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Abstract—The range of operations of electric vehicles (EVs) is a
critical aspect that may affect the user’s attitude towards them.
For manned EVs, range anxiety is still perceived as a major
issue and recent surveys have shown that one third of potential
European users are deterred by this problem when considering
the move to an EV. Similar consideration applies to aerial EVs
for commercial use, where a careful planning of the flying range
is essential to guarantee the service but also to avoid the loss of
the EVs due to charge depletion during the flight.
Therefore, route planning for EVs for different purposes (range
estimation, route optimization) and/or application scenarios (ter-
restrial, aerial EVs) is an essential element to foster the acceptance
of EVs as a replacement of traditional vehicles.
One essential element to enable such accurate planning is an
accurate model of the actual power consumption. While very
elaborate models for the electrical motors of EVs do exist, the
motor power does not perfectly match the power drawn from the
battery because of battery non-idealities.
In this work we propose a general methodology that allows to
predict and/or optimize the operation range of EVs, by allowing
different accuracy/complexity tradeoffs for the models describing
the route, the vehicle and the battery, and taking into account
the decoupling between motor and battery power.
We demonstrate our method on two use cases. The first one is
a traditional driving range prediction for a terrestrial EV; the
second one concerns the energy-optimal delivery scheduling for
an unmanned aerial vehicle.

Keywords—State of charge, Battery non-ideality, Energy-efficient
scheduling, Electric vehicles, Operation range estimation
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I. INTRODUCTION

In the last few years, electric vehicles (EVs) have shifted
from absolute novelty to ordinary in most sectors of public
and private transportation. The market demand for electric
cars is rapidly growing, in addition to small vehicles such as
electric hover-boards, skateboards and bikes. Unmanned aerial
vehicles (UAVs) or drones are also becoming more and more
popular, as a large number of logistics companies such as UPS,
DHL and Amazon are heavily investing on drone package
delivery. Nonetheless, the reduced energy storage capacity
of the batteries translates into range limitation problems for
EVs, acting as a barrier to widespread adoption compared
to traditional vehicles based on internal combustion engines
(ICEs). While accurately predicting the range of operations
for ICEs has never been considered a significant problem,
because re-fueling is usually fast and readily available but
for very peculiar geographical contexts, range prediction for
battery-operated vehicles (driving or flying range for terrestrial
and aerial vehicles, respectively) is receiving ever-growing
attention. The reason of this interest is to be found in the in-
creased diffusion and critical role of EVs in various application
domains (personal and commercial transportation, surveillance,
etc.) as well as in the technical and logistic difficulties involved
with the re-charging.
Compared to traditional ICEs, range estimation prediction is
a very challenging multi-factorial problem, involving a large
number of variables that are not always easy to estimate.
Besides the technical characteristics of the vehicle, for on-
road EVs (e.g. electric cars) the factors that need to be
taken into account include road topology and grade, speed,
acceleration/deceleration patterns, use of the in-board electric
devices (e.g. A/C) as well as driving style (e.g. normal vs
aggressive). For aerial EVs (e.g. drones), payload and delivery
task characteristics (e.g. take-off, flying and landing speeds).
On the other hand, additional challenges are posed by main-
taining the range estimation computationally light, so that it
can be easily executed by on-board computers. To achieve
this purpose, some of the aforementioned factors are either
simplified or neglected in the standard practice, imposing an
accuracy/complexity trade-off.
As a matter of fact, most of the available range estimators
over-simplify the problem by considering in their computation
the electrical energy/power drawn by the motor, which does
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not have a perfect 1:1 match with the energy/power that is
actually drawn by the battery. The reason of this mismatch
is mainly two-fold: (i) the power delivered by the battery
is not constant, as it depends on its current state of charge
(SOC). More specifically, the lower the SOC, the lower the
efficiency of the battery. Hence, a partially charged battery will
be depleted more than a fully-charged one for the same task
and under the same conditions. On top of that, the efficiency
drop is not linear [1]. (ii) the conversion process that delivers
power from the battery to the motor is not ideal. The former
aspect is particularly relevant, as it suggests that summing up
the energy demands of the intermediate tracts without taking
the non-linear relation between the available battery capacity
and SOC into account, as it is done by most range estimators,
will unavoidably result into inaccurate range predictions.
To address this issue, in this paper we propose a battery-aware
methodology, that is suitable for both terrestrial and aerial
battery operated vehicles. More specifically, we incorporate
the state-dependency characteristics of a state-of-the-art battery
into the range estimator and provide an overall methodology
to build a model and extract accurate range predictions in a
realistic scenario.
We will demonstrate our solution on two use cases relative to
different types of vehicles, for which accurate range prediction
is especially relevant. The first use case is a traditional driving
range prediction for a terrestrial EV, and more specifically a
fully electric passenger car. We will show how a traditional
battery model over-estimates the actual energy consumption of
the car, suggesting a route that is not the most (battery) energy
efficient. The second use case concerns an unmanned aerial
vehicle. Our method will be used to determine the energy-
optimal flying speed for a parcel delivery task in which a
number of packages are to be delivered to a set of destinations.
Unlike in the former case, flying speed can be considered a
free variable for aerial EVs thanks to absence of traffic. Our
solution will show that a battery-aware delivery schedule can
carry more packages than the traditional delivery model with
the same battery capacity.
In the rest of the paper we will use the following non-standard
terminology to denote the two categories of EVs addressed in
this work: TEVs for terrestrial EVs, and AEVs for aerial ones1.
The paper is organized as follows. Section II introduces the
required background and presents related work. Section III de-
scribes the conceptual flow of our proposed method. Section IV
presents the details of the battery modeling. Sections V and VI
describe implementation and simulation results of the TEV
driving range estimation and of the AEV delivery optimization,
respectively. Finally, Section VII concludes the paper.

II. BACKGROUND AND RELATED WORK

A high number of research activities are currently devoted to
optimize energy efficiency in TEVs and AEVs, as both of them
are expected to experience an increasing adoption by the wider
public [2]–[4]. Concerning TEVs, as previously mentioned,
although estimation of the driving range or mileage for vehicles
with internal combustion engine (ICE) motors is generally

1We prefer the latter to UAVs as AEVs are not necessarily unmanned.

accurate, this is not the case for fully electric passenger
cars. In fact, battery pack capacity (Ah), or electrical energy
(kWh), depends largely on factors such as charge/discharge
current profile, SOC, temperature, and driving style [5], [6].
In addition, the pack has a continuous slight deterioration over
time regarding the total capacity, even in the case of parking
the vehicle for a long time.
Hence, several works were recently targeted at improving the
estimation of the driving range for TEVs. In [7], the authors
propose a model for simulating the change in battery SOC
in EVs, along routes during trips. Nonetheless, this model
concerns orienteering problems instead of real battery charac-
teristics, when analyzing the energy consumption in a routing
trip. In [8], the prediction of SOC is based on an Adaptive
Recurrent Neural Network after considering both the route
(vehicle speed and terrain profile) and driving style. Although
this approach is similar to the one presented in the current
work, the battery model is only based on linear characteristics
and, therefore, it only partially considers the effect of the
current, on the total capacity depletion. The work presented
in [9] deals with the prediction of energy consumption based
on route information, weather conditions and driving behavior,
whereas the research described in [10] relies on real-time
information gathered by other vehicles to suggest routes based
on traffic information and expected waiting time for battery
switching at robot-controlled recharging stations. Also in these
cases, the proposed model does not consider that the efficiency
of the battery depends on its SOC. As highlighted by the above
works, approaches for energy optimization in TEVs generally
consider simple battery models based on the nominal energy
[11]–[13]. Nonetheless, this approach is in contrast to the real
performance of LiPo batteries and the consequent issues [6],
[14], especially for the estimation of the battery SOC for which
the existing methods differ in complexity and error level [5],
[15]–[17].
As in the case of TEVs, also in the context of AEVs’
path planning the real performance of the battery is rarely
considered. The model proposed in [18] with the aim of
determining minimum-energy paths for quadrotors considers
the angular acceleration of the propellers, but does not take
into account the energy storage properties. In [19], the authors
propose an algorithm to minimize the total energy consumption
of a quadrotor performing image reconstruction of graphical
zones. In this work, the proposed power model characterizes
the consumption of the drone operating in different conditions,
but does not consider the battery performance. Another work
addresses the issue of energy efficient coverage path planning
for drones [20]. Nonetheless, the related energy model is based
only on empirical measurements during the flights.
Rather than planning a flying path, other works aim at investi-
gating drones’ energy consumption under different conditions,
by studying the impact of flying maneuvers and velocities on
energy consumption [21] or the influence on performance of
physical, mechanical, or electrical drones’ hardware character-
istics [22]. In [23], the performance of different LiPo batteries
for drones is analyzed using different models, related to the
capacity rate effect. As expected, experimental results show a
difference with respect to the data obtained from these models.
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In [24], an altitude controller based on battery SOC is de-
scribed. The proposed model relies on the equivalent electrical
circuit of [25] applied to LiPo batteries, and the relationship
between nominal thrust and battery SOC is provided.
Several works proposed approaches for routing optimization in
drone delivery, as in the case of [26]. Nonetheless, the power
model presented in [26] only includes the weight of the battery,
in addition to payload. The work of [27], instead, proposes a
model for minimizing the delivery time for multiple packages.
In this case, however, the battery performance is considered
just from a service time point of view. Hence, as highlighted
by [26], [27], also in the context of drone delivery, authors
generally only consider motor power models and possibly a
linear characteristic of the energy source, when analyzing the
relationship between power consumption, assigned tasks and
available battery energy [28], [29]. That is the reason why
predictions of the overall flight time are overestimated [30].

III. METHODOLOGY

Figure 1 shows the conceptual flow of our methodology for
the estimation of the operation range of EVs. Three descriptive
sets of data are required as inputs.

• Capacity

• V vs SoC

• Impedance

• pack structure

Battery data

Vehicle

Model

• Distance

•Weather

•Traffic*

•Slope*

Route info

V(t), I(t)

Instantaneous

power demand

Battery

Model

• Residual SoC

• Power

•Torque/speed

• aerodynamics

• efficiency

Vehicle data

Speed 

• Residual SoC

• Range
• efficiency

• weight

• …

Figure 1. Overall Concept of the Proposed Methodology.

• Vehicle data: These information concern the mechan-
ical and electrical characteristics that can affect the
power consumption of the vehicle, such as electric mo-
tor power, torque/speed characteristics, curb and gross
weight, aerodynamic drag, etc. Some of these data
depend on the type of vehicle; for instance aerodynamic
parameters have different meaning for a terrestrial vehi-
cle (e.g., drag and frontal area) with respect to an aerial
one (e.g., wing profile).

• Route data: The information about the route to be
covered are the ones that differ most depending on the
type of vehicle. For TEVs, slope and traffic matter, and
can be obtained by pre-processing figures from publicly
available services (e.g., [31]).
An important point is that for TEVs speed is not a free
variable and is mostly determined by traffic, road profile
and ultimately by speed limits. On the other hand, AEVs
do not generally have traffic limitations nor an equivalent
of slope; therefore, in this case speed in a free variable.
However, it might be possible also for TEVs that the
speed could be regulated differently from what the traffic

and road conditions would determine (e.g., to increase
the driving range).
To support this option, the diagram shows a “control”
loop from the output of the battery model (essentially
the residual state of charge) that can be used to tune
the speed in the cases when it can override the value
determined by the route properties. In one of the use
cases analyzed in this paper we will explicitly show ho
to use this knob.
Weather is also another possible variable to be consid-
ered, although the way it affects the travel conditions in
different ways depending on the type of vehicle.
Item in the Route info box that are listed with a “*”
indicate elements that are relevant to TEVs only.

• Battery Data: These information concern the battery
pack that powers the EV and it is virtually independent
of the vehicle type; in fact, what matters is essentially
the electrical properties of the individual battery cell,
which is then scaled up according to the organization
of the battery pack (series/parallel). For this reason, we
will elaborate the characteristics and the operations of
the battery model in a separate section as they apply to
both use cases.

Vehicle and route data are then fed to a model of the vehicle,
which will clearly be different for TEVs and AEVs. The
model, based on its inputs will output a waveform of the
electrical motor power P (t). For a better matching with the
characteristics of the battery, we actually decouple power into
a pair of voltage and current waveforms V (t) and I(t).
On the other side of the flow, the battery data are used as
parameters of a generic battery model; the latter takes then the
voltage and current waveforms and yields the evolution of the
battery SOC over time and an estimate of the range covered.
It is important to mention the the battery model includes
the efficiency of the power conversion required to adapt the
voltage and current levels requested by the electrical motor
and the voltage level of the battery pack. Since voltage levels
in particular will not be identical, they need to be adapted via
a DC/DC converter, whose efficiency is not ideal.
A nice feature of the proposed flow is that it is allows dif-
ferent accuracy/complexity tradeoffs. By using a standardized
representation of the route and of the vehicle data, depending
on the available information, the vehicle model will output a
more or less accurate power profile. For instance, if traffic info
are unavailable, the vehicle speed will be determined by speed
limits only; similarly, if some vehicle data are not available, the
model will be simplified accordingly. The same consideration
applies to the battery model. As battery data will be derived
from public specs such as a datasheet, it might be the case that
not required data will be available, in which case the model
will include only the effects that can be modeled with the
quantities at hand.

IV. BATTERY MODELING

Battery Energy Storage System (BESS) is an important module
in an electric vehicle. Therefore, sophisticated battery models
play a critical role in the design and optimization of the related



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2019 4

energy processes. For instance, UAV flight time estimation
and EV range prediction are possible only through advanced
battery models and estimation techniques. In the literature,
and according to the various modeling techniques, there are
three main categories of battery models: mathematical mod-
els, electrochemical models and electrical Equivalent Circuit
Models (ECMs). Due to the complexity of the parameter
identification and heavy computation for the mathematical and
electrochemical models, we adopt an ECM to simulate bat-
tery performances. An ECM consists of combining resistors,
capacitors, and voltage or current sources. Figure 2 shows a
common ECM, which is considered as a sort of standard in the
electronic design field thanks to its relatively good compromise
between accuracy and simplicity.
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Figure 2. The widely used ECM in electronic design domain [25].

The left part of the ECM in Figure 2 includes a capacitor
C representing the nominal capacity, and a current genera-
tor modeling the load current Ibatt. The voltage across the
capacitor tracks the SOC of the battery (node SOC). In the
right branch, a voltage-controlled generator expresses the non-
linear dependence of battery open-circuit voltage Voc on SOC.
The RC network models the battery impedance: the series
resistance R(SOC) models the internal resistance, whereas
the two RC blocks tracking the short-term (RS , CS) and long-
term (RL, CL) time constants of a step response. This model
can track the battery voltage Vbatt over time for load current
profiles with different dynamics, even if they have the same
average values. However, when it comes to tracking the SOC,
it is evident that the constant current generator Ibatt on the left
side will result in same among different load current profiles
with same average values as illustrated in [32], which is not
the expected behavior since the Rated Capacity effect exists
inside battery.
Rated Capacity effect is a well-known non ideality of a battery.
It indicates that the usable capacity of a battery depends on the
magnitude of the discharge current: at larger currents, a battery
is less efficient in converting its chemically stored energy into
electrical energy. In order to show the Rated Capacity effect
in the ECM shown in Figure 2, [33] proposed to represent
this effect by adding a voltage generator Vlost(Iload) in series
to the left part of the model (see Figure 3) that reduces the
available charge of the battery by considering the real-time
load current values. With this addition, SOC is affected in a
more pronounced way by a larger current than for a smaller
one. Although this ECM is more accurate for SOC tracking, it
cannot distinguish between two current square-wave loads with
the same average and swing values but different frequencies.
It is intuitive that a higher frequency load stresses the battery
more, as the electrochemical reactions occur at a higher

frequency. This dependency on load frequency is somehow
underrated; however, this effect is not negligible as revealed
in [32]. For this reason, another ECM is proposed, as shown
in Figure 3, where the load frequency dependence is modeled
by adding the voltage generator Vlost(fload) on the left side
of the circuit.

R(SOC)

Voc(SOC)

Ibatt

+

SOC

Ibatt

+

CS(SOC) CL(SOC)

+
Vlost(Ibatt)

+

Vlost(fload)

C

RS(SOC) RL(SOC)

Vbatt

Figure 3. The ECM accounting for load current magnitude and fre-
quency [32].

In this paper, we adopt the ECM in Figure 3 for battery energy
analysis. The basic electrical parameters in Figure 2 can be
extracted from battery manufacture data-sheets through the
methods described in [34]. For a given battery, the methodolo-
gies to derive the dependence of battery capacity on current
load magnitude and frequency, that is represented by the two
voltage generators on the left side of the ECM in Figure 3, are
introduced in [35]. The instruction of how to use the model
at run-time, in particular for what concerns the frequency-
dependent behavior, are illustrated in [32].
Notice that Figure 3 shows the ECM for one single battery
cell. However, a BESS installed in terrestrial electric vehicles
is always a battery pack that is composed of a large number of
cells connected in series and parallel configurations. Concern-
ing the battery pack modeling, we follow the commonly used
approach that assuming all the cells behave identically within
the pack. Therefore, in this work we implement an ideal scaling
of the battery cell ECM according to the serial and parallel
connectivity of the cells, for a faster simulation and a higher
flexibility in modeling large battery packs. For this purpose, the
model components (SOC/OCV characteristic, series resistance,
nominal capacity) of the cell model are scaled-up ideally
according to the serial and parallel interconnection of the
battery cells in a pack. In this way, not all the cells have to be
simulated individually.

V. USE CASE 1: DRIVING RANGE ESTIMATION FOR
TEVS

A. TEV Model

Power consumption of an EV is affected by the body shape,
weight, road slope and tires as well as the vehicle speed
and acceleration because of vehicle dynamics. There are four
resistances acting on a vehicle: rolling resistance FR, gra-
dient resistance FG, inertia resistance FI , and aerodynamic
resistance FA. The power consumption at the EV powertrain
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against the resistances is:

Pdyna = F
ds

dt
= Fv = (FR + FG + FI + FA)v

FR ∝ CrrW, FG ∝Wsinθ, FI ∝ ma, FA ∝
1

2
ρCdAv

2

Pdyna ≈ (α+ βsinθ + γa+ δv2)mv
(1)

Crr, W , θ, m, v, a, Cd, A are rolling coefficient, weight,
road slope, vehicle mass, speed, acceleration, drag coefficient
and vehicle facial area, respectively. This equation can be
simplified as a function of 4 coefficients α, β, γ and δ.
The efficiency of the powertrain (electric motor and drivetrain)
depends on the RPM (revolutions per minute) and torque, as
well as on the mechanical movement of the drivetrain while
delivering power to the wheels. The following EV power
model considers these losses [11].

PEV = Pdyna + C0 + C1v + C2v
2 + C3T

2 (2)

where C0, C1, C2, and C3 are the coefficients for constant
loss, iron and friction loss, drivetrain loss and copper loss.
EVs leverage regenerative braking to convert kinetic energy to
electric energy during deceleration. The power generated by
regenerative braking is modeled as a function of the negative
motor torque and vehicle speed.

Pregen = εTv + ζ (3)

where ε and ζ are regenerative braking coefficients.
Advanced vehicle simulators are very accurate in estimating
powertrain consumption [36]. However, they are not suitable
for on-board range estimation due to their significant runtime
overheads. Thus, we use the simpler power model expressed
by (1), (2) and (3). Model coefficients are extracted from a
single offline vehicle simulation. The validation of the model
and its parameter extraction are discussed in Section V-C1.

B. Route Model
We model routes as an array of segments, each representing a
portion of road with a unique speed and slope. Speed limits and
road traffic are used to determine speed, whereas road slopes
are obtained from altitude profiles. These information are
extracted from Google Maps APIs [31], as shown in Figure 4
for an example route. Each color on the route corresponds to
a different level of traffic, as shown in the legend.
Figure 5 shows the translation of the raw data of Figure 4
into a list of segments. The top plot shows the speed limits
contained in the road metadata. The second plot shows the
levels of traffic along the route, while the third one the actual
speed considering traffic. The fourth plot shows the slopes
of the route: the red line is the slope directly obtained from
the altitude data of Figure 4, whereas the blue line is the
result of a discretization process. Such process is needed to
avoid having a huge number of extremely small segments.
Specifically, we do not consider slope changes smaller than
5% of the maximum altitude variation of the route. Segments
are then determined in correspondence of any speed or slope
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Figure 4. An example route and corresponding altitude profile on Google
Maps [31].
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Figure 5. An example of route modeling.

change, as shown at the bottom of the plot: each segment is
defined its speed vi, road slope θi, and a driving time Ti.
Terrain type information was not provided in our route descrip-
tion but ultimately it can be easily incorporated into the model
by simply specifying a different speed limit. The terrain type
would rather affect the vehicle model (e.g., the friction at the
tires) but this implies using a more sophisticated vehicle model
than the one used in this work. In any case the modularity and
flexibility of the framework allows in principle to include any
detail about vehicle, route and battery models.
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C. Results
1) Simulation setup: Experiments are performed on four dif-
ferent benchmark routes as defined in Table I. The first three
are alternative and feasible routes from the same source to the
same destination (benchmarks #1, #2 and #3). The latter one
is selected to be reasonably longer than the EV driving range,
in order to compare the proposed solution with a conventional
range estimator like ADVISOR. Figure 6 shows the road slopes
(in blue) and speed profiles (in red) of the four routes.
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Figure 6. Slope and speed of the four benchmark routs.

Table I. ROUTE BENCHMARKS.

Route Benchmark From To Distance
#1 Dusseldorf Brussels 204 km
#2 Dusseldorf Brussels 226 km
#3 Dusseldorf Brussels 210 km
#4 Munich Dusseldorf 615 km

To test the proposed solution we use the vehicle specification
and experiment results of the Tesla Model S [37], [38]. The

Model S has a curb weight of 2200 kg, a drag coefficient
of 0.24, a maximum power of 270 kW in the range of
4300−6900 RPM , a maximum torque of 441 Nm for engine
revs less than 4300 RPM and two 3 phase AC induction
electric motors in the front and rear sides. Furthermore, the
Model S is equipped with a battery pack composed by 16
modules connected in series; each module consists of Pana-
sonic NCR18650B 3400 mAh Lithium battery cells arranged
in a 74p6s configuration. Table II summarizes the parameters
of each cell, each module and the whole battery pack.

Table II. ELECTRICAL PARAMETERS OF THE BATTERY PACK.

Parameters Cell Module Whole Pack
Nominal Capacity 3400 mAh 251.6 Ah 251.6 Ah
Nominal Voltage 3.6 V 21.6 V 345.6 V
Cut-off voltage 2.75 V 16.5 V 264.0 V

In order to extract the coefficients of (1), (2) and (3) we
performed a number of simulations using a model implemented
in ADVISOR (ADvanced VehIcle SimulatOR) [36], with the
aforementioned vehicle specifications. Table III summarizes
the model coefficients of the Model S. With these values, the
normalized root-mean-square error between the power profile
estimated by the vehicle simulator and by the model is 4.27%.

Table III. MODEL COEFFICIENTS FOR TESLA MODEL S.

α 0.098 β 9.8794 γ 0.9911 δ 0.000166
C0 2300 C1 11.927 C2 4.4359 C3 0.000321
ε 0.7642 ζ 2832.9

Concerning the regenerative braking phase, we assume a
charging efficiency of 20%, i.e. 20% of the kinetic energy is
converted to electric energy and transferred to the battery.
2) SOC Estimation: In this first simulation we assess the im-
portance of an accurate battery-aware SOC estimator versus a
traditional one. Figure 7 shows the simulation results for route
benchmark #1 assuming an initial SOC of 100%. Negative
current values shown in the plot correspond to regenerative
braking events. These are mostly concentrated between 8,500
seconds and the end of the route, where the road slope is
negative (see Figure 6), thus making the motor torque also
become negative when the EV moves at constant speed. Notice
that SOC decreases lightly towards the end of the route, due
to the limited power demand in that period.
The slight difference in the battery current profile determined
by the two models is highlighted by the zoomed box. As
expected, the battery current computed by the proposed es-
timator is slightly higher than that of the conventional one.
Consequently, the final SOCend obtained by the proposed and
conventional estimators is 53.27% and 59.68%, respectively.
The 6.4% overestimation by the conventional SOC estimator
may not be viewed as very critical (since the final SOC is still
quite large), but this is just because we started the simulation
from a fully-charged condition. Table IV shows how the over-
estimation varies for different initial SOC values (SOCini).
As expected, the discrepancy increases as SOCini decreases,
since our model accounts for the decreasing effectiveness of
the battery at lower SOC levels. At SOCini = 50%, the
initial SOC is insufficient to complete the route, despite being
considered sufficient by the traditional estimator.
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Figure 7. Difference of SOC between proposed and conventional estimator.

Table IV. SOCend WITH DIFFERENT INITIAL SOC BETWEEN
PROPOSED AND CONVENTIONAL ESTIMATOR.

SOCini Proposed - SOCend Conv. - SOCend ∆SOC
100% 53.68% 59.68% 6.41%
90% 41.51% 48.43% 6.92%
80% 30.03% 37.26% 7.23%
70% 18.36% 26.04% 7.68%
60% 6.5% 14.71% 8.21%
50% N/A 2.78% N/A

3) Range Estimation: In this Section, we compare driving
range estimates for a given battery capacity consumption.
Table V shows the simulation results for route benchmark #4,
and for a SOCini of 100%. The route was selected as it is
the longest of the 4. The first column indicates the target SOC
budget, while the second and third columns report the driving
ranges computed by the two estimators for that target. These
results confirm that the conventional method for driving range
estimation is systematically overly-optimistic.

Table V. DRIVING RANGE ESTIMATED BY PROPOSED AND
CONVENTIONAL ESTIMATOR WITH SOCini = 100%.

Consumed SOC Range ∆ Range
Proposed Conventional [%]

60% 280.19 km 314.99 km 12.42%
50% 238.59 km 271.26 km 13.69%
40% 200.13 km 221.32 km 10.59%
30% 150.46 km 170.46 km 13.29%
20% 100.99 km 118.45 km 17.29%
10% 58.70 km 63.49 km 8.16%

Table VI shows the results of the same simulation with
SOCini = 80%. All ranges computed by both estimators are
smaller than those with SOCini = 100%, because for a given
power requested by the motor, the battery provides a higher
current to compensate for the decrease in battery voltage. Thus,
a 10% ∆SOC from 100% to 90% is not equivalent to a ∆SOC
from 80% to 70%. However, as expected, the overestimation
gap increases for a smaller SOCini, again due to the state-

dependent features of our battery model.

Table VI. DRIVING RANGE ESTIMATED BY PROPOSED AND
CONVENTIONAL ESTIMATOR WITH SOCini = 80%.

Consumed SOC Range ∆ Range
Proposed Conventional [%]

60% 262.83 km 297.86 km 13.33%
50% 225.68 km 260.08 km 15.24%
40% 188.28 km 212.52 km 12.87%
30% 141.65 km 163.84 km 15.67%
20% 95.25 km 114.94 km 20.67%
10% 56.69 km 62.29 km 9.88%

4) Battery-aware Economical Decision: The proposed range
estimator can be used as a “plug-in” for a conventional GPS
navigator. When the navigator suggests three route candidates
such as route benchmarks #1, #2 and #3, it is possible to
estimate both the battery consumption and the driving time
for each route. The proposed battery-aware range estimator
can then help drivers make economically convenient selections
among the available route options.

Table VII. SOC ESTIMATION FOR DIFFERENT ROUTE CANDIDATES
WITH SOCini = 80%.

Route Driving Time SOCend ∆SOC
Benchmark #1 9,387 s 30.03% 69.97%
Benchmark #2 10,248 s 26.22% 73.78%
Benchmark #3 9,747 s 31.16% 68.84%

Table VII summarizes the simulation results for an 80% of
SOCini. Route benchmark #1 is the fastest route among
three route candidates. However, if we consider the energy
consumption as the most important metric, the best route
becomes benchmark #3, which consumes less than benchmark
#1 even if it has longer driving time. In the specific example,
the difference between the fastest and the least consuming
route is small (a 1.13% difference in SOC) so route #1 and
#3 are roughly comparable. However, the estimator can rather
serve the purpose of doing a Pareto analysis by discarding
route #2, which is the worst in both metrics.

VI. USE CASE 2: DELIVERY OPTIMIZATION FOR AEVS

A. AEV Model
1) Power model: Nowadays, the mostly adopted drones are
quad-rotors, i.e. quadcopters. During flights, three forces act
on a quadcopter.
FW is a sum of the drone weight and payload, which pulls
down the drone due to the force of gravity. FDH and FDV

are forces for dragging in horizontal (FDH ) and vertical
directions, which oppose movements of the drone in horizontal
and vertical directions, respectively. FT represents the thrust
produced by rotating propellers of the drone and opposes the
weight and drag to sustain the height and speed of the drone.
Weight with a mass of the drone and payload (wd, wp) and
drag with horizontal and vertical speeds (vh, vv) are modeled
by (4):

FW = (wd + wp)g, FDV =
1

2
ρAtCdv

2
v , FDH =

1

2
ρAfCdv

2
h

(4)
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where g is gravity; Af and At are cross sectional areas in
horizontal and vertical directions; Cd is drag coefficient; ρ is
air density. The required thrust to oppose weight and drag is
given by (5):

FT,v = FW + FDV and FT,h =
√
F 2
W + F 2

DH . (5)

Thrust in terms of motor angular speed is modeled by:

FT = 0.5ρApCt(ωr)
2 (6)

where Ap is the disk area of propellers; Ct is a thrust coeffi-
cient; ω is angular speed of motors; r is radius of propellers.
Thrust coefficient obtained with several experiments ranges
from 0.01 to 0.05 [39]. We can calculate (i) the required thrust
for a given drone flight (vertical and horizontal velocities) and
payload by solving (4) and (5) and (ii) the required angular
speed to obtain the thrust from (6).
These basic equations of forces allow us to derive the required
angular speed to sustain the drone (i) at a given height and
flying at a constant horizontal speed vh (ωh), and (ii) to
sustain a constant vertical speed vv (ωv), yielding the following
equations:

ωh =
(4(wd + wp)2g2 + ρ2A2

fC
2
dv

4
h)1/4

(r2ρApCt)1/2
= fh(wp, vh), (7)

ωv =
(2(wd + wp)g + ρAtCdv

2
v)1/2

(r2ρApCt)1/2
= fv(wp, vv). (8)

We refer to the drone flight measurement data from [40] where
motor current, voltage and angular speed over the drone flight
time are specified. The motor current and voltage by angular
speed include the efficiency of the motor and motor controller.
This measurement data was obtained with Parrot AR. Drone
2.0, which is 420 g without payload, and the maximum motor
angular speed is 500 rad/s. We fitted the measurement to obtain
a polynomial motor power consumption model as

P = g(ω) ≈ 2.26·10−7ω3+3.87·10−5ω2+5.14·10−3ω+2.62.
(9)

By plugging the expressions of (7)-(8) to (9), we can obtain
motor power consumption as a function of payload and speed
for the flight both in horizontal direction (Ph) and vertical
direction (Pv) as

Ph(wp, vh) ≈ g(fh(wp, vh)) Pv(wp, vv) ≈ g(fv(wp, vv)).
(10)

B. Route Model

(a)

A B
d

Take-off Landingh

(b)

A B
d

Landing Take-offh

Weight = wd+wp Weight = wd

Figure 8. A drone flight model (a) going to place B with a payload and (b)
returning to place A without payload.

Unlike terrestrial EV in Section V, drones flight speed is not
limited by speed limit and traffic. Thus, instead of modeling
flight speed by segment, we can optimize the flight speed
until it arrives at the destination. Figure 8 shows simple drone
flight model, which consists of (i) take-off from a place A
with constant vertical speed vv to the height h, (ii) flight
horizontally during distance d with constant speed vh and
(iii) landing with the same vertical speed on a place B. The
drone returns to the place A after taking down a package. The
overall energy consumption for one delivery is obtained by

E ≈ Pv(wp, vv)
h

vv
+ Ph(wp, vh)

d

vh
+ Pv(wp,−vv)

h

| − vv|

+ Pv(0, vv)
h

vv
+ Ph(0, vh)

d

vh
+ Pv(0,−vv)

h

| − vv|
. (11)

We assume that the vertical speed for take-off and landing is
3 m/s, which is the maximum vertical speed of AR.Drone 2.0.
The height of the drone during horizontal flight is 40 m.
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Figure 9. Drone motor power vs. flight speed and payload.

Figure 9 shows the power consumption as a function of
horizontal speed and payload. Zero flight speed coincides with
hovering power. The power consumption is almost constant
at slow flight speeds because the drag is relatively small
compared with weight.

(a) (b)

Figure 10. Energy curve (a) when the distance is 500 m and (b) when the
payload is 300 g with 100% battery SOC.

Energy for a given delivery task (11) is shown in Figure 10. It
is a 3-variable function of weight, delivery distance, and flight
speed, which is displayed in the figure as two different pro-
jections. In general, the maximum horizontal speed decreases
with payload because the maximum thrust opposing the weight
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and drag is bounded by the maximum motor angular speed.
Moreover, there is an energy-optimal horizontal speed for a
given delivery task. Too slow horizontal speed causes huge
energy consumption because the drone consumes most energy
to maintain the altitude during the long delivery time. On the
other hands, too fast horizontal speed increases drag by the
air, which is proportional to the square of the horizontal speed.
The energy-optimal speed should be increased as the payload
increases in order to reduce the delivery time.

C. Adding Battery Awareness
Figures 9–10 are indeed referring to the power and energy of
the drone hardware and their relation to the relevant quantities
(weight, distance, and delivery time via the flight speed). For
an useful evaluation of the actual energy assessment and the
feasibility of a given delivery task, however, we need to map
the relations descried in Figure 10 onto battery energy. This
require accounting for two issues: Battery sensitivity to load
currents and non-ideal conversion efficiency.
1) Current-Dependent Battery Efficiency: The fundamental
effect to be taken into account is the rated capacity. Incor-
porating this effect into our model requires conceptually to
project the “energy” dimension on the y-axis of Figure 10
onto the “battery energy” one. As energy is obtained as the
product of power and flight time, mapping drone energy to
battery energy cannot be done “statically” (i.e., by a direct
conversion), but requires the battery ECM described in Sec-
tion IV. Consequently, our power model relies on an offline
pre-characterization phase described in Section VI-C2.
2) Construction of the Power Model: The power model con-
sists of a 5-dimensional table that is built offline according to
the flow described in Algorithm 1. The table stores all possible
values of battery SOC drop in response to a given delivery task.

Algorithm 1 Offline Model Characterization
1: for ∀ weight wi ∈ [0, wmax] do
2: for ∀ speed vi ∈ [vmin, vmax] do
3: for ∀ distance di ∈ [dmin, dmax] do
4: calculate P|w=wi,d=di,v=vi(t) //see Figure 8
5: calculate Ibatt(t) = P|w=wi,d=di,v=vi(t)/Vbatt(t)
6: for ∀ SOC level SOCi ∈ [10, 100] do
7: calculate ∆SOCi by applying Ibatt(t) to the
8: battery model and store it in T [wi, di, vi, SOCi]

We have to build the battery energy by actually building the
power profile of a given delivery task (i.e., as in Figure 8).
In Line 1–4 we build all possible power profiles for each
combination of valid weight, distance, and horizontal speed;
this yields a waveform P (t)|w=wi,d=di,v=vi

2. This includes
take-off, the first leg to the target, landing, take-off, second
leg to the base, and landing.
Since P (t) is the motor power profile, we need to translate it
into battery power; this is done by dividing the motor power
by the current battery voltage (Line 5), which yields a current
waveform Ibatt(t).

2As already discussed, we assume a fixed vertical speed of 3 m/s

We then apply (Line 7) this current profile to a battery
simulation model described in Section IV; the model allows
to track the decrease of SOC of the battery for a given current
profile. The amount of consumed SOC is then stored into the
table T, which represents the actual model.
T is a 5-dimensional table that returns the decrease of battery
SOC resulting from a drone delivery over a distance di,
carrying a payload wi, at a speed vi, and for a battery having
SOC level SOCi at the beginning of the delivery.
The computational cost of build the model is obviously deter-
mined by the discretization interval for the various quantities.
For building function E(), the cost is O(|W | · |D| · |V | · |S|),
where |W |, |D|, |V | and |S|) are the number of discretized
levels of weights, distances, speeds, and SOC, respectively. In
our case we have |W | = 4 (payload = 100 to 400 g, step =
100 g), |D| = 10 (distance = 100 to 1000 m, step = 100 m),
|V | = 11 (speeds = 1 to 11 m/s, step = 1 m/s), and |S| = 10
(SOC = 10% to 100%, step = 10%); the calculation involves
therefore 4400 invocations of the battery model of [32].
3) Usage of the Power Model: Given T, the simulation of a
sequence of delivery tasks is relatively straightforward. The
only computation involved is the calculation of the optimal
flight speed.
Given a task τa with payload wa and delivery distance
da, and the current battery SOC SOCa (100% for the first
task), we extract the projection T(v)|w=wa,d=da,SOC=SOCa

of T describing the the ∆SOC corresponding to the triple
w = wa, d = da, SOC = SOCa, and where speed is left as
the only free variable. On this single variable function, we then
simply search of the speed value vopt,a that yields the smallest
∆SOCa = minvT(v)|w=wa,d=da,SOC=SOCa

; this will be the
optimal battery-aware flight speed. The next task τb will be
executed assuming an initial SOC SOCb = SOCa −∆SOCa.
The optimal speed vb and the minimum ∆SOCb are thus
obtained as describe above, and the process is repeated for
all tasks in the task set.

D. Simulation Results
1) Simulation Setup: We selected the Parrot AR.Drone 2.0
device, since there are comprehensive measurement data avail-
able in [40], which allows us to build the drone power
consumption model 9. Concerning the battery, we used the
Ultimate PX-04 LIPO Battery, which has 1,000 mA rated
capacity, 11.1 V nominal voltage and 9.0 V cut-off voltage.
Then we modeled a battery pack of 5,000 mAh rated capacity
at 11.1 V nominal voltage followed the method described in
Section IV, and assumed a constant converter efficiency of
90%.
2) Delivery Task Battery-aware Scheduling: In order to show
how the proposed battery-aware energy model can be applied
in a general framework involving a set of delivery tasks, we
formulated a couple of scenarios related to the scheduling of a
set of drone deliveries. In this context, a number n of delivery
tasks {τ1, ...τn} have to be carried out by a given drone. Each
delivery τi = (wi, di) is characterized by a payload weight wi

and a distance di from the base station to the delivery target.
We assumed that only one package is delivered for each task.
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3) Comparison of Different Scheduling: In this experiment, we
generated two sets of delivery tasks with different payloads
and distances, whose specific values are shown in Table VIII.
Among all possible deliver orders from six independent tasks,

Table VIII. DELIVERY TASKS FOR SET A AND SET B.

Set A Set B
Task W (g) D (m) W (g) D (m)

1 100 100 300 100
2 200 100 400 100
3 100 200 400 200
4 100 300 400 300
5 200 500 200 500
6 400 900 100 900

we report the best and worst cases. Best case means that all the
tasks are delivered with the minimum energy and, therefore,
there is still available capacity in the battery, whereas worst
case means that the drone cannot finish all the delivery tasks
because the battery is fully depleted. In terms of set A, we
found that the best scheduling is 6 → 5 → 2 → 4 → 3 → 1,
while the worst scheduling is the mirrored one.
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Figure 11. Best and worst scheduling of delivery task set A.

Figure 11 shows the battery current and SOC during delivering
all the tasks of set A. The upper sub-figure corresponds to the
best scheduling case: the battery SOC is 7.81% after delivering
all the tasks. On the other hand, in the worst scheduling
case, they cannot be all accomplished before the battery is
exhausted, as shown in the bottom sub-figure. Notice that, at
constant power, the discharge current increases dramatically
at the ending phase because the battery voltage decreases
evidently at low SOC. This is determined by the non-linear
characteristics of the battery behavior. It is also the reason
why the current provided by battery for task F in the worst
scheduling case is slightly higher than the one in the best
scheduling case. Concerning set B, we got a similar result.
Notice that the best scheduling policy always starts with the
task having the heaviest payload and longest distance. In fact,

since the battery is more efficient in serving larger current
requests when fully charged, an effective scheduling policy
would be heaviest-longest-first.
4) Using the Model as an Accurate Predictor: In order to
analyze how many tasks can be really accomplished, we used
the scheduling policy heaviest-and-longest-first on the task set
described in Table IX, and then we compared the results of
the proposed energy model against the classical model.

Table IX. DELIVERY TASKS WITH VARIOUS PAYLOADS AND
DISTANCES.

Task W (g) D (m) Task W (g) D (m)
1 300 100 4 300 400
2 100 200 5 400 600
3 400 300 6 200 900

The optimal scheduling is 5 → 3 → 4 → 1 → 6 → 2.
Figure 12 shows that the residual battery SOC is estimated
at 15% after delivering all the tasks when considering the
classic model, whereas the battery is fully discharged during
the delivery of the last task using a battery-aware model.
Therefore, the proposed model can suggest the right decision
weather or not to start the last delivery by considering effective
capacity of the battery accurately.
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Figure 12. Comparison of the battery-aware model and classic model.

VII. CONCLUSION

For electric vehicles, a careful planning of the driving and/or
flying range is essential to guarantee the service without
charge depletion during operation. In this work, we proposed
a framework that has generality and modularity as its key
features: by decoupling the information about (i) the vehicle,
(ii) the route, and (iii) the battery it is possible to easily
model different scenarios. We demonstrated these features
by proposing two use cases, one more traditionally oriented
towards simulation consisting of a range estimation, and a
second one that solves an optimization problem, namely the
optima flying speed of for a set of AEV delivery tasks.
Our framework can be extended in several ways that will
be the subject of future work. One direction would be to
extend the route model to include route conditions both in
terms of environmental conditions (humidity, weather) and
even terrain types (for TEVs only). These extensions will
clearly impact also the vehicle models, which should become
sensitive to these quantities through additional dependencies
on new variables.
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Another possible extensions concerns a more elaborated
weight model for TEVs and the relative dependence of the
vehicle model on weight, as already considered for AEVs in
the second use case. Again, this should be reflected by the
TEV model, which in the current version considers only a
static weight.
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