Q̂2 events, the bars remained almost geometrically constant. This result is in
agreement with the value of the unsteady coefficient U ≫ 1 found by Eekhout
et al. (2013), which showed that bar development was much slower than the time
evolution of the basic flow, which was thus unable to affect the bars (Tubino, 1991).
The dimensionless parameters for the two formative events (Q̂1 and Q̂2), and the
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measurements and model predictions for the associated bars are reported in Tab. 2.1
with the names E1 and E2. The theoretical outcomes show that, as in the Mississippi
River, the inclusion of suspension in the E1 case leads to higher and longer bars,
which match the observations more satisfactorily for the bar heights. While the
model detects bar instability only if suspended load is considered in the E2 case. In
order to include the effect of the irregular channel bed in the field experiment, the
closure relationships that account for dune presence have been used. Apart from the
unsteady flow, other model hypotheses not fulfilled in the field experiment were the
non-rectangular shape of the channel cross-section and the finite longitudinal length
of the reach.

2.3.3 The Yellow River

A further comment can be made regarding a field work conducted by Ma et al. (2017)
on the Yellow River, which owes its name to the huge amount of suspended sediment.
The main focus of the paper by Ma et al. (2017) concerned the correct evaluation
of the suspended load, which was underestimated by one order of magnitude when
classical formulas were used. Our interest has instead been on the 1.5 km long
longitudinal section of bathymetry surveyed by Ma et al. (2017) near one of the river
banks. Because it is just a longitudinal section, it is not possible to make accurate
deductions. However, the bathymetry data for the base flow revealed bedforms with
a length/height ratio of 1200. The authors attributed such bedforms to extremely
long dunes, which were not in agreement with classical theories that predict a ratio
of between 10 and 100 (e.g., Colombini (2004)). Our interpretation is that those
bedforms could actually be bars, for which our model has predicted a length/height
ratio of 1100 (θ0=1.05, ds=610−5, β = 113 and Rp=3.5). However, this ratio has
been calculated as the bars were alternate bars, while, in reality, the very high β

value causes many transversal modes to be unstable (m>1). Therefore, any further
considerations on wavelength and amplitude would not be reliable without more
bathymetry data.
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2.4 Concluding remarks

In this Chapter, the linear model of Federici and Seminara (2006) has been extended
to the weakly nonlinear level through the Center Manifold Projection (CMP). In
this way, the Stuart-Landau equation (2.34) for the bar amplitude and the analytical
relation for bar finite amplitude have been achieved. Results show that suspension
plays a quantitative role in bar formation: i) suspended load enhances the instability,
reduces the critical aspect ratio βc (see Fig. 2.2 and 2.3) and it may therefore lead
to finite amplitude bars in conditions for which the bedload is not even sufficient
to trigger the instability; ii) the critical wavenumber kc is smaller (longer bars at
critical condition) and the selected wavenumber ks has an almost-linear dependence
on the aspect ratio β ; iii) suspended load usually increases bar length and height (see
Tab. 2.1). In addition, both the linear and nonlinear outcomes have been satisfactorily
verified with the few field observations of the sandy alternate bars present in literature.
In particular, for one of the test cases, suspended load has proven to be crucial to
detect bar instability, and for the other two cases, inclusion of suspension has
increased the accuracy in the prediction of the bar height. Nonetheless, experiments
would allow a further validation to be made. Formally speaking, the Stuart-Landau
equation obtained through the Center Manifold Projection is not rigorously valid for
the entire unstable domain (the gray areas in Fig. 2.2a-b). In fact, the application of
CMP needs just one eigenvalue (ω1, the one related to alternate bars) to be unstable.
If, for example, the central bar eigenvalue (ω2) is also unstable, the usage of eq. (2.34)
becomes a further approximation. For this reason, the analytical relationships for
alternate bars should not be used for multiple bars in braided rivers, where many
transversal modes are unstable and nonlinearly interact among them. These results
can be used in any engineering project that deals with river bedforms, such as bridges,
groynes or bed regulations, and to study organizational patterns of channel forms in
natural rivers and support restoration projects.



Chapter 3

Parametric transitions between bare
and vegetated states on alternate bars

The work described in this chapter has been partially derived from Bertagni et al.
(2018).
The conditions for vegetation spreading on alternate bars are here mathematically
framed through a novel analysis encompassing flow unsteadiness. The three cor-
nerstones of the present theory (flow variability, sediment transport and vegetation
dynamics, henceforth referred as ecomorphological triad), are common to many
aquatic and aeolian morphogenic features, and understanding their interactions is
the mission of the emerging discipline of ecomorphodynamics. A physically-based
and quantitative understanding of the ecomorphodynamic processes is still elusive.
The reason of this failure is connected to the limited knowledge of the mutual inte-
ractions in the ecomorphodynamic triad. In practice, this goal has been addressed
through field observations (Bertoldi et al., 2009), experiments (Gran and Paola, 2001;
Tambroni et al., 2016) or numerical simulations (Bertoldi et al., 2014; Siviglia and
Crosato, 2016). A limitation of these approaches is that they are partially able to
shed light on the fundamental aspects of the involved dynamics, and need thus to be
complemented with analytical models. To this end, advances have been achieved
by considering just two issues at a time, such as flow stochasticity and vegetation
(Camporeale and Ridolfi, 2006) or vegetation and sediment transport (Bärenbold
et al., 2016).
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Fig. 3.1 Examples of vegetation spreading in water-driven systems. (a) Porcupine River
(Alaska). (b) Everglades wetlands (Florida). (c) Parabolic coastal foredunes (California).
(d,e) Two straight rivers with alternate bars and very similar hydrogeomorphological conditi-
ons, flow from left to right. (d) Vegetated bars on Isère river near Arbin, France. (e) Bare
bars on Alpine Rhine, near Vaduz, Liechtentstein.

In this Chapter, we formulate an analytical physically-based approach that links
for the first time all the aspects of ecomorphodynamics (flow stochasticity, vegetation
dynamics and sediment transport) within the same theory. The rationale of the
following theory is quite general and it could be broadened to different kinds of
spatially extended vegetated systems forced by time-dependent disturbances, such
as salt-marshes, wetlands, mangrove ecosystems, meandering rivers, aeolian dunes
covered by biogenic crusts or coastal foredunes (Goldstein and Moore, 2016; Hurst
et al., 2015; Kinast et al., 2013; Marani et al., 2010) (see Fig. 3.1a-c). Indeed all
these systems share very similar processes embedded into the above mentioned
ecomorphological triad.

In particular, the present theory addresses a yet open puzzling question of phy-
sical geography: why two single-thread fluvial systems, having nearly the same
hydrogeomorphologic features (sediment size d̂, slope S and mean annual discharge
Q̄), can assume two completely different states, for example, fully vegetated or
bare bars (see Fig. 3.1d,e)? Physically speaking, the answer is that the phase space
describing the dynamical system exhibits two different equilibrium points in the
basin of attraction, thus making parametric transitions possible from one state to
the other. To address the answer, an analytical theory that accounts for the triad
interactions and describes the vegetated-unvegetated transition in morphologically
active rivers is formulated. Implications range from unravelling certain mechanisms
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underpinning effects of plants on rivers and landscape evolution through Earth his-
tory (Algeo and Scheckler, 1998; Gibling and Davies, 2012) to understanding the
role of environmental and anthropogenic disturbances in water-driven patterns under
changing scenarios.

3.1 Ecomorphological triad

The main result of our theory states that vegetation encroachment on bare sediment
undergoing occasional inundation is a secondary instability problem whose asympto-
tic behavior can be summarized into a single parameter, α -given by (3.5)- which
determines whether and how vegetation patterns develop. Thus, the spreading of
plants is possible only if their biomechanical characteristics (e.g., growth rate and
rooting efficiency) can cope with the removal action by stochastic floods in that
particular sedimentary environment. The links among hydrology, biomechanics, and
morphodynamics, are all contained in the parameter α , and determine its sign, which
controls the transition from one to another state. Eventually, these processes select
suitable plant characteristics in and among species and thus contribute to determine
riparian vegetation biodiversity. We obtained this result by mathematically framing
the processes of the ecomorphological triad as follows.

The scaling quantities are the same used in the previous Chapter, i.e., eqs. (2.6).

3.1.1 Flow variability

Modelling flow variability using a minimalist approach is a challenging task in river
science, because of the non-trivial features of the discharge time series Q(t) (e.g.,
long-term correlation, intermittent behavior, etc.). The Compound Poisson Process
(CPP) provides a parsimonious and robust strategy (Botter et al., 2013) by addressing
the stochastic equation ∂tQ=G(t)−Q/T , in which: t is time; T is the integral
temporal scale (namely the integral of the autocorrelation function of Q); G is a shot
noise with mean intervals between two pulses equal to T c2

v and mean value Q̄c2
v ; in

which Q̄ and cv are the mean and the variation coefficient of the discharge. A sample
realization of CPP is reported in Fig. 3.2a (blue line). At steady state, the pdf of the
CPP is Gamma-distributed (right graph in Fig. 3.2a) and the upcrossing time t+

ξ
, i.e.

the average time Q stays above a certain threshold ξ , is known in closed form (Laio



40 Parametric transitions between bare and vegetated states on alternate bars

Q
max

Q
min

Q

t

Q
f

t

0 p(Q)

Q

Q
f

Δt

0

t
 Q

f

Q
(m3/s)

2011 2012 2013 2014 2015

100

500

300

0.005p(Q)

Isére

Alpine Rhine

(a)

(b)

0

10

20

30

0 1

β
ω

r

 >0

β
c

k
c

0

A

t

A
s

t
s

0

(d)

(c)

k

ω
r
<0

Fig. 3.2 Compound Poisson Process CPP (a-b) and alternate bar formation (c-d). (a) Simula-
ted CPP for the river water discharge Q and its probability density function pQ (light blue
lines). The inset shows the periodic signal used for the Floquet theory (red lines). (b) Water
discharge series for the Isère and the Alpine Rhine (last four years reported). Notice the
different shape of the PDF, with the sharper Gamma distribution for the Isère. (c) Saturation
of bar amplitude during a time ts as described by the Landau (2.34). (d) Neutral stability
curve discriminating the domain of bar formation (grey area) from the stable uniform solution
(k is the longitudinal wavenumber, ds=0.005 and Fr=0.75.)
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et al., 2001)

t+
ξ
= T eξ/Q̄c2

v E
(

1− 1
c2

v
,

ξ

Q̄c2
v

)
, (3.1)

where E(·, ·) is the exponential integral function (Abramowitz et al., 1966). (3.1)
will be used later on in the triad interaction.

3.1.2 Morphodynamics

The second element of the triad interaction – sediment transport – is a threshold
process that activates when the flow rate overcomes a lower critical value, and
becomes morphologically effective when an upper statistically rare flow rate Q f ,
is overcome (Fig. 3.2(a)). This so-called formative discharge, an open issue in
geomorphology, resets the riverbed by erasing any previous pattern and uprooting all
vegetation. The bare flat state so created is the starting point of our analysis.

In a straight river with non-erodible banks, when Q>Q f , the sediment trans-
port morphodynamically triggers the pattern formation of migrating alternate bars
(Fig. 3.1d-e). Starting from infinitesimal perturbations, the bar amplitude A(t) asymp-
totically saturates to a finite value As in a nonlinear fashion (Fig. 3.2c), essentially
following the Stuart-Landau equation (2.34) obtained in the previous Chapter. No-
tice that, in the present Chapter, we have only included the effect of bedload in bar
formation, thus neglecting suspended load. The saturation time ts is defined such that
A(ts)=0.99As and A(0)=0.01As, and we stipulate that a condition for bar formation
is that the formative event must have a duration at least equal to the saturation time,
i.e. t+Q f

≥ ts.

From eq. (2.34), one obtains As=
√

−ωr/Ξr and ts∼6.6/ωr. Furthermore, as the
definition of the formative discharge reads Q f =2βFr

√
g(d̂/ds)

5/2, both the satura-
tion time and the formative discharge are functions solely of the morphodynamic
parameters (ds, d̂, β , Fr). This allows us to define just two out of the three CPP para-
meters (Q̄,cv,T ), because the third one is given by the above-mentioned condition
for bar formation, i.e., t+Q f

(Q̄,cv,T )=ts. With the aid of (3.1), such condition leads to

T ∼ (tsQ f )/(c2
vQ̄), for Q f ≫ µ. (3.2)
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3.1.3 Vegetation dynamics

After the formative event is extinguished, the flow decreases to ordinary values,
reducing the water level and letting the crests of the recently formed bars emerge.
At this point, vegetation may grow on the dried areas depending on flow variability.
Vegetation is assumed to develop by following a logistic Holling type-III equation,
wherein the carrying capacity, K̂, can be assumed as a quadratic function of the water
depth, K̂=K̂(D) (Camporeale and Ridolfi, 2006; Muneepeerakul et al., 2007). In fact,
fluvial tree species usually perform the maximum growth when the water table is at
an optimal depth: at lower stages the roots cannot reach the water, while at higher
stages, water logging occurs, thus reducing respiration and gas exchange in the root
zone (Naumburg et al., 2005). In addition, the submerged sites experience a decline
in vegetation because of anoxic conditions and uprooting induced by flow drag, that
is proportional to the water velocity squared (Bärenbold et al., 2016; Perona et al.,
2014). After assuming a linear relationship between flow drag and biomass removal,
and defining φ , as the density of biomass per unit area normalized to the maximum
carrying capacity, we have

∂φ

∂ t
= νgφ(K −φ)−He(D)νdD(U2 +V 2)φ , (3.3)

where νg, and νd are dimensionless growth and decay factors of vegetation and are
proxies of the plant biomechanical properties in relation to the specific hydromor-
phological context and K is the normalized carrying capacity (see Sec. B.1) ; He(·)
is the Heaviside function (i.e., the decay is active only at submerged sites, when the
water depth D is positive). We emphasize that, since the water velocities (U,V ) and
depth D account for the presence of the bar, the coefficients of (3.3) are space and
time dependent. During ordinary flows, it is likely that sediment transport vanishes
in most of the submerged sites, so that the bars can be approximately regarded as
stable, until the occurrence of the next formative event. Moreover, the different time
scales for bar saturation, order of days, and vegetation growth, order of years, allows
us to separate mathematically the process and treat it analytically.

In this description, vegetation develops as a secondary instability (Schmid and
Henningson, 2012) over the finite-amplitude bed topography. Encompassing bar
topography in space and flow variability in time, a secondary instability is therefore
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performed by linearising (3.3) about a new basic state (labelled with tilde), namely

D̃=Du(t)+AsD̂1(k)f1(n)eik s. (3.4)

In (3.4), the first term r.h.s. refers to the uniform solution, which is dependent
on time through the CPP (Du(t) is related to Q(t) through Manning’s equation).
The second term accounts for the presence of the finite amplitude bars (through
eqs. 2.20), in which D̂1 and f1 are the linear perturbation of the water depth and
its transversal structure. Similar forms are considered for the other variables. In
order to make the computation analytically accessible, we substitute the discharge
stochastic time series with a statistically equivalent periodic one, constituted by a
repetition of the typical mean hydrograph. The latter is obtained by the following
compatibility conditions (see red curve in Fig. 3.2a): i) the duration of the event
equals the average interval between subsequent shots, ∆t=T c2

v; ii) the discharge
mean value between formative events is preserved; iii) the peak value is such that the
coefficient of variation cv of the stochastic series is preserved. In this manner, the
time dependency in (3.3) becomes periodic and Floquet’s theorem can be applied.
Thus, linearising (3.3) around (3.4), the solution for the vegetation is φ ∼ P(t)eα(s,n)t ,
where P(t) is a periodic function and α(s,n)∈R is the so-called Floquet exponent,
which reads

α =
1
∆t

∫
∆t

0
(νgK̃−νdθ(D̃) D̃(Ũ2 +Ṽ 2)dt, (3.5)

where K̃=K(D̃). We remind the reader that α is spatially distributed and its sign
provides the asymptotic behavior of the secondary instability: wherever α > 0
vegetation patterns develop. The value of α is more easily evaluated numerically, as
the analytical solution of the integral in (3.5) is particularly cumbersome. Although
the above theory has been described for river systems, it is quite general, and the same
steps could be repeated for other ecogeomorphologic systems driven by unsteady
flows.
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3.2 Results and discussion

3.2.1 Parametric transitions driven by flow variability

Once the triad interaction is set up (i.e., hydrodynamics, sediment and vegetation
parameters are provided), the present mathematical framework can evaluate the
surface area of alternate bars where plants endure flow variability (α >0) between
two formative events resetting the morphology. A graphical example of finite
amplitude computation and pattern formation is given in Fig. 3.3a. Let us define
the Areal Vegetation Index, AVI, as the ratio of the vegetated area over the emerged
area at the minimum discharge, Qmin, i.e., the region theoretically colonisable by
vegetation. Fig. 3.3b shows the dependence of AVI on flow variability cv, for two
typical cases: a sand bed river (orange line) and a gravel bed one (light blue line).
These two rivers share the same mean discharge Q̄, formative event 13Q̄, and channel
width, but they differ in term of the sediment and the Froude number Fr (a proxy
of slope variation). This, in turn, affects the CPP correlation T through (3.2). The
two cases exhibit analogies and discrepancies. In fact, both rivers show that higher
flow variability (increasing cv and thus Qmax) reduces the bar portion colonized by
vegetation. In particular, there is a threshold value of flow variability, henceforth
referred to as c∗v , above which plant growth is completely inhibited (namely AVI
decays to zero). In such conditions, vegetation does not have sufficient time to
develop since it is frequently removed by the flow. This c∗v threshold corresponds
to a parametric transition from vegetated to bare states. On the other hand, there is
also a lower limit in the flow variability, which precludes the discharge time series to
reach the formative event that is necessary to bar formation. In-channel vegetation
can in fact develop just after bars with finite amplitude are formed. Concerning
the discrepancies, the longer saturation time of the sand bed river (10 hours) with
respect to the gravel bed river (2 hours), corresponds -via (3.2)- to a discharge time
series that is more correlated in the former case. This leads to longer submergence
periods in the sand river and to plant uprooting for a fatigue stress. In the gravel river,
the periods of bar submergence are instead shorter, but the more frequent events
are equally able to remove mature vegetation. Another discrepancy concerns the
two values of c∗v , due to distinct slopes and bar heights. Under the same discharge
conditions, the gravel bed river exhibits higher bars and shallower water depths and
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Fig. 3.3 Parametric transition driven by flow variability (all graphs obtained for
{Q̄[m3/s], Q̂ f ,2B̂[m]}={45,13Q̄,80}). (a) Density plot of α(s,n) and η(s,n) for a finite
amplitude bed topography of a sand river {Fr, d̂[mm]}={0.9,5}. The maximum (Qmax)
and minimum (Qmin) water levels are marked by colored solid lines. (b) Areal Vegetation
Index versus cv for the sand bed river (orange line) and a gravel bed river (light blue line,
{Fr, d̂[mm]}={1.2,20}). In evidence, the threshold c∗v discriminating between vegetated and
bare state. (c) Transition variation coefficient c∗v discriminating the bare (light brown) and
vegetated state (green) as a function of the dimensionless vegetational parameters (same data
set of the sand river of panel b). As the root system strengthens, plants endure more easily
flow variations (c∗v increases). Dashed line is the prediction of (3.6). (d) The behavior of c∗v
in the parameter space. The triangles refer to the rivers of panel b. Grey and dashed areas
correspond to no bar formation and no bedload, respectively.
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requires the maximum discharge Qmax (or flow variability) to be higher in order to
flood the bar top and remove all the vegetation.

The value of c∗v is a key quantity, which results from an equilibrium between plant
growth and decay. It corresponds to the flow variability that nullifies the integral
(3.5) at the most favored site, that is the bar top. The exact way to compute c∗v , which
is a cumbersome formulation, is provided in Sec. B.2. However, as the uprooting
mechanism is much faster than plant growth, it is possible to simplify c∗v evaluation
assuming that no vegetational pattern develops when the maximum flow (Qmax)
reaches the bar top. In this way, c∗v can be numerically obtained as the solution of
the following equation

D0(c∗v ,Qmax)+As
[
D̂1(k)+ D̂1(−k)

]
∼ 0. (3.6)

Figure 3.3c shows that the above approximation is asymptotically exact for very
fast uprooting (i.e., νd/νg≫1, typical values are of order 104). With the aid of (3.6),
the behavior of c∗v can be investigated in the parameter space (Fig. 3.3d). In the region
where bedload transport occurs and alternate bars develop, c∗v generally increases
when moving from subcritical sand bed rivers (Fr<1, d̂<2 mm) to supercritical
gravel bed (Fr>1, d̂>2 mm). This mechanism allows vegetation spread in mountain
rivers with high flow variability.

3.2.2 Test cases

The computation of AVI is here shown for five actual fluvial cases of widespread
interest to the scientific community (a summary of river features and validation
results is provided in Tab. 3.1). The Isère (France) and the Alpine Rhine (border
Austria-Switzerland) share almost identical hydrodynamic and sediment parameters
(Fig. 3.1d-e), but flood events of the latter are much stronger and flow variability
is higher (Adami et al., 2016; Serlet et al., 2018). This implies slightly lower bar
elevation in the Alpine Rhine, with frequent inundation and consequent inhibition
of plant growth. In contrast, the slightly more regular discharges of the Isère favor
vegetation development. Another test case concerns the Vedder canal in Canada
(Ferguson et al., 2011). Upstream of the canal, the river is braided with multiple
vegetated bars. In the canal itself, the bed is narrower with well-developed alternate
bars that are easily submerged by ordinary flows. Thus no vegetation develops in the
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canal (see Fig. B.5). Finally, the Arc river (France) has undergone a width reduction
due to the construction of a highway in the nineties (Jaballah et al., 2015). This
triggered a parametric transition between a fully vegetated condition to a weakly
vegetated bed (see Fig. B.6), where plants are periodically uprooted by annual flood
events.

As also reported in Fig. 3.4, the present theory quantitatively captures the un-
derlying physics providing a good matching between theoretical predictions and
measurements. A partial exception is the actual vegetation cover of the Arc river,
which is not fully captured. This might be due to: i) the very strong anthropic
influences upstream of the study area (dams and sediment mining); ii) the Arc river
has not yet reached the ecomorphological equilibrium and thus we might expect bars
to slowly vegetate in the future.

These encouraging results may be useful to depict changes in biogeomorpho-
logical styles induced by man in the Anthropocene and of natural origin since the
Paleozoic. For example, the model is able to capture the underlying physics for
the river environments tested here, and provide insights about the physical con-
ditions that must subsist in order to allow for the colonization and the spreading
of plants. Thus, the recent Devonian plant hypothesis, which suggests how plant
root evolution might have contributed to the spreading of vascular plants (Gibling
and Davies, 2012), is supported by this theory. In fact, more robust root systems
lead to a decrease in the uprooting coefficient νd and to a transition to vegetated
states, Fig. 3.3c. However, further implications concerning how established plants
have in turn affected landscape evolution are not contained in the present theory.
This requires introducing the feedback of vegetation cover on morphodynamics and
would explain why our river bar model underestimates the vegetated bar length
(Tab. 3.1) with respect to the linear theory. Similarly, other processes not accounted
for in this analytical theory concern sediment mining, alteration of sediment supply
because of hydropower regulation, different root morphologies and conditions for
seed dispersal.

3.3 Concluding remarks

This novel methodology couples the three main processes controlling ecomorpho-
dynamic pattern formation under a single analytical model. Results show that flow
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Fig. 3.4 Comparison between theory (t) and field (f) measurements for the bar wavelength L̂
(blue), amplitude Âs (red) and AVI (green). Dataset is reported in Tab. 3.1

variability discourages vegetation growth, up to the point that above a certain thres-
hold, c∗v in (3.6), plant spread is completely inhibited. Such transition from vegetated
to bare state depends parametrically on flow stochasticity, morphology and plant bio-
mechanical characteristics. In particular, c∗v is generally higher for gravel-bed rivers
than sand-bed rivers and it increases for plants that can endure periodical submer-
gence. This last outcome supports the idea behind the Devonian plant hypothesis, for
which plant root evolution might have contributed to the spreading of vascular plants
through the Paleozoic. The mathematical framework of this model can be adapted
to other extended vegetated systems forced by unsteady flow conditions and it may
serve practitioners such river scientists and water managers to predict the effect
of changing flow-regime scenarios, or better plan restoration works (Montgomery,
1997; Wohl et al., 2015).
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River Q̄[m3/s] cv c∗v Q̂ f [m3/s] d̂[m] S� 2B̂[m] L̂ f [m] Âs, f [m] AVI f L̂t [m] Âs,t [m] AVIt
Alpine Rhine 150 0.65 1.1 2200 0.02 2 110 950 1.5 0.05 800 1.2 0.03

Isère 120 0.5 2.6 800 0.02 2 120 1050 n.a 0.65 610 1.55 0.58
Arc1 15 1 7.7 500 0.08 6 70 680 n.a 0.70 360 1.45 0.6
Arc2 15 1 3.8 500 0.08 6 50 290 1.25 0.10 310 1.2 0.52

Vedder 67 0.75 0 650 0.001 0.7 90 950 0.5 0 710 0.75 0
Table 3.1 Arc1 and Arc2 refer to before and after the highway construction, respectively. The subscripts f and t stand for field and theory,
respectively. For the river satellite pictures and the daily discharge series see Sec. B.3 and Fig. B.3-B.6.



Part II: Cave and glacial patterns

Patterns carved by water in ice or stones are ubiquitous in nature and their beauty
attracts the curiosity of most, scientists and common people alike (see Figures 1.3-
1.4). In most cases, the driver of the instability is a thin water film (some micrometers
thick) and the resulting patterns on the solid substrate (calcite or ice) appear very
similar, even though the underlying instability mechanisms are different. In fact,
in the karst environment, pattern formation is caused by precipitation-dissolution
phenomena, and in the ice environment, by melting-freezing processes. However, as
both the chemical and the thermodynamical processes are driven by the thin water
film dynamics, the resulting patterns are very much alike and a unified mathematical
approach is sometimes possible.

The water film dynamics can be studied through the Benney equation, so-called
after the original work of Benney (1966). This strongly nonlinear equation mathe-
matically describes all physical phenomena happening in a thin water film through
just one variable, i.e., the film thickness h. In the last decades, the Benney equation
has been broadly analysed (Dávalos-Orozco et al., 1997; Joo et al., 1991b; Rosenau
et al., 1992), improved (Ruyer-Quil and Manneville, 1998, 2000) and extended to its
weakly nonlinear version (Hyman et al., 1986; Oron and Rosenau, 1989; Sivashinsky
and Michelson, 1980). In the following Chapters, we derive a Benney-type equation,
through the classical long-wave theory for falling films (Craster and Matar, 2009;
Kalliadasis et al., 2011), that also accounts for the evolving solid topography η . The
coupling of our Benney-type equation with a wall evolution equation, which depends
on the environment considered, provides the morphological system.

In the glacial environment, a good physical approximation of the ice-water
interface dynamics is given by the Stefan equation. This equation was first used by
Stefan (1891) to study the thickness of sea ice and since then, it has been used in
every problem dealing with a phase-change and a moving interface (Camporeale and
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Ridolfi, 2012a; Mantelli et al., 2015; Rubinšteı̆n, 2000; Ueno, 2007). The advantage
is that all heat fluxes, i.e., latent heat released by freezing water (or absorbed by
melting ice), heat conducted in the ice and heat convected and conducted by water,
are balanced in just one equation which dynamically describes the evolution of the
solid-liquid interface.
Regarding the cave environment, less research has been performed to find a proper
physical equation that might describe the time evolution of the solid substrate.
Normally, empirical equations calibrated through observations are used. In these
equations, the common approach is to consider a film of water over-saturated in
Ca that favors the precipitation of CaCO3 through some proportional coefficient
(Camporeale, 2015; Dreybrodt, 2012; Short et al., 2005). The same equations handle
with under-saturated water that causes erosion (the proportionality coefficient just
switches in sign). In this sense, more work to properly address the evolution of the
calcite substrate is needed.

In Chapter 4, a unified approach is adopted in the study of karst and ice flutings,
which are longitudinally oriented organ-pipe-like patterns common in caves (Fig.
1.3d) and ice-falls. These stunning patterns had already been linearly modelled (Cam-
poreale, 2015). However, the mathematical approach here presented has furnished a
considerable simplification in the analytical relations and has consequently allowed
for a first nonlinear investigation of the problem.

Chapter 5 deals with the problem of icicle formation. A recent extensive experi-
mental study of icicles (Chen and Morris, 2013, 2011) revealed that small amounts
of dissolved impurities are required for ripples to appear (see Fig. 1.4b). This is
contrary to existing linear stability theories (Ogawa and Furukawa, 2002; Ueno,
2007; Ueno and Farzaneh, 2011; Ueno et al., 2009b), which would predict ripples on
icicles formed from pure water. The model here proposed shows that icicles made
of pure water do not develop ripples. Moreover, some considerations on the reason
why dissolved impurities drive the ripple instability are presented.



Chapter 4

Nonlinear and subharmonic stability
analyses of fluting formation

4.1 Introduction

The work described in this chapter has been partially derived from Bertagni and
Camporeale (2017).
Fig. 4.1 shows two pictures regarding the target of the present work, that is the
formation of longitudinally oriented organ-pipe-like structures, called flutings, which
are widespread in caves and ice-falls. Flutings are due to a gravity-driven thin
film flowing over an inclined (usually overhanging) plane, composed of stone or
ice. In the cave case, the underlying process is the precipitation-dissolution of
calcite content dissolved in the water film, while in the ice case the freezing-melting
condition is determined by a heat flux balance at the liquid-solid interface. Although
the driving mechanism is different in the two environments, a previous work has
shown that a unified approach is possible (Camporeale, 2015), since at inverted
conditions (ϑ >π/2, where ϑ is the angle with the horizontal) the key role in driving
the morphogenesis is played by the free surface dynamics.

The film dynamics is addressed through a Benney-type equation, obtained
through the classical long-wave theory (Craster and Matar, 2009; Kalliadasis et al.,
2011) with the novelty that also the lower boundary (the solid substrate) is mo-
vable. The coupling of the Benney-type equation with a wall evolution equation
provides an algebraic eigenvalue problem considerably simplified, but in complete
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(a) (b)

Fig. 4.1 (a) Example of ice flutings, photo courtesy of Antonio Giani. (b) Flowstone with
cave flutings, photo courtesy of Alexey Sergeev.

agreement, with respect to the outcomes of the previous work (Camporeale, 2015).
Namely, flutings are long-wave instabilities that develop at inverted conditions for
all Reynolds numbers. This simplification has furnished a more suitable form for
the eigenfunctions and therefore has allowed for a nonlinear investigation of the
problem, performed through the Center Manifold Projection.

Formally, the sum of the linear and nonlinear solutions define in a complete way
the spatial structure of flutings in the parameter space. Nevertheless, finite-amplitude
monochromatic waves may be destabilized by modes with different wavenumbers.
In experimental and theoretical works on falling liquid films (Brauner and Maron,
1982; Cheng and Chang, 1995; Liu and Gollub, 1993), sideband and subharmonic
instability were detected. Subharmonic instability was also found in other open-flow
systems with long-wave instabilities (Kelly, 1967; Monkewitz, 1988; Prokopiou
et al., 1991). However, we point out that differently from these last works, in our
system the modulation is not parallel to the base flow, but it is transversal to it, see
Fig. 4.2. For these reasons, we have performed a subharmonic stability analysis,
showing that, even though the subharmonic of the fundamental is linearly unstable,
the rising effect of the non-linearities may allow the fundamental to saturate and the
subharmonic to decay. From a practical point of view, this means that the predictions
of the linear and nonlinear analyses are robust.

To verify the outcomes of the analytical model, numerical simulations of the full
equations have been performed.
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Fig. 4.2 Sketch of the water film flowing down the solid substrate.

This Chapter is organized as follows: in section 4.2 the mathematical problem
is formulated for both types of patterns, ice and karst flutings; in section 4.3 the
linear analysis is performed and an explicit form of the selected wavelength of the
fundamental is given; in section 4.4 the Stuart-Landau equation for finite amplitude
of flutings is achieved through the center-unstable manifold technique. Then, the
stability of the finite-amplitude to subharmonic disturbances is verified both analyti-
cally and numerically. Finally, the outcomes of the numerical simulations of the full
equations are provided. Last section 4.5 presents a discussion of the results.

4.2 Mathematical model

4.2.1 Water film dynamics through long-wave theory

The dynamical system leading to fluting formation consists in a water film flowing
over an overhanging evolving solid substrate (calcite or ice), as presented in the
sketch of Fig. 4.2. The unperturbed solution for the water film provides the well-
known Nusselt’s semi-parabolic velocity profile (Nusselt, 1916), whose solutions in
terms of film thickness ĥ0 and surface velocity û0 are

ĥ0 =

(
3ν q̂

g sinϑ

)1/3

û0 =

(
9gq̂2 sinϑ

8ν

)1/3

, (4.1)
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where ν is the kinematic viscosity, g the gravitational acceleration, ϑ the angle
with the horizontal and q̂=2û0ĥ0/3 the flow rate per unit span. The hat refers to
dimensional variables. Flutings usually develop with very low Reynolds numbers
(Re= ĥ0û0/ν ≪1), a slope of the interface not too far from verticality and small
ratio ε between the film thickness and the pattern wavelength (order 10−3), so that
they can be regarded as long-wave instabilities. This is especially so when the effect
of surface tension is predominant with respect to viscous stresses, i.e., high values
of the Weber number We=σ/(ρ ĥ0û2

0), being σ the surface tension and ρ the water
density. In the case of a film flowing over a fixed flat boundary, the long-wave
approach through the so-called gradient expansion Kalliadasis et al. (2011), leads to
the well-known Benney equation (Benney, 1966) and its weakly nonlinear versions
(Kuramoto-Sivashinsky equation) (Hyman et al., 1986; Oron and Rosenau, 1989;
Sivashinsky and Michelson, 1980), see (Craster and Matar, 2009) for a complete
review. In the present morphodynamic context, the gradient expansion technique
is extended to the case where the lower boundary is also unknown and deformable
(see also (Camporeale, 2017) for a recent application in the crenulation instability
problem).

The variables are made dimensionless through the following scaling

(x̂, ẑ) = L̂(x,z), (ŷ, η̂ , ĥ) = ĥ0 (y,η ,h), t̂ =
L̂
û0

t (4.2)

(û, ŵ) = û0(u,w), (v̂,V̄ ) =
ĥ0û0

L̂
(v, v̄), P̂ = ρ û2

0 P, (4.3)

(4.4)

where (x,y,z) are defined as the dimensionless downslope, normal-to-the unperturbed
solid surface and span-wise directions, respectively (see Fig. 4.2); u=(u,v,w) are
the corresponding velocities and P stands for pressure. The elevations y=η(x,z, t)
and y=η(x,z, t) + h(x,z, t) correspond to the liquid-solid interface and the free
surface, respectively. L̂ is the fluting wavelength, which is a-priori unknown. Notice
that at this level, the L̂ value is not needed, the only necessary assumption is that
ĥ0/L̂ ≪ 1, i.e., the fluting typical wavelength (order of cm) is much longer than the
film thickness (order of µm). After applying the scaling (4.2), the non-dimensional
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governing equations are

∇ ·u = 0, (4.5)

εRe(ut +u ·∇u)+ εRePx −uyy −2 = O(ε2), (4.6)

RePy − εvyy +ζ = O(ε2), (4.7)

εRe(wt +u ·∇w)+ εRePz −wyy = O(ε2), (4.8)

where subscripts refer to the partial derivatives, ζ is the dimensionless parameter
that accounts for the slope of the solid substrate

ζ = 2cotϑ , (4.9)

and we have introduced the film parameter

ε =
ĥ0

L̂
. (4.10)

Notice that for fluting formation, i.e., Re≪1, the convective terms in (4.6)-(4.8)
could be neglected. In Sec. 4.3.1 we show why it is instead important to keep these
terms. On the liquid-solid interface, no slip and the dynamic condition are

u = w = 0, v = ηt ; (4.11)

while on the free surface, the boundary conditions read

(h+η)t =−v+u(h+η)x +w(h+η)z, (4.12)

P+2ε∂yv/Re =−We[(h+η)xx +(h+η)zz], (4.13)

uy = wy = 0. (4.14)

Equations (4.13)-(4.14) define the dynamic conditions, whereas (4.12) is the ki-
nematic condition, which will be used later on as a solvability equation. Car-
rying out the long wave approach, the variables are expanded in powers of ε:
(u,v,w,P)= (u(0),v(0),w(0),P(0))+ ε(u(1),v(1),w(1),P(1))+O(ε2). Moreover, We
is considered of order ε−2, in order to assure the validity of the boundary layer
approximation and in agreement with experimental observations Kalliadasis et al.
(2011) (e.g., Re∼10−2 and ϑ =π/2+π/10 give We ∼ 106).
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Substituting the gradient expansion in the hydrodynamic problem (4.5)-(4.14),
and collecting coefficients of like powers of ε , we obtain the problems at the different
orders. At the leading order, the system reduces to

u(0)yy =−2, w(0) = 0, v(0)y +u(0)x = 0, (4.15)

P(0)
y =−ζ/Re, u(0)|η = 0, u(0)y |η+h = 0, (4.16)

v(0)|η = ηt , P(0)|η+h =−We[(h+η)xx +(h+η)zz], (4.17)

with solutions

u(0) = (y−η)(2h− y+η), (4.18)

v(0) = ηt − (y−η)[hx(y−η)+ηx(−2h−η + y)], (4.19)

w(0) = 0, (4.20)

P(0) = Re−1
ζ (h+η − y)−We[(h+η)zz +(h+η)xx], (4.21)

At the order ε , the system reads

Re(u(0)t +P(0)
x +u(0) u(0)x + v(0) u(0)y ) = u(1)yy , (4.22)

ReP(0)
z = w(1)

yy , u(1)x + v(1)y +w(1)
z = 0, (4.23)

u(1)|η = 0, u(1)y |h+η = 0, w(1)|η = 0, (4.24)

w(1)
1,y|h+η = 0, v(1)|η = 0, (4.25)

whose solutions are cumbersome and reported in the Appendix C.1 for the sake
of space. The solutions obtained for the flow field can now be substituted into the
kinematic condition (4.12), which serves as solvability equation. To order ε , this
leads to the first main equation of our analysis

ht +2h2hx

+ ε{ 8
15

Re
(

h6 hx

)
x
+∇xz · [−ζ

h3

3
∇xz(h+η)+ReWe

h3

3
∇xz∇

2
xz(h+η)]}= 0.

(4.26)

If one fixes the bottom to be undeformable, namely η =0, eq. (4.26) reduces to the
standard Benney equation (Benney, 1966), with the effect of surface tension as firstly
introduced by Gjevik (1970).
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4.2.2 Wall evolution equation

In order to address the morphological instability, a second equation, uniquely for
the wall evolution, is necessary. We firstly consider the ice environment, where
the heat propagation determines melting-freezing processes at the interface. The
disequilibrium in the heat fluxes is regulated by the so-called Stefan’s equation

ρIλ f η̂t̂ = [(KI∇T̂I)− (Kw∇T̂w)] ·n, (4.27)

where Ki,w and T̂w,i are the thermal conductivity and the temperature for water and
ice respectively, ρI is the ice density, λ f the latent heat, n the versor normal to η and
pointing in the water. The derivation of a more amenable form for eq. (4.27) is now
briefly summarized, following Camporeale (2015). At first, the temperature can be
decomposed into the sum of a base state plus a small pattern-induced perturbation
T̂w,I = T̂ 0

w,I(ẑ)+ ζ T̂ 1
w,I(x̂, ŷ, ẑ). Then, another normalized coordinate is introduced

ξI = (ŷ− η̂)/(b̂+ η̂) in order to rectangularize also the solid domain, being b̂ an
assigned depth in the ice. Hence, both liquid and solid domains are rectangularized,
ξw ∈ [0,1] and ξI ∈ [−1,0] respectively. In this way, the base state for the temperature
is linearly distributed over the depth

T̂ 0
w = T̂∞ξw, T̂ 0

I = T̂bξI, (4.28)

where T̂∞,b are the temperature at the free surface and at ŷ=−b̂, respectively. Due
to the very low Reynolds numbers, thermal convection can be neglected in the heat
equation for the liquid phase. Thus, T̂ satisfies the Laplace equation ∇2T̂ =0 in both
domains. Using the normalized coordinates and Fourier-transforming from (x̂, ẑ) to
the horizontal two-dimensional wavenumber K̃, the diffusive thermal problem at first
order in ζ becomes

T̂ 1,∗
ξ ξ

− ĥ2
0K̃2T̂ 1,∗+ ĥ0K̃2T̂∞(η̂

∗
1 +ξ ĥ∗1) = 0 Water (4.29)

T̂ 1,∗
ξ ξ

− b̂2K̃2T̂ 1,∗+ η̂
∗
1 b̂K̃2T̂b(1+ξ ) = 0 Ice (4.30)

where here ∗ refers to the Fourier transform, ĥ and η̂ have been decomposed into
the sum of a basic state and a small local perturbation, i.e., ĥ = ĥ0 + ζ ĥ1 and
η̂ = η̂0+ζ η̂1. The boundary conditions for (4.29)-(4.30) ensure melting temperature
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at the liquid-solid interface and continuity of the heat flux throughout the domain

T̂ 1,∗ = T̂ 1,∗
ξ

|ξ=1 = 0. (4.31)

Solving the problems (4.29)-(4.31) and substituting in (4.27), at first order in ζ ,
yields

ρIλ f (η̂0 +ζ η̂1)t̂ = ÎI − Îw +ζ

(
ĥ1

ĥ0
Îw − η̂1

b̂
ÎI −

K̃2

2
P

)
(4.32)

where P=
[
(2η̂1 + ĥ1)KwT̂∞ + η̂1κIT̂b

]
, ÎI =KIT̂b/b̂ , Îw=KwT̂∞/ĥ0. The third term

in the brackets of (4.32) is a diffusive term whose numerical influence we have
verified being negligible. Without considering the perturbations, the liquid-solid
interface rigidly translates due to a freezing/melting process. Both experimentally
and in field observation, measuring a uniform vertical translation of the interface
might be a simpler task than evaluating the temperature at an assigned depth in the
ice (Camporeale et al., 2017). Thus, for assigned values of the air temperature, the
ice depth and the translation rate, η̂0=V̄I t̂, from (4.32) it follows

T̂b = (ρIλ f V̄I + Îw)
b̂
KI

. (4.33)

Notice that T̂b is defined as positive in order to have a negative temperature at ŷ=−b̂,
see eq. (4.28). Substituting expression (4.33) in eq. (4.32) yields

η̂t = V̄I +(ĥ− ĥ0)B̂I − (η̂ −V̄I t̂)B̂I/b, (4.34)

where B̂I = Îw/(ρIλ f ĥ0), b= b̂/ĥ0 and V̄I ≪ B̂I ĥ0.

In the karst context, the precipitation-dissolution processes of calcium carbonate
are able to shape multitudinous speleothems. In particular, the evolution of the liquid-
solid interface is driven by reactions that can be stoichiometrically summarised as
(Romanov et al., 2008)

CaCO3 +CO2 +H2O 
 Ca+++2HCO−
3 . (4.35)

From (4.35), one can notice that for each molecule of CaCO3 depositing on the
solid surface, there is a molecule of CO2 diffusing into the atmosphere. This is the
key principle of the equation derived by Short et al. (2005), as briefly summarized
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below. Let us start from the slowest chemical reactions involved in the growth of
speleothems, that are those coupling carbon dioxide to bicarbonate

CO2 +H2O
k±1


 H++HCO−
3 , (4.36)

CO2 +OH− k±2


 HCO−
3 . (4.37)

From (4.36) and (4.37), the production rate of CO2 can be written as

RCO2 = k−[HCO−
3 ]− k+[CO2], (4.38)

where the square brackets refer to concentrations and

k− = k−1[H+]+ k−2, k+ = k+1 + k+2[OH−]. (4.39)

To evaluate carbon dioxide dynamics, a full reaction-diffusion equation for [CO2]
within the fluid layer is considered. Then, some assumptions are introduced: i)
the concentrations of the other chemical species are almost constant over the film,
ii) the longitudinal and transversal diffusion and advection of CO2 are negligible,
iii) [CO2]=H Ĉ∞(1+ c1(x,ξ ,z, t)), where H is Henry’s constant, Ĉ∞ is the far
atmospheric carbon dioxide concentration and ξ is the normalized coordinate that
rectangularizes the fluid domain, i.e., ξ = (ŷ − η̂)/ĥ. In these conditions, the
dimensionless reaction-diffusion equation for [CO2] reads

c1,ξ ξ = h2
ϖ(c1 −U ), (4.40)

where

ϖ =
k+ĥ2

0
DCO2

, U =
k−[HCO−

3 ]

k+H Ĉ∞

−1, (4.41)

being DCO2 the carbon dioxide diffusivity in water. The two boundary conditions for
eq. (4.40) ensure zero flux of carbon dioxide at the solid interface and flux continuity
between the fluid and the atmosphere. Because of the latter condition, the solution
of eq. (4.40) depends on the atmospheric carbon dioxide field ĈCO2 , that satisfies the
Laplace equation. In cylindrical coordinates, it reads ĈCO2 =Ĉ∞ +A/r̂ being r̂ the
dimensional distance from the center of the stalactite. Although in our case the base
state geometry is planar, in (Short et al., 2005) it was demonstrated the irrelevance
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of the geometry considered to the final result. For this reason, as done in (Short
et al., 2005), the more amenable cylindrical coordinates for the Laplace equation are
adopted. It follows that

ĉ1|ξ=1 =
A

R̂sĈ∞

, F̂ =
DaA
R̂2

s
=−DCO2H C∞

R̂s
c1,ξ |ξ=1, (4.42)

where R̂s represents the radius of the stalactite (R̂s≫ ĥ), F̂ is the dimensional flux of
carbon dioxide leaving the film into the atmosphere (calculated through Fick law)
and Da is the diffusivity of CO2 in air. Eliminating the constant A from (4.42), the
two boundary conditions are eventually achieved

ĉ1,ξ |ξ=0 = 0, ĉ1,ξ |ξ=1 =− ĥDa

R̂sH DCO2
ĉ1|ξ=1. (4.43)

Recalling that ϖ ≪1, a solution of the problem (4.40)-(4.43) to the lowest order in
ϖ reads

ĉ1 = ϖ ĥ2U

(
1−ξ 2

2
+

H DCO2R̂s

Daĥ

)
. (4.44)

At this point, it is sufficient to equal the total flux of CO2 leaving the fluid by the
free surface to the total flux of CaCO3 depositing on the solid wall. The result reads

F̂CaCO3 = ρc η̂t̂ = ĥ
(
k−[HCO−

3 ]− k+H Ĉ∞

)
, (4.45)

where ρc is the ratio of molar mass to density of calcite. Due to the assumptions
previously made, the whole content of the brackets in eq. (4.45), denoted as ρcB̂K ,
can be considered independent of hydrodynamics. Thus, eq. (4.45) reduces to

η̂t̂ = ĥB̂K. (4.46)

Similarly to the ice case, even in not-perturbed conditions the liquid-solid inter-
face undergoes a vertical translation (V̄K = ĥ0B̂K) due the precipitation of CaCO3

contained in the liquid film.
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Eventually, the corresponding dimensionless evolution equations of (4.34)-(4.46)
read

ηt = v̄I +(h−1)/γI − (η − v̄It)/(γI b) Ice (4.47a)

ηt = v̄K +(h−1)/γK Karst (4.47b)

where γI,K = û0/(BI,K ĥ0) is the ratio of the morphological to hydrodynamic time
scale. The equations become equivalent for b→∞. Assuming T̂s=0.01�, b̂=0.5 m,
V̄I =4 cm/d for the ice case and standard conditions for speleothem formation (Short
et al., 2005) one obtains

γI ∼ 104Re, γK =
û0

ĉ
, (4.48)

where V̄K is the average velocity of speleothem formation (henceforth V̄K = 5
cm/century). Expressions (4.48) furnish γI of order 102 and γK of order 107 or
larger. In fact, karst flutings evolve much slower than their ice counterpart. To sum
up, the dimensionless differential system for fluting formation is provided by the two
equations accounting for the free surface and bottom evolution, namely (4.26) and
(4.47).

4.3 Linear stability analysis

4.3.1 2D analysis

With the aim of addressing a linear stability analysis, the vector of the state variables
U=(h,η) is recast as the sum of the base state U0 and a small perturbation U1 as
follows:

U = U0 +U1 = (1, v̄I,K t)+(H,Θ)ei k̃ x+ik z+Ωt , (4.49)

where k̃ and k are the longitudinal and transversal wavenumbers, respectively; the
real part of Ω determines the growth rate, while its imaginary part stands for the
angular phase. By substituting (4.49) into equations (4.26) and (4.47) and linearising
we obtain

LI,K ·U1 = 0. (4.50)
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where the matrices LI,K are reported in the Appendix C.2. After imposing the
determinant of the matrices equal to zero, the dispersion relation are obtained

fI,K(Ω, k̃,k,ζ ,γ,Re,We) = 0, (4.51)

whose solutions Ω1,2 are the corresponding eigenvalues of the algebraic linear system
(4.50). Both f and the eigenvalues Ω1,2 are reported in Appendix C.2 for the karst
and the ice cases. Although the two problems are slightly different due to eqs. (4.47),
the same considerations hold for both environments. This is due to the fact that the
dynamics is driven by the hydrodynamics (Camporeale, 2015).

The control parameters in the system are apparently three: ζ , Re and We. Howe-
ver, through the definition of the Weber number and eqs. (4.1), We can be recast in a
form involving its dependence on ζ and Re, as done for example in (Lin and Kondic,
2010). This leads to

We =
Ka

(sinϑRe5)1/3 (4.52)

where Ka=σ/(ρg1/3ν4/3) is the Kapitza number, that depends only on the fluid
properties and it is thus constant for our purpose. Eq. (4.52) reduces the effective
control parameters to two: Re and ζ . Fixing an overhanging wall, one may evaluate
the eigenvalues behaviours with respect to different values of Re.

Fig. 4.3 shows the growth rate Ωr
2 in the wavenumbers plane (while Ωr

1 is always
negative). For sufficiently small Re, the absolute maximum of Ωr

2 lays on the k axis
(k̃=0), panel a1. Therefore, the fastest growing mode is associated with a transverse
perturbation, i.e., flutings. There is also a relative maximum on the k̃ axis, but its
value is smaller, as reported in panel a2. Instead, increasing Re, the longitudinal
maximum on the k̃ axis (k=0) exceeds the transverse one, see panels b1 and b2. In
addition, in panel b2 it is also furnished Ωr

2 under the Stokes approximation (red
dotted line). Due to the relatively high values of Re, the lack of the convective terms
jeopardizes the correct boundary of the ripple-fluting transition. Instead in panel
a2, where Re is smaller, the computation of Ωr

2 is less by the Stokes approximation.
Hence, although fluting formation could be modelled using the Stokes approximation,
it would be impossible to correctly define the margin between the fluting and ripple
regimes.

In order to differentiate these two regimes, the transition Reynolds number Ret

below which flutings develop is evaluated with respect to the deviation from the
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vertical ϑ − π/2 (Fig. 4.4). It turns out that it is O(10−1) for the ice case and
O(10−2) for the karst case.

In overall, for fluting formation (Re<Ret), we can consider only the span-wise
perturbation and thus develop a more parsimonious model.

4.3.2 1D analysis

The previous section has demonstrated that for low Reynolds numbers, i.e., Re<Ret ,
the fastest growing mode is associated with a span-wise perturbation. Therefore, we
can introduce a normal mode ansatz with only transversal dependency

U = U0 +U1 = (1, v̄I,K t)+ζ (H,Θ) eik z+ωt , (4.53)

where the notation for the time dependency has been switched to ω in order to
discriminate from the eigenvalues Ω of Sec. 4.3.1. Hence, the real part of ω

determines the growth rate, while its imaginary part stands for the angular phase. By
substituting (4.53) into equations (4.26) and (4.47) and linearising we obtain(

Γ+ω Γ

−1
γ

aI,K

)
·

(
H
Θ

)
= 0. (4.54)

where Γ= k2(ReWek2 + ζ )/3, aI =ω + 1/(bγ) and aK =ω . After imposing the
determinant of the matrix equal to zero, the dispersion relations are obtained

(Γ+ω)(ω +
1
bγ

)+
Γ

γ
= 0, (I) (4.55a)

Γ(γω +1)+ω
2
γ = 0, (K) (4.55b)

whose solutions, corresponding to the eigenvalues of the algebraic linear system
(4.54), are

(ω1,2)I =−
(

Γ

2
+

1
2rγ

)(
1±

√
1− 4rγβ (b+1)

(bγβ +1)2

)
(4.56a)

(ω1,2)K =−Γ

2

(
1±

√
1− 4

γβ

)
(4.56b)
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The eigenvalues (4.56) are real in the domain of instability, therefore flutings do not
laterally migrate, and they become complex conjugate in the domain of stability,
i.e. there is not a preferential direction for the decay of the perturbation. This is
a consequence of the transversal invariance of the problem and it shows that the
above mathematical setting is well-posed. Referring to ω2 as the eigenvalues with
the minus in front of the square root, it can be shown that ω2 is always negative,
while in some parameter conditions, ω1 becomes positive and thus flutings develop.

Due to eq. (4.52), the two control parameters for the growth rate ω1 are: ϑ and
Re. When Re is kept constant, by setting ω1=0, the neutral stability curves in the
(k,ϑ) plane are obtained, as reported in Fig. 4.5a. The curves show that flutings
develop when ϑ >π/2 (so-called inverted condition). On the other hand, when ϑ

is fixed at a particular value larger than π/2 and Re is variable, the neutral stability
curves in the parameter plane (k,Re) start from the origin (Fig. 4.5b), that is all
Reynolds number are unstable.

In Fig. 4.5c, the behaviour of ω1 versus k is reported for different angles ϑ . It
is interesting to highlight the main differences with bar instability in Chapter 2 (in
particular see Fig. 2.2c).
At critical conditions for bar formation (β =βc), the neutral wavenumber kc has
a finite value. While at critical conditions for fluting formation (ϑ = π/2), the
neutral wavenumber is null1. This classifies flutings as a long-wave instability
(as all instabilities involving liquid films (Kalliadasis et al., 2011)). In long-wave
instabilities, k=0 is the mode associated with a homogeneous change of the base
state (the so-called Goldstone mode in condensed matter physics). However, a
homogeneous change of the base state is only possible through a change in the
flow rate, which is fixed in the present analysis. Indeed, the Goldstone mode is
a mathematical artefact, that is removed by finite-size effects (finite length of the
channel) in the physical reality.
Another difference with bar instability is that, in unstable conditions for flutings (ϑ >

π/2), the range of unstable wavenumbers spans from zero (k=[0,
√
−ζ/(ReWe)]).

This means that the low modes and the subharmonics of the fundamental are linearly
unstable and can destabilise the fundamental mode (the following nonlinear analysis
will show that this does not happen).

1Fluting instability corresponds to the type II-stationary instability of the classification suggested
by Cross and Hohenberg (1993).
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Interestingly, although the analytical relations for ω1 are different in the two
environments, the cutoff wavenumber remains the same. This is due to the fact
that the dynamics is driven by the water film, that acts similarly in both cases.
Analogously, the selected wavenumber, which corresponds to the fastest growing
mode, reads ks =

√
−ζ/(2ReWe) for both environments. By recalling eqs. (4.1)

and (4.52), the corresponding dimensional wavelength reads

L̂ =
2π ĥ0

ks
= π l̂c

√
−8secϑ , (4.57)

where l̂c=
√

σ/ρg is the capillary length (recall that ϑ >π/2). This result is quite
peculiar because it shows that L̂ does not depend on the hydrodynamics (q̂), but only
on the fluid properties (ρ ,σ ) and the geometry (ϑ ). In Fig. 4.5d the behaviour of L̂
versus the slope is reported.

The present results agree with the outcomes of the theory developed in (Campo-
reale, 2015), where a y-dependent differential eigenvalue problem was solved with
the aid of the Stokes approximation. The present approach of the gradient expansion
circumvents the Stokes approximation and it is more suitable for further weakly
nonlinear analyses, since the equation are provided in a one-dimensional form, where
the y-dependence has been explicitly solved (see eqs. (4.18)-(4.21) and Appendix
C.1).

4.4 Nonlinear stability analysis

In this section, a weakly nonlinear analysis is performed through the technique
of the center-unstable manifold projection. The aim is to provide an analytical
solution for the finite amplitude of the fundamental mode. However, it is well-known
that solving the amplitude equation for the fundamental mode is sometimes not
sufficient. In fact, when nonlinearities are in play, the linear modes are not any longer
decoupled, hence finite-amplitude monochromatic waves may be destabilized by
nonlinear interactions with other modes satisfying the so-called resonance condition
(Cheng and Chang, 1990). In the case of quadratic non-linearities, this condition
reads: kl±kp=km, where km refers to the mode whose dynamic is in question and
kl and kp are all possible modes that contribute to the dynamics of km. Although
the fundamental km could be potentially unstable to any wavenumber (i.e., infinite
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combination of kl and kp), it is far simpler to derive stability criteria for disturbances
of specific wavenumbers, if these disturbances are observed to be the dominant ones
from physical observations. Concerning non-inverted falling films, experimental
and theoretical works (Brauner and Maron, 1982; Cheng and Chang, 1995; Liu and
Gollub, 1993) have shown that, depending on the frequency of the fundamental, a
subharmonic or a sideband instability is triggered. Moreover, previous analyses on
open-flow systems, with long-wave instabilities as ours (Kelly, 1967; Monkewitz,
1988; Prokopiou et al., 1991), have found instability to subharmonic disturbances.
However, we point out that differently from these last works, in our system the
modulation is not in the direction of the driving force, but it is transversal to it,
see section 4.3.2. Definitely, it can be noticed that in our system the range of
unstable wavenumbers spans from zero to

√
−ζ/(ReWe), see Fig. 4.5c. Hence,

the 1/2 subharmonic of any wave within this range is linearly unstable, including
the subharmonic of the fundamental, i.e., k = ks, while the 3/2 subharmonic of
the fundamental is stable. We will prove that, although the subharmonic of the
fundamental is linearly unstable, the rising effect of the non-linearities may allow
the fundamental to saturate and the subharmonic to decay.

4.4.1 Center-unstable manifold projection

The center-unstable manifold projection does not stipulate that the unstable modes
are nearly neutral, the only stipulation is that their amplitudes are small. This
approach is sometimes known as the invariant manifold expansion (Roberts, 1989),
since the growth rates of the unstable modes are not expanded near the point where
they vanish exactly at the neutral curve. Considering second order non-linearities,
system (4.26)-(4.47) with the ansatz (4.53) can be written as

U1,t = L U1 +N(U1)+o(U2
1), (4.58)

where L is the differential operator associated with the linear system and N(U1)

contains all second order non-linearities. The linear eigenvalue problem associated
with (4.58) states

Lfm = ωmfm, (4.59)

where ωm are the two eigenvalues reported in (4.56) and fm are the correspondent
eigenfunctions. The system is invariant to translation in z, therefore the linear
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problem may be Fourier transformed as follows

fm(z) = vm(k)eik z. (4.60)

Substituting (4.60) into (4.59) yields the projected eigenvalue problem

L(k)vm(k) = ωm(k)vm(k), (4.61)

where L is the same matrix appearing in (4.54). The corresponding adjoint eigenvalue
problem reads

L�v�
m = ω

∗
mv�

m, (4.62)

where star ∗ refers to complex conjugate, while the symbol � stands for the adjoint
(the dependence on k has been considered implicitly). We remind that L� is defined
by (Lx) ·y∗=x · (L�y)∗ and, because L has only real elements, its adjoint is simply
the transpose, i.e., L� = LT . After proper normalization, the eigenvectors vi and the
adjoint eigenvectors v� are orthonormal with respect to the dot product

vi ·v�
j = δi j. (4.63)

The fundamental mode ω1(k) and its subharmonic ω1(k/2) are the only possible
unstable modes, while all other subharmonic or superharmonic modes are stable.
The perturbation U1 can be expanded in terms of the eigenfunctions fm given by
(4.60)

U1(z, t) =
+∞

∑
p=−∞

2

∑
m=1

A[m, p
2 ]
(t)vm

(
pk
2

)
exp
(

i pk z
2

)
, (4.64)

where m and p are integer numbers and A[m, p
2 ]

is the p/2 subharmonic associated
with the eigenvalue m (we point out that eq. (4.64) also takes into account the
complex conjugate amplitudes as A∗

[m, p
2 ]
=A[m,− p

2 ]
). Notice that, with respect to the

Fourier sum in the bar problem (2.20), we here consider the subharmonic modes p/2.
Substituting (4.64) into (4.58), taking the dot product with the adjoint eigenfunctions
and collecting the terms of the same Fourier modes, yields the equations for the two
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unstable modes

Ȧ1 = ω1(k)A1 +P1A2
1
2
+P(1)

2 A 1
2
A[2, 1

2 ]
+P2A∗

1
2
A[1, 3

2 ]

+P(2)
2 A∗

[2, 1
2 ]

A[1, 3
2 ]
+P(3)

2 A∗
1
2
A[2, 3

2 ]
+

2

∑
m=1

P(4)
m A∗

1A[m,2], (4.65a)

Ȧ 1
2
= ω1(k/2) A 1

2
+P3A∗

1
2
A1 +P(6)

2 A∗
[2, 1

2 ]
A1

+P(7)
2 A∗

1
2
A[2,1]+P4A∗

1A[1, 3
2 ]
+P(8)

2 A∗
[2,1]A[1, 3

2 ]

+P(9)
2 A∗

1A[2, 3
2 ]
+

2

∑
m=1

P(10)
m A∗

[1, 3
2 ]

A[m,2], (4.65b)

where we have posed A1,1=A1 and A1, 1
2
=A 1

2
. Instead, the corresponding amplitude

equations for the stable modes read

Ȧ[2, 1
2 ]
= ω2(k/2)A[2, 1

2 ]
+S(1)2 A∗

1
2
A1 + · · ·, (4.66a)

Ȧ[2,1] = ω2(k/2)A[2,1]+S(3)2 A2
1
2
+ · · ·, (4.66b)

Ȧ[m, 3
2 ]
= ωm(3k/2)A[m, 3

2 ]
+S(5)m A 1

2
A1 + · · ·, (4.66c)

Ȧ[m,2] = ωm(2k)A[m,2]+S(6)m A2
1 + · · ·. (4.66d)

Eqs. (4.65)-(4.66) represent a Galerkin-type projection of the full equations truncated
at the second order non-linearities. Dots in the right hand side of eq. (4.66) refer
to omitted quadratic terms involving interactions of the stable modes, while the
derivation of all coefficients appearing in the present analysis, e.g., P(m)

m and S(n)i from
(4.65)-(4.66), is reported in the Appendix C.3 and partially follows the nomenclature
introduced by (Cheng and Chang, 1992).

At this point, the center-unstable manifold theory allows the amplitudes of the
stable modes to be projected onto the unstable ones, so that any A[m,p] in (4.66) is
recast as a non-linear combination of the neutral modes A1,A1/2 and their complex
conjugate to O(2). The procedure is analogous to the one presented in Sec. 2.2.5,
but we here represent it as the number of modes involved is higher. Let us consi-
der, for instance, the stable mode A[2, 1

2 ]
=E(A1,A 1

2
,A∗

1,A
∗
1
2
), where E represents an

approximation of the unstable invariant manifold and it is defined as a power series
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expansions to O(2) of A1 and A 1
2

with unknown coefficients, namely

E = aA2
1 + bA2

1
2
+ cA∗2

1 + dA∗2
1
2
+ eA 1

2
A1 + f A∗

1
2
A1 + gA 1

2
A∗

1 + hA∗
1
2
A∗

1. (4.67)

Hence, the temporal derivative of the stable modes A[2, 1
2 ]

reads

Ȧ[2, 1
2 ]
=

∂E
∂A1

Ȧ1 +
∂E
∂A 1

2

Ȧ 1
2
+

∂E
∂A∗

1
Ȧ∗

1 +
∂E
∂A∗

1
2

Ȧ∗
1
2
. (4.68)

Substituting eqs. (4.65)-(4.66a) and (4.67) in eq. (4.68), keeping only leading order
terms and collecting like powers of A1, A 1

2
,A∗

1,A∗
1
2

yields

a [2ω1(k)−ω2(k/2)]A2
1 +bω2(k/2)A2

1
2
+gω

∗
1 (k)A

∗
1A 1

2
+

c [2ω
∗
1 (k)−ω2(k/2)]A∗2

1 +d [2ω
∗
1 (k/2)−ω2(k/2)]A∗2

1
2
+

eω1(k)A1A 1
2
+h [ω∗

1 (k)+ω
∗
1 (k/2)−ω2(k/2)]A∗

1A∗
1
2
+

{−S(1)2 + f [ω∗
1 (k/2)+ω1(k)−ω2(k/2)]}A1A∗

1
2
= 0. (4.69)

A solution to (4.69) is made by imposing all null coefficients except f , which reads

f =−
S(1)2

ω2(k/2)−ω1(k/2)−ω1(k)
= Z(1)

2 , (4.70)

reminding that ω∗
1 =ω1. Repeating the same procedure for every stable amplitude

of interest yields

A[2, 1
2 ]
∼ Z(1)

2 A∗
1
2
A1, A[2,1] ∼ Z(3)

2 A2
1
2
, (4.71)

A[m, 3
2 ]
∼ Z(5)

m A 1
2
A1, A[m,2] ∼ Z(6)

m A2
1.

After substituting (4.71) into (4.65), the ultimate master amplitude equations for 1/2
subharmonic instabilities of quadratic systems with translational invariance in z and
t are obtained

Ȧ1 = ω1A1 +P1A2
1
2
+ G̃2|A 1

2
|2A1 +G1|A1|2A1, (4.72)

Ȧ 1
2
= ω 1

2
A 1

2
+P3A 1

2
A1 + G̃5|A1|2A 1

2
+G6|A 1

2
|2A 1

2
, (4.73)
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where ω1=ω1(k) and ω 1
2
=ω1(k/2).

4.4.2 Stuart-Landau equation

The Stuart-Landau equation describes the dynamic of the fundamental without
considering the influences of the other potentially destabilising modes. Therefore, it
is readily obtained by neglecting the terms involving A 1

2
in (4.72)

Ȧ1 = (ω1 +Ξ |A1|2)A1, (4.74)

where both coefficients ω1 and Ξ are real in the domain of instability, i.e., flutings
do not laterally migrate. The fixed point of eq. (4.74) is obtained by setting Ȧ1=0,
that gives, besides the trivial solution, the finite saturated amplitude

|As|2I,K =−
(

ω1

Ξ

)
I,K

=
NI,K

DI,K
(4.75)

with

NK = 4(γΓ−4)

NI = 2b2
ΣI(Γγb+1)

DK = 27γ
2
Γ

2
ΣK (1+ΣK) [−2+Γγ (1+ΣK)]

DI = 9
[
Γ

3
γ

3b3(ΣI +1)−Γ
2
γ

2b2(b+1)(ΣI +3)−Γγb(b+1)(ΣI −3)+ΣI −1
]

where ΣI =
√

1−4Γγb(b+1)/(Γγb+1)2 and ΣK =
√

1−4/Γγ . In order to dimen-
sionally reconstruct the variables ĥ and η̂ , one should use eq. (4.64) and the uniform
flow depth ĥ0. As we discuss in Sec. 4.4.4, wherein numerical simulations of the
original eqs. (4.26) and (4.47) are showed, the solutions (4.75) lead to accurate
predictions for the flow depth ĥ, but not for the bottom height η̂ . However, the direct
use of the wall evolution eq. (4.47) allows us to bypass this drawback. Similar consi-
derations regard the so-called saturation time t̂s, defined here so that A1(0)=0.001As

and A1(ts)=0.99As.
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4.4.3 Subharmonic stability analysis

In order to study the stability of the saturated fundamental to disturbances with 1/2
its wavenumber, we perturb the fundamental and its 1/2 subharmonic around the
state (As,0), respectively, as follows

(A1,A 1
2
) = (As,0)+(a1,a 1

2
) (4.76)

Substituting (4.76) into the master equations (4.72)-(4.73) and linearising, yields

ȧ1 = 2ΞA2
s a1 (4.77)

ȧ 1
2
= (ω 1

2
+ G̃5 A2

s +P3 As)a 1
2
= ω̃ 1

2
a 1

2
. (4.78)

It can be noticed that, since the fundamental is unstable, i.e., ω1 > 0, eq. (4.75)
stipulates that Ξ must be negative for a saturated wave to exist. From eq. (4.77),
it is therefore obtained that the saturated monochromatic wave is always stable
to disturbances of the same wavenumber. The instability may instead arise from
(4.78), depending on the sign of the growth rate of the subharmonic corrected
by non-linearities, i.e., ω̃ 1

2
. In both environments ω̃ 1

2
is negative in the domain

of instability, that means that the fundamental is always stable to subharmonic
disturbances. We have also tested numerically the previous conclusion by solving
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directly the equations (4.72) and (4.73). The results of a representative simulation
are reported in Fig. 4.6. Starting from a flat bottom, the fundamental A1 (light
blue line) and its subharmonic A 1

2
(red line) initially grow in agreement to the

linear instability. Then, the influence of non-linearities become relevant, so that the
fundamental saturates while its subharmonic decays to zero. This result is sufficient
to prove the stability of the fundamental to 1/2 subharmonic when both modes are
perturbed around the null state. Nevertheless, as the stability analysis (4.76) has
been performed around the basic state (A1,A 1

2
)=(As,0), we have also introduced a

small perturbation when the fundamental is already saturated while the subharmonic
is vanishing, see insets. It can be observed that both perturbations decrease in time,
showing once more the stability of the saturated fundamental to its 1/2 subharmonic.

4.4.4 Numerical simulations of the fully nonlinear system

The complete set of equations (4.26)-(4.47) has also been solved numerically for
both environments. In Fig. 4.7a the wavy behaviour of saturated ĥ in space is
reported for the ice case. The y-axis has been reversed to remind the reader of the
slightly overhanging conditions. The wavelength L̂ corresponds exactly to the one
expected by the linear theory, see eq. (4.57). The amplitude is well predicted by the
center manifold projection, see eq. (4.75), especially for the lower limit of ĥ (upper
red line). Indeed, the amplitude of the fundamental can not catch the asymmetry
of the solution, for which other harmonics and fully nonlinear effects should be
included. Additionally, Fig. 4.7b shows the amplitude dynamics in time for a given
spatial coordinate. Also in this case, the Stuart-Landau eq. (4.74) offers a good
approximation in evaluating the saturation time t̂s.
Regarding the bottom height η̂ , the prediction of the linear analysis are robust, i.e.,
the wavelength L̂ is consistent with the one of the water depth. However, the center
manifold projection is not able to correctly capture the morphologic dynamics. This
is likely due to the fact that the dynamics of η is mainly represented on the stable
manifold of the A[m,p]-phase space. This opens to two further separated remarks for
the two different environments.

In the karst case, one can observe that the term h−1 in eq. (4.47b) is generally
non-null, being the water depth wavy as in Fig. 4.7a. As there are no terms related to
η (linearly or nonlinearly) to counteract the linear growing, flutings grow endlessly.
This could explain the very large amplitude of flutings in flowstone worldwide, see
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(a) (b)

Fig. 4.8 Examples of very large amplitude karst flutings. (a) Yordas Cave, England. (b)
Hierve el Agua, Mexico.

Fig. 4.8. Instead in the ice case, the linear term involving the perturbation of η in
eq. (4.47a) does stop the pattern growth. Thus, by repeating the ansatz as in the
linear analysis (η = v̄I t +η1 and h = 1+h1), the r.h.s of eq. (4.47a) vanishes when
the bottom height reaches a saturated value, η1s, equal to

η1s = bh1s. (4.79)

As h1s is correctly given by the center manifold approximation through eq. (4.75),
eq. (4.79) provides a very satisfactory result of the height of the pattern. Using the
dimensional set of parameter of Fig. 4.7 and reminding that b= b̂/ĥ0, one obtains
η̂1∼0.47m.

Finally, to test the stability of the fundamental to nonlinear disturbances of
other modes, we have performed long-term numerical simulation for the Benney-
like eq. (4.26) with the bottom fixed. This latter choice is due to the fact that the
dynamics of the whole system is driven by the water film. Fig. 4.7c shows the
temporal evolution of the spectrum. Starting from a random white noise with all
harmonics excited, the solution converges to the saturation of the fastest growing
mode, i.e., the fundamental. This mode is not consequently destabilised nor by
the 1/2 subharmonic, in agreement with the prediction of Sec. 4.4.3, nor by any
other slow modes (higher order subharmonics at small wavenumbers that act at long
times).
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4.5 Discussion and Conclusion

In the present Chapter, fluting formation has been linearly and nonlinearly analysed
through a unified approach which accounts for both the ice and the karst case. This
task was addressed by combining two mathematical techniques: gradient expansion
and center-unstable manifold projection.

Through the technique of gradient expansion, the Benney-type equation (4.26),
accounting for the evolution of the evolving solid substrate, has been achieved. The
coupling of the latter with the evolution equation for the substrate (4.47), provides
a novel and parsimonious modelling of fluting dynamics. The outcomes of the
linear analysis confirm the results previously obtained by a more sophisticated model
(Camporeale, 2015), but also provide further achievements. Firstly, we have relaxed
the Stokes approximation and solved the film flow field without the necessity to solve
y-dependent differential equations. Secondly, the gain in the analytical treatment of
the linear stability analysis has favoured the development of a nonlinear investigation.

Previous weakly nonlinear approaches have limited their validity close to the
critical conditions (Stewartson and Stuart, 1971). The extension of the weakly
nonlinear validity to the interior of the unstable domain has usually been conjectured
since it was shown to be reasonable for some hydrodynamic instabilities (Godrèche
et al., 2005). Whether this conjecture is also valid for morphodynamic instabilities
remains open. Instead, the technique of center manifold projection furnishes the
Stuart-Landau equation valid for any condition close to the neutral curve and not
only in a neighbourhood of the critical point (Cheng and Chang, 1992).

The selected wavenumber (4.57) and the finite amplitude (4.75), given in a
closed analytical form, provide the complete description of fluting system with
respect to two control parameters: the Reynolds number and the angle with the
horizontal. These quantitative results also have a value from a palaeo-reconstructive
point of view. In fact, speleothems, such as cave flutings, contain information on the
past climate since they evolve with a timescale of millennia (Fairchild et al., 2006;
McDermott, 2004).

Nevertheless, defining quantitatively finite amplitude monochromatic waves may
be not sufficient as they can be destabilized by nonlinear interactions with other
modes. In particular, in other open flow systems with long-wave instabilities, the
growth of subharmonic modes was detected. Therefore we have studied the linear
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stability of the finite-amplitude fundamental mode to 1/2 subharmonic disturbances,
verifying, both analytically and numerically, that flutings are stable to subharmonic
disturbances as non-linearities allow the fundamental mode to saturate and the
subharmonic to decay. From a practical point view, this means that the predictions
of the linear and nonlinear analysis are robust.

Eventually, the numerical simulations of the equations (4.26)-(4.47) have con-
firmed most of the theoretical results. The linear theory is fully verified, while the
nonlinear theory agrees correctly with the simulations for the hydrodynamics, but
not for the morphodynamics. This is probably due to the fact that the center manifold
projection looses some aspects of the dynamics of the stable manifold. Nevertheless,
thanks to the correct prediction of the hydrodynamic behaviour, one may reconstruct
the morphodynamics directly from the steady solution of eq. (4.47). This leads to
the finite amplitude eq. (4.79) for ice flutings and to non-saturating patterns for the
karst case.

Another issue that deserves further attention are the outcomes of the analysis close
to verticality. In fact, when ϑ → π/2+, the dimensional wavelength and the finite
amplitude diverge to infinite (see Fig. 4.5d), that means that there is no wavelength
selection nor amplitude saturation at this critical condition. This shortcoming could
be remedied by a non-parallel stability theory, englobing the radius of curvature of
the liquid-solid interface and non-parallelism of the flow field in a neighbourhood of
the vertical tangent point (Camporeale, 2015).



Chapter 5

A stable model for icicle surface

5.1 Introduction

The work described in this chapter has been produced in collaboration with John
Ladan and Stephen Morris (University of Toronto).
Icicles are common features of winter weather. Indeed, whoever is familiar with
snow, has seen an uncountable numbers of icicles hanging from anthropic and natural
ceilings. However, beside being beautiful, icicles are unwanted features on power
lines and airplane wings (Farzaneh et al., 1992; Gent et al., 2000; Poots, 1996) and
they can be reservoirs and vectors of pathogenic factors as fungi (Biedunkiewicz and
Ejdys, 2011; Ejdys et al., 2014). Thus, a deeper understanding of icicle morphology,
beside being a charming challenge for scientists (Chen and Morris, 2011; Ogawa
and Furukawa, 2002; Ueno, 2007), could provide useful insights for practical appli-
cations.
Icicles form when cool water drips from an overhanging support under subfreezing
ambient conditions. Therefore, their formation results from an interplay among the
freezing ice, the cold air and the dripping water. Including all these aspects and some
geometrical considerations, Short et al. (2006) derived a solution for the universal
shape of icicles that fits most of the observations. Still, some icicles deviate from
the self-similar shape, for example with bends, twists or spikes (Chen, 2014). In
particular, one of icicle puzzling features are the regular ripples or ribs that may
form around their circumference, see Fig. 1.4a. A recent extensive experimental
study of icicles (Chen and Morris, 2013, 2011) revealed that small amounts of dis-
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Fig. 5.1 Laboratory-grown icicles, showing the effect of impurities, and model sketch. (a)
Icicle formed with distilled water, showing no ripples (Chen, 2018a). (b) Ripply icicle created
with a NaCl solution with concentration 0.08 ppm (Chen, 2018b). (c) The coordinates and
variables used in the model. The inset shows the dimensional temperature field in the
unperturbed basic state.

solved impurities are required for ripples to appear. Fig 5.1a-b shows examples of
laboratory-grown icicles. Existing linear stability theories of icicle ripples (Ogawa
and Furukawa, 2002; Ueno, 2007; Ueno and Farzaneh, 2011; Ueno et al., 2009b)
predict ripples on icicles made from pure water, which are not observed. In this
Chapter, we outline a generic theory that shows that icicles made of distilled water
do not develop ripples on their surfaces. Moreover, we present some theoretical
considerations on how dissolved impurities, through freezing point depression at the
growing ice surface, might drive the morphological instability.

The Chapter is organized as follows: in section 5.2, the mathematical problem
leading to the governing equations is formulated; in section 5.3, the linear analysis
is performed for icicles made of pure water; some theoretical considerations on the
effect of impurities in the instability are presented in section 5.3.2; in section 5.4,
a discussion of the results obtained so far and of the still open problems in icicle
formations is presented.
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5.2 Mathematical model

Icicles form when water drips from an overhanging support into a region of sub-
freezing ambient air. The growing ice forms a substrate over which flows a very thin
supercooled water film, usually less that 100µm thick. Only some of the water is
consumed to form ice, while the rest drips off the growing tip of the icicle. Here, we
ignore the large-scale shape of the icicle (Chen and Morris, 2011; Short et al., 2006),
and, since the film thickness is much smaller than the icicle radius, treat the ice as
a vertical plane. The water film is also much thinner than the ripple wavelength,
which is about 1∼cm, justifying a long wavelength approach. We solve for the
gravity-driven, incompressible, two-dimensional Navier-Stokes flow with velocity
û=(û, v̂) in a plane perpendicular to the ice surface with û being the streamwise
velocity and v̂ the cross-stream velocity. The hat refers to dimensional variables. The
coordinates and variables are shown in Fig. 5.1c. The growing ice-water interface
is located at ŷ= η̂(x, t), while the free water-air interface is at ŷ= η̂(x, t)+ĥ(x, t).
The ŷ coordinate and η̂ are measured relative to the position of the unperturbed, flat
ice surface, which moves toward +ŷ at speed V̄ , the average speed of ice growth.
The importance of V̄ in the icicle problem is the first main difference with the
fluting problem in Chapter 4. The other differences regard the temperature T̂ and the
impurity concentration ĉ. Both these variables are governed, within the flowing film,
by advection-diffusion equations such as

T̂t̂ + û · ∇̂T̂ = κw∇̂
2T̂ , (5.1)

ĉt̂ + û · ∇̂ĉ = Dc∇̂
2ĉ , (5.2)

where subscripts refer to partial derivatives and κw and Dc are the diffusivities of
temperature and impurity concentration in water, respectively. Buoyancy effects due
to differences of temperature and concentration are insignificant compared to the
gravity-driven flow down the icicle, and so are neglected.

5.2.1 Boundary conditions

The boundary conditions for the hydrodynamics are basically the same as in the
previous model for fluting formation, i.e., eqs. (4.11)-(4.14). The differences in the
two model regard: the concentration of impurity ĉ, the temperature T̂ and the mean
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growth of the icicle V̄ . Moreover, here the possibility for a temperature dependent
surface tension is included by writing (Kalliadasis et al., 2011)

σ = σ f +Λ(T̂ − T̂f ), (5.3)

where T̂f =273.15 K is the equilibrium melting temperature of pure water, σ f is
the surface tension at the melting point and Λ=(−dσ/dT̂ )|T̂f

. To evaluate σ f and
Λ we have used the formula for seawater from Nayar et al. (2014), which fits the
data for supercooled water well (Vins et al., 2015). In principle, σ might also be
dependent on the concentration of the impurity ĉ− ĉ0, but we estimate, following
(Nayar et al., 2014), that (dσ/dĉ)|ĉo is too small to create a significant effect for our
small concentrations. Similarly, the temperature and concentration dependence of
the density ρ , kinematic viscosity ν , latent heat λ f and of the thermal and molecular
diffusivities κw, Dc, of the water are neglected.

Extra care is required to find the boundary conditions expressing the conservation
of mass at the ice-water interface, because liquid water is actively solidifying onto
the ice surface. The correct boundary conditions can be derived from the general
expression for a kinematic condition, which, following a standard result of continuum
mechanics (Hutter, 2017), states that the flux jump of a species across an interface
must be zero;

∥ρs(ûs − v̂I) ·n∥= 0. (5.4)

The brackets define the difference across the interface, ∥ψ∥=ψ+−ψ−; ρs and ûs

are the density and velocity of the considered species and v̂I is the velocity of the
interface.

Applying (5.4) to the mass of water at the ice-water interface, we find

n · û = (1− rρ)(V̄ + η̂t̂), (ŷ = η̂) (5.5)

where rρ = ρI/ρ is the ratio of ice and water densities . The physical meaning is that
volumetric expansion of water freezing into ice imparts a cross-stream velocity. The
non-zero velocity V̄ relative to the ice surface will prove to be the biggest challenge
for studying the icicles. Recall that V̄ is the mean velocity of the ice surface in its
flat, unperturbed, but still growing, state.
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The temperature at the ice-water interface is assumed to be at the equilibrium
freezing temperature which depends on the impurity concentration ĉ through

T̂ = T̂f − ς ĉ, (ŷ = η̂) (5.6)

where ς is the absolute value of the slope of the liquidus line. Equation (5.6) accounts
for the equilibrium freezing point depression due to the impurity concentration and
we believe is of fundamental importance in driving the ripple instability. The surface
boundary condition (5.6) is the only point in the theory where the temperature and
concentration fields interact. A second boundary condition on the temperature at the
ice-water interface is given by the Stéfan condition,

ρIλ f (V̄ + η̂t̂) =−Kw(n · ∇̂)T̂ , (ŷ = η̂) (5.7)

where Kw is the thermal conductivity of water. In eq. (5.7), no heat flux flows
into the ice, which remains at a constant temperature. This choice is suggested by
the geometrical and physical constraints on a free-hanging icicle, which does not
normally require any sink for heat in its interior. In the flat, unperturbed state, the
total heat flux can be determined from the mean growth speed V̄ through (5.7),

Ĵ0 = ρIλ f V̄ . (5.8)

This flux defines a natural temperature scale

∆T̂ =
Ĵ0 ĥ0

Kw
, (5.9)

which is the difference in temperature across the liquid film in its unperturbed state,
as shown in Fig. 5.1c. The scale (5.9) is used to nondimensionalize the temperature.

Regarding the dissolved impurity, the assumption is that the growing ice comple-
tely excludes the dissolved impurity, leaving none trapped in the ice. This assumption
yields a no flux boundary condition on the concentration ĉ at the ice-water interface,
analogous to the Stéfan condition,

ĉ(V̄ + η̂t̂) = Dc(n · ∇̂)ĉ, (ŷ = η̂). (5.10)
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It will be showed in the following section how dealing with eq. (5.10) is a complica-
ted task. The model proposed is "one sided", in the sense that no heat or impurity
flows into the ice, which remains pure and at a constant temperature. Regarding
concentration, the choice of a one-sided model avoids additional physics for impure
ice. This choice could be lifted, at the cost of additional complexity.

The constraint on the concentration at the water-air interface is simply a no flux
condition, so that no impurities enter the air:

(n · ∇̂)ĉ = 0, (ŷ = η̂ + ĥ) (5.11)

In this one-sided model, all of the latent heat released at the growing ice surface
propagates outward through the water film and into the colder surrounding air. The
temperature boundary condition at the water-air interface is given by

−Kw (n ·∇)T̂ = Ĵ = Ĥt (T̂ − T̂∞), (ŷ = η̂ + ĥ) (5.12)

where Ĵ is the total heat flux, Ĥt is a heat transfer coefficient and T̂∞ is the temperature
of the cold air far from the icicle. Unfortunately, Ĥt is not easy to measure directly,
but it can be inferred experimentally by measuring the average speed of ice growth
V̄ , as shown in the following

5.2.2 Water film dynamics through long-wave theory

Ripples on icicles usually develop with low Reynolds numbers (Re<1) and a small
ratio between the film thickness and the pattern wavelength (order 10−2−10−3),
so that, as flutings in Chapter 4, they can be regarded as long-wave instabilities.
For the icicle problem, the gradient expansion technique is extended to include,
besides the evolving water-ice interface, the concentration of impurities, which was
experimentally verified as the mechanism driving the rippling instability (Chen and
Morris, 2013, 2011). As the film thickness is small with respect to the icicle radius,
i.e., ĥ0 ≪ R̂s, a two-dimensional model with transversal invariance is considered, i.e.,
neglecting the curvature effect of the icicles. This assumption is also justified by the
ice ripples experimentally observed on planar surfaces (Ueno et al., 2009b), which
share same geometrical characteristics with the ones on cone-shaped icicles. The
scaling for the hydrodynamic variables is the same as in (4.2). The concentration is
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scaled by the inlet concentration, ĉ0, while temperature is scaled according to (5.9)

ĉ = ĉ0 c, T̂ = T̂f +T ∆T̂ . (5.13)

After applying this scaling, the non-dimensional governing equations read

ε Re(ut +uux + vuy +Px) = uyy +2, (5.14)

RePy = ε vyy, (5.15)

ux + vy = 0, (5.16)

ε PeT (Tt +uTx + vTy) = Tyy, (5.17)

ε Pec (ct +ucx + vcy) = cyy, (5.18)

where the film parameter ε = ĥ0/L̂ has been introduced (ε ∼O(10−2)). After ap-
plying the scaling and truncating at order ε , the boundary conditions at the ice
surface, y=η(x, t), read

u = 0, (5.19)

v+ηxu = (1− rρ)(v̄+ηt), (5.20)

T =−F c, (5.21)

rρ rcε Peh St (v̄+ηt) =−Ty, (5.22)

rρ Pec(v̄)c =−cy. (5.23)

These are the no-slip (5.19), conservation of water mass (5.20), undercooling (5.21),
Stéfan (5.22) and impurity rejection (5.23) conditions. The dimensionless number
F = ς ĉ0/∆T is introduced in (5.21) to capture the effect of impurities on the freezing
point. A summary of the dimensionless numbers are listed in table 5.1. Notice also
that We is considered of order ε−2 (Kalliadasis et al., 2011), St of order ε−2, v̄
of order ε (Chen and Morris, 2013) and, as we will show that the growth rate of
the instability is a very small quantity, ηt is considered of order ε2. This scaling
separates the slow-moving dynamics from the boundary conditions except in the
Stéfan condition (5.22).
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Reynolds Weber Biot Marangoni

Re= ĥ0 û0/ν We=σ f /(ρ ĥ0 û2
0) Bi= Ĥt ĥ0/Kw M=Λ∆T̂/(ρ ĥ0 û2

0)

10−2-1 103 −106 10−3 −10−2 10−1 −102

PecletT Pecletc Stéfan Freezing point effect

PeT = ĥ0 û0/κw,i Pec= ĥ0 û0/Dc St=λ f /(ci ∆T̂ ) F =ς ĉ0/∆T̂

1−10 10−103 104 0−1
Table 5.1 Definitions of the dimensionless numbers and their typical values.

The conditions at the air-water interface y=η(x, t)+h(x, t) scale to

ht +ηt + v̄ = v−u(h+η)x, (5.24)

uy = εM Re(Tx +(h+η)xTy), (5.25)

Re
[
P+ ε

2We(h+η)xx
]
= 2ε [vy − (h+η)x uy] , (5.26)

BiT +Ty +Bir∆ = 0, (5.27)

cy = 0. (5.28)

where (5.25)-(5.26) are the normal and tangential dynamic conditions; (5.24) is the
kinematic condition for water that will be used later on as a solvability equation;
(5.27) is the dimensionless form of (5.12) with r∆=(T̂f − T̂∞)/∆T̂ appearing from
the scaling; (5.28) is the kinematic condition for the dissolved species and it specifies
the no flux of impurities through the air-water interface. It should be pointed out that,
using the temperature scaling in (4.2) with (5.12), one obtains Bir∆=(1+F )Bi+1,
from which

Bi =
1

r∆ −1−F
. (5.29)

The Biot number can be evaluated from (5.29) if the temperature of the air, the
flow rate, the inlet uniform concentration and the average growth rate of the icicles
are known. Thus avoiding the necessity to evaluate the non-trivial heat transfer
coefficient Ĥt .

Following the classical procedure of gradient expansion (Kalliadasis et al., 2011),
a perturbative expansion in ε is carried out

(u,v,P,T,c)=(u(0),v(0),P(0),T (0),c(0))+ ε(u(1),v(1),P(1),T (1),c(1))+O(ε2).

(5.30)
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Substituting (5.30) in the hydrodynamic problem (5.14-5.28), and collecting coeffi-
cients of like powers of ε , the problems at the different orders is obtained. At the
leading order, the system reduces to

u(0)yy =−2, u(0)x + v(0)y = 0, P(0)
y = 0, T (0)

yy = 0, c(0)yy = 0, (5.31)

with boundary conditions

u(0)|η = 0, u(0)y |η+h = 0, (5.32)

v(0)|η = 0, P(0)|η+h =−ε
2We(h+η)xx, (5.33)

T (0)|η =−F c(0)|η , (BiT (0)+T (0)
y +Bir∆)|η+h = 0, (5.34)

c(0)y |η = 0, c(0)y |η+h = 0. (5.35)

The solutions of system (5.31) with boundary conditions (5.32) are

u(0) = (y−η)(2h− y+η), (5.36)

v(0) = (y−η)[(η − y)hx +(2h+η − y)ηx], (5.37)

P(0) =−ε
2We(h+η)xx, (5.38)

T (0) =
F [Bi(y−h−η)−1]−Bir∆(y−η)

Bih+1
, (5.39)

c(0) = 1. (5.40)

Substituting the zero order solutions (5.36) in the kinematic free surface condition
(5.24), we obtain at the leading order

ht +q(0)x = 0 (5.41)
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where q0=2h3/3 is the dimensionless flow rate per unit-span at order 0. At the order
ε , the system reads

u(1)x + v(1)y = 0, (5.42)

Re(u(0)t +P(0)
x +u(0) u(0)x + v(0) u(0)y ) = u(1)yy , (5.43)

ReP(1)
y = v(0)yy (5.44)

PeT (T
(0)

t +u(0)T (0)
x + v(0)T (0)

y ) = T (1)
yy , (5.45)

Pec (c
(0)
t +u(0) c(0)x ) = c(1)yy , (5.46)

with boundary conditions

u(1)|η = 0, u(1)y |h+η +ReM
[
T (0)

x +(h+η)x T (0)
y

]
h+η

= 0, (5.47)

v(1)|η = v̄(1− rρ), ReP(1)|h+η = 2[v(0)y − (h+η)x u(0)y ]h+η , (5.48)

T (1)|η =−F c(1), (BiT (1)+T (1)
y )|h+η = 0, (5.49)

c(1)y |η = 0, c(1)y |η+h =−rρ Pecv̄ c(0), (5.50)

whose solutions of u(1) and T (1) are cumbersome and reported in the Appendix D.1
for the sake of space.

5.2.3 Issue with the concentration of dissolved impurities

The two boundary conditions for the concentration (5.50) do not allow to solve the
order ε problem for the concentration (5.46), which reads

c(1)yy = 0, c(1)y |η = 0, c(1)y |η+h =−rρ Pecv̄ c(0). (5.51)

In fact, the advection-diffusion equation states that c(1) has a linear distribution in y,
but the two boundary conditions give two different horizontal gradients. The reason
of this failure is due to the slow build-up of impurities in the x-direction. During its
flow, the liquid aqueous solution loses mass of water, which freezes to form the icicle,
and preserves the same content of impurities, which are extruded by the forming
ice. This double effect results in a growth of the concentration in the x-direction.
This growth can not be detected by the gradient expansion technique, for which all
x-dependencies are enclosed in the evolution of the two interfaces h and η .
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From a more mathematical point of view, the inconsistency can also be noted from
the value of Pec, which is not small (order ε−1). By considering Pec∼ε−1, all terms
l.h.s. of eq. (5.18) should be included in the equation for c(0) (5.31). This would
allow to solve not even the c(0) problem through the gradient expansion method,
again, because of the x-dependencies.
Thus, to properly include the effect of impurities in the icicle problem, the built-up of
c in the x direction needs to be solved. At the moment of writing this thesis, we are
dealing with this problem. Thus, apart from Section 5.3.2, where some preliminary
results are discussed, we here present the model results for the case of pure water.

5.2.4 Evolution equations in the case of pure water

The expansion performed in the previous section has recast the physical variables
(u, v, P, T ) as functions of the unknown water-ice and air-water levels, i.e., η and
η +h, respectively. The evolution equations for h and η are found by substituting the
solutions of the flow field and temperature to O(ε) into (5.22) and (5.24). Starting
with (5.24), which dynamically describes the evolution of the free-surface, the first
equation of the model is obtained

ht +q(0)x + rρ v̄+ ε q(1)x = 0, (5.52)

where rρ v̄ (order ε) accounts for the loss of water due to the growing freezing icicle
and q(1) is the order ε flow rate per unit-span, which reads

q(1) =
8

15
Reh6hx +

1
3

ReWeh3 (h+η)xxx +M Rehx hΓ2(h). (5.53)

In (5.53), the first term is due to the inertia of the water flow; the second term
accounts for surface tension and the last term accounts for the thermal Marangoni
effect, where Γi(h)=Bir∆hi−1/ [i(1+Bih)i]. Neglecting thermocapillarity (Joo et al.,
1991a) and the loss of water due to v̄, (5.52) reduces to the Benney-type equation
(4.26) at verticality.

The ice-water interface is dynamically described by the Stéfan equation (5.22),
that, after substitution of T (0) and T (1), reads

rρ rc PeT St ε(v̄+ηt)−Γ1(h)+ε
1

10
PeT hhx [Bih(4Bih+5)−10]Γ3(h) = 0. (5.54)
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Where St and ηt are order ε−2 and rc = ci/cw is the ratio between specific heat
of water and ice, respectively. Compared to Stefan equation (4.34) in the fluting
problem, this Stefan equation (5.54) is one-sided (no heat flux in the ice), but all
nonlinear terms have been retained.

5.3 Linear stability analysis

In this section, the stability of the uniform solution is considered. As the asymptotic
expansion has been completed, x and t are rescaled so that x has the same scale as
y, that is L̂= ĥ0 and x̂= ĥ0 x, or equivalently ε =1. Then, the free-surface and the
ice-water interface are infinitesimally perturbed around the base uniform solution as

U = U0 +U1 = (h,η) = (1,0)+(H,Θ)ei k x+ω t , (5.55)

where k is the longitudinal wavenumber; ω is a complex number, whose real and
imaginary parts determine the growth rate and the angular phase, respectively. It
should be noted that h=1 is a solution of the Benney-type eq. (5.52), if the loss of
water due to the growing freezing icicle is neglected.

By substituting (5.55) in the two governing equations (5.52)-(5.54) under the
quasi-steady approximation (ht ∼0), and linearizing, the system reduces to

L

(
H
Θ

)
= 0, (5.56)

where

L =

(
10ReWek3 − (16Bi1 +15M)Rek/Bi1 +60i 10k3 ReWe
Bi1(30BiBi1 + i(Bi(4Bi1 +1)−10)k PeT ) 30Bi31PeT rcrρ Stω

)
,

(5.57)
and Bi1=Bi+1. The dispersion relation can then be found by setting the determinant
of L equal to zero, to determine

ω =
k3ReWe(30BiBi1 + i(Bi(4Bi1 +1)−10)kPeT )

3Bi1PeT rc rρ St (10Bi1k3ReWe−16Bi1 k Re+60iBi1 −15k M Re)
, (5.58)
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Input parameters Derived parameters Dimensionless parameters
Q̂=3.3×10−8 m3/s ∆T̂ ∼ 0.05 K Re=0.3

T̂∞= T̂f −10 K σ f =0.076 N/m We=1.5×104

ĉ0=0−2 ppt Λ=1.4×10−4 N/(m K) v̄=1.8×10−4

V̄ = 1.69×10−6 m/s 1 R̂s=1.7×10−2 m 2 Bi=5.3×10−3

Table 5.2 Typical values of the parameters from the experiments of Chen and Morris (2013).
The other dimensionless parameters, see tab. 5.1, can be evaluated from the ones here
reported.

which is the eigenvalue of the linear system. In order to find a simpler form for ω , a
quasi-steady approximation for h has been used (ht ∼0). It is possible to relax the
quasi-steady approximation and obtain a dispersion relation with two eigenvalues
ω1,2, where ω1 is associated to the free surface instability (hydrodynamic waves)
and ω2 is related to the ice ripple instability. However, we have verified that ω1 is
numerically equivalent to the eigenvalue one would obtain neglecting the ice-water
interface, i.e., longitudinal free surface waves of a falling vertical film (Craster and
Matar, 2009; Kalliadasis et al., 2011), and ω2 is numerically equivalent to ω in the
dispersion relation (5.58), but its analytical expression is much more cumbersome.
For this reason, the quasi-steady approximation has been used.

5.3.1 Stability for the case of pure water

In this section, the ω eigenvalue (5.58) is explored in the parameter space. In accord
with the experiments (Chen and Morris, 2013, 2011), the results will show that pure
water does not drive the rippling instability. If not differently specified, the plots
have been obtained using the experimental values of Chen and Morris (2013), which
are reported in table 5.2.

Physically speaking, the dimensional quantities controlling icicle formation in the
pure water case are: the temperature of the air T̂∞, which relates to r∆ and Bi through
(5.29); surface tension of water (We) and the dripping flow rate Q̂. Regarding the

1Measured quantity
2Icicle radius, which determines the scaling and the Reynolds number, see (4.1)
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Fig. 5.2 Weak sensitivity of ω to the parameters. Blue lines refer to the reference case of tab.
5.2, while red and green lines are obtained: in panel (a), for doubling and halving surface
tension σ f ; in panel (b), for T̂∞= T̂f − (5,10,20) K; and in panel (c) for Re=0.05,0.3,0.8.
Notice that in panel (c), the dimensional quantities have been plotted because the scaling
(4.1) has an implicit dependence on Re.

latter, it can be noticed that

Re =
Q̂

(2πR̂sν)
=

q̂
ν
, (5.59)

so that the Nusselt scales ĥ0 and û0 (4.1) can be evaluated from Re, instead of both
R̂s and Q̂. Moreover, the derived dimensionless number can be recast in term of Re
as follows

Pec = RePrc, PeT = RePrT , We = KaRe−5/3, (5.60)

where Ka, PrT =ν/κw, Prc=ν/Dc, which are the Kapitza number and the thermal
and mass Prandtl numbers, depend only on the fluid properties. Thus, varying Re it is
possible to evaluate all flows condition (combinations of R̂s and Q̂). In Fig. 5.2, the
growth rate ωr is plotted for different parameter combinations. Overall, the plot show
that none of the afore-mentioned quantity drastically changes the liner outcome: the
water-ice interface is always stable for distilled water. Only surface tension (We) has
a weak influence on ωr (panel a). This is due to the stabilizing role surface tension
has on the free surface. However, even though the reported dotted curves have been
obtained halving and doubling the surface tension of pure water, thus exaggerating
the interval of values that σ f can actually assume, the effect on ω results weak. For
this reason, the addition of a surfactant in some runs of the experiments by Chen
and Morris (2013) has produced no noticeable differences. A rise in Re has an effect
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on the temporal dynamics of the decaying perturbation. It should also be pointed
out that panel (d) has been plotted with the dimensional quantities because of the
implicit dependency of the scaling (4.1) on Re.

5.3.2 The freezing point depression effect

In this Section, we discuss how a longitudinal dependence of the concentration of
dissolved impurities c can trigger the morphological instability through the depres-
sion of the freezing temperature (5.21). To do so, we have plotted in Fig. 5.3 the
linear fields of concentration c, temperature T and horizontal heat flux Ty for the
two cases: pure water (first raw) and aqueous solution (second raw). The fields are
plotted on a x-wavelength in the water domain, i.e., between η and η + h, which
have been perturbed as in (5.55). For the aqueous solution, we have introduced a
non-physical approximation ( c ∼ h−3) to show the importance of a x-dependent c in
the thermodynamics. The proper approach would be to solve the slow built-up of
concentration in the x-direction, as explained in Section 5.2.3.

Let us start from the case of pure water. The temperature field (b1) in the
perturbed domain slightly differs from the temperature field in uniform condition,
which is a horizontal linear distribution of temperature going from 0 to -1, see the
temperature scaling (4.2) and the inset in Fig. 5.1c. A better physical intuition of
the heat dynamics can be obtained by plotting Ty + 1 (c1), which is equivalent to
the perturbation of the horizontal heat flux. Negative values of Ty +1 (blue areas)
show a rise in the heat flowing into the surrounding air. This heat comes from the
additional latent heat released at the water-ice interface, which is thus freezing faster.
The opposite stands for positive values (red areas). As on the perturbed η , water
freezes faster (slower) in the trough (crest), the perturbation decays in time and the
flat water-ice interface is eventually re-established.

The outcomes change drastically if the water contains dissolved impurities
that distributes longitudinally. The perturbed temperature field (b2) becomes very
different from the one in uniform condition, which is a horizontal linear distribution
of temperature. In fact, panel (b2) shows a remarkable wavy structure caused by the
concentration distribution (a2) and the consequent freezing point depression. The
perturbed horizontal heat flux (c2) noticeably differs from the one for pure water
(c1) for both the magnitude and the phase. The latter being the most important in
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Fig. 5.3 Linear concentration and temperature fields. The first raw refers to the pure water
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longitudinal distribution (c∼h−3). The perturbation of η and h have been vertically exag-
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temperature field (b2) and to the horizontal heat flux (c2).
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terms of the instability. In fact, as the peak of the additional latent heat is released
slightly upstream the η crest, the water-ice interface perturbation grows in time,
while migrating upstream. Moreover, it should be noticed that the heat fluxes (c2)
are enhanced by the non-uniformity of the temperature at the ice-water interface and
thus the deviations from the base state are two order of magnitude higher than in the
pure water case (c1).

From these fictitious results, we are confident that properly solving the con-
centration field and its x-dependence could lead to a correct modelling of icicle
morphological instability.

5.4 Concluding remarks

In this Chapter, a theoretical model for the morphological evolution of icicle surface
has been presented. The model considers a thin water film flowing on a vertical
plane of ice in a subfreezing ambient. The classical long-wave theory (Craster and
Matar, 2009; Kalliadasis et al., 2011) has been applied to recast the variables as
combinations of the ice-water, η , and water-air, η +h, interfaces. Consequently, the
kinematic condition for the free surface (5.52) and the Stefan equation (5.54) have
been used as the two solvability equations for the model.

The linear stability analysis of the uniform solution has revealed that icicles
formed by pure water do not develop radial ripples on their surface. This result,
which agrees with the experiments (Chen and Morris, 2013, 2011), represents a
novelty, as existing linear stability theories predict ripples on icicles made from pure
water (Ogawa and Furukawa, 2002; Ueno, 2007; Ueno and Farzaneh, 2011; Ueno
et al., 2009b).

Recents experiments have also showed that small amounts of dissolved impurities
are required for ripple formation on icicles (Chen and Morris, 2013, 2011). We could
not properly address the problem, as the dynamics of the dissolved impurities could
not be solved through the gradient expansion technique due to the complex boundary
conditions, see Section 5.2.3. In particular, the issue is that as the aqueous solution
flows down, part of the water is lost due to the freezing, but the content of impurity is
preserved as the freezing ice extrudes the dissolved chemicals. This process causes a
slow built-up of concentration in the x vertical direction, which can not be addressed
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by the gradient expansion technique. The correct approach would be to first solve
the problem of c in the x-direction, which we strongly believe to be responsible for
the ripple instability, see Sec. 5.3.2, and then perform a stability analysis with a
x-dependent base state. Such mathematical approach is the so-called global stability
analysis (Huerre and Monkewitz, 1990; Schmid and Henningson, 2012) and, at the
moment of writing this thesis, is in development.



Chapter 6

Conclusions

This thesis focuses on the analytical modelling of natural patterns that arise as mor-
phological instabilities. These morphological patterns can be found in different
natural environments (see Fig. 1.1-1.6), but because of their common fluid mecha-
nical origin, they share very similar features. This similarity allows for a universal
mathematical approach, i.e., the stability analysis. Such approach investigates the
instability of the uniform flat solution to a small spatial perturbation, which grows in
time to eventually generate the morphological pattern. The governing mathematical
system of partial differential equations consists of the Navier-Stokes equations for
the fluid flow and an evolution equation for the solid boundary, which depends on the
environment considered. In nature, there is a plethora of morphological patterns that
arise as instability. In this thesis, we have focused on some open issues regarding
alternate bars in rivers (Chapters 2-3), flutings in ice-falls and caves (Chapter 4) and
icicles (Chapter 5).

Main contributions

Bars are the most important fluvial patterns and they have been studied extensively
in the last decades. However, the effect of suspended load on bar formation has
been investigated using only a few analytical models and field studies. In Chapter
2, the linear analysis of the Shallow Water and Exner equations with suspended
load performed by Federici and Seminara (2006) has been extended to the weakly
nonlinear level through the Center Manifold Projection (CMP) technique. The main
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result is the Stuart-Landau equation (2.34), which gives an analytical relations for
the finite amplitude of alternate bars in presence of suspended load.

In Chapter 3, an analytical approach to link the three cornerstones of ecomorho-
dynamics (flow stochasticity, sediment transport and vegetation growth) is presented.
The rationale of the approach is quite general, but here it is applied to investigate the
conditions for vegetation spreading on alternate bars. Alternate bars are modelled
through the relationships found in Chapter 2, flow stochasticity is addressed through
the Compound Poisson Process (CPP) and vegetation grows as a secondary instabi-
lity on the finite-amplitude bars. The main finding is that flow variability discourages
vegetation proliferation, up to the point that above a certain threshold, c∗v in eq. (3.6),
plant spread is completely inhibited. Such transition from vegetated to bare state
depends parametrically on flow stochasticity, morphology and plant biomechanical
characteristics.

In Chapter 4, a unified mathematical approach is adopted in the study of karst and
ice flutings. The model is obtained through the classical long-wave theory for falling
liquid films and is a considerable simplification of previous theories (Camporeale,
2015). The linear stability analysis has verified that flutings develop on slightly
overhanging walls and that the wavelength (4.57) depends only on the geometry. The
weakly nonlinear analysis, through CMP, has provided the Stuart-Landau eq. (4.74)
for fluting amplitude, and verified the stability of the finite-amplitude fundamental
to subharmonic disturbances. These quantitative results for karst flutings have an
additional value from a palaeo-reconstructive point of view, as karst flutings evolve
with timescale of millennia.

In Chapter 5, a theoretical model for the morphological evolution of icicle surface
is presented. The model considers a thin water film flowing on a vertical plane of ice
in a subfreezing ambient. Thus, as in the fluting problem, the classical long-wave
theory for falling liquid films has been applied. The linear stability analysis has
revealed that icicles formed by pure water do not develop radial ripples on their
surface. This result is in agreement with a recent and extensive set of experiments
(Chen and Morris, 2013, 2011), that has shown that small quantities of dissolved
impurities are necessary for radial ripples to appear. Some theoretical considerations
on how dissolved impurities, through the depression of the freezing point, might
trigger the ripple instability are also presented.
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Validation of the theoretical models

The theoretical results of this thesis have all been, at least partially, validated through
field observations, numerical simulations or experimental evidence.

In Chapter 2, the theoretical wavelength and amplitude for bars formed by sus-
pended load have been verified with the few field observations of sandy alternate
bars present in literature. The comparison with the field data has shown that the theo-
retical inclusion of suspension has increased the accuracy. Nonetheless, experiments
would allow a more systematic validation to be made.

In Chapter 3, five rivers with vegetated alternate bars have been used for the
validation of bar sizes and vegetation cover. As also reported in Fig. 3.4, the
ecomorphodynamic theory quantitatively captures the underlying physics providing
a good matching between theoretical predictions and field observations. A partial
exception is the actual vegetation cover of the Arc river, which is not fully captured.

In Chapter 4, linear and nonlinear results on flutings have been validated through
numerical simulations of the governing equations, see Fig. 4.7. For flutings and,
more in general, karst patterns, very few field data are available in literature and
experiments are impossible due to the secular timescales. At the moment of writing
this thesis, we are working to a systematic collection of data in the Bossea Cave in
Italy (Fig. 1.3), that we hope might serve future and past analytical models.

Regarding icicles, a very extensive dataset is freely available online (Chen et al.,
2018) and the data therein have been deeply investigated (Chen and Morris, 2013,
2011), but a theoretical model that correctly explains ripple instability is still lacking.
In fact, the previously published theories predict ripples on icicles made from pure
water, which are not experimentally observed. The model proposed in Chapter 5
is a step forward in the direction of a correct modelling, as it predicts the no-ripple
surface of icicle made of pure water. However, the model still lacks a correct solution
for the dynamics of dissolved impurities.

Mathematical limitations

The Clay Math Institute offers a one million dollar prize for the first person to
solve the Navier-Stokes equation (Institute, 2018), i.e., the equations governing
fluid dynamics. However, these equations, found in XIX century, seem theoretically
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unsolvable. Thus, to develop analytical models involving fluid dynamics, many
simplifications have to be made. This is true also for morphological models, in which
the fluid flow is the driving of the morphological instability.

The mathematical simplifications of the full Navier-Stokes equations arise from
observations of the physical processes involved. In particular, the most crucial
consideration is on the importance of the different scales, both temporal and spatial.
In rivers, the water depth is usually much smaller than the channel width. This allows
to vertically integrate the Navier-Stokes equations and derive the more amenable
Shallow Water and Exner equations (2.1)-(2.4) used in Chapter 2 and 3. In falling
liquid films, the wavelength of the free-surface wave, as well as the morphological
pattern wavelength, is much longer than the film thickness. This allows to apply the
long-wave theory to obtain the Benney-type equations (4.26)-(5.52) used in Chapter
4 and 5, which are a considerable simplifications of the initial Navier-Stokes system.
Therefore, even before the stability analysis, the models are approximations of the
physical reality, which would be described by the full Navier-Stokes equations.

The stability analysis of the ideally flat uniform solution introduces further
approximations. Through the linear stability analysis, one usually obtains the pattern
wavelength. The classical assumption is that all modes solutions of the system are
initially infinitesimally small, so that the one that grows faster selects the pattern
wavelength. However, in real situations, the presence of boundaries, local structures
and defects might develop finite initial conditions for some modes, that could so
prevail on the one that grows faster (Cross and Hohenberg, 1993).
Weakly nonlinear analyses are rigorous when the effect of the nonlinearities is weak,
i.e., close to the conditions of neutrality (see for example the neutral stability curves
in Figs. 2.2 and 4.5). From this point of view, the Center Manifold Projection offers
the advantage of being valid in any condition close to the neutral stability curve, and
not just around the critical point as multiple-scale theories (Wiggins, 2003). Still,
the extension of the CMP results to the interior of the unstable domain remains a
conjecture, whose validity can be proved only by full numerical simulations of the
governing equations. Furthermore, the application of CMP needs just one eigenvalue
to be unstable. So that, if more eigenvalues are unstable as in the case of multiple
bars (Fig. 2.2), the results of CMP become unreliable.

Due to all the above-mentioned approximations and sources of complexity, in
morphodynamics a perfect match between theoretical models and reality remains
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elusive. A morphodynamic analytical model can be regarded as reliable when
it furnishes predictions that agree with observations fairly good in the order of
magnitude. In this sense, the models exposed in this thesis give satisfactory results.
Moreover, analytical models are the necessary tools to deepen the comprehension of
the underlying physical processes.

Ideas for future research

Human-kind has always exploited natural resources, but with a population of 7.6
billion and an increasing demand for wellness, the man-induced stresses on natural
environments have become unsustainable (Falkenmark, 1997; Helne and Hirvilammi,
2015; Hoekstra and Wiedmann, 2014). Consequently, the concern for natural is-
sues has increased in scientists, common people and governments, with some sad
exceptions (e.g., Tollefson (2017)). Indeed, to try to contain the effect of human
activities on natural environments, a deeper physical understanding of nature in its
every aspect is crucial. In this context, morphodynamics is a broad discipline that
can describe the behaviour of many natural environments, as shown in Figs. 1.1-1.6.
Probably for these reasons, the scientific research on morphodynamic problems
has increased significantly in the last decades (e.g., Blondeaux (2001); Dreybrodt
(2012); Lancaster (2013); Seminara (2010)). Still, much research, both theoretical
and experimental, needs to be performed. Here, we briefly suggest some ideas for
future research that have arisen from writing this thesis.

1. The role of suspended load in bedform patterns has never been experimen-
tally investigated. Indeed, dealing with suspended load in a laboratory is a
very challenging task. However, it would give meaningful insights on the
quantitative role suspension plays in shaping the riverbed.

2. The ecomorphological model proposed in Chapter 3 offers a general rationale
that could be applied to study vegetational patterns in other morphodynamic
environments, see Fig. 3.1.

3. Field data on cave patterns should be systematically collected to support and
improve the theoretical models.

4. Research should be performed to find a quantitative relation among cave
speleothem features (as wavelength and amplitude) and age. This would allow
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non-destructive paleoclimate considerations directly in the cave (to the present
day, speleothems need to be removed from their environment to be analysed).

5. Ripple instability on icicles still needs a theoretical model that properly ad-
dresses the concentration of dissolved impurities (see Sec. 5.2.3).
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Appendix A

Appendix for Chapter 2

A.1 Closure relationships for the SWE

The closure relationships necessary to solve the (2.1)-(2.4) system are furnished
hereafter. The dimensionless shear stress is defined as

(τs,τn) =C f (U,V )
√

U2 +V 2, (A.1)

where the friction factor C f can be determined by means of the Einstein et al. (1950)
formula for plane bed

C f =

(
6+2.5log

D
2.5ds

)−2

, (A.2)

or from Engelund and Hansen (1967) for a dune covered bed

θ
′ = 0.06+0.4θ

2, (A.3)

C f =
θ

θ ′

(
6+2.5log

θ ′D
2.5θ ds

)−2

. (A.4)

In (A.3)-(A.4), θ and ds = d̂/D̂0 are the Shield stress and the relative roughness,
respectively, and bedload transport is defined as follows:

(Qb
s ,Q

b
n) = (cosα,sinα)Φ, (A.5)
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with α being here the angle between the average particle path and the longitudinal
direction, which is assumed to be small, so that

cosα ∼ 1, sinα ∼ V√
U2 +V 2

− r
β
√

θ
∂nη , (A.6)

with r=0.56 (Talmon et al., 1995). Bedload intensity Φ in (A.5) is defined through
the Meyer Peter and Muller formula

Φ = 8(θ ′−0.047)3/2, (A.7)

where θ ′=θ if there are no bedforms.

A.2 Asymptotic expansion for ψ

A.2.1 Settling velocity

The settling velocity can be computed as

Ŵs =
P
Q

ν

d̂

√1
4
+

(
4Q
3P2 d3

)(1/q)

− 1
2

q

, d = d̂
(

∆g
ν2

)1/3

, (A.8)

where d is the dimensionless particle diameter, ν is the water kinematic viscosity and
P=53.5exp(−0.65Sp), Q=5.65exp(−2.5Sp), q=0.7+0.9Sp with shape parameter
Sp=0.7 (Wu and Wang, 2006).

A.2.2 Relationships for ψ

In order to avoid repetitions of previous works, only the most important analytical
relationships - or the information that is lacking in Appendix B of Federici and
Seminara (2006)- are reported here. Reference should be made to that work for the
expressions of the Rouse number Z, as well as the integrals I1, I2, K0 and K2.
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It should be recalled that the expressions for suspended sediment that have not
yet been expanded in the perturbations of the state variables, read

ψ
(0) =

ψ̄0K0

1−λp
, ψ

(1) =
K1D(U∂sψ̄0 +V ∂nψ̄0)

1−λp
. (A.9)

In (A.9), ψ̄0 is the depth-averaged concentration in uniform condition, and it reads

ψ̄0 =
1

1− yr
CeI1, (A.10)

where yr is the dimensionless value of the reference elevation at which ψ =ψe and
ψe is the reference concentration that is defined from Rijn (1984a). It should be
noted that the effective Shield stress θ ′ is defined as in (A.3), while the effective
roughness that accounts for the effect of dunes reads

εe = 3d̂ + i η̂d1.1
(

1− e−25η̂d/λ̂d
)

(A.11)

where i = 0 (i = 1) for the plane (dune covered) bed. λ̂d and η̂d are the dune
wavelength and height, respectively (Rijn, 1984b)

λ̂d = 7.3D̂0, η̂d = 0.11 D̂0 d 0.3
s

[
1− exp

(
−0.5

θ ′−θc

θc

)](
25− θ ′−θc

θc

)
,

(A.12)
with θc=0.06. For the evaluation of the expanded ψ(0) and ψ(1) in the state variables,
eq. (2.22)-(2.23), these last expressions are needed

ψ
(0)
0 =

K0ψ̄0

1−λp
, Kn =

K1Ce

(1−λp)(1− yr)
, (A.13)

where K1 is reported in the next section.

A.2.3 Variation of parameters for the analytical solution of K1

An expression for K1=
√

C f ,0K3/κ is required to evaluate the order δ correction in
(A.9), where C f ,0 is the friction coefficient for the uniform condition and κ is the
von Karman constant. From the asymptotic theory developed in Bolla Pittaluga and
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Seminara (2003), we obtain

K3 =
∫ 1

yr

C12F1(ξ )dξ − log(y0)
∫ 1

yr

C12dξ , (A.14)

where y0 is the conventional dimensionless value of the reference elevation for no
slip in uniform flows (y0=yr for a plane bed and y0=3d̂ for a dune covered bed)
and C12 is obtained analytically by solving the following PDE problem

1
Z
{∂y [y(1− y)∂y]}C12 +∂yC12 = φ0(y)F(y), (A.15)

with the following boundary conditions

1
Z

y(1− y)∂yC12 +C12 = 0 (y = 1), (A.16)

∂yC12 = 0 (y = yr). (A.17)

Reference should be made to Bolla Pittaluga and Seminara (2003) for the expressions
of φ0(y), F1(y) and F(y). By using the method of variation of parameters (Bender
and Orszag, 2013) it is possible to write

C12 = u1(y)v1(y)+u2(y)v2(y), (A.18)

where v1(y)=−(1− y)Z/(Z y−Z) and v2=1 are two linearly independent solution
of the homogeneous equation (A.15), and the particular solutions u1(y) and u2(y)
are given as

u1(y) =−
∫

y

a2(y′)v2(y′)
W (y′)

dy′+ c1, u2(y) =−
∫

y

a2(y′)v1(y′)
W (y′)

dy′+ c2, (A.19)

where W (y)=−(1− y)−1+Zy−1−Z is the Wronskian of v1(y) and v2(y). The c1 and
c2 constants are specified by imposing the boundary conditions (A.16)-(A.17) on
(A.18).

A.3 Linear matrix

The corresponding algebraic eigenvalue problem of a generic harmonic m, reads
(Lm

0 ωm −Lm
1 )u1=0, where Lm

0 is a matrix with null elements, except for the lower
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right entry, which is 1, while Lm
1 reads:

Lm
1 =


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

 , (A.20)

a11 =
2C f ,0 β

Ct −1
− ik, a12 = 0, a13 =

C f ,0(Cd +Ct −1)β
Ct −1

− ik
Fr2 , (A.21)

a14 =− ik
Fr2 , a21 = 0, a22 =−ik−C f ,0β , (A.22)

a23 = a24 = (−1)m mπ

2Fr2 , a31 =−ik, a32 = (−1)m+1 mπ

2
, (A.23)

a33 =−ik, a34 = 0, (A.24)

a41 = k
(

Kn kt3δ +
2iϒφ0φt

Ct −1
− i(t1 +1)ψ(0)

)
, (A.25)

a43 = k
(

Knkt4δ +
iϒφ0(−Ctφd +φd +Cdφt)

Ct −1
− i(t2 +1)ψ(0)

)
, (A.26)

a42 =−1
2
(−1)mmπ(ϒφ0 +ψ

(0)), a44 =−(−1)2mm2π2ϒr φ0

4
√

θ0β
, (A.27)

where the subscript 0 refers to the undisturbed uniform flow solution and according
to Colombini et al. (1987)

Cd =
1

C f ,0

∂C
∂D

, Ct =
θ0

C f ,0

∂C
∂θ

, (A.28)

φd =
1
φ0

∂φ

∂D
, φt =

θ0

φ0

∂φ

∂θ
. (A.29)

The dispersion relation is readily achieved by imposing |(Lm
0 ωm −Lm

1 )|=0, from
which one obtains the eigenvalue ωm. The analytical expression of ωm is particularly
cumbersome. Thus, we have here reported the expressions that can be directly copied
and pasted in numerical codes (in Python® language).

omegam=(sqrt(-1)*Fr**(-2)*k*kn**2*pd**2+(-2)*Cf0*((-1)+Ct)**(-1)*Fr**(-2

)*kn**2*pd**2*beta+(sqrt(-1)*(-1))*Fr**(-2)*((-1)+Fr**2)*k**2*(k+(sqrt(-1)*

(-1))*Cf0*beta)+(-1)*Cf0*((-1)+Ct)**(-1)*((-3)+Cd+Ct)*k*beta*(k+(sqrt(-1)*(

-1))*Cf0*beta))**(-1)*(((-1)+Ct)**(-1)*Fr**(-2)*k**2*Kn*(sqrt(-1)*((-1)+Ct)*
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k*(k**2*(t3+(-1)*t4)+(-1)*kn**2*pd**2*t4)+Cf0*(((-1)+Ct)*k**2*(t3+(-1)*t4)+

kn**2*pd**2*((1+(-1)*Cd+(-1)*Ct)*t3+2*t4))*beta)*delta+sqrt(-1)*Fr**(-2)*((

-1)+Fr**2)*k**3*kn**2*pd**2*gamma*r*rtheta0**(-1)*beta**(-1)*phi0+(sqrt(-1)*

(-1))*Cf0**2*((-1)+Ct)**(-1)*((-3)+Cd+Ct)*k*kn**2*pd**2*gamma*r*rtheta0**(-1

)*beta*phi0+((-1)+Ct)**(-1)*Fr**(-2)*kn**4*pd**4*gamma*r*rtheta0**(-1)*beta*

*(-1)*((sqrt(-1)*(-1))*((-1)+Ct)*k+2*Cf0*beta)*phi0+((-1)+Ct)**(-1)*Fr**(-2)

*k**3*(k+(sqrt(-1)*(-1))*Cf0*beta)*(gamma*phi0*(phid+(-1)*Ct*phid+((-2)+Cd)*

phit)+((-1)+Ct)*(t1+(-1)*t2)*psi00)+((-1)+Ct)**(-1)*Fr**(-2)*k**2*kn**2*pd**

2*rtheta0**(-1)*(Cf0*(1+(-1)*Ct+((-4)+Cd+2*Ct)*Fr**2)*gamma*r*phi0+gamma*rt

heta0*phi0*((-1)+Ct+phid+(-1)*Ct*phid+Cd*phit)+(-1)*((-1)+Ct)*rtheta0*t2*ps

i00)+(sqrt(-1)*(-1))*Cf0*((-1)+Ct)**(-1)*Fr**(-2)*k*kn**2*pd**2*beta*(gamma*

phi0*((-3)+Cd+Ct+2*phid+2*phit)+((1+(-1)*Cd+(-1)*Ct)*t1+2*t2)*psi00))

In which: omegam= ωm, kn = π m/2, Kn = Kn, pd = (−1)m, gamma = γ , beta
= β , delta = δ , Cf0 = C f ,0, Cd = Cd , Ct = Ct , phi0 = φ0, phid = φd , phit = φt ,
theta0 = θ0, rtheta0 =

√
θ0, psi00= ψ

(0)
0 . Notice that to neglect suspended load is

sufficient to set ψ
(0)
0 = t1= t2= t3= t4=0.

Moreover, at this link (http://www.envirofluidgroup.it/it/ricerca/164-bars.html)
we furnish free and ready-to-use codes (a Jupyter notebook and a Mathematica
toolbox), which provide bar sizes (wavelength and amplitude) for a given set of
parameters.

A.4 CMP coefficients

The nonlinear coefficients of the amplitude equations are

Pj = 2N[u1(−k,n)e−ik s,u j(2k,n)e2ik s] ·u�,∗
1 (k,n)e−ik s, (A.30)

S j = N[u1(k,n)eik s,u1(k,n)eik s] ·u�,∗
j (2k,n)e−2ik s, (A.31)

where N is the symmetric function that contains all the second order non-linearities
of the system (2.19), for which the internal product (2.26) is needed; � and ∗ refer to
the complex conjugate and adjoint, respectively. The Landau coefficient reads

Ξ =− P1S1

ω1(2k)−2ω1(k)
− P2S2

ω2(2k)−2ω1(k)
. (A.32)

http://www.envirofluidgroup.it/it/ricerca/164-bars.html
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The analytical expression of Ξ is extremely long and cumbersome. Thus, we
have reported in the following the expression that can be directly copied and
pasted in numerical codes (in Python® language). Moreover, at this link (http:
//www.envirofluidgroup.it/it/ricerca/164-bars.html) we furnish free and ready-to-use
codes (a Jupyter notebook and a Mathematica toolbox), which provide bar sizes
(wavelength and amplitude) for a given set of parameters.

Xi=(-128/9)*((-1)+Ct)**(-1)*Fr**(-2)*k**2*((-16)*((-1)+Ct)*((-1)+Fr**2)*

k**3+(sqrt(-1)*8)*Cf0*(1+((-4)+Cd)*Fr**2+Ct*((-1)+2*Fr**2))*k**2*beta+sqrt(

-1)*Cf0*pi**2*beta+k*(((-1)+Ct)*pi**2+4*Cf0**2*((-3)+Cd+Ct)*Fr**2*beta**2))*

*(-2)*((-4)*((-1)+Ct)*((-1)+Fr**2)*k**3+(sqrt(-1)*(-4))*Cf0*(1+((-4)+Cd)*Fr

**2+Ct*((-1)+2*Fr**2))*k**2*beta+(sqrt(-1)*(-2))*Cf0*pi**2*beta+k*(((-1)+Ct

)*pi**2+4*Cf0**2*((-3)+Cd+Ct)*Fr**2*beta**2))**(-1)*((-4)*((-1)+Ct)*((-1)+F

r**2)*k**3+(sqrt(-1)*4)*Cf0*(1+((-4)+Cd)*Fr**2+Ct*((-1)+2*Fr**2))*k**2*beta

+(sqrt(-1)*2)*Cf0*pi**2*beta+k*(((-1)+Ct)*pi**2+4*Cf0**2*((-3)+Cd+Ct)*Fr**2*

beta**2))**(-3)*(2*(((-1)+Ct)*k*((-4)*((-1)+Fr**2)*k**2+pi**2)+(sqrt(-1)*2)

*Cf0*(2*(1+(-1)*Ct+((-4)+Cd+2*Ct)*Fr**2)*k**2+pi**2)*beta+4*Cf0**2*((-3)+Cd

+Ct)*Fr**2*k*beta**2)**(-1)*(4*((-1)+Ct)**(-1)*Fr**(-2)*k**2*Kn*(sqrt(-1)*(

(-1)+Ct)*k*(4*k**2*(t3+(-1)*t4)+(-1)*pi**2*t4)+Cf0*(4*((-1)+Ct)*k**2*(t3+(-1

)*t4)+pi**2*((1+(-1)*Cd+(-1)*Ct)*t3+2*t4))*beta)*delta+(sqrt(-1)*4)*Fr**(-2

)*((-1)+Fr**2)*k**3*pi**2*gamma*r*rtheta0**(-1)*beta**(-1)*phi0+(sqrt(-1)*(

-4))*Cf0**2*((-1)+Ct)**(-1)*((-3)+Cd+Ct)*k*pi**2*gamma*r*rtheta0**(-1)*beta*

phi0+((-1)+Ct)**(-1)*Fr**(-2)*pi**4*gamma*r*rtheta0**(-1)*beta**(-1)*((sqrt

(-1)*(-1))*((-1)+Ct)*k+2*Cf0*beta)*phi0+16*((-1)+Ct)**(-1)*Fr**(-2)*k**3*(k+

(sqrt(-1)*(-1))*Cf0*beta)*(gamma*phi0*(phid+(-1)*Ct*phid+((-2)+Cd)*phit)+((-

1)+Ct)*(t1+(-1)*t2)*psi00)+4*((-1)+Ct)**(-1)*Fr**(-2)*k**2*pi**2*rtheta0**(-

1)*(Cf0*(1+(-1)*Ct+((-4)+Cd+2*Ct)*Fr**2)*gamma*r*phi0+gamma*rtheta0*phi0*((

-1)+Ct+phid+(-1)*Ct*phid+Cd*phit)+(-1)*((-1)+Ct)*rtheta0*t2*psi00)+(sqrt(-1)

*(-4))*Cf0*((-1)+Ct)**(-1)*Fr**(-2)*k*pi**2*beta*(gamma*phi0*((-3)+Cd+Ct+2*p

hid+2*phit)+((1+(-1)*Cd+(-1)*Ct)*t1+2*t2)*psi00))+(-1)*(2*((-1)+Ct)*k*((-16

)*((-1)+Fr**2)*k**2+pi**2)+(sqrt(-1)*2)*Cf0*(8*(1+(-1)*Ct+((-4)+Cd+2*Ct)*Fr

**2)*k**2+pi**2)*beta+8*Cf0**2*((-3)+Cd+Ct)*Fr**2*k*beta**2)**(-1)*(16*((-1)

+Ct)**(-1)*Fr**(-2)*k**2*Kn*((sqrt(-1)*2)*((-1)+Ct)*k*(16*k**2*(t3+(-1)*t4)+

(-1)*pi**2*t4)+Cf0*(16*((-1)+Ct)*k**2*(t3+(-1)*t4)+pi**2*((1+(-1)*Cd+(-1)*C

t)*t3+2*t4))*beta)*delta+(sqrt(-1)*32)*Fr**(-2)*((-1)+Fr**2)*k**3*pi**2*gam

ma*r*rtheta0**(-1)*beta**(-1)*phi0+(sqrt(-1)*(-8))*Cf0**2*((-1)+Ct)**(-1)*(

http://www.envirofluidgroup.it/it/ricerca/164-bars.html
http://www.envirofluidgroup.it/it/ricerca/164-bars.html
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(-3)+Cd+Ct)*k*pi**2*gamma*r*rtheta0**(-1)*beta*phi0+((-1)+Ct)**(-1)*Fr**(-2

)*pi**4*gamma*r*rtheta0**(-1)*beta**(-1)*((sqrt(-1)*(-2))*((-1)+Ct)*k+2*Cf0

*beta)*phi0+128*((-1)+Ct)**(-1)*Fr**(-2)*k**3*(2*k+(sqrt(-1)*(-1))*Cf0*beta)

*(gamma*phi0*(phid+(-1)*Ct*phid+((-2)+Cd)*phit)+((-1)+Ct)*(t1+(-1)*t2)*psi00

)+16*((-1)+Ct)**(-1)*Fr**(-2)*k**2*pi**2*rtheta0**(-1)*(Cf0*(1+(-1)*Ct+((-4)

+Cd+2*Ct)*Fr**2)*gamma*r*phi0+gamma*rtheta0*phi0*((-1)+Ct+phid+(-1)*Ct*phid

+Cd*phit)+(-1)*((-1)+Ct)*rtheta0*t2*psi00)+(sqrt(-1)*(-8))*Cf0*((-1)+Ct)**(-

1)*Fr**(-2)*k*pi**2*beta*(gamma*phi0*((-3)+Cd+Ct+2*phid+2*phit)+((1+(-1)*Cd

+(-1)*Ct)*t1+2*t2)*psi00)))**(-1)*(2*(128*Cf0*((-1)+Ct)*(4+(-3)*Cd+2*Ct)*k**

6*beta+(sqrt(-1)*4)*Cf0**2*((-22)+7*Cd**2+Cd*(7+(-14)*Ct)+31*Ct+(-23)*Ct**2)

*k**3*pi**2*beta**2+(sqrt(-1)*(-1))*Cf0**2*((-4)+Ct)*((-1)+Cd+Ct)*k*pi**4*be

ta**2+Cf0**3*((-1)+3*Cd**2+(-2)*Ct+3*Ct**2+Cd*((-2)+6*Ct))*pi**4*beta**3+Cf

0*k**2*pi**2*beta*(3*((-1)+Ct)*((-1)+Cd+Ct)*pi**2+4*Cf0**2*((-28)+3*Cd**2+C

d*(17+(-14)*Ct)+27*Ct+(-17)*Ct**2)*beta**2)+(sqrt(-1)*(-16))*((-1)+Ct)*k**5*

(((-1)+Ct)*pi**2+4*Cf0**2*(3*Cd+(-2)*(2+Ct))*beta**2)+(-8)*Cf0*((-1)+Ct)*k**

4*beta*(((-1)+5*Cd+6*Ct)*pi**2+8*Cf0**2*(3*Cd+(-2)*(2+Ct))*beta**2))*((sqrt

(-1)*(-1))*((-1)+Ct)*k**2*Kn*(t3+(-1)*Fr**2*t4)*delta+sqrt(-1)*Cf0*Fr**2*be

ta*(gamma*phi0*((-3)+Cd+Ct+2*phid+2*phit)+((1+(-1)*Cd+(-1)*Ct)*t1+2*t2)*psi

00)+k*(Cf0*Fr**2*Kn*(((-1)+Cd+Ct)*t3+(-2)*t4)*beta*delta+gamma*phi0*((-1)+C

t*(1+Fr**2*((-1)+phid))+2*phit+(-1)*Fr**2*((-1)+phid+Cd*phit))+(-1)*((-1)+C

t)*(t1+(-1)*Fr**2*t2)*psi00))+(-1)*(16*Cf0*((-2)+Cd)*((-1)+Ct)*k**4*beta+sq

rt(-1)*Cf0**2*(43+8*Cd**2+(-30)*Ct+3*Ct**2+Cd*((-35)+11*Ct))*k*pi**2*beta**

2+(-1)*Cf0**3*(3+Cd**2+2*Cd*((-2)+Ct)+(-4)*Ct+Ct**2)*pi**2*beta**3+2*Cf0*k**

2*beta*((1+(-1)*Ct)*((-7)+3*Cd+3*Ct)*pi**2+4*Cf0**2*((-2)+Cd)*((-3)+Cd+Ct)*

beta**2)+(sqrt(-1)*8)*k**3*(((-1)+Ct)**2*pi**2+Cf0**2*((-2)+Cd)*((-11)+5*Cd+

Ct)*beta**2))*((sqrt(-1)*(-4))*((-1)+Ct)*k**4*Kn*(t3+(-1)*Fr**2*t4)*delta+(

sqrt(-1)*(-2))*Cf0*pi**2*beta*(gamma*phi0+psi00)+k*((1+(-1)*Ct)*pi**2*(gamm

a*phi0+psi00)+(-4)*Cf0**2*Fr**2*beta**2*((-2)*gamma*phi0*(phid+phit)+((-3)+

Cd+Ct+(-1)*t1+Cd*t1+Ct*t1+(-2)*t2)*psi00))+4*k**3*(Cf0*Kn*((1+((-1)+Cd)*Fr**

2+Ct*((-1)+Fr**2))*t3+((-3)+Ct)*Fr**2*t4)*beta*delta+2*gamma*phi0*phit+psi0

0+(-1)*Ct*psi00+t1*psi00+(-1)*Ct*t1*psi00+Fr**2*(gamma*phi0*(((-1)+Ct)*phid

+(-1)*Cd*phit)+((-1)+Ct)*(1+t2)*psi00))+(sqrt(-1)*(-4))*Cf0*k**2*beta*(Cf0*F

r**2*Kn*(((-1)+Cd+Ct)*t3+(-2)*t4)*beta*delta+2*gamma*phi0*phit+psi00+(-1)*C

t*psi00+t1*psi00+(-1)*Ct*t1*psi00+Fr**2*(gamma*phi0*(((-3)+Ct)*phid+(-1)*(2+

Cd)*phit)+((-4)+(-1)*t1+Cd*(1+t1)+(-3)*t2+Ct*(2+t1+t2))*psi00))))*((sqrt(-1)
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*(-1))*((-16)*Cf0*((-1)+Ct)*(4+(-3)*Cd+2*Ct)*k**6*beta+(sqrt(-1)*8)*Cf0**2*(

Cd+Cd**2+(-2)*Cd*Ct+(-2)*((-1)+Ct+Ct**2))*k**3*pi**2*beta**2+(sqrt(-1)*(-2))

*Cf0**2*((-4)+Ct)*((-1)+Cd+Ct)*k*pi**4*beta**2+Cf0**3*((-1)+3*Cd**2+(-2)*Ct+

3*Ct**2+Cd*((-2)+6*Ct))*pi**4*beta**3+(sqrt(-1)*(-8))*((-1)+Ct)*k**5*(((-1)+

Ct)*pi**2+4*Cf0**2*(3*Cd+(-2)*(2+Ct))*beta**2)+(-4)*Cf0*((-1)+Ct)*k**4*beta

*(((-5)+(-2)*Cd+3*Ct)*pi**2+4*Cf0**2*(3*Cd+(-2)*(2+Ct))*beta**2)+Cf0*k**2*pi

**2*beta*(3*((-1)+Ct)*((-1)+Cd+Ct)*pi**2+4*Cf0**2*(5+3*Cd**2+(-5)*Ct**2+(-2

)*Cd*(2+Ct))*beta**2))*((sqrt(-1)*(-4))*((-1)+Ct)*k**2*Kn*(t3+(-1)*Fr**2*t4

)*delta+sqrt(-1)*Cf0*Fr**2*beta*(gamma*phi0*((-3)+Cd+Ct+2*phid+2*phit)+((1+

(-1)*Cd+(-1)*Ct)*t1+2*t2)*psi00)+2*k*(Cf0*Fr**2*Kn*(((-1)+Cd+Ct)*t3+(-2)*t4

)*beta*delta+gamma*phi0*((-1)+Ct*(1+Fr**2*((-1)+phid))+2*phit+(-1)*Fr**2*((

-1)+phid+Cd*phit))+(-1)*((-1)+Ct)*(t1+(-1)*Fr**2*t2)*psi00))+(-1)*(((-1)+Ct)

*k+(sqrt(-1)*(-1))*Cf0*((-3)+Cd+Ct)*beta)*((sqrt(-1)*(-4))*Cf0*((-2)+Cd)*k**

3*beta+(sqrt(-1)*(-2))*Cf0*((-2)+Cd+Ct)*k*pi**2*beta+(-1)*Cf0**2*((-1)+Cd+C

t)*pi**2*beta**2+k**2*(((-1)+Ct)*pi**2+(-4)*Cf0**2*((-2)+Cd)*beta**2))*((sq

rt(-1)*(-32))*((-1)+Ct)*k**4*Kn*(t3+(-1)*Fr**2*t4)*delta+(sqrt(-1)*(-1))*Cf

0*pi**2*beta*(gamma*phi0+psi00)+k*((1+(-1)*Ct)*pi**2*(gamma*phi0+psi00)+(-4)

*Cf0**2*Fr**2*beta**2*((-2)*gamma*phi0*(phid+phit)+((-3)+Cd+Ct+(-1)*t1+Cd*t1

+Ct*t1+(-2)*t2)*psi00))+16*k**3*(Cf0*Kn*((1+((-1)+Cd)*Fr**2+Ct*((-1)+Fr**2))

*t3+((-3)+Ct)*Fr**2*t4)*beta*delta+2*gamma*phi0*phit+psi00+(-1)*Ct*psi00+t1*

psi00+(-1)*Ct*t1*psi00+Fr**2*(gamma*phi0*(((-1)+Ct)*phid+(-1)*Cd*phit)+((-1)

+Ct)*(1+t2)*psi00))+(sqrt(-1)*(-8))*Cf0*k**2*beta*(Cf0*Fr**2*Kn*(((-1)+Cd+Ct

)*t3+(-2)*t4)*beta*delta+2*gamma*phi0*phit+psi00+(-1)*Ct*psi00+t1*psi00+(-1

)*Ct*t1*psi00+Fr**2*(gamma*phi0*(((-3)+Ct)*phid+(-1)*(2+Cd)*phit)+((-4)+(-1

)*t1+Cd*(1+t1)+(-3)*t2+Ct*(2+t1+t2))*psi00))))+(1/128)*pi**4*((-4)*((-1)+Ct

)*((-1)+Fr**2)*k**3+(sqrt(-1)*2)*Cf0*(1+((-4)+Cd)*Fr**2+Ct*((-1)+2*Fr**2))*

k**2*beta+sqrt(-1)*Cf0*pi**2*beta+k*(((-1)+Ct)*pi**2+Cf0**2*((-3)+Cd+Ct)*Fr

**2*beta**2))**(-1)*((-4)*((-1)+Ct)*((-1)+Fr**2)*k**3+(sqrt(-1)*(-4))*Cf0*(1

+((-4)+Cd)*Fr**2+Ct*((-1)+2*Fr**2))*k**2*beta+(sqrt(-1)*(-2))*Cf0*pi**2*bet

a+k*(((-1)+Ct)*pi**2+4*Cf0**2*((-3)+Cd+Ct)*Fr**2*beta**2))**(-1)*(((sqrt(-1

)*2)*Fr**(-2)*k*pi**2+(-2)*Cf0*((-1)+Ct)**(-1)*Fr**(-2)*pi**2*beta+(sqrt(-1

)*(-4))*Fr**(-2)*((-1)+Fr**2)*k**2*(2*k+(sqrt(-1)*(-1))*Cf0*beta)+(sqrt(-1)*

2)*Cf0*((-1)+Ct)**(-1)*((-3)+Cd+Ct)*k*beta*((sqrt(-1)*2)*k+Cf0*beta))**(-1)*

(4*((-1)+Ct)**(-1)*Fr**(-2)*k**2*Kn*((sqrt(-1)*8)*((-1)+Ct)*k**3*(t3+(-1)*t4

)+(sqrt(-1)*(-2))*((-1)+Ct)*k*pi**2*t4+4*Cf0*((-1)+Ct)*k**2*(t3+(-1)*t4)*be
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ta+Cf0*pi**2*((1+(-1)*Cd+(-1)*Ct)*t3+2*t4)*beta)*delta+(sqrt(-1)*8)*Fr**(-2)

*((-1)+Fr**2)*k**3*pi**2*gamma*r*rtheta0**(-1)*beta**(-1)*phi0+(sqrt(-1)*(-2

))*Cf0**2*((-1)+Ct)**(-1)*((-3)+Cd+Ct)*k*pi**2*gamma*r*rtheta0**(-1)*beta*p

hi0+((-1)+Ct)**(-1)*Fr**(-2)*pi**4*gamma*r*rtheta0**(-1)*beta**(-1)*((sqrt(

-1)*(-2))*((-1)+Ct)*k+2*Cf0*beta)*phi0+8*((-1)+Ct)**(-1)*Fr**(-2)*k**3*(2*k+

(sqrt(-1)*(-1))*Cf0*beta)*(gamma*phi0*(phid+(-1)*Ct*phid+((-2)+Cd)*phit)+((-

1)+Ct)*(t1+(-1)*t2)*psi00)+4*((-1)+Ct)**(-1)*Fr**(-2)*k**2*pi**2*rtheta0**(-

1)*(Cf0*(1+(-1)*Ct+((-4)+Cd+2*Ct)*Fr**2)*gamma*r*phi0+gamma*rtheta0*phi0*((

-1)+Ct+phid+(-1)*Ct*phid+Cd*phit)+(-1)*((-1)+Ct)*rtheta0*t2*psi00)+(sqrt(-1)

*(-2))*Cf0*((-1)+Ct)**(-1)*Fr**(-2)*k*pi**2*beta*(gamma*phi0*((-3)+Cd+Ct+2*p

hid+2*phit)+((1+(-1)*Cd+(-1)*Ct)*t1+2*t2)*psi00))+(sqrt(-1)*(1/2))*((-1)+Ct)

*Fr**2*(((-1)+Ct)*k*((-4)*((-1)+Fr**2)*k**2+pi**2)+(sqrt(-1)*2)*Cf0*(2*(1+(

-1)*Ct+((-4)+Cd+2*Ct)*Fr**2)*k**2+pi**2)*beta+4*Cf0**2*((-3)+Cd+Ct)*Fr**2*k*

beta**2)**(-1)*(4*((-1)+Ct)**(-1)*Fr**(-2)*k**2*Kn*(sqrt(-1)*((-1)+Ct)*k*(4*

k**2*(t3+(-1)*t4)+(-1)*pi**2*t4)+Cf0*(4*((-1)+Ct)*k**2*(t3+(-1)*t4)+pi**2*(

(1+(-1)*Cd+(-1)*Ct)*t3+2*t4))*beta)*delta+(sqrt(-1)*4)*Fr**(-2)*((-1)+Fr**2)

*k**3*pi**2*gamma*r*rtheta0**(-1)*beta**(-1)*phi0+(sqrt(-1)*(-4))*Cf0**2*((-

1)+Ct)**(-1)*((-3)+Cd+Ct)*k*pi**2*gamma*r*rtheta0**(-1)*beta*phi0+((-1)+Ct)*

*(-1)*Fr**(-2)*pi**4*gamma*r*rtheta0**(-1)*beta**(-1)*((sqrt(-1)*(-1))*((-1)

+Ct)*k+2*Cf0*beta)*phi0+16*((-1)+Ct)**(-1)*Fr**(-2)*k**3*(k+(sqrt(-1)*(-1))*

Cf0*beta)*(gamma*phi0*(phid+(-1)*Ct*phid+((-2)+Cd)*phit)+((-1)+Ct)*(t1+(-1)*

t2)*psi00)+4*((-1)+Ct)**(-1)*Fr**(-2)*k**2*pi**2*rtheta0**(-1)*(Cf0*(1+(-1)*

Ct+((-4)+Cd+2*Ct)*Fr**2)*gamma*r*phi0+gamma*rtheta0*phi0*((-1)+Ct+phid+(-1)

*Ct*phid+Cd*phit)+(-1)*((-1)+Ct)*rtheta0*t2*psi00)+(sqrt(-1)*(-4))*Cf0*((-1

)+Ct)**(-1)*Fr**(-2)*k*pi**2*beta*(gamma*phi0*((-3)+Cd+Ct+2*phid+2*phit)+((

1+(-1)*Cd+(-1)*Ct)*t1+2*t2)*psi00)))**(-1)*((-8)*k**2*(((-1)+Ct)*k+(sqrt(-1)

*(-1))*Cf0*((-3)+Cd+Ct)*beta)*((sqrt(-1)*(-1))*((-1)+Ct)*k*(4*k**2+pi**2)+2

*Cf0*((-2)*((-1)+Ct)*k**2+pi**2)*beta)*(((-1)+Ct)*k*((-4)*((-1)+Fr**2)*k**2+

pi**2)+(sqrt(-1)*2)*Cf0*(2*(1+(-1)*Ct+((-4)+Cd+2*Ct)*Fr**2)*k**2+pi**2)*bet

a+4*Cf0**2*((-3)+Cd+Ct)*Fr**2*k*beta**2)**(-2)*((-4)*((-1)+Ct)*((-1)+Fr**2)*

k**3+(sqrt(-1)*2)*Cf0*(1+((-4)+Cd)*Fr**2+Ct*((-1)+2*Fr**2))*k**2*beta+sqrt(-

1)*Cf0*pi**2*beta+k*(((-1)+Ct)*pi**2+Cf0**2*((-3)+Cd+Ct)*Fr**2*beta**2))**(-

1)*(pi**2*((sqrt(-1)*(-2))*((-1)+Ct)*k*Kn*t3*delta+gamma*phi0*((-1)+Ct+2*ph

it)+(-1)*((-1)+Ct)*t1*psi00)+2*Fr**2*k*(2*k+(sqrt(-1)*(-1))*Cf0*beta)*((sqr

t(-1)*2)*((-1)+Ct)*k*Kn*(t3+(-1)*t4)*delta+gamma*phi0*(phid+(-1)*Ct*phid+((
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-2)+Cd)*phit)+((-1)+Ct)*(t1+(-1)*t2)*psi00))+sqrt(-1)*rtheta0**(-1)*beta**(-

1)*((-4)*((-1)+Ct)*((-1)+Fr**2)*k**3+(sqrt(-1)*4)*Cf0*(1+((-4)+Cd)*Fr**2+Ct

*((-1)+2*Fr**2))*k**2*beta+(sqrt(-1)*2)*Cf0*pi**2*beta+k*(((-1)+Ct)*pi**2+4*

Cf0**2*((-3)+Cd+Ct)*Fr**2*beta**2))**(-2)*((sqrt(-1)*4)*Cf0**2*pi**4*gamma*

r*beta**2*phi0*((-1)+2*phid+2*phit)+(sqrt(-1)*16)*((-1)+Ct)*((-1)+Fr**2)*k**

6*gamma*r*phi0*((-2)+Cd+2*((-1)+Ct)*phid+4*phit+(-2)*Cd*phit)+(-16)*k**5*be

ta*(Cf0*(2+((-5)+Cd)*Fr**2+Ct*((-2)+3*Fr**2))*gamma*r*phi0*(2+(-2)*((-1)+Ct)

*phid+(-4)*phit+Cd*((-1)+2*phit))+(-2)*((-1)+Ct)*rtheta0*(gamma*phi0*((-1)+C

t+(-1)*phid+Ct*phid+2*phit+(-1)*Cd*phit)+(-1)*((-1)+Ct)*((-1)+t1+(-1)*t2)*p

si00))+4*k**3*beta*(4*Cf0**3*((-3)+Cd+Ct)*Fr**2*gamma*r*beta**2*phi0*(2+(-2)

*((-1)+Ct)*phid+(-4)*phit+Cd*((-1)+2*phit))+Cf0*pi**2*gamma*r*phi0*(Cd**2*Fr

**2*(1+(-2)*phit)+2*((-2)+(-2)*(3+(-4)*Ct+Ct**2)*phid+((-1)+Ct)*Fr**2*(1+2*(

(-3)+Ct)*phid+(-2)*phit)+4*phit)+2*Cd*(2+(-1)*Fr**2*(2+phid+(-4)*phit)+(-4)*

phit+Ct*((-1)+Fr**2*(1+phid+(-2)*phit)+2*phit)))+8*Cf0**2*((-3)+Cd+Ct)*rthe

ta0*beta**2*(gamma*phi0*(1+phid+(-1)*Ct*(1+phid)+(-2)*phit+Cd*phit)+((-1)+C

t)*((-1)+t1+(-1)*t2)*psi00)+2*((-1)+Ct)*pi**2*rtheta0*(gamma*phi0*(((-1)+Ct

)*phid+(-1)*Cd*phit)+((-1)+Ct)*(1+t2)*psi00))+(sqrt(-1)*(-4))*k**4*(((-1)+C

t)*pi**2*gamma*r*phi0*((-2)+(-2)*((-1)+Ct)*((-2)+Fr**2)*phid+4*phit+Cd*((-2

)+Fr**2)*((-1)+2*phit))+(-4)*Cf0*beta**2*(Cf0*(1+((-7)+2*Cd)*Fr**2+Ct*((-1)+

3*Fr**2))*gamma*r*phi0*(2+(-2)*((-1)+Ct)*phid+(-4)*phit+Cd*((-1)+2*phit))+2

*((-4)+Cd+2*Ct)*rtheta0*(gamma*phi0*(1+phid+(-1)*Ct*(1+phid)+(-2)*phit+Cd*ph

it)+((-1)+Ct)*((-1)+t1+(-1)*t2)*psi00)))+2*Cf0*k*pi**2*beta*(pi**2*gamma*r*

phi0*(Cd+(-2)*Cd*phit+((-1)+Ct)*((-1)+4*phid+2*phit))+4*Cf0*((-3)+Cd+Ct)*be

ta**2*(Cf0*Fr**2*gamma*r*phi0*((-1)+2*phid+2*phit)+rtheta0*(gamma*phi0*((-1

)+Cd+Ct+2*phid+2*phit)+((1+(-1)*Cd+(-1)*Ct)*t1+2*(1+t2))*psi00)))+sqrt(-1)*

k**2*pi**2*(4*Cf0*Cd**2*gamma*beta**2*phi0*(2*rtheta0*phit+Cf0*Fr**2*r*((-1)

+2*phit))+(-2)*(((-1)+Ct)**2*pi**2*gamma*r*phi0*phid+4*Cf0**2*gamma*r*beta**

2*phi0*((-1)+(-4)*phid+Ct**2*Fr**2*phid+2*phit+(-1)*Ct*((-1)+2*Fr**2)*((-1)+

4*phid+2*phit)+Fr**2*((-4)+11*phid+8*phit))+4*Cf0*((-1)+Ct)*rtheta0*beta**2

*(gamma*phi0*(1+Ct*((-1)+phid)+(-5)*phid+(-2)*phit)+((-5)+(-1)*t1+(-5)*t2+Ct

*(1+t1+t2))*psi00))+Cd*(((-1)+Ct)*pi**2*gamma*r*phi0*((-1)+2*phit)+(-4)*Cf0*

beta**2*(Cf0*gamma*r*phi0*(2+(-4)*phit+Fr**2*((-1)+Ct+(-6)*phid+2*Ct*phid+2*

phit+(-2)*Ct*phit))+2*rtheta0*(gamma*phi0*(1+(-1)*phid+Ct*((-1)+phid+(-1)*p

hit)+3*phit)+((-1)+Ct)*(1+t1+t2)*psi00))))))*((sqrt(-1)*(-4))*k**2*(16*((-1

)+Ct)**2*k**4+(sqrt(-1)*4)*Cf0*((-1)+Ct)*((-4)+Cd+2*Ct)*k**3*beta+sqrt(-1)*
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Cf0*((-1)+Ct)*((-5)+Cd+Ct)*k*pi**2*beta+(-4)*Cf0**2*((-3)+Cd+Ct)*pi**2*beta

**2+4*((-1)+Ct)*k**2*(((-1)+Ct)*pi**2+2*Cf0**2*((-3)+Cd+Ct)*beta**2))*((-4)*

((-1)+Ct)*((-1)+Fr**2)*k**3+(sqrt(-1)*4)*Cf0*(1+((-4)+Cd)*Fr**2+Ct*((-1)+2*F

r**2))*k**2*beta+(sqrt(-1)*2)*Cf0*pi**2*beta+k*(((-1)+Ct)*pi**2+4*Cf0**2*((-

3)+Cd+Ct)*Fr**2*beta**2))**(-1)*(pi**2*((sqrt(-1)*(-1))*((-1)+Ct)*k*Kn*t3*d

elta+gamma*phi0*((-1)+Ct+2*phit)+(-1)*((-1)+Ct)*t1*psi00)+4*Fr**2*k*(k+(sqr

t(-1)*(-1))*Cf0*beta)*(sqrt(-1)*((-1)+Ct)*k*Kn*(t3+(-1)*t4)*delta+gamma*phi

0*(phid+(-1)*Ct*phid+((-2)+Cd)*phit)+((-1)+Ct)*(t1+(-1)*t2)*psi00))+(-1)*rt

heta0**(-1)*beta**(-1)*(2*Cf0**2*pi**4*gamma*r*beta**2*phi0*((-1)+2*phid+2*

phit)+(-16)*((-1)+Ct)*((-1)+Fr**2)*k**6*gamma*r*phi0*((-2)+Cd+2*((-1)+Ct)*p

hid+4*phit+(-2)*Cd*phit)+(sqrt(-1)*(-8))*k**5*beta*((-1)*Cf0*((-1)+Ct+((-11)

+4*Cd)*Fr**2+3*Ct*Fr**2)*gamma*r*phi0*((-2)+Cd+2*((-1)+Ct)*phid+4*phit+(-2)*

Cd*phit)+(-8)*((-1)+Ct)*rtheta0*(gamma*phi0*((-1)+Ct+(-1)*phid+Ct*phid+2*ph

it+(-1)*Cd*phit)+(-1)*((-1)+Ct)*((-1)+t1+(-1)*t2)*psi00))+(sqrt(-1)*(-2))*k*

*3*beta*(8*Cf0**3*((-3)+Cd+Ct)*Fr**2*gamma*r*beta**2*phi0*(2+(-2)*((-1)+Ct)*

phid+(-4)*phit+Cd*((-1)+2*phit))+Cf0*pi**2*gamma*r*phi0*((-1)*Cd*(7+(-8)*Fr

**2*(2+phid+(-4)*phit)+Ct*(1+8*Fr**2*(1+phid+(-2)*phit)+(-2)*phit)+(-14)*phi

t)+4*Cd**2*Fr**2*((-1)+2*phit)+(-2)*((-8)+(3+(-4)*Ct+Ct**2)*phid+16*phit+((-

1)+Ct)*Fr**2*((-5)+((-6)+8*Ct)*phid+10*phit)))+16*Cf0**2*((-3)+Cd+Ct)*rthet

a0*beta**2*(gamma*phi0*(1+phid+(-1)*Ct*(1+phid)+(-2)*phit+Cd*phit)+((-1)+Ct)

*((-1)+t1+(-1)*t2)*psi00)+(-8)*((-1)+Ct)*pi**2*rtheta0*(gamma*phi0*(((-1)+Ct

)*phid+(-1)*Cd*phit)+((-1)+Ct)*(1+t2)*psi00))+4*k**4*(((-1)+Ct)*pi**2*gamma

*r*phi0*((-2)+(-2)*((-1)+Ct)*((-2)+Fr**2)*phid+4*phit+Cd*((-2)+Fr**2)*((-1)+

2*phit))+2*Cf0*beta**2*(Cf0*(1+((-7)+2*Cd)*Fr**2+Ct*((-1)+3*Fr**2))*gamma*r

*phi0*(2+(-2)*((-1)+Ct)*phid+(-4)*phit+Cd*((-1)+2*phit))+2*((-4)+Cd+2*Ct)*r

theta0*(gamma*phi0*(1+phid+(-1)*Ct*(1+phid)+(-2)*phit+Cd*phit)+((-1)+Ct)*((-

1)+t1+(-1)*t2)*psi00)))+(sqrt(-1)*(-1))*Cf0*k*pi**2*beta*(pi**2*gamma*r*phi

0*(Cd*((-4)+8*phit)+((-1)+Ct)*((-5)+2*phid+10*phit))+8*Cf0*((-3)+Cd+Ct)*bet

a**2*(Cf0*Fr**2*gamma*r*phi0*((-1)+2*phid+2*phit)+rtheta0*(gamma*phi0*((-1)+

Cd+Ct+2*phid+2*phit)+((1+(-1)*Cd+(-1)*Ct)*t1+2*(1+t2))*psi00)))+(-1)*k**2*p

i**2*(2*Cf0*Cd**2*gamma*beta**2*phi0*(Cf0*Fr**2*r*(1+(-2)*phit)+(-2)*rtheta

0*phit)+2*((-1)*((-1)+Ct)**2*pi**2*gamma*r*phi0*phid+2*Cf0**2*gamma*r*beta**

2*phi0*((-1)+(-4)*phid+Ct**2*Fr**2*phid+2*phit+(-1)*Ct*((-1)+2*Fr**2)*((-1)+

4*phid+2*phit)+Fr**2*((-4)+11*phid+8*phit))+2*Cf0*((-1)+Ct)*rtheta0*beta**2

*(gamma*phi0*(1+Ct*((-1)+phid)+(-5)*phid+(-2)*phit)+((-5)+(-1)*t1+(-5)*t2+Ct
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*(1+t1+t2))*psi00))+Cd*(((-1)+Ct)*pi**2*gamma*r*phi0*((-1)+2*phit)+2*Cf0*bet

a**2*(Cf0*gamma*r*phi0*(2+(-4)*phit+Fr**2*((-1)+Ct+(-6)*phid+2*Ct*phid+2*ph

it+(-2)*Ct*phit))+2*rtheta0*(gamma*phi0*(1+(-1)*phid+Ct*((-1)+phid+(-1)*phi

t)+3*phit)+((-1)+Ct)*(1+t1+t2)*psi00))))))

In which: Xi= Ξ, pi = π , gamma = γ , beta = β , delta =δ , Cf0 =C f ,0, Cd =Cd ,
Ct =Ct , phi0 = φ0, phid = φd , phit = φt , theta0 = θ0, rtheta0 =

√
θ0, psi00= ψ

(0)
0 .

Notice that to neglect suspended load is sufficient to set ψ
(0)
0 = t1= t2= t3= t4=0.
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Appendix for Chapter 3

In Fig. B.1, the finite amplitude of alternate bars is given in the parameter space.

B.1 Vegetation parameters

Fluvial trees usually experience maximum growth when the water table is at an
optimum depth (D̂= l̂opt). At lower stages the roots cannot tap the water (D̂< l̂2),
while at higher stages water logging occurs (D̂> l̂1), thus reducing respiration and
gas exchange in the root zone. Therefore, the carrying capacity for vegetation growth
has been evaluated as a quadratic function (parabola) of the water depth K̂(D̂), e.g,
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Fig. B.1 Finite amplitude bar. As versus β for diffferent Fr and ds. Each line is plotted
from the βc of the first mode (alternate bars) to the βc of the second mode (central bars).
Fr={0.4,0.7,1,1.3} for panel (a) and Fr={0.5,0.7,1,1.3} for panel (b), with same color
scale.



132 Appendix for Chapter 3

Camporeale and Ridolfi (2006),

K̂(D̂) =

â[D̂2 − (l̂1 + l̂2)D̂+ l̂1 l̂2] l̂2 ≤ D̂ ≤ l̂1

0 otherwise,
(B.1)

where â=1/[(l̂1 − l̂opt)(l̂2 − l̂opt)] and we have assumed l̂1=−0.3 m, l̂opt =−0.8 m,
l̂2=−1.3 m and K̂opt =5 plants/m2.

The dimensionless growth and decay factors of vegetation read

νg =
ν̂gD̂0K̂opt

Û0
β , νd = ν̂dD̂0Û2

0 β , (B.2)

where ν̂g and ν̂d are the dimensional growth and decay coefficients, respectively.
Considering the logistic growth of vegetation (see Eq. (4)), the time plants need to
reach a mature state in optimum condition (K̂ = K̂opt) reads

t̂g =
∫ 0.95K̂opt

0.05K̂opt

(
ν̂gφ̂

K̂opt − φ̂

)
dφ̂ =

5.88
ν̂gK̂opt

, (B.3)

where φ is the number of plants per unit area. Assuming that in optimum condition
mature vegetation develops in 20 years (growth rates of some riparian species are
reported in Tab. 1 of Camporeale and Ridolfi (2006)), one obtains ν̂g∼10−9m2/(s
plants). Instead, the numerical value for the dimensional death factor ν̂d is not a trivial
task as the processes leading to plant uprooting are still a research argument (e.g.,
Bankhead et al. (2017); Vesipa et al. (2017)) and no numerical data on the coefficient
are avaiable at the present day. Our values are based on the experiments of Edmaier
et al. (2011), in which uprooting times for sativa plants were calculated for a fixed
flow rate. Introducing the experimental set-up data in Eq. 3.3 and integrating in time,
one obtains ν̂d ∼1000ν̂g, in agreement with the much faster process of uprooting
with respect to growth. This estimate has some uncertainty and more research,
both in field and experimental, should be performed, for example to understand
how the root systems decreases the ν̂d value. However, Fig. 3.3c shows the weakly
dependence of the results (AVI index and c∗v) on the ratio between growth and death
coefficients (notice the x-log scale), providing reliability to the outcomes.



B.2 Threshold variation coefficient 133

η(s=0,n)

1-1 0 n

▼
t
d
t
1

t
2

l
1

l
2

death

growth

T
0

M

D
T

▼

Fig. B.2 In the background, a river section in correspondence to a bar crest. In the inset, the
flow depth, evaluated at the bar top (brown reverse triangle), versus time for a period ∆t.
M=Dmax+AT and the depth (time) intervals M-0 (0-td) and l1-l2 (t1-t2) define the vegetation
death and growth, respectively.

B.2 Threshold variation coefficient

In this section, we briefly explain how to evaluate c∗v , which is the threshold variation
coefficient above which plant growth is completely inhibited by flow variability,
namely AVI decays to zero. An explicative sketch is provided in Fig. B.2, where
a transversal river section accounting for the bar presence is shown. We obtain
the parametric transition to a non-vegetated state at the bar top, which is the most
favorable spatial point for vegetation to develop. To this regard, the inset of Fig. B.2
shows an exemplary trend for the water depth at the bar top. The effect may not be
unique, e.g., there could be only death or growth or none of the two, but it represents
the significant condition for the parametric transition from the vegetated to the bare
state.

Let us start from the Compound Poisson Process for the water discharge. Once
the bars are formed and the formative event is over, the flow decreases to ordinary
values. At this point, the stochastic time series is substituted by a statistically
equivalent periodic one, whose event of period ∆t is Q=Qmax(cv)exp(−t/τ). The
corresponding spatially extended water depth reads

D(s,n, t) = Dmax(cv)e−
3t

5T +As sin
(

πn
2

)(
D̂1(k)eiks + c.c.

)
(B.4)

where D̂1 is the water depth component of the first mode eigenvector. The first term
in the r.h.s. of (B.4) comes from the periodic uniform condition, whereas the second
term takes into account the morphological presence of the bars. Indeed at the bar
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top, (B.4) reduces to
DT (∆t) = Dmax(cv)e−

3t
5T +AT (B.5)

with the subscript T referring to bar top and AT = As[D̂1(k)+ D̂1(−k)]. From (B.5)
and the inset in Fig. B.2, the times defining the uprooting and growth intervals read

td =
5
3
T ln

(
−Dmax(cv)

AT

)
t1,2 =

5
3
T ln

(
Dmax(cv)

l1,2 −AT

)
(B.6)

where the existence of td ,t1,t2 is not general as other conditions may be present,
e.g., only death active (td >∆t). The threshold variation coefficient c∗v can now be
obtained by imposing the Floquet exponent (3.5) equal to zero and integrating the
growth and death terms in the respective time intervals reported in ((B.6)). However,
as the time boundaries depend on cv, to find a solution for c∗v is not a trivial task. A
good approximation (error within 10%) for c∗v is given by imposing td(c∗v)=0. This
can be done without any loss of generality due to the very fast uprooting process
and it simplifies considerably the calculus of the threshold variation coefficient
(Dmax(c∗v)=−AT ). The approximated critical threshold so evaluated corresponds
to eq. (3.6) and a comparison to the exact result obtained with the time intervals in
(B.6) is furnished in Fig. 3.3c.
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B.3 Rivers satellite photos and historical discharge
series
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Fig. B.3 Alpine Rhine. (a) Satellite photo of the bare bars in the Alpine Rhine river near
Meierhof, Liechtentstein 2012. (b-c) Mean daily discharge series measured at Domat
(Switzerland) and its pdf. The data account for the confluence with the Landquart tributary
just upstream the bars. The formative event has been considered as the 99% percentile, as
lower flow rates are irrelevant to bar morphology (Adami et al., 2016; Tubino, 1991)
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Fig. B.4 Isère. (a) Satellite photo of the vegetated bars in the Isère river near Arbin, France
2011. (b-c) Mean daily discharge series measured at Montmèlian and its pdf. The formative
event has been considered as the 50- year flood.
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Fig. B.5 Vedder Canal. (a) Satellite photo of the bare bars in the Vedder canal near Barrow-
town (Canada) in 2017. (b-c) Mean daily discharge series measured at Vedder Crossing and
its pdf.
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Fig. B.6 Arc river, before and after the highway construction (1994-1996). (a) Aerial photo
of the vegetated bars near Les Champagnes (France) in 1989. (b) Satellite photo of the
almost bare bars in 2015. (c-d) Mean daily discharge series measured at Saint-Remy de
Maurienne and its pdf.
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C.1 Order ε solution

Here we report the order ε solutions to the system (4.22)-(4.25):

u1 =
1
6
(y−η)(y−2h−η){3ζ (h+η)x −3ReWe [(h+η)xzz +(h+η)zzz]

+Rehhx
[
2h(η − y)−4h2 +(y−η)2]}, (C.1)

w1 =
1
2
(y−η)(−2h−η + y){δ (h+η)z −ReWe [(h+η)zzz +(h+η)xxz]},

(C.2)

v1 =
∫ y

η

(u1,x +w1,z)dy. (C.3)

We point out that the expression for p1 is not reported as it is not needed to reach
eq. (4.26).
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C.2 Linear matrix, dispersion relation and eigenva-
lues for the 2D model

The matrix associated with the linear system (4.50) depends on the environment
considered. Its general form reads

LI,K =

(
a1 a2

a3 a4

)
. (C.4)

In the ice case

a1 = 30ik̃+5K̃2 (
ζ + K̃2ReWe

)
−8k̃2Re+15Ω, a3 =−b,

a2 = 5K̃2(K̃2ReWe+ζ ), a4 = 1+bγω

and K̃2=k2+ k̃2. Imposing the determinant equal to zero gives the dispersion relation

5K̃2(bγΩ+b+1)(K̃2ReWe+ζ )+(1+bγΩ)
(
30ik̃−8k̃2Re+15Ω

)
= 0, (C.5)

whose two complex conjugate solutions are the eigenvalues of the linear system

Ω1,2 =
1

30bγ

(
A±

√
B
)
, (C.6)

with
A =−15−30ik̃γ −5K̃2bγ

(
ζ + K̃2ReWe

)
+8γ k̃2Re,

B =−60bγ
[
2α(15i−4Rα)+5K2(1+b)(K̃2ReWe +ζ )

]
+
[
15+2bk̃(15i−4Rek̃)γ +5K2rγ(K̃2 ReWe+ζ )

]2
.

In the karst case, the first line of the matrix remains the same, while a3=−1 and
a4=γω . Imposing the determinant equal to zero gives the dispersion relation

5K̃2(γΩ+1)(K̃2ReWe+ζ )+ γΩ
(
30ik̃−8k̃2Re+15Ω

)
= 0, (C.7)
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whose two complex conjugate solutions are the eigenvalues of the linear system

Ω1,2 =
1

30γ

(
A±

√
B
)
, (C.8)

with
A =−30ik̃−5K̃2 (

ζ + K̃2ReWe
)
+8k̃2Re,

B = γ{−300K̃2 (
ζ + K̃2ReWe

)
+ γ
[
5K̃2 (

ζ + K̃2ReWe
)
+2k̃(−4k̃Re+15i)

]2}.
C.3 Nonlinear coefficients

Following (Cheng and Chang, 1992), we define a function F1

F1(α,β ,γ, j,m,n) = N[vm(βk)eiβkx,vn(γk)eiγkx] · v̂ j(αk)e− iαkx, (C.9)

where (α,β ,γ) are the indices for the interacting Fourier modes that satisfy the
resonant condition α = β + γ , and ( j,m,n) stands for the eigenmodes. Let us
consider two generic vectors u=(u1,u2) and v=(v1,v2), N[u,w]=(N1,N2) is the
symmetric function containing all second order non-linearities of system (4.58)

N1 =
1
2
{u1,z

[
ζ (v1 + v2)z −ReWe(v1 + v2)zzz

]
+u1

[
ζ (v1 + v2)zz −ReWe(v1 + v2)zzzz

]
}

+
1
2
{v1,z

[
ζ (u1 +u2)z −ReWe(u1 +u2)zzz

]
+v1

[
ζ (u1 +u2)zz −ReWe(u1 +u2)zzzz

]
}

(C.10)
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and N2=0. The interaction coefficients in (4.65)-(4.66) are:

P1 = F1[1,1/2,1/2,1,1,1], P2 = 2F1[1,−1/2,3/2,1,1,1],

P3 = 2F1[1/2,−1/2,1,1,1,1], P4 = 2F1[1/2,−1,3/2,1,1,1],

P(1)
j = F1[1,1/2,1/2,1, j,1], P(2)

j = 2F1[1,−1/2,3/2,1, j,1],

P(3)
j = 2F1[1,−1/2,3/2,1,1, j], P(4)

j = 2F1[1,−1,2,1,1, j],

P(5)
j = 2F1[1,−3/2,5/2,1,1, j], P(6)

j = 2F1[1/2,−1/2,1,1, j,1],

P(7)
j = 2F1[1/2,−1/2,1,1,1, j], P(8)

j = 2F1[1/2,−1,3/2,1, j,1],

P(9)
j = 2F1[1/2,−1,3/2,1,1, j], P(10)

j = 2F1[1/2,−3/2,2,1,1, j],

S(1)j = 2F1[1/2,−1/2,1, j,1,1], S(3)j = F1[1,1/2,1/2, j,1,1],

S(5)j = 2F1[3/2,1/2,1, j,1,1], S(6)j = F1[2,1,1, j,1,1].

After defining the function H

H(S,α,m,n) =−S/[ω j(αk)−ω1(mk)−ω1(nk)], (C.11)

the coefficients of the center-unstable manifold projection (4.71) read

Z(1)
j = H[S(1)j ,1/2,−1/2,1], Z(3)

j = H[S(3)j ,1,1/2,1/2],

Z(5)
j = H[S(5)j ,3/2,1/2,1], Z(6)

j = H[S(6)j ,2,1,1].

The coefficients of the projected equations (4.72)-(4.73) are

G1 = P4
1 Z(6)

1 +P4
2 Z(6)

2 , G2 = P(1)
2 Z(1)

2 +P(3)
2 Z(5)

2 ,

G5 = P(6)
2 Z(1)

2 +P(9)
2 Z(5)

2 , G6 = P(7)
2 Z(3)

2 ,

G̃2 = G2 −P2P5/(ω3/2 −ω1/2 −ω1), G̃5 = G5 −P4P5/(ω3/2 −ω1/2 −ω1).
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Appendix for Chapter 5

D.1 Order ε solution

From eq. (5.42) with boundary conditions (5.47), the longitudinal velocity at order
ε reads

u(1) =
Nu(1)

Du(1)
, (D.1)

Nu(1) = Re(y−η){hx[h(Bih+1)2(−2h−η + y)
(
2h(η − y)−4h2 +(y−η)2)

+6BiM r∆]+3We(Bih)+1)2 (h+η)xxx (2h+η − y)},

Du(1) = 6(Bih+1)2,

where the time derivative of the free surface has been approximated with the zero-
order kinematic condition (5.41) (Kalliadasis et al., 2011). The vertical velocity is
obtained through the continuity equation at order ε , i.e., v1 =

∫ y
η

u1,x dy. Neglecting
the concentration of dissolved impurities, for the reasons explaind in Sec. 5.2.3, the
order ε temperature reads

T (1) =−
NT (1)

DT (1)
, (D.2)

NT (1) = BiPeT r∆hx(y−η){20h3 (Bi2η(η −2y)+Bi2y2 +1
)
−8Bi2h5

−5Bih2 (y−η)2(−3Biη +3Biy−4)+Bih(y−η)3(−3Biη +3Biy−20)

−10Bih4 +(y−η)3(−3Biη +3Biy−5)},
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DT (1) = 60(Bih+1)3.
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