
09 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Touch-Based Ontology Browsing on Tablets and Surfaces / Corno, Fulvio; DE RUSSIS, Luigi; BARRERA LEON, LUISA
FERNANDA. - ELETTRONICO. - 1:(2019), pp. 616-621. (Intervento presentato al convegno 43rd IEEE Computer
Society International Conference on Computers, Software & Applications (COMPSAC 2019), Symposium on Human
Computing & Social Computing (HCSC) tenutosi a Milwaukee, Wisconsin (USA) nel July 15-19, 2019)
[10.1109/COMPSAC.2019.00094].

Original

Touch-Based Ontology Browsing on Tablets and Surfaces

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/COMPSAC.2019.00094

Terms of use:

Publisher copyright

©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2731416 since: 2019-07-15T10:51:31Z

IEEE

Touch-based Ontology Browsing on Tablets and
Surfaces

Fulvio Corno
Dip. di Automatica e Informatica

Politecnico di Torino
Torino, Italy

fulvio.corno@polito.it

Luigi De Russis
Dip. di Automatica e Informatica

Politecnico di Torino
Torino, Italy

luigi.derussis@polito.it

Luisa Barrera-León
Dip. di Automatica e Informatica

Politecnico di Torino
Torino, Italy

luisa.barrera@polito.it

Abstract—Semantic technologies and Linked Data are increas-
ingly adopted as core application modules, in many knowledge
domains and involving various stakeholders: ontology engineers,
software architects, doctors, employees, etc. Such a diffusion
calls for better access to models and data, which should be
direct, mobile, visual and time effective. While a relevant core
of research efforts investigated the problem of ontology visual-
ization, discovering different paradigms, layouts, and interaction
modalities, a few approaches target mobile devices such as tablets
and smartphones. Touch interaction, indeed, has the potential
of dramatically improving usability of Linked Data and of
semantic-based solutions in real-world applications and mash-
ups, by enabling direct and tactile interactions with involved
knowledge objects. In this paper, we move a step towards touch-
based, mobile interfaces for semantic models by presenting an
ontology browsing platform for Android devices. We exploit state
of the art touch-based interaction paradigms, e.g., pie menus,
pinch-to-zoom, etc., to empower effective ontology browsing. Our
research mainly focuses on interactions, yet providing support to
different visualization approaches thanks to a clear decoupling
between model-level operation and visual representations. Pre-
sented results include the design and implementation of a working
prototype application, as well as a first validation involving
habitual users of semantic technologies. Results show a low
learning curve and positive reactions to the proposed paradigms,
which are perceived as both innovative and useful.

Index Terms—Touch-based interaction, Ontology, Visualiza-
tion, Browsing, Semantic Web Tool, Mobile

I. INTRODUCTION

Semantic Web technologies and Linked Data are increas-
ingly lying at the core of complex, knowledge intensive
applications, involving more and more stakeholders that need
to visualize, understand, browse and query information en-
coded into ontological models, even without deep background
in description logic and Web Ontology Language (OWL)
formalisms. While issues related to ontology browsing and
visualization have been widely investigated by the research
community (see [1] for a systematic overview), mostly in the
context of ontology editing tools, evidence gathered through
observational studies [2] still highlights lack of user satis-
faction, in particular for context-level visualization, selective
visualization of ontology parts, summaries and overviews. The
scenario is further complicated by the variety of involved
users and by the need to access ontology knowledge on-the-
move, through mobile devices. Research challenges involved

by ontology browsing and editing on mobile platforms are
manifold and range from effective interaction design to effec-
tive layout on displays with reduced dimensions, to compu-
tational issues, and so on. In this paper we start addressing
the above issues with a dual goal of showing the technical
feasibility of the approach, and of hinting at the possible
improvements brought by touch-based interaction primitives to
ontology visualization and browsing experience. We therefore
designed and implemented an ontology browsing application
for Android exploiting state of the art interactions such as
radial menus, pinch-to-zoom, etc. and focusing on touch-based
interaction for mobile ontology browsers. Presented results
include a working prototype application, named JellyOnt, and
a first validation involving habitual users of Semantic Web
technologies. User testing shows a low learning curve and
positive reactions (e.g., willingness to adopt) to the proposed
paradigms, which are perceived as both innovative and useful.

II. RELATED WORKS

The visualization of knowledge models has attracted, and
continues to attract attention from the research community.
The problem of effectively conveying information about com-
plex models involving many aspects and based upon non-
visual formalisms represents a really interesting challenge
often requiring interdisciplinary approaches, e.g., by merging
Semantic Web and Information Visualization. As hinted by
Wang and Parsia [3], ontology visualization plays a crucial
role in sensemaking processes when users try to grasp the
domain knowledge represented by an ontology and to map
such information into a mental model of the ontology itself.
Requirements for ontology browsing and visualization have
been widely investigated (e.g., in [1]) and include among
the others the ability to provide: data overview, detailed
zooming on single parts of the model, filter irrelevant data,
etc. Many approaches exist, which address visualization issues
by proposing different representation paradigms, each with
its own pros and cons. In 2007, Katifori et al. [1] carried
a systematic survey of ontology visualization approaches,
organizing them according to 6 visualization categories: (1) in-
dented list, (2) node-link and tree, (3) zoomable, (4) space-
filling, (5) focus + context information, (6) 3D information
landscapes. No specific method seems to be the most ap-

propriate for all applications and, as a consequence, a viable
solution is to provide users with several visualizations. This
approach lies at the basis of the presented work, where
specific visualizations are considered interchangeable and
deserving specific research attention. In more recent times,
several other researches tackled the ontology visualization
challenge, providing different methodologies and tools, which
can somewhat be classified in the same 6 categories. Among
them, Motta et al. [4] propose KC-Viz, a visualization tool
that exploits an empirically-validated ontology summarization
method to provide concise views of large ontologies and to
support “middle-out” navigation of represented models. Hop
et al., on the other hand, proposed GLOW [5], a method
for ontology visualization based on Hierarchical Edge Bun-
dles [6]: a new visually attractive technique for displaying
relations in hierarchical data. Despite the active research in
ontology visualization, few or no approaches exploit touch-
based interactions, as in tablets or interactive surfaces. While
mobile platforms have been considered viable solutions to
provide semantic-powered services in mobility, e.g., as in the
DBPedia mobile application [7], the adoption of touch-enabled
mobile platforms for ontology browsing is almost neglected.
An early attempt of providing a subset of the information
stored in a given ontology model through a mobile terminal
can be found in the OWL Mobile browser1. However, the
provided interface is textual and does not exploit touch-typical
interactions, unless for scrolling lists of ontology entities. In
this sense, the approach proposed in this paper goes beyond
the current state of the art, proposing to exploit mobile touch-
based interfaces as a viable mean to improve the usability of
Linked Data and of semantic-based solutions.

III. REQUIREMENTS

Designing an OWL ontology browsing application for
mobile devices requires to completely re-think interaction
metaphors and paradigms as the typical point-and-click ap-
proach is clearly not suitable for touch devices and involved
computational issues are not negligible too. We therefore
tackled the application design by starting from functional and
non-functional requirements.

Functional requirements involve ontology visualization
and browsing operations, and are mainly extracted from ap-
proaches and surveys reported in literature (i.e., [1], [8], [9]).
They encompass the following domains:

• ontology loading (local and remote);
• ontology visualization and browsing;
• ontology querying;
• full text-search on ontology entities;
• basic Create/Read/Update/Delete (CRUD) operations.

Each domain has been better specified through an iterative
feature elicitation process (accounting user needs emerging
from the Kriglstein survey in [8]) that led to the functional
requirements summarized in Table I, covering a typical subset
of ontology browsing activities.

1http://onto.rpi.edu/demo/owlmobile2, last visited on January 29, 2019.

TABLE I: Functional Requirements, organized by domain
and priority (1 - highest, 5 - lowest).

Domain Requirement Description Priority

Ontology
loading

Loading from
remote URLs

Load an ontology given the ontol-
ogy URI.

1

Loading from
local URIs

Load a locally stored ontology. 2

Creation from
scratch

Create a new ontology from
scratch.

4

Ontology
visualiza-
tion

Model
rendering
(layout)

Show a graphical representation of
the loaded ontology.

1

Concept/
Instance
visualization

Support the visualization of both
concepts and instances, either sep-
arately or in mixed views.

2

Multiple layout
support

Support different rendering layouts
and algorithms.

3

Ontology
browsing

Zoom-in/
Zoom-out

Increase the size of displayed
items to tackle small display is-
sues.

1

Pan Pan the visualization in any direc-
tion to show hidden elements.

1

Bookmark Set the current visualization as
bookmark to recall between differ-
ent browsing sessions.

2

Custom view Compose custom views including
only a subset of the ontology con-
cept and relationships.

2

Ontology
querying

Execution of
queries

Capability to execute queries (e.g.,
in SPARQL) over the visualized
ontology and to integrate results in
the proposed visualization.

3

Graphical
composition of
queries

Ability to compose queries (e.g.,
in SPARQL) through graphical
metaphors, focused on touch inter-
actions.

4

Full text-
search on
ontology
entities

Simple full text
search

Full text search on ontology enti-
ties as a means to quickly navigate
to specific ontology sections or to
quickly specify custom views (fil-
ters).

4

Basic
CRUD

CRUD function-
alities

Graphical primitives to Create,
Read, Update, Delete ontology en-
tities.

3

Non Functional requirements identify constraints emerg-
ing from the target user base and the target platforms. They
encompass: (a) low learning curve; (b) touch-based operations;
(c) mobile platform support; (d) effective exploitation of “nat-
ural” paradigms (e.g., pinch-to-zoom, etc.); (e) responsiveness;
(f) low impact on batteries; (g) open source implementation;
(h) extensibility; (i) ease of use.

In this paper we focus more on requirements involving
user interaction (a,b,d,i) and mobility (c) whereas remaining
constraints are considered as having lower priority.

IV. INTERACTION DESIGN

To enable effective exploitation of “natural” interaction
paradigms on tablets and touch surfaces, the application de-
sign is bounded to touch-only interaction, and tries to avoid
adaptations of traditional interfaces (e.g., keyboard and mouse)
as much as possible. The initial interaction design focuses

on requirements with priority level < 3 whereas low-priority
issues are postponed to next design cycles.

The interaction workflow is organized into well defined
activities, each with a specific focus and goal in terms of
ontology operations. They include: (a) welcome, (b) ontology
browsing, (c) ontology querying2, (d) ontology editing2, and
(e) ontology visualization.

The latter can be considered as a background activity which
is seamlessly combined with the others, welcome excluded.
The general interaction workflow is depicted in Figure 1 and is
deployed in two main phases: an initial selection of the model
to operate on, and a subsequent execution of an ontology-
related activity (i.e., browsing, querying or editing). Users can
switch between activities at any time, and the transition shall
always be smooth and easy to notice. Abrupt changes in the
rendered interface are not allowed except for the “restart from
scratch” case where the interaction workflow requires a re-
start from the welcome activity. Even in this case transitions
between activities shall be provided.

Navigation between activities, and related views, exploits
radial (or pie) menus as core elements. Radial menus have
long been investigated (e.g., see the work in [10]) and typically
offer improved interaction effectiveness (e.g., by lowering the
error rate) and selection speed [11] with respect to linear
menus. Menu slices are large in size and easy to approach,
especially on touch-enabled surfaces.

Ontology-related functions accessible through radial menus,
include: (1) initial ontology selection, allowing users to se-
lect which ontology load/create, (2) activity selection, e.g.,
ontology browsing, querying or editing and (3) activity-related
tooling, e.g., to create custom views or to bookmark specific
visualizations. Depending on the specific navigation goal, pie
menus can assume different sizes, shapes and locations. Three
main configurations are considered: centered and full-screen
for the welcome activity (Figure 2a), placed in a corner and
covering 90° only for activity selection (Figure 2b), collapsible
and spanning 360° for activity related tooling (Figure 2c).

To enable seamless switching between activities, specific
radial menus can be kept visible on the application viewport,
either collapsed or open. Activity selection is therefore reduced
to radial menu opening/closing whereas the main area of the
user interface is handled by the background visualization.

A. Activities
Welcome is the initial activity performed by users, where

the ontology model to show is selected. It consists of a
full-size, full-screen radial menu offering 2 main options:
loading an existing ontology or creating a new ontology from
scratch. According to well-established paradigms, the loading
part (top slices) includes handling of recently opened models
(Figure 2a) and offers a mean to specify the ontology to load
by providing the corresponding URL.

Browsing ontology models is completely addressed in this
first interaction design cycle, as it tackles most of the iden-
tified mid-high priority requirements. Ontology browsing is a

2not specified here as pertaining to low-priority requirements.

Fig. 1: Interaction Workflow

composite activity where the background visualization carries
typical viewport navigation tasks, e.g., panning and zooming,
and is complemented by a set of interaction paradigms specif-
ically designed to support navigation of ontology models:
bookmarking and custom views and exploit well established
patterns stemming from the Web domain (bookmarks) and
from the Computer Aided Design domain (custom views).
Each pattern is initiated through a tap on one slice of the
specific radial menu associated to the browsing activity.

Bookmarking allows users to name a specific visualization
of the ontology (zoom-level, position, etc.) for later recall.
Bookmarks are ontology-specific and persistent; each ontology
URI defines a different bookmark namespace and same-named
elements might exist for different ontologies. Bookmark per-
sistence allows survival of named visualizations over different
browsing sessions and over device deactivation. Bookmarks
can be promptly retrieved through a bookmark selection pop-
up. During the browsing activity, users can specify custom
views, i.e., filtered visualizations that only render a selected
subset of ontology concepts and relationships. While detailed
implementation of the rendering logic is demanded to the visu-
alization activity, and to the specific layout algorithm adopted,
involved concepts and relationships are defined through the
custom view menu entry and persistently stored to be later
recalled. Similarly to bookmarks, views are ontology-specific
(same-named views for different ontologies might exist) and
survive to different browsing sessions and device deactivation.

Querying and Editing have only been partially tackled. For
SPARQL querying we envisioned a graphical query composi-
tion pattern similar to GQL [12]. For what concerns ontology
editing, a preliminary wireframe design has been completed,
exploiting “natural” touch interactions with typical text-filling
tasks related to ontology creation (e.g., concept and relation

(a) Welcome activity (b) Activity selection (c) Activity-specific tooling

Fig. 2: Different radial menus configurations adopted in JellyOnt.

naming) that exploit keyboard-like patterns.
Visualization is the central activity of any ontology viewer

as it conveys information to users by means of suitable graphi-
cal representation of ontology entities (concepts, relationships,
instances, etc.). Defining how an ontology shall be represented
on a screen and what kind of navigation metaphors need
to be adopted for diving into the represented knowledge is
subject of many research efforts both in the Semantic Web
and in the Information Visualization domains. In this paper
we explicitly avoid to tackle the representation issue, which
deserves specific research efforts (as shown in literature), and,
instead, we focus on touch-based interaction for ontology
browsing. In this sense, “pure” visualization concerns are of
lower priority with respect to interaction elements presented in
previous sections even if we are perfectly aware that different
visualization choices might have a not negligible impact on the
overall user experience. For the sake of simplicity we therefore
limit visualization to a very simple layout and navigation
paradigm, radial tree (Figure 4), while concentrating on a soft-
ware infrastructure capable of supporting many visualization
solutions, thus enabling further investigation on this theme in
a touch-based mobile environment.

V. JELLYONT

We applied the designed interactions to JellyOnt, an ontol-
ogy browsing application for Android. In this first prototype
we choose not to implement the query and the editing activi-
ties, since they pertain to low-priority requirements.

JellyOnt exploits a layered architecture (Figure 3) aimed
at decoupling ontology access primitives from graph repre-
sentation engines and from node-layout algorithms. At the
lower layer, ontology access is handled by full-blown, well
established ontology APIs such as Apache Jena 3 or OWL
API4. The ontology model exposed by such APIs is then
abstracted into a shared graph representation, designed taking
inspiration from the Prefuse Information Visualization Toolkit5

architecture. This shared representation offers standard query
primitives to layout algorithms, thus enabling them to get

3https://jena.apache.org, last visited on January 29, 2019
4http://owlcs.github.io/owlapi/, last visited on January 29, 2019
5https://github.com/prefuse/Prefuse, last visited on December 17, 2018

Apache Jena OWLApi?

Ontology data

...
Graph Abstraction Layer

Layout

Engine

Node

Rendering

Layout

Engine

Node

Rendering...

Graphical User Interface

Fig. 3: The JellyOnt logic architecture.

the information needed to successfully set-up an ontology
visualization.

In the current JellyOnt implementation a RadialTree layout
engine has been implemented by “porting” the corresponding
Prefuse layout. The same operation can be done for other
layouts either available in Prefuse or stemming from other
sources, e.g., algorithms recently defined in literature [4], [13].

Each layout engine can exploit custom-node renderers (the
“Node Rendering” modules reported in Figure 3) to assign
a visual representation to the node positioned on the appli-
cation viewport. Node renderers can be changed at runtime,
thus enabling advanced interface building (implementing, for
example, node overlays, animations, etc.)

The actual implementation of JellyOnt maps the activities
identified in the design process to real Android activities, and
manages switching between them as defined in the workflow
design. It targets an Android 4.x environment (or later) and
has been tested on different platforms including some Asus
Transformer Pad (TF300T/TF300TG) and Samsung Galaxy
Tab 10.1 tablets (Figure 4 shows a screenshot of the appli-
cation.

Several technical challenges have been addressed in the
application development encompassing: (a) radial menu de-
velopment, (b) porting/adaptation of ontology APIs, (c) port-
ing/adaptation of the Prefuse layout management architecture.
In particular, ontology access and elaboration has been per-

TABLE II: The nine tasks used for the study

Task Description
T1(a) Open the http://www.co-

ode.org/ontologies/pizza/pizza.owl
ontology

T1(b) Open the most recent ontology
T2 Open the menu responsible for storing any

ontology characteristics
T3 Open and move a menu at your choice
T4 If no menu is open, open and then close

one of theme
T5 Move the visualized ontology on the

screen and save a new bookmark
T6 By using a menu, store the root node and

the leaf node in a new view
T7 Open an existing bookmark
T8 Open and then close an existing view

T9(a) By using a menu, delete an existing book-
mark

T9(b) By using a menu, delete an existing view

formed using the full-blown Apache Jena framework, adopted
to run on Android devices. Ontology loading performances
proved to be sufficient to support effective interaction, with
acceptable loading times in the order of few seconds (obvi-
ously the loading time depends on the specific ontology size
and upon the available network bandwidth).

VI. EVALUATION

A preliminary user evaluation has been carried on to identify
the relative strengths and weaknesses of JellyOnt, to roughly
estimate the ability to use the app without external hints,
and to check whether the functionality offered by the pie
menus are easy to discover and use. Four participants tried
the mobile application in a controlled environment, performing
9 tasks each, and replying to a final questionnaire. Tasks
have been inspired by requirements previously reported, while
participants observations allowed a qualitative analysis of the
proposed interaction paradigm and interface, to help identify-
ing future directions. The four participants recruited for this
study were 2 females and 2 males, aged 26 to 46 (with an
average age of 34). Participants were selected with similar skill
level, especially about usage and knowledge of Semantic Web
technologies in general, and OWL ontologies in particular.

All worked in technology-related fields; two of them were
Ph.D. students in Computer Engineering, while the other were
researchers. The study was held in Italian and the interface
was localized accordingly. The platform chosen for the test
was a 10” tablet. Each participant performed each task in
counterbalanced order, to reduce the chances that the order
could influence the final results.

After a short introduction to the study and collection of
demographic data, participants were free to test JellyOnt for
a few minutes, to form a preliminary opinion about the
application. Each user was told to complete a set of nine tasks,
one at a time. Examples of proposed tasks include: “Open the
most recent ontology” and “By using a menu, store the root
node and a leaf node in a new view”. Each participant received

a different version of task 1 and 9 (see Table II for the complete
task list), to evaluate similar functions but without duplicating
any task. At the end, participants were given a questionnaire
and asked to rate their agreement with some sentences about
the look of the application, its learning curve and the overall
layout. Users open comments and explanations were collected
(e.g., problems found or explanation about something done
during a task) during debriefing interviews. The duration of
the entire study ranged between 10 and 20 minutes. Every
user completed with success every task, without any major
problem.

VII. RESULTS AND DISCUSSION

The success rate of each participant, i.e., the percentage
of tasks that users completed correctly, was very high. Every
user completed with success every task, except task 4: nobody
was able to close a visible activity-specific pie menu. The
problem was due to the absence of any visual feedback
on the prototype application: menu slices, in fact, do not
have a “selected” state and they appear identical when the
corresponding activity-specific menu is visible or hidden.
The final questionnaire asked participants to express their
agreement about four sentences: a) I like the appearance of
the application. b) I think that the app is intuitive. c) I think
that the overall layout is understandable. d) It is easy to learn
how to use the application.

Results from participants were satisfying: most users agree
or strongly agree with the proposed sentences. Only one par-
ticipant did not express a preference about the third sentence,
due to some difficulties in understanding what functionality
is associated to some icons. During the debriefing interview,
we collected some observations from the participants, about
their behavior during the study and about what works in
the application. All the participants found the radial menu
in the welcome activity very intuitive. After opening the
ontology, each user tries to tap over a node for executing the
second task, with the desire to see further information or to
perform some actions on the tapped node (supported by the
JellyOnt architecture but not yet implemented). According to
this behavior, they suggest to add pertinent actions to each
node. Most users found quite difficult the bookmarks and views
management; however, they noticed that such tools are useful
and that their problems could be avoided with some help or
with a longer usage of the application. The choice made for
the view visualization, i.e., to show everything selected up
to the root node, was particularly appreciated. Furthermore,
participants suggest to introduce a “back” button to revert any
action done on the visualized ontology, such as returning to
the default ontology view when showing a bookmark.

Nobody had any difficulty with the implemented gestures:
users had panned and zoomed the ontology with an extreme
naturalness. In the same way, most icons present in the
application were immediately understood; the only exception
was the “browse” icon, probably to be replaced. Finally,
according to most users, the application lacks of the possibility
to change the visualization layout. This aspect, in fact, was

Fig. 4: A JellyOnt snapshot (colors have been inverted for the sake of readability).

present during the requirements and design phases but omitted
in this first working prototype. All the participants, before
concluding the debriefing interview, expressed appreciation on
the idea, and the desire to be aware of further investigations
and experiments on the same topic. Overall, the evaluation
of the prototype was positive and provided useful insight on
touch-based ontology browsing applications. It confirms, also,
most of the design choices we made and offers precious hints
for continuing the development and the refinement of the
application.

VIII. CONCLUSIONS

This paper presented the design of a touch-based ontology
browser for effective and highly appealing presentation of new
OWL ontologies, novel modeling approaches, and experiments
with different visualization layouts in mobility. Formal and
non formal requirements, extracted from the literature, guided
the design phase, while a first working prototype, realized as
an Android app named JellyOnt, has been described and evalu-
ated by means of an initial user study. Experimental results are
encouraging: all users involved in the test enjoyed JellyOnt and
provided useful insights for continuing the development and
the refinement of the application. Future works will complete
the design and implementation of the querying and editing
activities and will extend support for multiple visualization
by implementing well-known layout and rendering algorithms.
Possible extensions of the approach will ultimately include
new visualization paradigms and possible applications to larger
interactive surfaces (e.g., touch-based tabletops).

ACKNOWLEDGEMENTS

The authors wish to thank Alessandra Ronsini for the initial
development of the prototype application, Dario Bonino for his
support and consultancy about ontologies, and the anonymous
volunteers involved in the evaluation phase.

REFERENCES

[1] A. Katifori, C. Halatsis, G. Lepouras, C. Vassilakis, and E. Gi-
annopoulou, “Ontology visualization methods - a survey,” ACM Comput.
Surv., vol. 39, no. 4, Nov. 2007.

[2] M. Dzbor, E. Motta, C. Buil, J. Gomez, O. Görlitz, and H. Lewen,
“Developing ontologies in OWL: An observational study 1,” CEUR
Workshop Proceedings, 2006.

[3] T. D. Wang and B. Parsia, “CropCircles: topology sensitive visualization
of OWL class hierarchies,” in Proceedings of the 5th international
conference on The Semantic Web, ser. ISWC’06. Berlin, Heidelberg:
Springer-Verlag, 2006, pp. 695–708.

[4] E. Motta, P. Mulholland, S. Peroni, M. d’Aquin, J. M. Gomez-Perez,
V. Mendez, and F. Zablith, “A novel approach to visualizing and navigat-
ing ontologies,” in Proceedings of the 10th international conference on
The semantic web - Volume Part I, ser. ISWC’11. Berlin, Heidelberg:
Springer-Verlag, 2011, pp. 470–486.

[5] W. Hop, S. de Ridder, F. Frasincar, and F. Hogenboom, “Using hi-
erarchical edge bundles to visualize complex ontologies in GLOW,” in
Proceedings of the 27th Annual ACM Symposium on Applied Computing,
ser. SAC ’12. New York, NY, USA: ACM, 2012, pp. 304–311.

[6] D. Holten, “Hierarchical edge bundles: Visualization of adjacency rela-
tions in hierarchical data,” Visualization and Computer Graphics, IEEE
Transactions on, vol. 12, no. 5, pp. 741–748, 2006.

[7] C. Becker and C. Bizer, “DBpedia mobile: A location-enabled linked
data browser,” Semantic Web Challenge, 2008.

[8] S. Kriglstein, “User requirements analysis on ontology visualization,” in
Complex, Intelligent and Software Intensive Systems, 2009. CISIS ’09.
International Conference on, 2009, pp. 694–699.

[9] A.-S. Dadzie and M. Rowe, “Approaches to Visualising Linked Data:
A Survey,” Semantic Web, vol. 2, no. 2, pp. 89 – 124, 2011.

[10] J. Callahan, D. Hopkins, M. Weiser, and B. Shneiderman, “An empirical
comparison of pie vs. linear menus,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, ser. CHI ’88.
New York, NY, USA: ACM, 1988, pp. 95–100.

[11] K. Samp and S. Decker, “Visual search in radial menus,” in Proceedings
of the 13th IFIP TC 13 international conference on Human-computer
interaction - Volume Part IV, ser. INTERACT’11. Berlin, Heidelberg:
Springer-Verlag, 2011, pp. 248–255.

[12] M. Zviedris and G. Barzdins, “ViziQuer: A tool to explore and query
SPARQL endpoints,” in The Semanic Web: Research and Applications,
ser. Lecture Notes in Computer Science, G. Antoniou, M. Grobelnik,
E. Simperl, B. Parsia, D. Plexousakis, P. Leenheer, and J. Pan, Eds.
Springer Berlin Heidelberg, 2011, vol. 6644, pp. 441–445.

[13] M. Lanzenberger, J. Sampson, and M. Rester, “Ontology visualization:
Tools and techniques for visual representation of semi-structured meta-
data,” Journal of Universal Computer Science, vol. 16, no. 7, pp. 1036–
1054, apr 2010.

