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Abstract 

It is known that feature extraction from satellite imagery plays a fundamental role 

for environmental assessment and during the emergency management phase. Rapid 

mapping before and after catastrophic events intensively employs automatic and/or 

semi-automatic procedures to define the situation before the event, and to delineate 

damages and extract information after it. Earth Observation (EO) data with different 

spatial and spectral resolution is used for this task since the advent of the first satellites 

designed for this scope. In recent year the availability and the design of new EO 

programs created and widespread large amount of free to use satellite data. This thesis 

has two aims, one is to investigate the use of existing free to use data that acquired from 

recently launched Multispectral Instrument (MSI) carried by Sentinel-2 to extract 

surface water, the second aim is to explore the usage of very high resolution (VHR) 

geometric data to perform building footprint extraction and to assess damages to 

structures after catastrophic events. Rapid mapping procedures often use computer 

aided photo interpretation (CAPI) that are very time consuming and are done manually 

by an operator. The study addressed this issue proposing different type of semi-

automatic feature extraction procedures that permit to reduce the use of CAPI. The 

Surface water extraction was performed on Sentinel-2 data using Google Earth Engine, 

an emerging data infrastructure as a service. This work was done using a combination 

of normalized indexes and Otsu’s an automatic thresholding technique. The second 

work was carried out in collaboration with the Joint Open Laboratories of TIM and the 

Telecommunication Department of the Politecnico di Torino. The aim of the study was 

to construct a convolutional neural network (CNN) able to extract building footprints 
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from VHR satellite imagery. The final study was the proposal of a new building damage 

scale tailored for VHR vertical images.  

With the first study it is proposed an operational procedure capable to extract 

surface water features from Sentinel-2 images in a consistent manner worldwide. The 

second study proposed a novel approach to define building footprints with promising 

results. Finally, the third work permitted to propose a standard building footprint 

damage scale which permitted an amelioration of the accuracy of damages detected 

from vertical imagery. Furthermore, the scale has been accepted by the international 

working group on satellite emergency mapping (IWG-SEM). All three studies find an 

application for emergency management specially during the rapid mapping phase. 

Additionally, the studies find application also for mapping purposes and for 

environmental assessment. Future directions will try to address and adapt the proposed 

procedures to different emerging data processing technologies. Moreover, the quality 

of the methods will be assessed over more case studies areas and with more accurate 

ground truth data. 
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Chapter 1 

Context 

1.1 Introduction 

Earth Observation (EO) data has been used to better understand our planet 
thanks to the first Earth orbiting satellites. Remote sensed data plays an 
important role in many area of study, e.g. forest cover change (Hansen, et al., 
2013), fragile marine ecosystems like coral reefs (Mumby, et al., 2004), 
landslide susceptibility mapping (Lee, 2004), etc. 

Most of the works use different types of techniques to extract information 
from the EO data. With this work it will be explored the different types of 
feature extraction methods applied to remote sensed satellite data and the 
different field of application of the results. The study will stress the 
importance of EO data and its many applications focusing on the usage of 
emerging techniques used to extract information useful for operational 
services (e.g. rapid mapping) and for monitoring purposes. 

The presented work will focus on feature and information extraction from 
EO data characterized by different technical features. In the first part of the 
thesis it will be established the importance of the work and the necessary 
background to understand the studied thematic and its application. In a second 
moment the work will present the research field and the gaps that will be 
filled. Later the study will focus on the data, methods and tools used to solve 
the gaps and the described problems. The results and the application of the 
proposed methods will be described in the final section of the work. 
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Moreover, there will also be a focus on the application of the methods and the 
possible improvements to the thesis. 

The visual description of the thesis is summarized in Figure 1. The work 
will describe feature extraction from medium and very high-resolution 
datasets and their application for environmental assessment and emergency 
management. In particular, it will focus on surface water extraction, building 
footprint extraction and building damage assessment from vertical imagery. 

 

Figure 1 General schema of the thesis 

1.2 Natural Disasters 

The impact over a community of an extreme natural event turning into a 
disaster always depends only partly on the force of the natural event itself. 
The economic and social situation of the region hit by the event is just as 
significant and determine the country’s vulnerability. Humans can only 

influence to a limited degree weather, and with what intensity, natural events 
are to occur. However, states can considerable influence the exposure, the 
susceptibility, the coping and adaptive capacity by their governance in urban 
planning and disaster mitigation, preparedness and response. This means that 
states of weak governance are often not able to implement consistent 
strategies and measures to reduce the disaster risks and consequently their 
vulnerability is higher. By analyzing the World Risk Index (WRI), which is a 
mathematical model that combines the physical and spatial exposure to 
extreme natural events with the societal vulnerability at global scale 
(Birkmann & Welle, 2016), estimated for 171 countries, it is visible that the 
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global hotspots of risk due to a high exposure to natural hazards and high 
vulnerability levels are found in Oceania, Sub-Saharan Africa, Southeast Asia 
and Central America and the Caribbean — particularly in Haiti. 

In terms of vulnerability the states which are facing very high values are 
mostly locate on the African continent, except for Papua New Guinea, Haiti 
and Afghanistan. These countries are not only characterized by a high level 
of persistent poverty but also by significant governance failures and security 
problems. As example in Figure 2 is visible that catastrophic events have a 
huge impact worldwide and cause damages especially in the denser inhabited 
areas. From 2007 to 2017 catastrophic events have caused 2.040 billion US$ 
with 611.841 fatalities. 
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Figure 2 Geographic overview Relevant natural loss events worldwide 2007-
2017 (source: Munich Re, NatCatService, 2018) 
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1.2.1 Economic Impact and Losses 

Natural disasters are a fundamental issue in terms of economic losses, 
affected and killed people. The number of catastrophic events has more than 
doubled from 1980 to 2011. In 2011 natural disasters caused 27.000 fatalities 
and approximately 380.000.000.000 US$ in economic losses (Munich Re, 
2012). 

Major natural disasters can and do have immediate negative short-run 
economic impacts in terms of structure, infrastructure and tools damages, 
agriculture and industrial production harms. Disasters also appear to have 
adverse longer-term consequences for economic growth, social development 
and food security. While the direct losses are relatively easier to calculate in 
term of the economic values of the damaged assets, the long-term aftereffects 
are harder to estimate, and in many cases, especially in under-developing 
counties, they may be more devastating. 

Referring to EM-DAT’s (the International Disaster Database maintained 
by the Centre for Research on the Epidemiology of Disasters (CRED) at the 
Université Catholique de Louvain in Brussels, Belgium)  report of human cost 
of natural disasters, a total losses of US$ 2,600 billion have been recorded 
over the period 1994-2013 (Centre for Research on the Epidemiology of 
Disasters(CRED), 2015). The same report discerns the losses in base on 
disaster time, geographic location and income groups. In terms of absolute 
values, Asia accounted for 50% of the total, followed by the Americas at 35% 
and Europe at 12% (Figure 3). 

 

Figure 3 Absolute losses by continent (1994-2013) source: CRED 2015 

From the report emerge that storms are the most expensive type of 
disaster in terms of recorded lost assets (US$ 936 billion), while flood cause 
more damages on housing worldwide (Figure 4). 
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Figure 4 Houses damaged per disaster type (1994-2013) source: CRED 2016 

In relation to the income groups low and lower-middle-income countries 
reported just 10% of economic losses bur more than two-thirds of the deaths, 
while high- and upper-middle-income countries reported 90% of losses in 
absolute values and one third of the deaths (Figure 5). This discrepancy is not 
so visible in the case of housing damage, due to the disequilibrium between 
the higher number of low- and lower-middle-income number of people 
respect to the lower high- and upper-middle-income number of people, and 
the value and number of the property. 

 

Figure 5 Number of deaths per income group (1994-2013) source: CRED 2016 

The impact of natural disasters on national economies also varies greatly 
at the country level. In absolute values, the USA lost more than any other 
country between 1994 and 2013, following by Japan and then China (Figure 
6). 
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Figure 6 Top 10 countries reporting economic losses from natural disasters in 
absolute values (US $) 1994-2013 source: CRED 2016 

In terms of Gross Domestic Product (GDP), however, the losses were 
greatest in the Democratic People’s Republic of Korea, followed by Mongolia 

and then Haiti. In fact, despite the higher absolute economic losses in the high 
and upper-middle income countries, natural disasters cause more harmful 
impact on the national economy of lower-middle and lower income countries 
(Figure 7). 

 

Figure 7 Top five countries ranked by losses as a percentage of GDP showing 
the impact of one disaster type (1994-2013) source: CRED 2016 
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Of all-natural hazards, floods, droughts and storms affect the agriculture 

sector the most, showing the severe impact of climate-related disasters on the 
sector (Food and Agriculture Organization of the United Nations (FAO), 
2015). In terms of the regional distribution of production losses, Asia is the 
most affected region, with total crop and livestock production losses 
amounting to USD 28 billion or 40 percent of total losses, followed by Africa 
with USD 26 billion. In relative terms, Africa is the most affected region, 
having lost 3.9 percent of total expected crop and livestock production, 
followed by Central Asia with 3.8 percent (Food and Agriculture 
Organization of the United Nations (FAO), 2015) 

1.2.2 Society Impact 

In the period 1994-2013 nearly 2.5 billion people have been affected by 
natural disaster. Almost 55% of the total are affected by floods, therefore the 
most deadly events are earthquakes (including tsunamis), which are 
accounting for 55% of the disaster deaths over the 20-year period, claiming 
nearly 750,000 lives (Centre for Research on the Epidemiology of 
Disasters(CRED), 2015) (Figure 8 and Figure 9). 

 

Figure 8 Number of people affected by disaster type (1994-2013) source: 
CRED 2016 
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Figure 9 Numbers of deaths by disaster type (1994-2013) source: CRED 2016 

The level of people’s vulnerability is correlated with social factors such 

level of poverty, social structure, diversification of income, age and health 
conditions. Indeed there is a disparity of deaths between lower- and higher- 
income countries: in the past 20 years high- and upper-middle-income 
countries experienced 56% of disasters but lost 32% of lives while in the same 
period, low- and lower-middle-income countries experienced 44% of 
disasters but suffered a disproportionately high 68% of global mortality 
(Centre for Research on the Epidemiology of Disasters(CRED), 2015) 
(Figure 10 and Figure 11). 
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Figure 10 Number of disasters per income group (1994-2013) source: CRED 
2016 

 

Figure 11 Number of deaths per income group (1994-2013) source: CRED 
2016 

Natural disasters can have wide-ranging social impacts and can persist 
for the rest of people’s lives. In the long-term, the damages on critical 
infrastructure (education and health buildings, transportation, power station, 
water supply etc.), on privet sectors including housing, and agricultural and 
industrial sectors, can in some cases slow economic and social development 
for generations, especially in countries where infrastructure were already 
lacking and people leaved under the threshold of poverty. One of the most 
immediate effects of natural disasters is the temporal population 
displacement. When countries are ravaged by earthquakes or other powerful 
forces of nature, many people have to abandon their homes and seek shelter 
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in other regions, until normal living conditions have been restored. A large 
influx of refugees can disrupt accessibility of health care and education, as 
well as food supplies and clean water. Indeed, disasters have devastating 
impact on the education systems because of schools being damaged or 
destroyed, schools being used as evacuation centers, and because disaster risk 
reduction (DRR) policies are not being adequately resourced or prioritized 
through different levels of governments and to the community level. 
Educational inequities may put children at risk of exploitation and violence. 
Moreover, contributes towards a lack of economic participation (Save the 
Children, 2016).  

In many of the countries more vulnerable to natural disasters, agriculture 
is the main source of livelihoods and food supply, and a key driver of 
economic growth. Disasters can challenge the agricultural production, and 
thus, causing food insecurity. Thousands of people around the world go 
hungry because of destroyed crops and loss of agricultural supplies. As a 
result, food prices rise, reducing families’ purchasing power and increasing 

the risk of severe malnutrition or worse. 

Trends in migration, as a component of changing population dynamics, 
have the potential to rise because of natural disaster and extreme climate 
events, especially when livelihoods are destroyed. Migration can be 
considered as an adaptation strategy when disasters occur because it helps 
mitigate the adverse effects on the community by providing new opportunities 
and resources to the affected people. It is also employed as a coping strategy 
when other solutions have failed (Mbaye, 2017). 

The United Nations Office for the Coordination of Humanitarian Affairs 
and the Internal Displacement Monitoring Center have estimated that around 
20 million people were displaced or evacuated in 2008 because of rapid onset 
climate-related disasters (OCHA/IDMC/NRC, 2009). Over the last 30 years, 
twice as many people have been affected by droughts (slow onset events not 
included in the previous point) as by storms (1.6 billion compared with 
approximately 718 million) (IOM, 2009). Between 2008 and 2014, 
developing countries accounted for 95% of global displacement due to 
disasters. Moreover, most of the displacements are from middle-income 
countries (Figure 12). 
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Figure 12 Global displacement and population by income group in developing 
countries 

This is illustrative of the fact that people at the extremities of the income 
distribution do not necessarily migrate in the aftermath of disasters. Indeed, 
the poorest cannot afford to migrate and the richest have other mitigation 
strategies, such as the possibility to recover their lost assets or better access 
to effective infrastructure and social services, which allow them to cope with 
disasters without migrating. Therefore, people at the middle of the income 
distribution are those who do not have many alternatives at their disposal to 
deal with adverse climatic shocks and, at the same time, can afford migration 
costs (Mbaye, 2017). 

1.2.3 The Role and Benefits of Geospatial Information  

In the last 50 years geospatial science has dramatically developed across a 
variety of sectors and domains. Geographic Information Systems and remote 
sensing are rapidly becoming more innovative and complex in order to 
address ever more challenging issues. This technological innovation has 
produced – and continues to produce - large quantities of data, more than what 
is used, as already foreseen in 1998 by Al Gore at the California Science 
Centre: 

“The hard part of taking advantage of this flood of geospatial 

information will be making sense of it. - turning raw data into understandable 
information. Today, we often find that we have more information than we 
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know what to do with. (…) Now we have an insatiable hunger for knowledge. 

Yet a great deal of data remains unused.” (Gore, 1998) 

An example is the increasing number of satellite sensors, such as the 
Landsat and Sentinel constellations, which constantly photograph the Earth’s 

Surface with high revisit rates. These records are accessible open to all. 

Alongside the explosion of geographical sciences and geomatics, there is 
an increasing demand for georeferenced information at all levels in society, 
as it is being accepted as an evidence-based tool, capable of curtailing 
speculative decision-making. Hence Geospatial information technology is 
becoming more and more tightly related to political matters. Recently, 
Geospatial Information Technology has been officially recognized by the 
United Nations as a necessary tool for monitoring the Sustainable 
Development Goals at the indicator level and has established a specific Inter-
Agency and Expert Working Group on Geospatial Information for the 2030 
Agenda on Sustainable Development (United Nations, 2017). 

Geospatial Information Technology can be effectively applied to 
environmental monitoring. The already mentioned significant amount of data 
with worldwide coverage, the presence a 40-year historical record of satellite-
derived data with different spatial and spectral resolutions, smoothly elevates 
this technology to the preferred tool for monitoring natural phenomena. For 
instance, oceanographic sciences have leveraged cutting-edge remote sensing 
technology to analyze bio-physical parameters, such as temperature, 
chlorophyll concentration and suspended sediments, in oceans and in coastal 
zones. Ad hoc sensors, characterized by high spectral resolution and wide 
coverage, such as SeaWiFS, MODIS-Aqua and Sentinel 3 are used by 
national and international research centers to study Ocean Color and to 
monitor Harmful Algal Blooms (HABs) (Plymouth marine laboratory, 
NOAA). A case in point is an EU project launched in 2017, S-3 EUROHAB 
(https://www.s3eurohab.eu/en/index.html), which addresses the issue of 
eutrophication and toxic algal blooms in the English Channel, a hazard that is 
not predictable, and is yet the cause of mass killing of fish and shellfish, 
summing to a loss of 918 million euros per year to fish industries. As of today, 
only 3% of the channel is monitored by coastal boat surveys. This project 
aims at developing a web based Harmful Algal Bloom and Water quality alert 
system over the entire English Channel, using Copernicus Sentinel-3 satellite, 
in order to enable marine managers and shell fishermen to monitor the 
dispersion of such hazardous algae mats. 

https://www.s3eurohab.eu/en/index.html
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A special case of environmental monitoring is hazard monitoring and 

emergency response. In this field remote sensing and geospatial technology 
has been extensively used, also thanks to the development of Synthetic 
Aperture Radar (SAR) technologies. For example, observatories constantly 
keep an eye on geohazard supersites, recording changes in specific variables, 
through a variety of in situ and remote techniques. The Italian Etnean 
Observatory, periodically measures ground deformations with SAR 
interferometry, in order to capture anomalous bulges of the surface, precursor 
of volcanic eruptions. 

Another interesting case is the Open Data Cube initiative, already 
operational for a few countries (Australia, Switzerland and Colombia). It 
consists of a method for better managing large sets of satellite data, with the 
aim of “lowering the technical barriers for users” 

(https://www.opendatacube.org/about). Specifically, this solution provides 
analysis ready data with broad temporal and spatial coverage, allowing for 
studies on land use, vegetation, hydrology and urban planning. 

Earth Observations and geospatial information are as of today are 
irreplaceable tools for the scientific, economic and political world. The 
abundance of projects and initiatives for improving the use of geoinformation 
results in the need to standardize the formats and criteria for geospatial data 
production. International organizations and partnerships, such as the Group 
on Earth Observations, promote “open, coordinated and sustained data 

sharing and infrastructure for better research, policy making, decisions and 
actions across disciplines”. 

1.3 Remote Sensing and Geospatial Information for 
Emergency Management 

As mentioned previously, geospatial information plays a crucial role for the 
representation and the study of natural disasters. Satellite emergency mapping 
(SEM) became more popular along with the diffusion and the availability of 
a wide range of new remote sensing sensor. As visible in Figure 13 the number 
of SEM activations has increased during the past 14 years. In this time 
initiatives like Copernicus EMS and the United Nations have seen an overall 
increase use of their services and played a relevant role to produce maps 
related to catastrophic events.  

https://www.opendatacube.org/about
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Figure 13 Number of activations and distribution among the different SEM 
mechanism (source: (Voigt, et al., 2016)) 

1.3.1 Authoritative Initiatives  

International institutions e.g. the United Nations and the European 
Commission have designed services that provide accurate and up to date 
geospatial information for the actors involved in the management of natural 
disasters. The Copernicus Emergency Management Service (CEMS) and 
UNOSAT in case of major disasters usually provide information about the 
event very rapidly. 

1.3.1.1 Copernicus Emergency Management Service 

The Copernicus Emergency Management Service is part of the 
Copernicus Programme. The Programme is managed by the European 
Commission (EC) and implemented in partnership with the Member States 
and the European Space Agency (ESA) the European Organization for the 
Exploitation of Meteorological Satellites (EUMETSAT), the European 
Centre for medium-range Weather Forecasts (ECMWF), EU Agencies and 
Mercator Océan. The Programme is aimed at developing a set of European 
information services based on satellite Earth Observation and in-situ (non-
space) data (European Commission, 2017). 

CEMS is directly managed by the European Commission via the Joint 
Research Centre (JRC) and the General Directorate of the European Civil 
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Protection and Humanitarian Aid Operation (DG ECHO) provides Early 
Warning Systems and Emergency Management Mapping Services.  

The European Flood Awareness Systems (EFAS) and the European 
Forest Fire Information System (EFFIS) are the Early Warning Systems 
managed by the European Commission. EFAS is used to forecast and monitor 
floods across the Europe. EFFIS provides near real-time and historical 
information on forest fires in the European, Middle Eastern and North African 
regions (European Commission, 2017).  

The EMS Mapping Service provides geospatial information (raster maps 
and vector layers in .kmz and ESRI shapefile formats) derived from satellite 
images. The maps and products that are provided assess the impact of the 
natural and man-made disaster. The added value of the service is that is 24/7 
all year round, supports users all around the world, assesses damages caused 
by different types of events (droughts, epidemics, humanitarian crisis, 
infestations, mass movements, storms, volcanic activity, wildfires, forest 
fires, floods, earthquakes, industrial accidents etc.) (Figure 14). 

 
Figure 14 Events analyzed by CEMS  

From the moment the service is triggered the service provides reference 
maps (pre-event information) in 9 hours. The post event maps are provided 
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after 3 hours after the availability of a post event image and after 12 hours the 
final map (Figure 15). 

 
Figure 15 Map production workflow 

The three types of products provided by the CEMS is detailed below: 

Reference maps: “provide a quick updated knowledge on the territory 
and assets using data prior to the disaster. The content consists of selected 
topographic features on the affected area, in particular exposed assets and 
other available information that can assist the users in their specific crisis 
management tasks. A reference map is normally based on a pre-event image 
captured as close as possible prior to the event” (Copernicus Emergency 
Management Service (© European Union, 2012 - 2018)). For example, in 
case of an earthquake the service provides the building footprints of an 
affected area prior to the event. Generally, this task is carried out by manual 
digitalization. Another type of reference layer is the permanent water 
represented by rivers, canals, lakes and basins that must be up to date. An 
example can be found here: [EMSR112] Genova: Reference Map. 

Delineation maps: “provide an assessment of the event extent (and of its 
evolution if requested). Delineation maps are derived from satellite post-
disaster images. They vary depending on the disaster type and the delineation 

https://emergency.copernicus.eu/mapping/system/files/components/EMSR112_01GENOVA_REFERENCE_DETAIL01_v1_100dpi.pdf
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of the areas impacted by the disaster” (ibid.). The best example is represented 
by the maps that delineate flood extents and burnt areas perimeters. Relevant 
examples can be found here: [EMSR314] Lokoja: Delineation Map, 
[EMSR180] Thassos Island: Delineation Map. 

Grading maps: “provide an assessment of the damage grade (and of its 

evolution if requested). Grading maps are derived from post-event satellite 
images. Grading maps include the extent, magnitude or damage grades 
specific to each disaster type. They may also provide relevant and up-to-date 
information that is specific to affected population and assets, e.g. settlements, 
transport networks, industry and utilities” (ibid.). For example, in case of 
earthquake the products grade the damages to structures and infrastructures 
using a tailored damage scale. These maps are used by the ground units to 
dispatch the rescue units and provide immediate assistance. Examples related 
to the Central Italy earthquake and other events are visible here: [EMSR177] 
Capodacqua_Aerial: Grading Map, [EMSR317] Palu: Grading Map, 
[EMSR320] Port de Paix: Grading Map. 

All the described products  and all the other maps generated by the CEMS 
are public and can be viewed and downloaded in raster or vector format from 
the CEMS portal (https://emergency.copernicus.eu/mapping/list-of-
activations-rapid). 

1.3.1.2 United Nations Operational Satellite Applications Programme 

The United Nations Operational Satellite Applications Programme 
(UNOSAT) is an organization of the United Nations born in the year 2000. 
UNOSAT is United Nations Institute for Training and Research (UNITAR) 
specialized center in Geographic Information Systems and satellite imagery. 
UNOSAT integrates remote sensing and GIS data through web – mapping 
and information sharing mechanisms (UNOSAT, 2017). 

UNOSAT uses specialized skills to perform satellite analysis, design 
integrated solutions in GIS and geopositioning, develop the capacity of 
agencies and recipient countries via training and technical assistance. 

The UNOSAT portfolio consists in Maps and Reports that delineate 
natural or manmade disasters and offer support for the UN or other 
organizations. The areas of intervention are: 

• disaster response; 

https://emergency.copernicus.eu/mapping/system/files/components/EMSR314_02LOKOJA_01DELINEATION_MAP_v1_100dpi.pdf
https://emergency.copernicus.eu/mapping/system/files/components/EMSR180_01THASSOS_DELINEATION_OVERVIEW_v2_100dpi.pdf
https://emergency.copernicus.eu/mapping/system/files/components/EMSR180_01THASSOS_DELINEATION_OVERVIEW_v2_100dpi.pdf
https://emergency.copernicus.eu/mapping/system/files/components/EMSR177_14CAPODACQUAAERIAL_GRADING_OVERVIEW_v3_100dpi.pdf
https://emergency.copernicus.eu/mapping/system/files/components/EMSR177_14CAPODACQUAAERIAL_GRADING_OVERVIEW_v3_100dpi.pdf
https://emergency.copernicus.eu/mapping/system/files/components/EMSR317_07PALU_02GRADING_MAP_v3_100dpi.pdf
https://emergency.copernicus.eu/mapping/system/files/components/EMSR320_06PORTDEPAIX_02GRADING_MAP_v1_200dpi.pdf
https://emergency.copernicus.eu/mapping/list-of-activations-rapid
https://emergency.copernicus.eu/mapping/list-of-activations-rapid
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• humanitarian operations; 
• human security and the application of international human law; 
• human rights. 

Like CEMS, UNOSAT has also a division of rapid mapping in response 
to major disasters or events that can be monitored using remote sensing and 
GIS techniques. The Services offered are: 

• imagery searching, selection and acquisition; 
• image digitizing; 
• image analyzing; 
• cartographic production; 
• report production; 
• service publishing and web map production. 

The dissemination of the maps is done via standard pdf products and .shp 
or .gdb for the vector data. Relevant examples of products can be downloaded 
from the UNOSAT website (http://unitar.org/unosat/maps). UNOSAT has 
been working lately on providing reports and maps for the floods that affected 
the Bayelsa State in Niger (http://unosat-maps.web.cern.ch/unosat-
maps/NG/FL20180925NGA/Preliminary_Flood_Analysis_Bayelsa_Nigeria
_20181011.pdf) and damage  the earthquake that struck the Sulawesi area in 
Indonesia (http://www.unitar.org/unosat/node/44/2856?utm_source=unosat-
unitar&utm_medium=rss&utm_campaign=maps). 

1.3.2 Voluntary Initiatives 

In the past years the World Wide Web had a significant transition. The users 
no longer only consume content available on the web but also create content. 
The users are becoming one of the main contributors of the web by sharing 
knowledge and information (O'Reilly, 2005). Well known examples are 
Wikipedia the free encyclopedia and other platforms like YouTube used for 
video sharing and Flickr or Instagram for photo sharing. These platforms use 
User-Generated Content (UGC) (Carmen & Bucher, 2010) as a main source 
of information and then display it for the whole internet community. 

Volunteered Geographic Information (VGI) can be considered an 
example of UGC. This type of content is generated by the crowd that uses the 
WWW. The data can be generated by diverse type of users with different 
levels of experience in the geodata field (Goodchild M. F., 2007). Significant 

http://unitar.org/unosat/maps
http://unosat-maps.web.cern.ch/unosat-maps/NG/FL20180925NGA/Preliminary_Flood_Analysis_Bayelsa_Nigeria_20181011.pdf
http://unosat-maps.web.cern.ch/unosat-maps/NG/FL20180925NGA/Preliminary_Flood_Analysis_Bayelsa_Nigeria_20181011.pdf
http://unosat-maps.web.cern.ch/unosat-maps/NG/FL20180925NGA/Preliminary_Flood_Analysis_Bayelsa_Nigeria_20181011.pdf
http://www.unitar.org/unosat/node/44/2856?utm_source=unosat-unitar&utm_medium=rss&utm_campaign=maps
http://www.unitar.org/unosat/node/44/2856?utm_source=unosat-unitar&utm_medium=rss&utm_campaign=maps
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initiatives are Wikimapia, Map Creator, Google Map Maker, OpenStreetMap. 
OpenStreetMap is one of the most famous VGI with over 2.7 million users 
registered at June 2016. 

In a very short time data generated from VGI found usage in diverse 
services that provide information about catastrophic events. OpenStreetMap 
data is very easy to download and use. It can be used to produce reference 
maps about an area. This type map can permit to have the situations before a 
specific catastrophic event. Moreover, the information can be easily 
integrated with other geographic information datasets available on the web. 
Furthermore, the data produced by VGI has seen an increase of its quality in 
recent years (Zielstra & Zipf, 2010), (Haklay, 2010), (Ali A. L., Schmid, Al-
Salman, & Kauppinen, 2014), (Ali & Schmid, 2014) and (Barron, Neis, & 
Zipf, 2014). 

In recent years many services that provide relief in case of natural 
disasters where born. Two of the most relevant are Humanitarian 
OpenStreetMap Team (HOT) and Tomnod. 

1.3.2.1 Tomnod 

Tomnod is a service that was born in 2010 as a research project of the 
University of California, San Diego and later was acquired by DigitalGlobe 
(US commercial vendor of space imagery and geospatial content and operator 
of civilian remote sensing spacecraft). Tomnod’s main scope is to analyze 

satellite imagery to extract information that are useful in case of major 
disaster or in case of emergencies. This process is a mixture between standard 
satellite data processing and the support of volunteer mappers. In 2011 
Tomnod collaborated with the UNHCR (United Nations High Commissioner 
for Refugees) to localize the refugees camps present in Somalia, the service 
was also involved in the mapping of the damages created by the Haiyan 
typhoon in 2013 and in the search of the MH370 missing plane of the 
Malaysia Airlines of 2014. Tomnod does not always seek for volunteer 
mapper only for emergency events, natural calamities or humanitarian crisis, 
a recent example is the mapping of big portions of Beijing the capital of 
China, or a recent campaign’s goal was to spot and locate the swimming pools 

of the private properties of Adelaide in Australia (Tomnod, 2016). 

The data gathered during these specific crowdmapping activities are not 
always released to the public. Although, in some cases, generally events that 
had a huge mediatic impact e.g. the Nepal earthquake of 2015 or the 
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disappearance of the Malaysian Airlines plane the data can be downloaded 
from the blog of the company. Another peculiarity of the service is that every 
action made by the users, even if the users are registered or unregistered, is 
used to enhance and ameliorate the algorithm that the company uses to pre-
classify the satellite images (Tomnod, 2015). Examples that describe the 
products, which are mainly in vector format can be downloaded from 
DigitalGlobes Blog. The data generated by Tomnod regarding media covered 
earthquake like the Ecuador earthquake from 2016 which provides damage 
grading of buildings can be viewed and downloaded here 
(http://blog.digitalglobe.com/news/open-imagery-and-data-to-support-
ecuador-earthquake-response/) (Figure 16). The data is presented in standard 
formats (shapefiles or geodatabases), but not all data generated by Tomnods 
campaigns are downloadable and processable. 

 

Figure 16 Example of the DigitalGlobe Blog website (source: 
http://blog.digitalglobe.com/news/open-imagery-and-data-to-support-ecuador-

earthquake-response/) 

1.3.2.1 Humanitarian OpenStreetmap Team (HOT) 

HOT-OSM is a community build on the principles of participation and 
sharing of geographic data. HOT-OSM and Tomnod share the same purpose. 

http://blog.digitalglobe.com/news/open-imagery-and-data-to-support-ecuador-earthquake-response/
http://blog.digitalglobe.com/news/open-imagery-and-data-to-support-ecuador-earthquake-response/
http://blog.digitalglobe.com/news/open-imagery-and-data-to-support-ecuador-earthquake-response/
http://blog.digitalglobe.com/news/open-imagery-and-data-to-support-ecuador-earthquake-response/
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Although HOT is more focused on the creation of pre-event base data used as 
support for the creation of reference maps. HOT coordinates the volunteer 
mappers through an application named Tasking Manager 
(http://tasks.hotosm.org/). This application permits real time collaborative 
mapping. The area where the event occurred is divided in smaller zones that 
can be completed rapidly. Moreover, the Tasking Manager gives in real time 
the progress of the data generation. To date HOT coordinated and permitted 
to map more than 1.700.000 tasks relative to diverse type of events and a 
heterogeneous type of features like roads, buildings, land cover usage, water 
resources and idp camps (Humanitarian OpenStreetMap, 2013). Al data 
generated from the HOT community is available under the Open Data 
Commons Database License(ODbL) (Open Data Commons, 2017). The data 
can be freely used and shared by the web users and also by external services. 

The current state of mapping tasks is visible on HOT OSMs web page 
(https://tasks.hotosm.org/contribute?difficulty=ALL) (Figure 17). An area of 
interest is delimitated for each task and each area is divided on smaller 
subtasks. Once a task has been completed, the digitizing work can be 
validated by a community member (Figure 18). 

http://tasks.hotosm.org/
https://tasks.hotosm.org/contribute?difficulty=ALL
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Figure 17 HOT OSM Mapping Tasks (source: 
https://tasks.hotosm.org/contribute?difficulty=ALL) 

https://tasks.hotosm.org/contribute?difficulty=ALL
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Figure 18 Example of HOT OSM Task over the area of Olbia in Sardinia 
(source: https://tasks.hotosm.org/project/369#bottom) 

Along with these service, it is possible to find data that is produced 
following rigorous methods and is also free to use. Services like GADM 
(Global Administrative Areas) and GAUL (Global Administrative Unit 
Layers) provide the administrative boundaries of the entire globe. Moreover, 
land cover data of the entire earth surface is available from ESA (GlobCover) 
and Corine Land Cover. 

1.4 Monitoring Services 

1.4.1 Copernicus Global Land Monitoring Service 

The Copernicus Global Land Service is part of the Copernicus Programme, 
the EU Earth Observation and monitoring programme. The programme was 
established by Regulation (EU) No 377/2014 of the European Parliament and 
of the Council, on April 3rd, 2014. The Copernicus Pogramme (EU Earth 
Observation and Monitoring programme) has his origins in the ‘Baveno 

Manifesto’, (1998, Baveno/Lago Maggiore, Italy).  
The Copernicus Global Land Service is the result of several years of 

implementation. The first monitoring was known as Global Monitoring for 
Environment and Security (GMES). The programme had an Initial 

https://tasks.hotosm.org/project/369#bottom
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Operational phase (GIO). The final overall scope, priorities and architecture 
of the Global Land Service are described and approved during the 33rd 
International Conference on Remote Sensing of Environment (ISRE33) of 
Stresa (Italy) in 2009 and revised by the EU Member States Delegates the 
same year. The global Land Service is designed to answer the needs of the 
following EU Policy areas (Copernicus Europe's eyes on Earth, 2017): 

• Agriculture and Food Security; 
• Biodiversity; 
• Climate change; 
• Forest and Water resources; 
• Land degradation & desertification; 
• Rural development. 

The Copernicus Global Land Service is part of Copernicus programme 
for the monitoring of the Earth. The Land Monitoring Core Service (LMCS). 
Thought the processing of Earth Observation data the Copernicus GLS 
provides added-value products and information about the land surface. This 
information is provided continually and is delivered to the decision makers 
and the broad range of users that have direct interest in this thematic. 

The service that covers the entire globe and specific areas is a component 
that is managed by the European Commission’s DG JRC. The data with a 
higher geometrical and spatial sampling useful at a Local or at a Pan-
European scale is a component managed by the European Environment 
Agency (EEA) (Copernicus Europe's eyes on Earth, 2017). 

The Global Land Service managed by the JRC is further organized as 
follows: 

• systematic monitoring at global scale based on low-to-medium 
spatial resolution sensors and including the constitution of long 
term, consistent time series; 

• hot spot mapping and validation, which is actionable by request 
and has a limited geographical coverage. The analysis is made on 
specific regions using high resolution satellite data that has a low 
revisit frequency; 

• ground – based Observations (GBOC), that supports the 
validation of the products generated by the previous 2 
components and also by other services and localized request. 
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The overall structure of the monitoring programme is summarized in 

Figure 19. 

 
Figure 19 CLMS organization (source: http://land.copernicus.eu/global/about) 

Notable examples and projects are Urban Atlas 2012, the project aims to 
generate a detailed land cover and land use of the major cities of the EU. The 
data can be viewed and downloaded from the projects web portal 
(https://land.copernicus.eu/local/urban-atlas/urban-atlas-2012). The data and 
metadata are described using the INSPIRE format. Riparian zones 
(transitional zones that occur between freshwater ecosystems and land) 
(https://land.copernicus.eu/local/riparian-zones/view) and Natura 2000 zones 
(https://land.copernicus.eu/local/natura/natura-2000-2012)are also mapped 
in this framework. 

1.4.2 North American Land Change Monitoring System 

(The North American Land Change Monitoring System (NALCMS) is a joint 
project between Natural Resources Canada (NRCan), Canada Center for 
Remote Sensing (CCRS); the United States Geological Survey (USGS); and 
three Mexican organizations: the National Institute of Statistics and 
Geography (Instituto Nacional de Estadistica y Geografia – INEGI); National 
commission for the Knowledge and Use of Biodiversity (Comision Nacional 
para el Conocimiento y Uso de la Biodiversidad - CONABIO); and the 
National Forestry commission of Mexico (Comision Nacional Forestal - 
CONAFOR). The project is facilitated by the Commission for Environmental 
Cooperation (CEC). The CEC is an international organization created under 

http://land.copernicus.eu/global/about
https://land.copernicus.eu/local/urban-atlas/urban-atlas-2012
https://land.copernicus.eu/local/riparian-zones/view
https://land.copernicus.eu/local/natura/natura-2000-2012
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the North American Agreement on Environmental Cooperation (NAAEC) by 
Canada, Mexico and the United States to address regional environmental 
concerns, help prevent potential trade and environmental conflicts and 
promote the effective enforcement of environmental law. 

The objective of NALCMS (Figure 20) is to devise, through a collective 
effort, a harmonized multi-scale land cover monitoring framework, which can 
be applied across North America with high accuracy meeting each country 
specific requirements. The new 2005 Land Cover Database of North America 
at 250 m spatial resolution is the first step toward achieving this objective. 

The product is based on observations acquired by the Moderate 
Resolution Imaging Spectroradiometer (MODIS). Mapping was performed 
by each country using unique data pre-processing and information extraction 
methodologies. These national products were subsequently used to assemble 
an integrated North America land cover database. The classification legend is 
designed in three hierarchical levels using the Food and Agriculture 
Organization (FOA) Land Classification System. Level 1 and 2 are common 
for North America while level 3 is country specific. 

 
Figure 20 NALCMS Level 1 (source: https://landcover.usgs.gov/nalcms.php) 



28 Context 

 
Information provided by this land cover database is valuable for a range 

of users including, international organizations such as the United Nations 
Environmental Programme, non – governmental conservation organizations, 
land managers, and scientific researchers. The continental scale land cover 
data generated under NALCMS can be used to address issues such as climate 
change, carbon sequestration, biodiversity loss, and changes in ecosystem 
structure and functional, by helping users to better understand dynamics and 
continental – scale patterns of North America’s changing environment.) 

(United States Geological Survey (USGS), 2016) 
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Chapter 2 

Remote sensed data and its 
application 

2.1 Technical features of the remote sensed images 

The main technical features of the remotely sensed datasets will be described 
in this section. This section will describe features as geometric resolution, 
spectral resolution and temporal resolution. The combination between the 
different types of resolution define the characteristics of a satellite. Due to 
technical constrains, satellites can offer only high spatial resolution with low 
spectral resolution. On the other hand, satellites with low spatial resolution 
have higher spectral resolution. Satellite manufactures and space agencies to 
ensure a higher revisit time build more satellites that orbit opposite to each 
other (Gomarasca, 2009). E.g. the Sentinel-2 mission has twin polar-orbiting 
satellites in the same orbit phased at 180° to each other. 

Remote sensing has different types of applications. The most common 
applications are Land use and Land cover, Agriculture, Forestry, Geology, 
Geomorphology, Damage assessment after catastrophic events, etc. In 
(GISGeography, 2017) are listed 100 remote sensing applications and uses. 

Satellite sensors can be divided in two types, passive sensors and active 
sensors. “Passive sensors are microwave instruments designed to receive and 

to measure natural emissions produce by constituents on the Earth’s surface 

and its atmosphere” (NASA, 2017). These sensors rely on an external 
electromagnetic source (e.g. the Sun). “An active sensor is a radar instrument 
used for measuring signals transmitted by the sensor that were reflected, 
refracted or scattered by the Earth's surface or its atmosphere” (NASA, 
2017). 
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2.1.1 Geometric resolution 

These types of analysis can be made because there is a broad availability 
of datasets generated with different techniques and from different types of 
platforms. The most common platforms are listed below: 

• Satellite Sensor Platforms: Low (MODIS with 500 m ground 
sample distance (GSD), MERIS 1000 m GSD, Meteosat 3km) and 
Medium (RapidEye 6 m GSD, Planet 3 m GSD) geometric 
resolution sensor can be used for Land use and Land cover 
application. High (Deimos HR 1 m GSD) and Very High 
Resolution (VHR) (World View 2/3/4, GeoEye can reach VHR 
0.5 m and 0.3m GSD) can be used for intelligence applications, 
security management, and damage detection after catastrophic 
events; 

• Airborne Senor Platforms: Very High resolutions (0.05 m GDS) 
that can be used to update cartography, delineate catastrophic 
events that occur at a local scale; 

• Unmanned Airborne Vehicles: have similar characteristics as the 
previous type of vehicles. Moreover, the aircraft doesn’t have a 

pilot on board and can be used to survey areas that can bring harm 
to the pilot of the vehicle. 

The characterization of the sensor can vary based on the spatial, spectral, 
radiometric and temporal resolution.  

The spatial resolution indicates how much 1 pixel of the satellite/platform 
covers the earth surface (Figure 21). 
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Figure 21 Spatial resolution (source: https://www.satimagingcorp.com/) 

• Very high spatial resolution: 0.3 – 1.0 m GSD; 
• High spatial resolution: 1.0 – 4.0 m GSD; 
• Medium Spatial resolution: 4.0 – 6 m GSD; 
• Low spatial resolution: > 30.0 m GSD. 

2.1.2 Spectral resolution 

The spectral resolution “describes the ability of a sensor to define fine 

wavelength interval  (Government of Canada, 2015) s”. More intervals equal 
to a higher resolution (Figure 22): 

• High spectral resolution: - 220 bands; 
• Medium spectral resolution: 3 - 15 bands; 
• Low spectral resolution: - 3 bands. 
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Figure 22 Spectral Resolution (source: http://www.nrcan.gc.ca/node/9393) 

2.1.3 Temporal resolution 

The temporal resolution of a sensor indicates the revisit frequency of the 
platform over a specific location: 

• High temporal resolution: < 24 hours – 3 days; 
• Medium temporal resolution: 4 – 16 days; 
• Low temporal resolution: > 16 days; 

 
Figure 23 Number or scenes acquired by different satellite sensors from (1972-

2017) and available freely source: (Donchyts, van de Giesen, & Gorelick, 2017) 

An example of high temporal resolution is visible in Figure 23, Sentinel-
2 MSI sensor in 2016 has done more acquisition than Landsat ETM, OLI, C-
SAR and ASTER sensors combined. 

Virtual constellations also play an important role to increase the temporal 
resolution. Sensors with same resolution permit to have a higher temporal 
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resolution because virtually the number of scenes over a specific area of 
interest is higher with two or more sensors in combination rather than one. 

Another way to increase the temporal resolution is to re-orient the sensors 
position during its line of flight. Permitting to the sensor to acquire more 
scenes from different positions and in different time periods. This is a 
characteristic of active sensors e.g. COSMO-SkyMed. 

2.1.4 Radiometric resolution 

Radiometric resolution represents the sensitivity of a sensor to the 
electromagnetic energy, therefore the reflectance that can be distinguished by 
the system. “The radiometric resolution of an imaging system describes its 

ability to discriminate very slight differences in energy The finer the 
radiometric resolution of a sensor, the more sensitive it is to detecting small 
differences in reflected or emitted energy” (Government of Canada, 2015). 

 

Figure 24 Example of radiometric resolution (source: 
https://gisgeography.com/bit-depth/) 

As visible from Figure 24 the detail achieved by a sensor with higher 
resolution at the same GSD have a pixel depth that permits to better define 
the details of remote sensed images. 

https://gisgeography.com/bit-depth/
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2.2 Space missions and applications 

2.2.1 USGS Missions 

2.2.1.1 MODIS 

MODIS is the scientific instrument payload of the satellites Terra (EOS 
AM) and Aqua (EOS PM) lunched in orbit by NASA in 1999 and 2002. The 
orbit of the sensor is 705 km above Earth surface with a swath of 2330 km 
(cross track) by 10 km (along track at nadir). The spatial resolution varies 
depending on the bands: 

• 250 m bands 1-2 (Land/Cloud/Aerosols Boundaries); 
• 500 m bands 3-7 (Land/Cloud/Aerosols Properties); 
• 1000 m bands 8-36 (Ocean 

Color/Phytoplankton/Biogeochemistry/ Atmospheric Water 
Vapor/Surface Cloud Temperature/Atmospheric 
Temperature/Cirrus Clouds Water Vapor/Cloud 
Properties/Ozone/ Surface/Cloud Temperature and Cloud Top 
Altitude). 

The data products downloadable from the MODIS web page are divided 
in 4 groups: 

• Level 1 – Raw Radiance, Calibrated Radiance and the 
Geolocation Fields from the Instantaneous Field of View (IFOV) 
of the sensor; 

• Atmosphere Products – Products related to aerosol, clouds and 
Atmospheric profiles; 

• Land Products – Surface reflectance, Land surface temperature, 
land cover products, vegetation indexes, thermal anomalies, 
evapotranspiration, water mask, burnt areas; 

• Cryosphere Products – Snow cover, sea ice and ice surface 
temperature; 

• Ocean Products – Sea surface temperature, remote sensing 
reflectance, particulate organic carbon, particulate inorganic 
carbon, etc. 

2.2.1.2 Landsat 
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“Landsat represents the world’s longest continuously acquired collection 

of space-based moderate-resolution land remote sensing data. Four decades 
of imagery provides a unique resource for those who work in agriculture, 
geology, forestry, regional planning, education, mapping, and global change 
research. Landsat images are also invaluable for emergency response and 
disaster relief” (United States Geological Survey (USGS), 2017). The most 
successful missions like Landsat 4 and 5 provided data about the Earth surface 
from 1982 to 2009. Landsat 5 exceeded the designed life expectancy and 
became the longest-operating Earth Observation satellite.  

Landsat-8 is the last satellite of the family and as payload carries the 
Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). The 
onboard sensors bands have different resolution depending on the 
wavelength: 

• 30 m – Band 1 to 7 (Aerosol, Blue, Green, Red, NIR, SWIR 1, 
SWIR 2) and Band 9 (Cirrus); 

• 15 m – Band 8 (Panchromatic); 
• 100 m resampled to 30 m – Band 10 and 11 (Thermal Infrared 1 

and 2). 

The data products are downloadable using EarthExplorer and GloVis. 
The processing Level-1 can be divided in 3 main groups: 

• L1T and L1TP: Radiometrically calibrated and orthorectified 
using ground control points and digital elevation model (DEM) 
data to correct for relief displacement. These are the highest 
quality Level-1 products suitable for pixel-level time series 
analysis; 

• L1GT: Radiometrically calibrated and with systematic geometric 
corrections applied using the spacecrafts ephemeris data and 
DEM data to correct relief displacement; 

• L1G and L1GS: radiometrically calibrated and with only 
systematic geometric corrections applied using the spacecraft 
ephemeris data; 

2.2.2 Sentinel-2 ESA mission and Copernicus Programme 

The SENTINEL-2 constellation is composed by two polar orbiting 
satellites in the same orbit phased at 180° to each other. The mission is 
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designed to give a high revisit frequency (5 days at the Equator). Land and 
climate change monitoring are the main objectives of the programme. The 
main objectives of the mission are: 

• systematic global acquisitions of high-resolution, multispectral 
images allied to a high revisit frequency; 

• continuity of multi-spectral imagery provided by the SPOT series 
of satellites and the USGS LANDSAT Thematic Mapper 
instrument; 

• observation data for the next generation of operational products, 
such as land-cover maps, land-change detection maps and 
geophysical variables (European Space Agency (ESA), 2017). 

The Multispectral Instrument (MSI) on board of the satellite measures 
Earth’s reflected radiance in 13 spectral bands from the visible/near infrared 
(VNIR) to the short infrared spectral range (SWIR). The spatial resolution as 
for the other sensors depends on the wavelength of the band: 

• 10 m – Bands 2,3,4 and 8 (Blue, Green, Red and NIR); 
• 20 m – Bands 5,6,7 8A, 11 and 12 (Vegetation Red Edge, Narrow 

NIR, SWIR); 
• 60 m – Bands 1, 9 and 10 (Coastal aerosol, Water vapor, SWIR 

Cirrus). 

The current available level of products for download are generated by the 
ground segment of the mission or via the SENTINEL-2 toolbox. 

• Level-1C Top of atmosphere (TOA) reflectance in cartographic 
geometry; 

• Level-2A Bottom of atmosphere (BOA) reflectance in 
cartographic geometry (prototype product) can be generated only 
on the user side using the Sentinel-2 Toolbox. 

2.2.3 Landsat and Sentinel-2 comparison 

The Sentinel-2 mission was planned and built by the EC and ESA to provide 
multispectral satellite data with higher resolution in comparison to the native 
30 m GSD of the Landsat TM and OLI sensors. 

Although the Sentinel-2 data has a higher resolution it is visible (Figure 
25) in how the data can be integrated with the existing Landsat 7 and 8 data. 
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Therefore, continue the Earth Observation legacy started in 1982 with 
Landsat 4-5 Thematic Mapper (TM), the first satellite that consistently 
acquired multispectral imagery of planet Earth with 30 m GSD. 

 
Figure 25 Comparison of Landsat 7 and 8 bands with Sentinel-2 (source: 

https://landsat.gsfc.nasa.gov/sentinel-2a-launches-our-compliments-our-
complements/) 

2.2.4 VHR Commercial missions 

Since the spring of 1996 and the launch of the first commercially owned and 
operated satellites (W. Fritz, 1996). The market has seen a rapid growth and 
demand of VHR satellite imagery for purposes ranging from intelligence 
application to agricultural mapping. The first commercial satellites provided 
panchromatic images with a spatial resolution between 1-3 m and a 4-15 m 
in the multispectral bands. 

Today the main commercial data providers (e.g. DigitalGlobe) worldwide 
are capable to acquire sub metric VHR data from constellations composed by 
5 satellites. For example, in the extract of the specification sheet from 
DigitalGlobe’s virtual constellation we see that the panchromatic resolution 

of the WorldView-3 and the WorldView-4 satellites is 0.31 m GDS (Figure 
26). 

https://landsat.gsfc.nasa.gov/sentinel-2a-launches-our-compliments-our-complements/
https://landsat.gsfc.nasa.gov/sentinel-2a-launches-our-compliments-our-complements/
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Figure 26 Digital Globe satellite sensor specification (source: 
https://www.digitalglobe.com/resources/satellite-information) 

Airbus DS designed the Pleiades program and projected and build the 
Pleiades-HR satellites (1A-1B). The satellites have a 0.5 m panchromatic 
resolution and provide a daily revisit over the same spot of Earth surface. 

Therefore, a potential user has the possibility to choose from a virtual 
constellation of 7 satellites with 0.5 m GSD or lower resolution. This permits 
to have a wide range of possible providers. The possible virtual constellation 
increases to more than 15 satellites if users are interested in sub metric data. 

2.3 From Data to Information: main processing 
techniques 

2.3.1 Geometric correction, atmospheric correction and 
radiometric calibration 

Remote sensed images usually are not directly usable for environmental 
studies or applications. Many errors or biases occur during the acquisition of 
the data, for example misalignment from the planned flight line, suspended 
particles in the atmosphere, (aerosol) and the conversion from pixel digital 

https://www.digitalglobe.com/resources/satellite-information
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number (DN) to at sensor radiance. Therefore, for most applications it is 
necessary to correct and calibrate the data before its employment. 

Geometric correction is done to integrate acquired satellite data with 
digital maps or already existing corrected acquisition. Earth’s rotation and 

curvature, together with the flight line of the satellite (that does not always 
follow the intended orbit) create geometric distortions that must be corrected. 
The corrections can be done using a DEM and/or ground control points (GCP) 
with well-known geographic coordinates. An example of geometric corrected 
data can be viewed in Figure 27 

 

Figure 27 GeoEye-1 image before ortho-rectification (left) and after ortho-
rectification (right) (source: https://earthenable.wordpress.com/2015/02/03/guest-

post-challenges-geometric-correction-of-optical-high-resolution-satellite-imaging/) 

Atmospheric corrections (Figure 28) are done to derive an at-ground 
upwelling radiance (reflectance). This operation is done to correct possible 
artefacts due to atmospheric scattering. The most common approaches are 
listed below: 

Atmospheric modelling: based on scene specific data (e.g. aerosol 
content); 

Semi-Empirical Modelling: based on the atmospheric visibility and 
standard constants for date, latitude and longitude; 

Empirical Modelling: the data is calibrated using the darkest pixel of the 
acquired scene (e.g. dark object subtraction). 

https://earthenable.wordpress.com/2015/02/03/guest-post-challenges-geometric-correction-of-optical-high-resolution-satellite-imaging/
https://earthenable.wordpress.com/2015/02/03/guest-post-challenges-geometric-correction-of-optical-high-resolution-satellite-imaging/
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Figure 28 Example of atmospheric correction with ATCOR (commercial 
software) (source: https://www.satimagingcorp.com/services/atcor/) 

Radiometric calibration is done to convert the DN in radiance and then 
trough a linear transformation to reflectance. This type of data can be 
reflectance at sensor (top of atmosphere) or at ground (bottom of atmosphere). 

Many data providers release satellite data with different type of 
processing. As mentioned before, the Sentinel-2 data is released with two 
different level of service (Level 1C and Level 2A). And for the proposed 
methods was sufficient the Level 1C of processing. However, the data used 
for the building footprint extraction and the building damage scale in this 
work needed to be corrected geometrically, were radiometric calibrated at 
sensor, and were not atmospherically corrected. This was done to simulate a 
Rapid Mapping workflow where atmospheric and radiometric calibration are 
not implemented due to time constraints. 

2.3.2 Surface Water Extraction 

Surface water extraction is commonly implemented using both passive and 
active satellite sensors. The datasets generated by MODIS and the Landsat 
legacy satellites (passive sensors) are the most common and widely used 
datasets. The datasets are free to use and easily downloadable from the USGS 
EarthExplorer web platform. Since the end of 2015 ESA developed the 
Sentinel-2 mission that will provide imagery for the monitoring of the Earth 
surface. The data is free to exploit and has a higher geometrical accuracy. 

https://www.satimagingcorp.com/services/atcor/
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To date active sensors have been rarely used in surface water extraction 

only for monitoring purpose. This is mainly because Synthetic Aperture 
Radar (SAR) satellites are commercial and the acquired imagery is not free. 
In 2010 the European Union founded the Sentinel-1 space mission consisting 
of two satellites, giving continuity at the previous ERS1, ERS2 and Envisat 
ESA satellites. The mission is carried out by ESA within the Copernicus 
Programme. 

There are other SAR and optical satellites that acquire data about the 
Earth surface but considering the applications it has been chosen to work 
using the medium to high resolution images offered by the Landsat and 
Sentinel missions. 

2.3.2.1 Information Extraction Techniques 

An extensive review of water bodies classification techniques presented in 
literature was conducted, to identify those capable to solve or minimize the 
above-mentioned problem. Since the institution of an historical archive 
requires the processing of several satellite data, it was decided to investigate 
on classification procedures that require short processing time. Thus, the 
literary review was focused on simple classification techniques, mainly based 
on indexes derived from differential band ratios or histogram thresholding.  

The advantage of the indices is that they make threshold values more 
independent from image acquisition parameters. According to literature two 
indices are commonly used to identify and classify flooded areas: The 
Normalized Difference Vegetation Index (NDVI) and the Normalized 
Differential Water Index (NDWI). The extraction of the flooded areas is 
mainly done by band ratios and histogram thresholding. 

The NDVI is an index generally used for vegetation analysis (see chapter 
5), but it can find application also for the detection of water bodies. Its 
definition is: 

NDVI =
RED − NIR

RED + NIR
 

Where RED and NIR stand for the reflectance measurements acquired in 
the red and near-infrared regions, respectively. 

Since water absorbs energy in the IR band, NDVI present low values in 
correspondence of flooded areas but also in correspondence of bare soils, 
which have similar characteristics both in the visible than in the IR band. For 
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this reason, to extract water bodies, NDVI values are often combined with IR 
histogram thresholding, which allows to mask bare soil areas. 

The NDWI is instead generally used for describing temporal and spatial 
dynamics of surface moisture, but application have been found which use this 
index combined to IR thresholding. Unfortunately, a unique definition of the 
NDWI was not found, probably due to its adaptation to the different 
characteristics of spectral sensors mounted on satellite platform normally 
used for those applications. 

The most diffused definition of NDWI was formulated by (McFeeters, 
1996), and later also described by, (Chatterjee, Kumar, Chakravorty, Lohani, 
& Kumar, 2005), (Jain, Saraf, Goswami, & Ahmad, 2006), is computed using 
the reflectivity in the green and near-infrared bands: 

NDWI =
GREEN − NIR

GREEN + NIR
 

GREEN and NIR stand for the spectral reflectance measurements 
acquired in the green and near-infrared regions, respectively. 

This index reduces commission errors during classification, due to 
vegetation and bare soil classes. (Xu, 2006), (Fengming, Bing, Huabing, 
Qian, & Peng, 2008)highlight the low reliability of this index in urban areas, 
proposing a Modified Normalized Difference Water Index (MNDWI) to 
minimize also errors due to the presence of shadows: 

MNDWI =
GREEN − SWIR

GREEN + SWIR
 

where GREEN and SWIR stand for the spectral reflectance 
measurements acquired in the green and Short-wavelength infrared regions, 
respectively. 

(Shen & Li, 2010), propose the below WRI definition, for the 
identification of water bodies: 

WRI =
𝐺𝑅𝐸𝐸𝑁 + 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅
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Where NIR and SWIR stand for the spectral reflectance measurements 

acquired in the near-infrared and Short-wavelength infrared regions, 
respectively. 

Many other indexes that permit to extract water have been proponed 
below some of the most used and notable ones reviewed in (Huang, Chen, 
Zhang, & Wu, 2018): 

Indices Equation 

NDWI NDWI = (GREEN − NIR) / (GREEN + NIR) 

mNDWI mNDWI = (GREEN − SWIR) / (GREEN + SWIR) 

AWEI AWEInsh: 4 × (GREEN − SWIR1) − (0.25 × NIR + 2.75 × SWIR2) 

AWEIsh: BLUE + 2.5 × GREEN − 1.5 × (NIR + SWIR1) − 0.25 × SWIR2 

WI2015 1.7204 + 171 × GREEN + 3 × RED − 70 × NIR − 45 × SWIR1 − 71 × SWIR2 

Table 1 Several Popular water indices along with their equation (Huang, Chen, 
Zhang, & Wu, 2018) 

But for this study we proposed the modified water index (MWI) which is 
result of the addition of the binary classifications obtained by thresholding 
WRI, NDWI and MNDWI indexes formulated as follows: 

𝑀𝑊𝐼 = (
𝐺𝑅𝐸𝐸𝑁 + 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅  | > 𝑡ℎ) +  (
𝐺𝑅𝐸𝐸𝑁 − 𝑁𝐼𝑅
𝐺𝑅𝐸𝐸𝑁 + 𝑁𝐼𝑅 | > 𝑡ℎ)

+ (
𝐺𝑅𝐸𝐸𝑁 − 𝑆𝑊𝐼𝑅
𝐺𝑅𝐸𝐸𝑁 + 𝑆𝑊𝐼𝑅 | > 𝑡ℎ) 

 The MWI will be used to compute the extraction of the surface water. 
The MNDWI performs better than other indexes when we are in presence of 
shadows. Although, it’s not easy to extract surface water that is characterize 

by the presence of suspended material (e.g. mud or organic matter). By 
thresholding each synthetic index and later summing them and obtaining a 
new post classified image, the water bodies are enhanced and the unwanted 
features that generally generate commission errors (e.g. cloud shadows, 
topography shadows, building shadows) are omitted. 
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2.3.2.2 Thresholding technique 

In this context the goal is to classify the image pixels in two classes, water 
and not water. Classifying an image can be done using many different 
thresholding techniques. One way to find the optimal threshold is by adopting 
a trial and error method inspecting the pixel values present in the satellite 
image. This method is straight forward and very effective during time critical 
applications. Although, trial and error methods are not optimal. 

The Otsu method tries to overcome this problem by finding the value that 
best maximizes the inter-class variance. The formulation of the method is the 
following: 

𝐵𝑆𝑆 = ∑(𝐷𝑁̅̅ ̅̅
𝑘 − 𝐷𝑁̅̅ ̅̅ )2

𝑝

𝑘=1

 

Interclass variance is formulated as BSS which represents the between 
sum of squares. The two classes (water/ not water) are represented by p. DN 
is the digital numbers of each normalized difference synthetic band 
computed. 𝐷𝑁̅̅ ̅̅

𝑘 is the mean digital number in k class and 𝐷𝑁̅̅ ̅̅  is the mean 
digital number present in the entire dataset. Class k is defined by every DN 
less than some threshold. The goal is to find the threshold that maximizes the 
BSS.  

This approach will not be done on the whole image. To better optimize 
the procedure the Otsu method will run only on the bins of a histogram. This 
approach is fast and requires only one pass over the data. At each bin of the 
histogram, define class k as the pixels in that bin and lower. Class k+1 is 
everything else. The method permits to find the mean that maximizes the 
BSS. This method is very fast but has to take into account that the sample 
used to generate the histogram has to contain water and not water DN in 
roughly equal proportions. 

2.3.2.3 Novel water extraction techniques 

In recent years different approaches that combine the extraction 
techniques mentioned before with image segmentation processes where 
applied. These techniques are mainly applied for the water detection of lakes. 
For example, in (Donchyts, van de Giesen, & Gorelick, 2017) there is a 
combination between the NDWI calculation, the segmentation (using Canny 
edge detection) of the image from whom it has been extracted and finally the 
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thresholding using the Otsu method over the pixels that fall within a buffer of 
the edges that have certain characteristics. A similar method is also applied 
by EO Learn, an open source python library that permits to extract surface 
water from Sentinl-2 images. The later after the definition of an AOI and a 
pre-loaded water mask of a waterbody permits to create a task that generates 
the surface water level of the input waterbody. The method is summarized in 
Figure 29 and is divided in the following steps: 

1) Area of interest Definition; 
2) Load of the satellite imagery (one image or multiple images); 
3) Cloud detection; 
4) NDWI Calculation; 
5) NDWI thresholding (using Otsu’s method); 
6) Vectorization of the results; 
7) Export of the results to a DBMS; 

 

Figure 29 EO-Learn Surface water extraction method (source: 
https://medium.com/sentinel-hub/introducing-eo-learn-ab37f2869f5c) 

2.3.3 Building Footprint Feature Extraction 

This section will describe the application of remote sensing for built-up area 
delimitation using medium to high resolution data. Moreover, the section will 
also focus on the state of the art of building footprint extraction using VHR 
satellite images. 

2.3.3.1 Information Extraction Techniques 

Feature extraction from satellite images has a crucial role not only for 
emergency management or the definition of the built environment of urban 

https://medium.com/sentinel-hub/introducing-eo-learn-ab37f2869f5c
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and rural centers. This activity could also play an important role in the update 
of the maps and data available on-line. 

In recent times there has been a huge interest in this topic and different 
techniques have been proposed at the different scales and resolutions of the 
datasets used for the analysis. 

2.3.3.2 Low Resolution Datasets 

The Normalized Difference Built-Up Index (NDBI) (Zha, Gao, & Ni, 
2003) is one of the most used index and technique for mapping urban areas 
using Landsat Thematic Mapper data (formula below): 

NDBI =
𝑇𝑀 𝐵𝑎𝑛𝑑 5 − 𝑇𝑀 𝐵𝑎𝑛𝑑 4

𝑇𝑀 𝐵𝑎𝑛𝑑 5 + 𝑇𝑀 𝐵𝑎𝑛𝑑 4
 

 Moreover, this index is used also with the newer Landsat-8 satellite. The 
technique combined with other indexes like the Normalized Difference 
Vegetation Index (NDVI) and the Normalized Difference Water Indexes 
(NDWI, MDWI) permits to achieve good result for the urban areas feature 
extraction (Zha, Gao, & Ni, 2003) (Bhatti & Tripathi, 2014) (Sinha, Verma, 
& Ayele, 2016). 

Other approaches propose the usage of indexes that are peculiar for each 
analyzed scene (Angiuli & Trianni, 2014) and take advantage of new 
platforms such as Google Earth Engine (Tiranni & al, 2015) (Figure 30).  
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Figure 30 Human settlement extent extraction results (Tiranni & al, 2015) 

2.3.3.3 VHR Datasets 

This family of procedures is no longer based on the single pixel extraction 
and classification. Working with very high-resolution datasets is often 
challenging because there are factors that can influence the correct extraction 
of features. The off-nadir angle is often one of the most important factors. 
The IKONOS imagery takes advantage of the off nadir angle and can 
determine the position and the height of buildings in dense residential areas 
(Shaker, Abd-Elrahman, K. Abdel-Gawad, & A Sherief, 2011).  

Object-Based detection algorithms became more popular and started to 
be applied on VHR imagery. These type of algorithms take in consideration 
not only the radiometry of each pixel but also segment the image and look for 
shapes that can be aggregated in a second moment (Attarzadeh & Momeni, 
2012) (Li, Wang, & Li, 2014). 

Artificial neural networks are one of the last trend used in remote sensing 
for building extraction. This technique is inspired from the computing 
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systems and informatics. These techniques have been applied in different 
works on low and high resolution imagery (Awad, Chehdi, & Nasri, 2007) 
(Neagoe & Strugaru, 2008) (Zahra & Hamid, 2017). 

2.3.4 Building damage assessment from vertical images 

This section will describe the current state of building damage assessment 
using remote sensed vertical images. Damage assessment activities are 
mainly done after catastrophic events and are done during rapid mapping 
activations.  

2.3.4.1 Information Extraction Techniques 

The main operational steps (and related timeline) of a simplified Rapid 
Mapping general workflow are shown in Figure 31. To date, standard 
procedures (Figure 31, red box) for structures and infrastructures damage 
severity assessment based on post-event VHR vertical imagery following 
natural disasters is generally carried out adopting a multi-temporal approach 
comparing baseline data (e.g., imagery captured before the event) to post-
event imagery (Xinjian & Yin, 2004). 

As far as earthquakes are concerned, although several semi-automated 
approaches (including the exploitation of promising deep-learning 
algorithms) are currently being tested, photo interpretation (Plaza & al., 2009) 
is still the most common methodology to rapidly generate earthquake damage 
assessment as specified in “Rapid Mapping: geomatics role and research 

opportunities” (Ajmar, Boccardo, Disabato, & Giulio Tonolo, 2015). The 
same paper also highlights the need to systematically improve the computer 
aided photo interpretation (CAPI) both in terms of efficiency and thematic 
accuracy, to increase the reliability of infrastructure damage assessment 
information and to improve the timeliness of the crisis information delivery, 
crucial in rapid mapping. The adopted damage scale and the related 
interpretation guidelines are clearly impacting on both the before mentioned 
goals. Another key factor affecting the building damage assessment accuracy 
and level of detail is the type of remote sensing imagery exploited for the 
analysis, mainly depending on the platform on which the imaging sensor is 
installed. 
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Figure 31 Simplified Rapid Mapping general flow-chart highlighting the main 
processing steps (crisis information extraction in the red box) and the activity 

timeline (Ajmar, Boccardo, Disabato, & Giulio Tonolo, 2015) 

 

2.3.5 Accuracy assessment 

A ground truth is required to assess the accuracy of a classification datasets 
and is one of the input required to calculate the confusion matrix, a table that 
shows correspondence between the results of a classification process and 
reference data. It is usually used as the quantitative method of characterizing 
the thematic accuracy of a dataset, defined as the proportion of agreement 
between a thematic map and reference data assumed to be correct “Ground 

Truth”. 
The diagonal of confusion matrix table lists the number of features that 

are classified into the correct ground truth class. 

Three different metrics are usually calculated to assess the thematic 
accuracy (Congalton & Green, 1999): 
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(1) Overall accuracy: the ratio between the sum of the number of pixels 

classified correctly and the total number of pixels in the area of interest. 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
( 𝑖1,1 +  𝑖2,2 + 𝑖3,3 + 𝑖4,4)

𝑇𝑂𝑇𝐴𝐿
 

(2) Producer’s accuracy (P.A.): 

𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟′𝑠 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦

=
Pixels correctly identified in reference given class

Pixels correctly identified in reference  class
 

(3) User’s accuracy (U.A.): 

𝑈𝑠𝑒𝑟′𝑠 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
Pixels correctly identified in a given map class

Pixels claimed to be in that map class
 

Classification errors can be divided in two different categories: 

𝑂𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 = 100% − 𝑃. 𝐴. 

𝐶𝑜𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 = 100% − 𝑈. 𝐴. 

The accuracy assessment method has been applied for each study of this 
work. 
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Chapter 3 
 

Methodology 

3.1 Surface Water Extraction 

This section describes the employed surface water extraction method and the 
platform employed to build and deploy the algorithms. Firstly, Google Earth 
Engine and its capabilities and benefits will be described. Secondly, the 
section will detail the case studies over which the MWI is applied. Finally, 
after the validation phase the methodology will be applied to the entire 
Sentinel-2 catalog. 

3.1.1 Google Earth Engine Capabilities and Application  

The thresholding and application of the MWI algorithm as well as the 
selection of the correct images to process, has been done using Google Earth 
Engine. 

Google Earth Engine is a planetary scale platform for Earth Science and 
data and analysis. The platform is entirely based on the cloud infrastructures 
and servers of Google. The platform combines a multi-petabyte catalog of 
satellite imagery and geospatial datasets with planetary-scale analysis 
capabilities and makes it available for scientists, researchers, and developers 
to detect changes, map trends, and qualify differences on the Earth’s surface. 

The platform harvests periodically the servers free satellite image 
providers like Landsat(USGS) and Sentinel(ESA). The archive includes more 
than thirty years of historical imagery and scientific datasets, that expands 
daily. Moreover, the data is instantly available. 

The platform can be used online at the web page 
code.earthengine.google.com by creating a free account. The interface of the 
code editor is visible in Figure 32 
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Figure 32 Earth Engine Interface 

The platform permits to export the analysis in common formats like 
GeoTIFF and kmz that can be then integrated with other data sources or 
findings that are not available in Earth Engine. 

3.1.2 Case Studies 

The proposed procedure to extract surface water is based on extracting and 
validating the method on a single remote sensed image and later validating it 
using the extraction made from satellite images with higher GSD. The steps 
are summarized below: 

1. Identification of the areas of interest over which is possible to 
extract the ground truth data using satellite images with 
resolutions that are higher or equal to the ones on which the water 
extraction methodology has been applied; 

2. Extraction of the ground truth data that represents the water 
surface extent using means of visual interpretation; 

3. Extraction of the water surface extent using the proposed 
methodology: 

a. Computation of NDWI, MNDWI and WRI over the area 
of interest; 
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b. Single threshold of NDWI, MNDWI, WRI, and sum of the 

three indexes which permits to obtain the MWI synthetic 
index that will be used for the surface water computation; 

c. Selection of the DN equal to 3 that represent the areas 
where all 3 indexes extracted pixels classified as water; 

d. Final surface water mask. 
4. Quality assessment of the result by means of the error matrix 

computation. 

At the current state of the art, five case studies were analyzed. As visible 
in Figure 33 the areas of interest are located specifically in: 

1. Sri Lanka – South East of Kalutara (Region of Kalutara) the 
Bentota Ganga River (area 1: Beruwala); 

2. Italy – North East of Parma (Region of Lombardia) the Po river 
(area 2: Viadana); 

3. Finland – North West of Kemi (Region of Lapland - Border 
between Finland and Sweden) the Torne river (area 3: Karunki); 

4. Colombia – South West of Caucasia (Antioquia department) 
confluence between the Cauca river and Tarazà river (area 4: 
Puerto Antioquia); 

5. Germany – South West of Plauen (Free State of Saxony) Droda 
and Pirk dam (area 5: Magwitz); 

 

Figure 33 Location of the 5 case study area of interest 

1 

2 

3 

4 

5 
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After the quality assessment of the water masks extracted over each area 

the computation is extended over all the collection of Sentinel-2 data in order 
to generate an image stack with all MWI analyzed bands. 

3.1.2.1 Accuracy metrics and comparison to ground truth data 

Table 2 summarizes the accuracy assessment done for each area using the 
different normalized indexes over each area of study. The complete accuracy 
assessment is visible in Annex 1. 

As visible from Table 2 the highest UA are provided by the MWI method 
described at 2.3.2.1 Information Extraction Techniques. It has been chosen 
to use this method because by providing high UAs permits to keep low the 
commission errors therefore we think it is better from an application point of 
view. For the area 4_Puerto Antioquia the UA is the lowest compared to the 
other areas. Nevertheless, the OA is almost the same as for the other areas. In 
this specific case the algorithm correctly classifies the pixels that are not water 
therefor we still have a high OA. One of the reasons could be the general 
characteristics of this specific S2 image with a higher quantity of clouds and 
waterbodies that have a higher quantity suspended matter. 

 

Table 2 Surface water extraction indexes accuracy 

3.1.3 Data Analysis and Processing of Sentinel-2 data 
collections 

The used datasets are the Sentinel-2: Multispectral Instrument (MSI), 
Level-1C with top of atmosphere reflectance scaled by 1000. Each scene has 
its granule identifier indicating its UTM grid reference. The metadata field is 
also populated including: 

• CLOUDY_PIXEL_PERCENTAGE: granule-specific cloudy 
pixel percentage; 

• CLOUD_COVERAGE_ASSESSMENT: cloudy pixel 
percentage for the whole archive that contains this granule. 

OA PA UA OA PA UA OA PA UA OA PA UA OA PA UA

1_Beruwala 99,25% 98,52% 95,53% 93,22% 98,56% 64,61% 99,54% 98,16% 98,09% 99,40% 97,32% 97,92% 99,44% 97,09% 98,28%

2_Viadana 64,58% 94,44% 12,34% 98,14% 77,96% 85,21% 98,45% 74,25% 95,09% 98,45% 76,70% 92,49% 98,44% 73,61% 95,52%

3_Karunki 98,92% 95,54% 95,10% 98,69% 92,96% 95,46% 98,60% 90,40% 97,20% 98,73% 92,37% 96,39% 98,60% 90,65% 97,14%

4_Puerto Antioquia 92,85% 94,55% 49,26% 96,92% 80,82% 76,27% 98,28% 85,19% 88,75% 97,48% 77,62% 84,77% 97,70% 75,41% 89,97%

5_Magwitz 88,34% 93,44% 16,33% 78,58% 95,85% 9,75% 99,52% 84,21% 95,07% 99,36% 92,83% 82,79% 99,52% 84,21% 95,07%

NDWI MNDWI WRI thNDWI 

+ thMNDWI

thNDWI 

+ thMNDWI 

+ thWRI
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The simple workflow is summarized below: 

1. Bound filtering of all the acquired images on specific areas of 
interest; 

2. Filtering of only the pixels that are cloud less; 
3. Computation of the WRI, NDWI and MNDWI over each scene 

pre-selected at point 1 and 2 the 3; 
4. Single threshold of NDWI, MNDWI, WRI, and sum of the three 

indexes which permits to obtain the MWI synthetic index that will 
be used for the surface water computation; 

5. Thresholding of the MWI using the Otsu thresholding method; 
a. Optional for mountain areas: exclusion of commission 

errors using the height above nearest drainage dataset 
(Deltares); 

6. Output display of the result. 

3.1.3.1 Application of the methodology on the Sentinel-2 collection 

1. Extraction of stable water surface, the areas where water never 
changes in all the scenes; 

a. Optional: Integration and comparison with existing 
datasets https://global-surface-water.appspot.com/; 

2. Time series creation over river basins. 

The S-2 Level-1C (TOA corrected) data is not furthermore processed and 
corrected atmospherically. As already mentioned in (Yun, et al., 2016) TOA 
better suits surface water extraction. TOA corrected data reduces the cosine 
effect due to different solar zenith angles and compensates the exomorphic 
solar irradiance (Wenbo, et al., 2013), (Byoung, Hyeong, & Jae, 2015). 

The cloud mask with 60 m GSD has not been used because it does not 
suit the 10 m GSD proposed goal for this task. 

The code implemented to validate and test the algorithm is attached as an 
annex at page 123. 

3.1.4 Information Dissemination  

At the current stage the most plausible option for the image dissemination is 
the Geonode Platform (http://geonode.org/). Although it’s possible that I will 

build a platform that displays the results and then makes them easy to 
download in the most common formats, e.g. Esri shapefile and .kmz. 

https://global-surface-water.appspot.com/
http://geonode.org/
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3.2 Building Footprint Extraction 

The following section is based on the conference papers Satellite Image 
Segmentation with Deep Residual Architectures for Time-Critical 
Applications presented at the 26th European Signal Processing Conference of 
2018 (EUSIPCO 2018) and Building Footprint Extraction from VHR satellite 
imagery using a Deep Learning approach presented at the IX Conference of 
the Italian Society of Remote Sensing (AIT 2018). Both works are done in 
collaboration with the Department of Electronics and Telecommunications of 
the Politecnico di Torino and the Joint Open Laboratories of Telecom Italia 
and the Politecnico di Torino. The goal of the work was to extract building 
footprints from VHR satellite imagery. The architecture of the algorithm 
based on Convolutional Neural Networks (CNN) is implemented by the 
Department of Electronics and Telecommunications. The creation of the 
datasets used for training and validation is done by the Author of the thesis 
(me). 

3.2.1 Case Studies and datasets 

In this section there will be described the datasets used for the work. The 
datasets used for the study are divided into two categories, training sets and 
test sets. The training sets are used to train the algorithm and the test sets are 
used to test the output of the algorithm against the ground truth data. 

The test was carried out with a total of 9 VHR resolution images acquired 
by three different Earth Observation (EO) satellites. The images are acquired 
over 9 different areas worldwide. Each satellite image has four spectral bands 
(blue, green, red and IR) and a GSD of 0.5 m at nadir and different off-nadir 
angles. The reason we chosen the 9 datasets, 6 used as training set and 3 used 
as test sets, is that they are almost cloud free datasets. 

The datasets and their description are listed below: 

• 6 images used as training set: 
o D5 - Pléiades-1A © CNES (2014) GSD 0.5 m, 26.5° off-

nadir angle (31122, 28969) n. of pixels (columns and 
rows); 

o D13 - Pléiades-1A © CNES (2015) GSD 0.5 m, 23° off-
nadir angle (14923, 11445) n. of pixels n. of pixels 
(columns and rows); 

o D16 - Pleiades-1B © CNES (2017) GSD 0.5 m, 24.7° off-
nadir angle n. of pixels (14538, 16382) (columns and 
rows); 
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o D17 - Pleiades-1B © CNES (2016) GSD 0.5 m, 18° off-

nadir angle n. of pixels (47725, 31475) (columns and 
rows); 

o D18 - Pleiades-1A © CNES (2016) GSD 0.5 m, 17.4° off-
nadir angle n. of pixels (25843, 17530) (columns and 
rows); 

o D20 - WorldView-2 © DigitalGlobe (2016) GSD 0.5 m, 
17° off-nadir angle n. of pixels (25843, 17530) (columns 
and rows); 

• 3 images used as test set and validation: 
o D12 - Pleiades-1A © CNES (2016) GSD 0.5 m, 17° off-

nadir angle original n. of pixels (26768, 21886) subset for 
validation (6301, 4855) (columns and rows); 

o D19 - WorldView-2 © DigitalGlobe (2012) GSD 0.5 m, 
2.5° off-nadir angle original n. of pixels (9738, 9087) 
subset for validation (4683, 2423) (columns and rows); 

o D22 - Pleiades-1A © CNES GSD 0.5 m, 17.2° off-nadir 
angle original n. of pixels (29245, 19936) subset for 
validation (7601, 7301) (columns and rows); 

In Figure 34, Figure 35, Figure 36 show the three dataset used for the 
testing of the proposed CNN architecture. For validation purpose subsets of 
the areas that were highly covered by building footprints. Green areas, water 
bodies, shrubs and agricultural areas are also present in the subsets. Therefore, 
the subsets could be considered as appropriate to test the proposed method 
because it’s heterogeneous. 
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Figure 34 D12 test set image. in magenta the subset used for validation, in blue 
polygon the extract used for visualization purpose 
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Figure 35 Detail of D19 test set image. polygon in magenta is the subset used 
for validation, blue polygon is the extract for visualization purpose  
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Figure 36 Detail of D22 test set image. polygon in magenta is the subset used 
for validation, blue polygon is the extract for visualization purpose 

3.2.2 Data Analysis and Processing 

3.2.2.1 Building footprint extraction methodology 

The proposed network architecture (shown in Figure 37) consists of 
encoder and decoder modules which process the input image with a bottom-
up (encoder) and top-down (decoder) approach. Firstly, encoder module 
extracts high level visual representations namely feature maps (feature maps 
are generate previously using the training samples generated from the 6 
images used as training sets) from an input image. Secondly, decoder module 
takes as input the generated feature maps and predicts the corresponding 
segmentation score maps over several predefined classes. In the following the 
structure and function of each module is described in detail. 
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Figure 37 Proposed Network include encoder (top) and decoder (bottom) 
modules, an encoder and a decoder block are detailed in dashed boxes 

Encoder: The proposed encoder module is arranged into five subsequent 
blocks and based on residual units. The residual encoder enables very deep 
architectures (up to 200 layers) while the training process remains feasible. 
We argue that deeper residual encoder enables learning high level visual 
features and results in better generalizations across samples with various 
semantic characteristics. 

The encoder module takes as input an image sized 256 x 256 composed 
of 4 spectral channels and through five subsequent blocks the corresponding 
feature maps are extracted using residual units. The first layer of each block 
is a convolutional layer with stride of 2 pixels in which the generated feature 
maps are halved in spatial size while the number of feature maps increases 
with a specific factor depending on the encoder depth. The number of feature 
maps and convolutional layers for six different depths of encoder are provided 
in table 1. For instance, considering an encoder with depth of 18 layers, the 
first block takes as input 256 by 256 pixels input image, then the first block 
produces 64 feature maps of 128 by 128 pixels. Next, these feature maps are 
input to the subsequent block where 128 feature maps of 64 by 64 pixels are 
generated. This process continues at the next three blocks and in the end, the 
fifth block outputs 512 feature maps sized 8 by 8 pixels. That is, by 
proceeding to deeper layers in the encoder, higher level semantic patterns are 
extracted from the input and each block outputs increasing number of feature 
maps with decreasing resolutions. In addition, by proceeding to deeper 
blocks, the field of view of convolutional layers is expanding which results 
in learning visual representations in wider range. 

Decoder: The decoder module is organized in five blocks symmetrical to 
the encoder and based on deconvolutional layers. Decoder takes as input the 
generated feature maps by encoder and predicts the segmentation score maps 
over land-use classes. Each decoder block is made up of a deconvolutional 
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ReLU and a batch normalization layer in which the feature maps are scaled 
up by factor of two while the feature maps number decreases. Let us consider 
the case of encoder with depth of 18 layers which detailed in previous section. 
The first decoder block takes as input 512 feature maps sized 8 by 8 pixels 
and generated by the last encoder block. Then, these feature maps are scaled 
up by factor of two while their number decreases resulting in 16 by 16 pixels 
of 256 feature maps. Next, through skip connection which are provided 
between each encoder block output and each decoder block input, these 
feature maps are concatenated with the feature maps with identical size 
generated by forth encoder block and then are input to second decoder block. 
These skip connections which provide the spatial information of higher 
resolution encoder feature maps in the decoder, are necessary to produce finer 
segmentation score maps. This process continues for the next three decoder 
blocks and the last block outputs 64 feature maps of 256 by 256 pixels 
matching the input size. The last convolutional layer is employed to perform 
a 1 by 1 convolution on the 64 feature maps and predicts the related 
confidence scores over each land-use class. Finally, since we are interested in 
class probabilities, a spatial SoftMax layer (Bridle, 1990) utilized to outputs 
the class score maps. 

3.2.2.2 Network training 

After defining the network architecture, we detail the process used for 
training the network. Firstly, the images in the dataset are divide into two sets: 
one set is used to generate training and validation samples while the other set 
is used for testing the trained network. Therefore, the train and test samples 
are extracted from different images indicating a statistically large difference 
between train and test samples. This difference stresses the proposed 
methodology and enables measuring the generalization capability of the 
network in a more practical condition in which the trained network expected 
to be applied over an image with no similarity with the training images. Next, 
to produce training samples, about 80% of each image in the first set is 
subdivided into 364 by 364 tiles by a translation of 120 pixels while the rest 
20 % are used to extracted 256 by 256 validation samples with no translation. 
While the network input size is 256 by 256, the larger tiles used for training 
enables several label-preserving transformations during training such as 
random rotation and cropping. These transformations allow data 
augmentation improving the generalization capability of the network. Finally, 
the test tiles are extracted out of the second set of images and with the size of 
512 by 512 which is the maximum size allowed by the GPU memory 
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(NVIDIA Titan X Pascal GPU 12 GB of RAM). Overlapping tiles are 
deployed to prevent the artifacts around tile boundaries. 

Next, after generating the training samples, we proceed training the 
network by minimizing the following loss function: 

𝐿(𝑤, 𝑦, 𝑡) = ∑ ∑ 𝑡𝑖,𝑘

𝐶

𝑘=1

𝑙𝑜𝑔(𝑦𝑖,𝑘)

𝐻𝑥𝑊

𝑖=1

 

where y and w are the network output and parameters respectively, t is 
the expected output and H, W and C are height, width and the number of 
classes respectively. In addition, to prevent overfitting and help 
generalization, we optimize the following function at training time: 

𝐽(𝑤, 𝑦, 𝑡) = 𝜂𝐿(𝑤, 𝑦, 𝑡) + 𝜆𝑅(𝑤) 

where 𝜂 and 𝜆 are learning rate and regularization parameters and R(w) 
is the L2 norm of all network parameters. The training is performed using 
Stochastic Gradient Descent with momentum of 0.9 and over mini-batches of 
8 samples. The initial learning is 0.005 and divided by 5 every 30 epochs. 

3.2.2.3 Training and testing sets 

Training samples are extracted from the first set of images and covering 
80 percent of each image while the validation samples are generated from the 
other 20 percent of each image. To measure the proposed network 
performance and to be able to compare it with existing classification 
algorithms available in commercial software, the test set is used. 

3.2.2.4 Ground truth generation 

For each image the ground truth data is generated by exploiting already 
existing building footprints downloadable from OpenStreetMap. The existing 
data is not always correct or complete and therefore for each dataset was 
necessary to manual refine the data wherever required. The ground truth is a 
binary mask which with pixel values equal to 1 represent building footprints 
and 0 other features. An example of the ground truth generation process can 
be visible in Figure 38, from left to right, in the first panel the original satellite 
image, central panel in violet the building footprints extracted from 
OpenStreetMap and in the final panel binary mask obtained by rasterizing the 
building footprints. 
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The ground truth is generated using the building footprints extracted from 

Open Street Map that are manually refined and integrated in case of missing 
data. Figure 2 provides 3 test images (D12, D19 and D22) each sized 6000 x 
4500, 3700 x 2100 and 8700 x 6600 respectively 

 

Figure 38 Ground truth extraction process 

3.2.2.5 Accuracy metrics and comparison to existing procedures 
available in commercial software 

The performance of the proposed CNN algorithm is compared to a 
supervised Mahalanobis distance classification which is performed over the 
three testing datasets. The Mahalanobis distance classification of each dataset 
is performed using only the region of interest (ROI) extracted from the 
dataset. ROI coming from other datasets are not used. For example, ROI 
extracted from D22 were used to perform Mahalanobis distance classification 
only on the D22 dataset. The chosen samples to perform the Mahalanobis 
distance algorithm represent: buildings with different type of roof colours (the 
number can vary between 2 and 4 depending on the analysed area), water 
bodies (rivers and lakes), paved roads, green areas and bare ground areas. The 
pixels that represent the buildings with different type of roofs are later added 
in one class that represent building footprints and attributed a pixel value 
equal to 1. Moreover, the pixels that represent the other classes are added 
together, to this result a pixel value equal to 0 is attributed. This procedure 
was applied for each dataset. The classification was performed in Envi 5.4. 

3.3 Building damage assessment from vertical images 

The following section is based on the paper Building damage assessment 
scale tailored to remote sensing vertical imagery published on the European 
Journal of Remote Sensing on 19th of October 2018. The study proposes a 
new building damage scale based on a quantitative thematic accuracy analysis 
of the data generated by the CEMS service after the Central Italy earthquake 
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of August 2016. The public available information extracted from VHR 
satellite data was analysed and compared to higher resolution ground truth 
data which permitted to propose a standard damage scale classification. The 
work demonstrates that by using different damage classes and detailed 
guidelines it is possible to obtain higher accuracies. 

This paragraph will focus on the description of the case studies, the data 
processing and analysis and the methods of dissemination of the results. 

3.3.1 Case Studies 

On 24 August 2016 at 03:36:32 local time (01:36 UTC), an earthquake, 
measuring 6.2 on the moment magnitude scale, hit Central Italy in an area 
near the borders of the Umbria, Lazio, Abruzzo and Marche region. Its 
epicentre was close to Accumoli, with its hypocentre at a depth of 4 ± 1 km, 
approximately 45 km north of L’Aquila and 75 km southeast of Perugia 
(INGV, 2017). The official figures of the Protezione Civile report that the 
earthquake caused the death of 297 people: 11 in Accumoli, 49 in Arquata del 
Tronto and 234 in Amatrice. In addition to the loss of human lives, 
widespread destruction of cultural heritage was also reported. 

3.3.2 Data Analysis and Processing 

3.3.2.1 Identification of the satellite and aerial images used for damage 
assessment and data harvesting 

As Copernicus EMS was the most active SEM mechanism during the 
Italian Earthquake events in 2016, the information and damage assessment 
generated in [EMSR177] Earthquake in Central Italy was analyzed in the first 
part. Initially the vector files of the satellite based damage assessment 
performed over AOI08 Accumoli [EMSR177] Accumoli: Grading Map, 
Monitoring 1 and AOI10 AmatriceWest [EMSR177] Amatrice West: 
Grading Map, Monitoring 1 were downloaded and the towns of Illica, Casale, 
Saletta, San Lorenzo e Flaviano and Accumoli (highlighted in red in Figure 
39) were analyzed. 

http://emergency.copernicus.eu/mapping/list-of-components/EMSR177
http://emergency.copernicus.eu/mapping/ems-product-component/EMSR177_08ACCUMOLI_GRADING_OVERVIEW-MONIT01/2
http://emergency.copernicus.eu/mapping/ems-product-component/EMSR177_08ACCUMOLI_GRADING_OVERVIEW-MONIT01/2
http://emergency.copernicus.eu/mapping/ems-product-component/EMSR177_10AMATRICEWEST_GRADING_OVERVIEW-MONIT01/2
http://emergency.copernicus.eu/mapping/ems-product-component/EMSR177_10AMATRICEWEST_GRADING_OVERVIEW-MONIT01/2
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Figure 39 Analyzed areas 

Copernicus EMS provides different types and formats of vector files 
related to reference and crisis data. From the vector zip package only the 
shapefile that represents the footprints of each building located in the areas of 
interest and including information on a satellite-based assessment of the 
building damages was analyzed. The damage scale uses five levels:  

• Completely Destroyed; 
• Highly Damaged; 
• Moderately Damaged; 
• Negligible to Slight Damage; 
• Not Affected; 

In Figure 40, as illustrative and informative purposes, the building 
footprints of Saletta’s area of interest are displayed in a traffic light color code 

according to the damage scale class. 
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Figure 40 Damage detection of Saletta 

From the vector metadata it emerged that Copernicus EMS’s satellite 

damage assessment was based on the comparison between: 

Pre-event image: Orthophoto 0.2 m © 2014 CONSORZIO TeA (formed 
by e-GEOS S.p.A. - CGR S.p.A. - Aerodata Italia srl). 

Post-event image: WorldView-2 © Digitalglobe, Inc. (2016), (acquired 
on 25/08/2016 09:45 UTC, GSD 0.5 m, approx. 0 % cloud coverage, 34° off-
nadir angle), provided under Copernicus by the European Union, ESA and 
European Space Imaging. 

3.3.2.2 Ground Truth generation 

Exploiting the availability of VHR post-event aerial imagery, a level of 
damage, using the same damage scale adopted by Copernicus EMS for 
EMSR177 was assigned to each single building and the related damage was 
described in an ad-hoc attribute field. Specifically, the analysis was carried 
out on the aerial images listed below: 

• Pre-event image: Orthophoto 0.2 m © 2014 CONSORZIO TeA 
(formed by e-GEOS S.p.A. - CGR S.p.A. - Aerodata Italia srl). 
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• Post-event image: Aerial data © European Commission (acquired 

on 25/08/2016, GSD 0.1 m, 0 % cloud coverage) provided under 
Copernicus by CGR, Compagnia Generale Ripreseaeree (S.P.A.). 

The visual image interpretation was based on the observation of: i) tone 
variations, which allowed to distinguish between different features; ii) shape 
variations, irregular building shape indicated structural building damage 
almost every time; iii) shadows, which may support the photo interpretation 
being a proxy of structure elevation. The result of this assessment was 
considered as Ground Truth for the analyzed case study, thanks to the higher 
GSD of the aerial image and the absence of time constraints for the analysis. 

3.3.3 Information Dissemination 

At the current stage the most plausible option for the image dissemination is 
the Geonode Platform. Although it’s possible that I will build a platform that 

displays the results and then makes them easy to download in the most 
common formats, e.g. Esri shapefile and .kmz. 
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Chapter 4 

Results 

4.1 Surface Water Extraction 

In this session it will be described the results obtained by the semi-automatic 
surface water extraction procedure over the 5 study areas. The outputs 
generated by algorithm will be analyzed qualitatively and quantitatively 
comparing it with the ground truth data.  

Using the proposed method of surface water extraction over the area 1: 
Beruwala the OA is 99,44%, the PA and the UA are respectively 97,09% and 
98,28%. In the Annex 2 is visible how the algorithm classifies correctly the 
areas along the central river and in the area covered by sea water. The 
omission errors are mainly in the areas covered by the sea. The commission 
errors are visible along the coast and along the two branches of the main river. 
Although, these commission errors are debatable because as visible from 
Annex 3 the data is classified correctly.  

Over the area 2: Viadana the OA is 98,44%, the PA is 73,61% and the 
UA is 95,52%. As visible from Annex 4 the method correctly classifies the 
main water body and the lakes in the east and west side of the image. The 
sandy areas are omitted by the classifier. This is due probably because the 
CEMS service classified the river and its bed as a water body Annex 5. 

Over the area 3: Karunki the OA is 98,60%, the PA is 90,64% and the 
UA is 97,13%. As visible from Annex 6 the proposed algorithm correctly 
classifies the main water body and the lake in the north-east part of the image. 
The omission errors are present along the riverside. The commission error is 
visible in the center of the river. But from Annex 7 it is possible to see that 
there could have been possible interpretation errors from the CEMS service. 

Over the area 4: Puerto Antioquia the OA is 97,70%, the PA is 75,40% 
and the UA is 89,97%. As visible from Annex 8 the proposed methodology 
correctly extracts the water surface of the main river and its east tributaries. 
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Moreover, it also extracts the lakes in the south of the image. The omission 
errors are represented by the sandy areas of the riverbed and are visible over 
the east tributary river. Commission errors are visible in the center of the 
image, these areas have not been classified as water by the CEMS service. 
Although, it is visible from Annex 9 that the areas have a chromatic response 
that looks like water. 

Over the area 5: Magwitz the OA is 99,52%, the PA is 84,21% and the 
UA is 95,07%. As visible from Annex 10 and Annex 11 the Talsperre Pirk 
and the Talsperre Droda are correctly classified as water and the accuracy of 
the result is above 80%. The omission errors are visible along the banks of 
the reservoirs and for some small size waterbodies in the east part of the 
image. Commission errors are present in the south part of the image these 
areas have probably been classified as a quarry by the CEMS service. 
Therefore, are not considered as water in the downloaded vector products. 

Finally, in addition to the results over each case study area, the procedure 
has been generalized and extended to extract the surface water over each 
Sentinel-2 acquisition over a given area of interest. For example, in the Annex 
12 it is visible the river evolution in an area with monsoon climate and the 
water frequency of each pixel. Moreover, by querying the pixels where with 
water low water frequency it is possible to obtain periods over which is better 
to focus the analysis. 

4.2 Building footprint extraction 

As described in (Ghassemi et al., 2018) it has been observed that depth of 
encoder plays a crucial rule in generalization of the network through learning 
visual representations of high semantic level which are not limited to training 
images. Authors showed that the network with the encoder including 152 
layers obtains the best results. Moreover, this type of encoder outperforms 
existing neural networks like the standard U-Net with 19 and 35 layers. In 
this section, the results of the proposed method are compared to the outputs 
of a supervised Mahalanobis distance (MDist) classification based on region 
of interest (ROI) extracted from each training dataset. The classification was 
performed in Envi 5.4. 

For the MDist classification the ROIs were manually extracted and used 
as training samples from each satellite image. The samples consisted in: i) 
footprints of buildings characterised by different type of roofs and tile colors 
(red, white and grey), ii) vegetation, iii) agricultural fields, iv) roads. An 
example of ROI is visible in Figure 41. After the classification each class has 
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been manually assigned to a binary class, Building/Other and later the 
accuracy assessment has been computed. 

 

Figure 41 Types of ROI used for the MDist Classification (example from D12 
dataset) 

The classification was performed for each testing dataset and was then 
evaluated computing the respective Producer Accuracy (P.A.) and User 
Accuracy (U.A.) and compared to the P.A and U.A. of the results obtained 
with our proposed approach. The results are visible in  

Table 3. Moreover, Omission Errors (O.E.) and Commission Errors 
(C.E.) have been also evaluated, as shown in Table 4. The results in Table 3 
and 4 are related to a subset of the total building area of each image, 
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specifically: 69,8% for D12, 53% for D19 and 30,9% for D22 (blue polygon 
in Figure 34 Figure 35 Figure 36). 

Table 3 Comparison of Producer and User Accuracy of the proposed method 
and a Mahalanobis distance supervised classification using Envi 5.4 
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D12 45,02 12,70 23,93 3,20 

D19 41,10 47,64 28,10 38,20 

D22 30,62 65,57 24,99 77,51 

Table 4 Comparison of the Omission and Commission errors of the proposed 
method and the Mahalanobis distance supervised classification using Envi 5.4 

The results show that, apart from D12, our implementation outperforms 
the Mahalanobis distance algorithm this is more evident in the datasets D19 
and D22. For D12 the user and the producer accuracy are noticeably higher, 
this is due to the characteristics of the satellite image. In fact, the image has a 
low off-nadir angle and the perimeter of the buildings is easier to distinguish 
by the Mahalanobis distance process. In  
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Table 3 it’s visible how the proposed CNN architecture outperforms the 

Mahalanobis distance algorithm especially in the densely built area in the 
north-east of the image. In Table 4 it’s visible the commission and omission 

errors of each procedure. As per the PA and the UA Mahalanobis distance 
performs better only for D12. In Figure 42 an extract of the MDist accuracy 
assessment over D22 it is visible that only four buildings are correctly 
classified. The MDist algorithm omits most of the building footprints and has 
commission errors along bright surfaces like roads. The proposed algorithm 
in comparison better extracts the building shapes, even if it tends to 
overestimate or underestimate along the building perimeters. 

Concerning time constraints, the processing and the segmentation of the 
three test images took 110, 55 and 200 seconds for images D12, D19 and D22 
respectively. The process is by far more fast compared to manually digitizing 
the images that usually takes about 10 hours each and 2 hours each for the 
Mahalanobis distance classification using a desktop pc with the following 
specifications (Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz, 16GB of RAM, 
NVIDIA GeForce GT 710). 
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Figure 42 Results from the Mahalanobis distance algorithm of D22 

 

Figure 43 Results from the proposed CNN architecture of D22 
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4.3 Building damage assessment from vertical images 
- Operational Applications 

The accuracy of Rapid Mapping analyses based on VHR satellite images 
carried out by Copernicus EMS was evaluated calculating the confusion 
matrices for each dataset/area. As already mentioned in the previous section 
(Independent aerial damage assessment), the results obtained by the 
Independent aerial damage assessment were considered as Ground Truth data. 

The confusion matrixes and the related quality metrics related to the five 
examined areas are shown in Figure 44. 
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Figure 44 Confusion Matrixes related to the areas of Saletta(A), Casale(B), 

Illica(C), Accumoli(D), San Lorenzo e Flaviano(E). Copernicus EMS damage 
assessment vs Independent aerial damage assessment 

It is observed that intermediate damage classes are those characterized by 
the largest discrepancies and lowest values, as confirmed by P.A. and U.A. in 
the confusion matrixes (A) (B) (C). P.A. values vary between a minimum of 
6% (P.A. of Class Highly Damaged area C) and a maximum of 50% (P.A. of 
Class Moderately Damaged area C). U.A. values vary between a minimum of 
9% (U.A. of Class Moderately Damaged area A) and a maximum of 25% 
(U.A. of Class Moderately Damaged area B). 

In the matrixes (D) and (E) the P.A. and the U.A. do not follow the same 
patterns as per matrixes (A), (B), (C) due to: i) high percentage of not affected 
buildings; ii) high number of damaged buildings erroneously classified as not 
affected by the Copernicus EMS classification visible in Figure 45. The latter 
issue is also influenced by the intrinsic limitations of 0.5 m satellite imagery 
and the tight time constraint (few hours after post-event imagery availability) 
imposed by rapid mapping. 

 

Figure 45 PRE: Accumoli pre aerial event image (GSD 0,2 m), POST: 
Accumoli post satellite event image (WV-2 sensor - GSD 0,5 m), VALIDATION: 

Accumoli post aerial event image (GSD 0,1 m) 

The average overall accuracy is ~60%, value in line with the expected 
performance of photo interpretation of damages to buildings based on VHR 
satellite imagery (Corbane, Carrion, Lemoine, & Broglia, 2011). 
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4.3.1 Thematic accuracy evaluation 

The obtained results permitted to identify the damage classes that lead to 
more discrepancies; specifically, the accuracy metrics of intermediate classes 
(Negligible to slight damage, Moderately Damaged and Highly Damaged) 
were significantly lower than in the other 2 classes (Not Affected and 
Completely Destroyed). Therefore, it was decided to perform a test by 
aggregating the aforementioned intermediate classes in a new class 
“Damaged” to evaluate the impact on accuracy metrics. The results are visible 
in Figure 46. 
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Figure 46 Confusion Matrixes related to the areas of Saletta(A), Casale(B), 
Illica(C), Accumoli(D), San Lorenzo e Flaviano(E). Copernicus EMS damage 
assessment ((aggregation of classes Negligible to slight damage, Moderately 

Damaged and Highly Damaged to “Damage” 
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As expected P.A. and U.A. values of the aggregated Damaged class have 

increased, specifically: 

P.A. is in the range from 35% (P.A. area A) to 62% (P.A. area B) 

U.A. is in the range from 29% (U.A. area A) to 57% (U.A. area B) 

Furthermore, a general increase of the overall accuracy is observed after 
the aggregation, i.e. from 57% to 63% (area A), from 60% to 69% (area B) 
and from 51% to 62% (area C). The outcomes confirm that intermediate 
classes are the ones affected by higher interpretation uncertainty. 

Contrariwise, the P.A., U.A. and overall accuracy of the areas of 
Accumoli (D) and San Lorenzo e Flaviano (E) are not influenced by the 
aggregation, due to the aforementioned Copernicus EMS classification 
issues. 

The results confirm the need to redefine also the damage interpretation 
guidelines, shifting from a structural damage (EMS-‘98 like) to damage (and 

damage proxies) visible on VHR vertical imagery. 

Imagery spatial resolution and viewing angle are the two key factors to 
be considered in developing the damage scale proposal; in fact vertical 
imagery, i.e. almost null off-nadir angles, does not allow the facades of the 
buildings to be analysed or cracks and failure in walls to be detected. 

4.3.2 Proposal of standard building damage scale tailored to remote 
sensing vertical imagery 

According to the outcomes of the thematic accuracy evaluation, a new 
standard damage scale to be used for building damage assessment tailored to 
remote sensing vertical imagery is proposed in Annex 13, defining 4 damage 
classes. 

Destroyed: assigned to structures that are totally or largely collapsed 
(>50%). This category shall be assigned also when only a portion of the 
building has collapsed to the ground floor. In these cases, the original building 
structure is no longer distinguishable. 

Damaged: it shall be used when post satellite imagery is available and 
includes: 
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Major visible damages, which shall be assigned to structures with part of 

the roof collapsed and serious failure of walls; 

Minor visible damage level, i.e. buildings with a largely intact roof 
characterized by presence of partial damage (collapse of chimneys or detach 
of roof tiles) or surrounded by large debris/rubble or sand deposit. 

The separation between Minor and Major Damage grades can be used 
only when imagery with a GSD of approximately 0.1 m is available (typical 
for aerial and UAV imagery). 

Possibly Damaged: it shall be used for buildings whose interpretation is 
uncertain, due to lower image quality (e.g. shadow or degraded resolution due 
to high off-nadir angle) or to the presence of possible damage proxies like 
small traces of debris/rubble or sand deposit around the building. This class 
attribution can be given by inferring the state of the building from surrounding 
features. In flooding it could be traces of water currents leading up to and then 
leaving a building or set of buildings. 

No Visible Damage: it shall be assigned to the structures that appear to 
have complete structural integrity, i.e. when the walls remain standing and 
the roof is virtually undamaged. It is important to remark that this class don’t 

exclude the presence of structural damages, i.e. the building may anyway 
have suffered damages that cannot be assessed from vertical satellite imagery 
regardless of its spatial resolution. 

4.3.3 Application of the new damage scale on a different case study 

The proposed building damage scale was validated. Afterwards it was 
decided to apply the new building damage scale to assess the earthquake’s 

impact on Pescara del Tronto, another town affected by the seismic event in 
Central Italy. 

4.3.4 Ground Truth generation: Independent UAV damage assessment 

The Ground Truth data was identified by performing a UAV-based 
damage assessment based on the comparison between the images listed 
below. 

Pre-event image: Orthophoto 0.2 m © 2014 CONSORZIO TeA (formed 
by e-GEOS S.p.A. - CGR S.p.A. - Aerodata Italia srl). 
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Post-event image: UAV 0.7 m Team Direct (Disaster RECovery Team) 

of Politecnico of Turin (acquired and processed on 07/09/2016). 

The UAV damage assessment revealed that 18 structures showed no 
visible damage, 6 structures were classified as Possibly Damaged, 67 
structures were damaged (40 structures suffered minor visible damage and 27 
structures major visible damage) and 123 structures were destroyed. The 
output map is visible in Annex 14. 

4.3.5 Damage class aggregation of Copernicus EMS vs Ground Truth 

The Copernicus EMS damage assessment was downloaded from the 
[EMSR177] Grisciano Grading Map, Monitoring 1. The downloaded datasets 
were based on the analysis of the images listed below. 

Pre-event image: Orthophoto 0.2 m © 2014 CONSORZIO TeA (formed 
by e-GEOS S.p.A. - CGR S.p.A. - Aerodata Italia srl). 

Post-event image: WorldView-2 © DigitalGlobe, Inc. (2016), (acquired 
on 25/08/2016 09:45 UTC, GSD 0.5 m, approx. 0 % cloud coverage, 34° off-
nadir angle), provided under Copernicus by the European Union, ESA and 
European Space Imaging. 

Preliminary, the damage classes were aggregated in order to enable the 
comparison of the Copernicus EMS results with the Ground Truth. The 
adopted class aggregation is visible in Figure 47. 

 

Figure 47 Copernicus Damage assessment compared to the ground truth 

The accuracy assessment was performed using a confusion matrix as per 
the previous analysis. 

http://emergency.copernicus.eu/mapping/ems-product-component/EMSR177_05GRISCIANO_GRADING_OVERVIEW-MONIT01/2
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Like in the previous analysis conducted by Copernicus EMS, the overall 

accuracy is about 60%, even aggregating the critical damage classes. This 
result is due to the interpretation uncertainty of the intermediate classes as 
confirmed by the low P.A. (Possibly Damaged 0%, Damaged 15%) and U.A. 
values (Possibly Damaged 0%, Damaged 45%) of Figure 47. This result 
confirm once again that also different interpretation guidelines should be 
developed and adopted. 

4.3.6 Independent classification vs Ground Truth 

The last validation is based on the generation of a new satellite-based 
damage assessment adopting the Proposed Building Damage Scale and the 
related interpretation guidelines (detailed in Annex 13) without time 
constraints. The images for the analysis are the same used by Copernicus 
EMS and listed in the previous section. The results were therefore compared 
to the Ground Truth generated from the UAV analysis. The accuracy 
assessment results are summarised in the Confusion Matrix shown in Figure 
48. 

 

Figure 48 Damage assessment using the proposed Building Damage Scale 

The P.A. reports high values for the classes No visible damage (100%), 
Possibly Damaged (83%) and Destroyed (98%) and a 46% for the Damaged 
class. The U.A. reports high values for the classes Damaged (94%) and 
Destroyed (100%). The No visible damage class has 42% accuracy and the 
Possibly Damaged class reports 28%. As expected the accuracy is lowest in 
the Possibly Damaged class. This is plausible, and depending on the 
characteristics of the satellite image, principally the spatial resolution (lower 
than the UAV spatial resolution used to extract the Ground Truth) and the 
atmospheric conditions (haze) which mostly affected the CAPI. 
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Nevertheless, the overall accuracy is 81%, i.e. an increase of about 20% 

with respect to the Copernicus EMS damage assessment. 
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Chapter 5 

Application Context 

5.1 Surface Water Extraction 

Surface freshwater available in lakes and rivers is a fundamental resource and 
plays an important role for the wellbeing and survival of life on Earth. Rivers 
represent 0.49% of the total surface freshwater and are one of the most 
important sources of water for humans. The proposed application tries to 
extract and represent rivers and lakes, acknowledging their importance and 
their fundamental role as a resource. 

The proposed application can detect and monitor changes of waterbodies 
over the lifespan of 7.25 years of the Sentinel-2 satellites (from 23rd of June 
2015 for Sentinel-2A and the 7th of March 2017 for Sentinel-2B). Potentially 
the application can provide data up until June 2024.  

The water surface areas can be integrated within the existing Copernicus 
Global Land Service products as additional information that complements the 
water level measurements. The water level measurements that are provided 
by the Sentinel-3A satellites which have been recently harmonized and 
referenced to the geoid EGM 2008 the same used by the Jason 2 and 3 
missions. 

Update existing databases can be another field of application. For 
example, in Regione Piemonte the surface water cartographic elements are 
derived from maps that have been generated between 1991 and 1995. 
Therefore, an update surface waterbody map can be useful for different areas 
of application. An updated geodatabase can provide useful information for 
institutions, agricultural firms and can be generally used for territorial 
planning and monitoring. This approach can also be used to create new 
databases over areas and parts of the world where there are no surface water 
vector files available. For example, it can be used to update OpenStreetMap. 

In the context of emergency management having an up to date surface 
water dataset can be useful to define the permanent water bodies. After a 
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flooding event the permanent water body can be subtracted from the standing 
water in order to define the flooded areas. This can be useful by using the 
proposed method and create on demand permanent water datasets for 
emergency management. 

5.2 Building Footprint Extraction 

Building footprint extraction procedure is described in the section 3.2 
Building Footprint Extraction. Building footprints are usually employed in 
different type of analysis. Up to date building footprints are important in case 
of mapping remote areas, monitoring the construction of new buildings and 
are also useful in case of emergency management. 

Mapping building footprints using satellite images is an activity that is 
time consuming and could be performed using the proposed algorithm. The 
application of the method can be done over built up areas of cities that are 
expanding rapidly.  

Monitoring sensible areas and abusive constructions is another important 
task that can be carried out using the proposed method. Soil consumption 
represents an important issue for national and regional authorities, therefore 
a monitoring tool based at the single building level can be useful in case of 
land monitoring. 

During rapid mapping of damages is crucial to have a up to date prior 
event building footprints. In this instance single building digitalization is 
requires a lot of effort and is one of the most time-consuming activities. The 
extracted building footprints are afterwards compared to the post-event image 
and are later classified according to existing damage scales taking in 
consideration the damage that have undergone. 

5.3 Building damage assessment from vertical images 
- Operational Application 

The proposed standard building damage scale has been accepted by the 
Copernicus Rapid Mapping Emergency Management Service and by the 
International Working Group of Satellite Emergency Mapping. 

To date (8/11/2018) the standard scale has been applied by the 
Copernicus Rapid Mapping Emergency Management Service for the 
following activations and building damage grading maps: 
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• [EMSR257] Flood in Attika, Greece (November 2017); 
• [EMSR260] Flood in Northern Italy (December 2017); 
• [EMSR269] Tropical Cyclone GITA in Tonga (February 2018); 
• [EMSR304] Earthquake in Lombok, Indonesia (August 2018); 
• [EMSR317] Earthquake in Indonesia (September 2018); 
• [EMSR320] Earthquake in Northwestern coast of Haiti (October 

2018); 

An extract of the maps is visible in the annexes Annex 18, Annex 19, 
Annex 20, Annex 21, Annex 22 and Annex 23 

In the specific case of the CEMS the performance of the damage scale 
has not yet been validated on each activation. Although, possible future goals 
could be the validation of the generated outputs in comparison to ground data 
or higher resolution images. 

The proposed building damage scale could also be used as guidelines for 
VGI mapping projects. VGI based projects like HOT and Tomnod could 
benefit from the use of a standard damage grading scale. The use of the scale 
could possibly permit a more homogenous classification of the affected 
buildings after an earthquake or a catastrophic event. 

The building damage scale could be employed for the validation of semi-
automatic change detection algorithms. 

http://emergency.copernicus.eu/mapping/list-of-components/EMSR257
http://emergency.copernicus.eu/mapping/list-of-components/EMSR260/
http://emergency.copernicus.eu/mapping/list-of-components/EMSR269
http://emergency.copernicus.eu/mapping/list-of-components/EMSR304
http://emergency.copernicus.eu/mapping/list-of-components/EMSR317
http://emergency.copernicus.eu/mapping/list-of-components/EMSR320
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Conclusions and further 
development 

This thesis presents 3 different works related to the use and employment of 
remote sensed data. In specific, the three studies are related to the use of 
remote sensed data acquired from passive sensors with different technical 
characteristics: GSD, radiometric resolution, temporal resolution, etc. The 
different datasets have been described with the purpose to be adopted for 
emergency management applications and environmental assessment. The 3 
works explore the usage of satellite data for application from the small to the 
large map scale. The studies can be summarized below: 

1) Surface water extraction using medium GSD data: this work has been 
carried out using already existing surface water detection procedures, 
e.g. NDWI, MNDWI and WRI applied to Sentinel-2 images in a 
cloud computing environment (Google Earth Engine). To achieve the 
results, it has been proposed a new surface water extraction index 
derived from the combination of the three existing indexes mentioned 
before. Furthermore, the Otsu thresholding method is used to 
automatically differentiate the pixels that represent water from those 
that are not water; 

2) Building footprint feature extraction: the work aims to extract 
building footprints using deep neural network algorithms. The 
procedure has been applied on VHR images with a GSD of 0.5 m and 
off-nadir angles that range from a minimum of 2.5° to a maximum of 
26.5°. During the process the algorithm has been trained on 6 VHR 
satellite images and deployed on 3 VHR satellite images different 
from the ones used as the training set; 

3) Building damage assessment from vertical images: with this study it 
has been proposed a standard building damage scale intended to be 
used over VHR satellite, aerial and UAV images. The work addresses 
the need of a standard building damage scale that permits to better 
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differentiate between damaged and not damaged structures after the 
catastrophic events (earthquakes, tornados, flash floods).  

Each of the three studies has been evaluated from a performance point of 
view. The key results and the possible implications can be summarized as 
follows: 

1) Surface water extraction using medium GSD data: on single 
satellite images the propose algorithm has a maximum OA of 
99,52% and a minimum OA 97,70%. The maximum of PA is 
97,09% and the minimum PA is 73,61%. And the maximum UA 
is 98,28% and the minimum UA is 89,97%. The evidence may 
imply that the method can be applied over the 5 analyzed case 
study areas and extended worldwide after a more detailed 
accuracy assessment; 

2) Building footprint feature extraction: the analyzed method 
compared to single extraction using commercial algorithms from 
existing software shows that the proposed method outperforms 
the Mahalanobis in 2 out of the 3 tests done. The proposed 
procedure is promising but must be further developed and tested 
in other case study areas; 

3) Building damage assessment from vertical images: the proposed 
standard building damage assessment scale performs about 20% 
better compared to the previous existing damage scale used by 
the CEMS service during RM activities. 

The proposed work about water surface extraction joins existing works 
and aims to provide an integration or a follow-up to existing studies (e.g. 
(Pekel, Cottam, Gorelick, & S. Belward, 2016), (Donchyts, van de Giesen, & 
Gorelick, 2017)). 

Building footprint extraction aims to propose a follow-up and an 
integration with the methods proposed by Microsoft (Bing, 2018) with an 
extend of the work to other areas of the world.  

Building damage grading standard scale fits within the purpose of rapid 
mapping activities and thanks to its adoption as a standard by the IWG-SEM 
could be used by the voluntary mapping services and by the other rapid 
mapping map providers. 
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The proposed work tries to provide a contribution about surface water 

evolution and it’s changes during time. Moreover, it provides operational 
tools for rapid mapping and for scholars that are interested in water bodies 
morphology and its evolution. The building footprint extraction procedure is 
a promising application and should be refined and extended using more case 
studies with more VHR acquisitions. Finally, the building damage scale 
applied to vertical imagery after it became operational has been used in 
different instances by the CEMS RM service. 

Although this work proposed implementations to fields of work related 
to environmental assessment and rapid mapping there still are some gaps and 
limitations.  

The Surface water extraction work is currently carried out using Google 
Earth Engine. Although, the platform provides immense computation power 
compared to personal work stations the platform is managed by a private 
company, therefore it could change terms of reference, could change 
substantially the code libraries or could be closed without notice. It could 
result in the loss of all the personal algorithms and procedures available on 
the servers. This could mean that the user should need migrate or revisit 
conspicuous parts of his/her algorithms. A remedy could be the use of pay per 
use platforms e.g. Sentinel Hub EO-Browser or ONDA Data Information 
Access Services (DIAS). Moreover, at the time of writing 7th of November 
2018 Sentinel-2 data is not yet meeting the maximum 3 m multi-temporal 
registration error (confidence level of 95.5%) (ESA, 2018). Therefore 
Sentinel-2 is not meeting yet it’s contract standards. Moreover, Sentinel-2 is 
a passive sensor, therefore the acquired scenes might be covered by clouds. 
This could compromise a possible monitoring service over lakes or 
waterbodies. Future studies should explore the use of Sentinel-1 data for the 
surface water extraction and the use of Sentinel-2 data for validation purpose. 

The building footprint extraction should be further teste and future work 
needs to be done on other geographic areas and compared it to other 
algorithms available in commercial software. Moreover, it’s crucial to find a 

vectorization method that suits our needs. This will permit to evaluate in a 
more robust way the proposed work. 

The proposed building damage scale from vertical imagery has become a 
standard and accepted by the IWG-SEM. Future work should focus on the 
integration of the scale with automatic algorithms and on the application of 
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the scale to imagery with of nadir angles that permit to view the facades of 
buildings. 
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Annex 1 Detailed Error matrixes for each area of interest 

NDWI MNDWI WRI thNDWI 
+ thMNDWI

thNDWI 
+ thMNDWI
+ thWRI
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Other 11406 1763779 1775185 Other 133604 1641580 1775184 Other 4734 1770450 1775184 Other 5111 1770073 1775184 Other 4195 1770989 1775184

255224 1767451 2022675 377539 1645135 2022674 247663 1775011 2022674 245960 1776713 2022673 244473 1778200 2022673

Omission Comission PA UA Omission Comission PA UA Omission Comission PA UA Omission Comission PA UA Omission Comission PA UA
Water 1,48% 4,47% 98,52% 95,53% Water 1,44% 35,39% 98,56% 64,61% Water 1,84% 1,91% 98,16% 98,09% Water 2,68% 2,08% 97,32% 97,92% Water 2,91% 1,72% 97,09% 98,28%
Other 0,64% 0,21% 99,36% 99,79% Other 7,53% 0,22% 92,47% 99,78% Other 0,27% 0,26% 99,73% 99,74% Other 0,29% 0,37% 99,71% 99,63% Other 0,24% 0,41% 99,76% 99,59%
Overall 99,25% Overall 93,22% Overall 99,54% Overall 99,42% Overall 99,44%
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Annex 2 Area 1 - Surface Water Extraction Quantitative Metrics 
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Annex 3 Area 1 - False colour composite (Bands: 8,4,3) 
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Annex 4 Area 2 - Surface Water Extraction Quantitative Metrics 
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Annex 5 Area 2 - False colour composite (Bands: 8, 4, 3) 
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Annex 6 Area 3 - Surface Water Extraction Quantitative Metrics 
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Annex 7 Area 3 - False colour composite (Bands: 8, 4, 3) 
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Annex 8 Area 4 - Surface Water Extraction Quantitative Metrics 



108 Annexes 

 

 

Annex 9 Area 4 - False colour composite (Bands: 8, 4, 3) 
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Annex 10 Area 5 - Surface Water Extraction Quantitative Metrics 
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Annex 11 Area 5 - False colour composite (Bands: 8, 4, 3) 
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Annex 12 Water Frequency (01/01/2017 – 11/11/2018) near Guwahati 
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Annex 13 Proposed Building Damage Scale 
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Annex 14 Pescara del Tronto Damage Assessment using the new Proposed Damage Scale 
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Annex 15 Detail of D12 building footprint extraction 
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Annex 16 Detail of D19 building footprint extraction 
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Annex 17 Detail of D22 building footprint extraction 
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Annex 18 [EMSR257] Mandra: Grading Map (November 2017) 

https://emergency.copernicus.eu/mapping/system/files/components/EMSR257_01MANDRA_02GRADING_MAP_v2_100dpi.jpg
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Annex 19 [EMSR260] Cicognara: Grading Map (December 2017) 

https://emergency.copernicus.eu/mapping/system/files/components/EMSR260_01CICOGNARA_02GRADING_MAP_v3_100dpi.jpg


 119 

 

 

Annex 20 [EMSR269] Nuku'alofa: Grading Map (February 2018) 

https://emergency.copernicus.eu/mapping/system/files/components/EMSR269_05NUKUALOFA_02GRADING_MAP_v2_100dpi.jpg
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Annex 21 [EMSR304] Mataram NW: Grading Map (August 2018) 

https://emergency.copernicus.eu/mapping/system/files/components/EMSR304_01MATARAMNW_02GRADING_MAP_v2_100dpi.jpg
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Annex 22 [EMSR317] Palu: Grading Map (September 2018) 

https://emergency.copernicus.eu/mapping/system/files/components/EMSR317_07PALU_02GRADING_MAP_v3_100dpi.jpg
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Annex 23 [EMSR320] Ti Charles: Grading Map (October 2018) 

 

https://emergency.copernicus.eu/mapping/system/files/components/EMSR320_04TICHARLES_02GRADING_MAP_v1_100dpi.jpg


  
 

1_Code used for the validation process 

 

/*The defined AOI choosed from Copernicus RM activations*/ 

var geometryBeruwala = /* color: #3ad608 */ee.Geometry.Polygon( 

        [[[79.97547987248322, 6.382708327515678], 

          [80.11591558042426, 6.382976877368193], 

          [80.11571156287789, 6.500765393907194], 

          [79.97525446617942, 6.500488669511123]]]), 

    imageVisParam = {"opacity":1,"bands":["B8","B3","B2"],"min":-

239.8078626099284,"max":2572.733573015612,"gamma":1}, 

    imageVisParam2 = {"opacity":1,"bands":["B12","B8","B2"],"min":-

239.8078626099284,"max":2572.733573015612,"gamma":1}, 

    imageVisParam3 = 

{"opacity":1,"bands":["B8","B4","B3"],"min":189.73812687529698,"max":256

0.190492653323,"gamma":1}, 

    samplingPoints = /* color: #35e6ef */ee.Geometry.MultiPoint( 

        [[10.597185376538505, 44.90616148047311], 

         [24.00982548776858, 66.04810337592632], 

         [-75.34496759418386, 7.5722516681259755], 

         [12.1029871525933, 50.42457945657212], 

         [80.02208773490611, 6.421394523250352]]), 

    AOIStatRegion = /* color: #d63000 */ee.Geometry.Point([-

75.34534734147672, 7.572445287392769]), 

    imageVisParam4 = 

{"opacity":1,"bands":["CL"],"max":4,"palette":["19d60d","ff0000","ff0000

","19d60d"]}, 

    geometryViadana = /* color: #a81dd6 */ee.Geometry.Polygon( 

        [[[10.508331701872521, 44.95210709867036], 

          [10.508090209456782, 44.91837129046192], 

          [10.507961463424067, 44.91416226904162], 

          [10.508050167392867, 44.906849135975875], 

          [10.506738567959019, 44.88301575081166], 
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          [10.636508019020994, 44.88142683889363], 

          [10.637667847155853, 44.935642851865744], 

          [10.637916226865286, 44.95010007939231]]]), 

    geometryKarunki = /* color: #98ff00 */ee.Geometry.Polygon( 

        [[[23.91670533807701, 66.09477923148471], 

          [23.90528332429608, 66.00604897158112], 

          [24.01649540372273, 66.0053012783648], 

          [24.08138369843664, 66.00510059523928], 

          [24.104472217092734, 66.00517040232992], 

          [24.14670103743606, 66.00541470462252], 

          [24.15144089040257, 66.0676457493629], 

          [24.15135505963508, 66.08066434139823], 

          [24.149845296592275, 66.11360290655142], 

          [24.093085757173185, 66.11414946065366], 

          [23.920572387637208, 66.11398876082468]]]), 

    geometryPuerto = /* color: #0b4a8b */ee.Geometry.Polygon( 

        [[[-75.32138649332006, 7.605155736546275], 

          [-75.41459916807605, 7.605071091111962], 

          [-75.41450195835398, 7.5183886723325974], 

          [-75.32127851314704, 7.518455295546988]]]), 

    geometryMag = /* color: #ffc82d */ee.Geometry.Polygon( 

        [[[12.041577671393952, 50.39127621323662], 

          [12.193264022312178, 50.392732957226265], 

          [12.189831675365667, 50.4663340608964], 

          [12.13081971670158, 50.464343331346186], 

          [12.03795091176994, 50.46188463676546]]]), 

    gTru = {"opacity":1,"bands":["b1"],"min":-

0.20481570297220456,"max":0.44312447939757293,"gamma":1}, 
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    validationVisParam = 

{"opacity":1,"bands":["MNDWI"],"max":4,"palette":["19ff15","ffa434","ff0

000","0726ff"]}; 

 

    var regionOfInt = AOIStatRegion.buffer(2000); 

     

    //Images for validation 

    var Beruwala_GroudTruth = 

ee.Image('users/consandu/EE_01_ground_truth').clip(geometryBeruwala); 

     

    var S2_Viadana = 

ee.Image('COPERNICUS/S2/20170802T101031_20170802T101051_T32TPQ').clip(ge

ometryViadana); 

    var Viadana_GroudTruth = 

ee.Image('users/consandu/EE_01_ground_truth_Viadana').clip(geometryViada

na); 

     

    var S2_Karunki = 

ee.Image('COPERNICUS/S2/20170613T101031_20170613T101025_T34WFU').clip(ge

ometryKarunki); 

    var Karunki_GroudTruth = 

ee.Image('users/consandu/EE_01_ground_truth_Karunki').clip(geometryKarun

ki); 

     

    var S2_Puerto = 

ee.Image('COPERNICUS/S2/20180325T152639_20180325T152951_T18NVP').clip(ge

ometryPuerto); 

    var Puerto_GroudTruth = 

ee.Image('users/consandu/EE_01_ground_truth_Puerto').clip(geometryPuerto

); 

     

    var S2_Puerto = 

ee.Image('COPERNICUS/S2/20180325T152639_20180325T152951_T18NVP').clip(ge

ometryPuerto); 

    var Puerto_GroudTruth = 

ee.Image('users/consandu/EE_01_ground_truth_Puerto').clip(geometryPuerto

); 
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    var S2_Mag = 

ee.Image('COPERNICUS/S2/20180529T101031_20180529T101225_T32UQA').clip(ge

ometryMag); 

    //var S2_Mag = 

ee.Image('COPERNICUS/S2/20170213T101121_20170213T101553_T32UQA').clip(ge

ometryMag); 

    var Mag_GroudTruth = 

ee.Image('users/consandu/EE_01_ground_truth_Mag').clip(geometryMag); 

     

    //SWE function used for validation in this case we also plot the 

graphs to better comprehend the distribution of the DN 

    var SWE = function(S2_image, region){ 

      var date = ee.Date(S2_image.get('system:time_start')); 

      var months = date.difference(ee.Date('1970-01-01'), 'year'); 

      var WRI = S2_image.select('B3').add(S2_image.select('B4')) 

                   

.divide(S2_image.select('B8').add(S2_image.select('B12'))).rename('WRI')

;//the final index 

      var NDWI =  S2_image.normalizedDifference(['B3', 

'B8']).rename('NDWI'); //McFeeters 

      var MNDWI =  S2_image.normalizedDifference(['B3', 

'B12']).rename('MNDWI'); //Xu but with the Swir not MIR (also present on 

SNAP) 

      var sintIm = ee.Image([WRI, NDWI, MNDWI]); 

      var histogram_WRI = 

ui.Chart.image.histogram(sintIm.select('WRI'), region, 

30).setSeriesNames(['WRI']).setOptions({ 

      title: 'WRI', 

      fontSize: 20, 

      hAxis: {title: 'DN distribution'}, 

      vAxis: {title: 'Count of DN'}, 

      series: { 

        0: {color: 'blue'} 
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        //1: {color: 'green'}, 

        //2: {color: 'red'}} 

      }}); 

      var histogram_NDWI = 

ui.Chart.image.histogram(sintIm.select('NDWI'), region, 

30).setSeriesNames(['NDWI']).setOptions({ 

      title: 'NDWI', 

      fontSize: 20, 

      hAxis: {title: 'DN distribution'}, 

      vAxis: {title: 'Count of DN'}, 

      series: { 

        0: {color: 'green'} 

        //1: {color: 'green'}, 

        //2: {color: 'red'}} 

      }}); 

      var histogram_MNDWI = 

ui.Chart.image.histogram(sintIm.select('MNDWI'), region, 

30).setSeriesNames(['MNDWI']).setOptions({ 

      title: 'MNDWI', 

      fontSize: 20, 

      hAxis: {title: 'DN distribution'}, 

      vAxis: {title: 'Count of DN'}, 

      series: { 

        0: {color: 'red'} 

        //1: {color: 'green'}, 

        //2: {color: 'red'}} 

      }}); 

      var histogram_ALL = ui.Chart.image.histogram(sintIm, region, 

30).setSeriesNames(['WRI', 'NDWI', 'MNDWI']).setOptions({ 

      title: 'Superimposition of the analyzed indexes', 

      fontSize: 20, 
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      hAxis: {title: 'DN distribution'}, 

      vAxis: {title: 'Count of DN'}, 

      series: { 

        0: {color: 'blue'}, 

        1: {color: 'green'}, 

        2: {color: 'red'}, 

      }}); 

      var histogram_NDWI_MNDWI = 

ui.Chart.image.histogram(sintIm.select(['NDWI', 'MNDWI']), region, 

30).setSeriesNames(['NDWI', 'MNDWI']).setOptions({ 

      title: 'Superimposition of the NDWI and MNDWI indexes', 

      fontSize: 20, 

      hAxis: {title: 'DN distribution'}, 

      vAxis: {title: 'Count of DN'}, 

      series: { 

        0: {color: 'red'}, 

        1: {color: 'green'} 

        //2: {color: 'blue'}, 

      }}); 

      print(histogram_WRI); 

      print(histogram_NDWI); 

      print(histogram_MNDWI); 

      print(histogram_ALL); 

      print(histogram_NDWI_MNDWI); 

      //var fIndex = mWRI.add(NDWI).add(mNDWI2).rename('CL'); 

      //var minusMwri = 

NDWI.add(MNDWI).subtract(mWRI).rename('CL');//.addBands(ee.Image(months)

.rename('time')); 

      //var addMwri = 

NDWI.add(MNDWI).add(mWRI).rename('CL');//.addBands(ee.Image(months).rena

me('time')); 
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      var addWri = 

NDWI.add(MNDWI).add(WRI).rename('CL');//.addBands(ee.Image(months).renam

e('time')); 

      var fIndex = 

NDWI.add(MNDWI).rename('CL');//.addBands(ee.Image(months).rename('time')

); 

      var histogramfIndex = 

ui.Chart.image.histogram(fIndex.select('CL'), region, 

30).setSeriesNames(['fIndex']).setOptions({ 

      title: 'Sum of WRI, NDWI, MNDWI', 

      fontSize: 20, 

      hAxis: {title: 'DN distribution'}, 

      vAxis: {title: 'Count of DN'}, 

      series: { 

        0: {color: 'magenta'}, 

        //1: {color: 'green'} 

        //2: {color: 'blue'}, 

      }}); 

      print(histogramfIndex); 

      //var WRI.rename('CL'); 

      Map.addLayer(addWri, {}, 'WRI+NDWI+MNDWI'); 

      Map.addLayer(fIndex, {}, 'NDWI+MNDWI'); 

      Map.addLayer(NDWI, {}, 'NDWI'); 

      Map.addLayer(MNDWI, {}, 'MNDWI'); 

      Map.addLayer(WRI, {}, 'WRI'); 

      return 

addWri.rename('CL');//.addBands(ee.Image(months).rename('time')); 

    }; 

     

    var SWEMod = function(S2_image, region){ 

      var date = ee.Date(S2_image.get('system:time_start')); 

      var months = date.difference(ee.Date('1970-01-01'), 'year'); 
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      var WRI = S2_image.select('B3').add(S2_image.select('B4')) 

                   

.divide(S2_image.select('B8').add(S2_image.select('B12'))).rename('WRI')

;//the final index 

      var NDWI =  S2_image.normalizedDifference(['B3', 

'B8']).rename('NDWI'); //McFeeters 

      var MNDWI =  S2_image.normalizedDifference(['B3', 

'B12']).rename('MNDWI'); //Xu but with the Swir not MIR (also present on 

SNAP); 

      var sintIm = ee.Image([WRI, NDWI, MNDWI]); 

      return sintIm; 

    }; 

     

    // Return the DN that maximizes interclass variance in 

WRI+NDWI+MNDWI (in the region). 

    var otsu = function otsu(histogram) { 

        histogram = ee.Dictionary(histogram); 

     

        var counts = ee.Array(histogram.get('histogram')); 

        var means = ee.Array(histogram.get('bucketMeans')); 

        var size = means.length().get([0]); 

        var total = counts.reduce(ee.Reducer.sum(), [0]).get([0]); 

        var sum = means.multiply(counts).reduce(ee.Reducer.sum(), 

[0]).get([0]); 

        var mean = sum.divide(total); 

     

        var indices = ee.List.sequence(1, size); 

     

        // Compute between sum of squares, where each mean partitions 

the data. 

        var bss = indices.map(function (i) { 

            var aCounts = counts.slice(0, 0, i); 
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            var aCount = aCounts.reduce(ee.Reducer.sum(), 

[0]).get([0]); 

            var aMeans = means.slice(0, 0, i); 

            var aMean = 

aMeans.multiply(aCounts).reduce(ee.Reducer.sum(), 

[0]).get([0]).divide(aCount); 

            var bCount = total.subtract(aCount); 

            var bMean = 

sum.subtract(aCount.multiply(aMean)).divide(bCount); 

            return 

aCount.multiply(aMean.subtract(mean).pow(2)).add(bCount.multiply(bMean.s

ubtract(mean).pow(2))); 

        }); 

     

        // Return the mean value corresponding to the maximum BSS. 

        return means.sort(bss).get([-1]); 

    }; 

     

    //Quality assessment of the binary classification 

    var qualityAssess = function(gTruth, classification, th, area, 

id){ 

      var assessSt = classification.gt(th).multiply(3); 

      var assess = assessSt.add(gTruth); 

      Map.addLayer(assess, {}, 'Validation Result' + id); 

      var resultEdge = 

assess.reduceRegion(ee.Reducer.frequencyHistogram(), area, 10); 

      var gtSumm = 

gTruth.reduceRegion(ee.Reducer.frequencyHistogram(), area, 10); 

      var classSumm = 

assessSt.reduceRegion(ee.Reducer.frequencyHistogram(), area, 10); 

      print(resultEdge, id); 

      print(gtSumm, 'Ground Truth'); 

      print(classSumm, 'Classification'); 
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      return assess; 

    }; 

     

    /* 

    THIS PART CALLS THE FUNCTIONS DEFINED PREVIOUSLY AND APPLIES THE 

FOR EACH AREA 

    THE CODE NEEDS TO BE UNCOMMENTED FOR EACH AREA OF STUDY 

    */ 

     

    /* 

    // Case Study Beruwala [1] 

    Map.addLayer(S2_Beruwala, imageVisParam, 'Sint Band'); 

    //Map.addLayer(S2_Beruwala.normalizedDifference(['B8', 

'B4']).gt(0.5), {}, 'moist vegetation'); 

    var WRI_NDWI = SWE(S2_Beruwala, geometryBeruwala); 

    //var NDVI = S2_Beruwala.normalizedDifference(['B8', 

'B4']).lt(0.5); 

    Map.addLayer(WRI_NDWI, {}, 'Original data no th applied'); 

    //Map.addLayer(regionOfInt,{}, 'Buffer Area'); 

    var o = computeThresholdUsingOtsu(WRI_NDWI, 30, regionOfInt, 1, 1, 

false, true, -0.1); 

     

    //only otsu on the region of int 

    var hist = 

ee.Dictionary(ee.Dictionary(WRI_NDWI.reduceRegion(ee.Reducer.histogram(1

00), regionOfInt, scale)).values().get(0)); 

     

    var thresholdNoEdge = 

ee.Algorithms.If(hist.contains('bucketMeans'), otsu(hist), 0); 

    thresholdNoEdge = ee.Number(thresholdNoEdge); //.add(0.05) 
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    var qCB = qualityAssess(Beruwala_GroudTruth, WRI_NDWI, 

o.threshold, geometryBeruwala, ' thEDGE'); 

    var qC = qualityAssess(Beruwala_GroudTruth, WRI_NDWI, 

thresholdNoEdge, geometryBeruwala, ' thNoEDGE'); 

     

    print(o.threshold, ' thEDGE'); 

    print(thresholdNoEdge, ' thNoEDGE'); 

    */ 

    /* 

    //Case Study Beruwala modificato[1] 

    var thFunction = function(image, bandName){ 

      var hist = 

ee.Dictionary(ee.Dictionary(image.select(bandName).reduceRegion(ee.Reduc

er.histogram(100), regionOfInt, 30)).values().get(0)); 

      var thresholdNoEdge = 

ee.Algorithms.If(hist.contains('bucketMeans'), otsu(hist), 0); 

      var bandTh = image.select(bandName); 

      return bandTh.gt(ee.Number(thresholdNoEdge)).eq(1); 

    }; 

     

    Map.addLayer(S2_Beruwala, imageVisParam, 'Sint Band Beruwala'); 

    Map.addLayer(Beruwala_GroudTruth, gTru, 'G Truth'); 

    var WRI_NDWI = SWEMod(S2_Beruwala, geometryBeruwala); 

    Map.addLayer(WRI_NDWI, {}, 'Original data no th applied'); 

     

    //only otsu on the region of int 

    var hist = 

ee.Dictionary(ee.Dictionary(WRI_NDWI.reduceRegion(ee.Reducer.histogram(1

00), regionOfInt, 30)).values().get(0)); 

    var thresholdNoEdge = 

ee.Algorithms.If(hist.contains('bucketMeans'), otsu(hist), 0); 

    thresholdNoEdge = ee.Number(thresholdNoEdge); //.add(0.05) 
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    //print(o.threshold, 'thEDGE'); 

    print(thresholdNoEdge, 'Threshold without cannny edge detection'); 

    //var qCB = qualityAssess(Karunki_GroudTruth, WRI_NDWI, 

o.threshold, geometryKarunki, ' edge'); 

    var qC = qualityAssess(Beruwala_GroudTruth, WRI_NDWI, 

thresholdNoEdge, geometryBeruwala, ' no edge'); 

     

    var MNDWIth = thFunction(WRI_NDWI, 'MNDWI'); 

    var NDWIth = thFunction(WRI_NDWI, 'NDWI'); 

    var WRIth = thFunction(WRI_NDWI, 'WRI'); 

    var SintImage = MNDWIth.add(NDWIth).add(WRIth).divide(3); 

    var SintImageSum = MNDWIth.add(NDWIth).add(WRIth); 

    Map.addLayer(SintImageSum, {}, 'somma delle tre immagini'); 

    var qualityAssessBinClass = function(gTruth, result, area){ 

      var assessSt = result.eq(3).multiply(3); 

      var assess = 

assessSt.add(gTruth).add(S2_Beruwala.select(['B3']).lt(2000).eq(4)); 

      Map.addLayer(assess, validationVisParam, 'Validation Result 

sum'); 

      var resultEdge = 

assess.reduceRegion(ee.Reducer.frequencyHistogram(), area, 10); 

      var gtSumm = 

gTruth.reduceRegion(ee.Reducer.frequencyHistogram(), area, 10); 

      var classSumm = 

assessSt.reduceRegion(ee.Reducer.frequencyHistogram(), area, 10); 

      print(resultEdge, 'Error Matrix'); 

      //print(gtSumm, 'Ground Truth'); 

      //print(classSumm, 'Bin classClassification'); 

      return assess; 

    }; 
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    var qualityBinClass = qualityAssessBinClass(Beruwala_GroudTruth, 

SintImageSum, geometryBeruwala); 

    //Map.addLayer(SintImage, {}, 'somma degli indici th + 

normalizzatione') 

    Map.addLayer(SintImageSum, {}, 'somma degli indici th') 

     

    Export.image.toDrive({ 

      //image: S2_Beruwala.select(['B2', 'B3', 'B4', 'B8', 'B12']), 

      image: qualityBinClass, 

      description: 'S2_Beruwala_classification', 

      fileFormat: 'GeoTIFF', 

      scale: 10, 

      region: geometryBeruwala 

    }); 

    */ 

     

    /* 

    // Case Study Viadana [2] 

    Map.addLayer(S2_Viadana, imageVisParam, 'Sint Band Viadana'); 

    Map.addLayer(Viadana_GroudTruth, gTru, 'G Truth'); 

    var WRI_NDWI = SWE(S2_Viadana, geometryViadana); 

    Map.addLayer(WRI_NDWI, {}, 'Original data no th applied'); 

    //Map.addLayer(regionOfInt,{}, 'Buffer Area'); 

    var o = computeThresholdUsingOtsu(WRI_NDWI, 30, regionOfInt, 1, 1, 

false, true, -0.1); 

     

    //only otsu on the region of int 

    var hist = 

ee.Dictionary(ee.Dictionary(WRI_NDWI.reduceRegion(ee.Reducer.histogram(1

00), regionOfInt, scale)).values().get(0)); 
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    var thresholdNoEdge = 

ee.Algorithms.If(hist.contains('bucketMeans'), otsu(hist), 0); 

    thresholdNoEdge = ee.Number(thresholdNoEdge); //.add(0.05) 

     

    var qCB = qualityAssess(Viadana_GroudTruth, WRI_NDWI, o.threshold, 

geometryViadana, ' edge'); 

    var qC = qualityAssess(Viadana_GroudTruth, WRI_NDWI, 

thresholdNoEdge, geometryViadana, ' no edge'); 

    print(o.threshold, 'thEDGE'); 

    print(thresholdNoEdge, 'thNoEDGE'); 

    */ 

    /* 

    //Case Study Viadana modificato[2] 

    var thFunction = function(image, bandName){ 

      var hist = 

ee.Dictionary(ee.Dictionary(image.select(bandName).reduceRegion(ee.Reduc

er.histogram(100), regionOfInt, 30)).values().get(0)); 

      var thresholdNoEdge = 

ee.Algorithms.If(hist.contains('bucketMeans'), otsu(hist), 0); 

      var bandTh = image.select(bandName); 

      return bandTh.gt(ee.Number(thresholdNoEdge)).eq(1); 

    }; 

     

    Map.addLayer(S2_Viadana, imageVisParam, 'Sint Band Viadana'); 

    Map.addLayer(Viadana_GroudTruth, gTru, 'G Truth'); 

    var WRI_NDWI = SWEMod(S2_Viadana, geometryViadana); 

    Map.addLayer(WRI_NDWI, {}, 'Original data no th applied'); 

     

    //only otsu on the region of int 

    var hist = 

ee.Dictionary(ee.Dictionary(WRI_NDWI.reduceRegion(ee.Reducer.histogram(1

00), regionOfInt, 30)).values().get(0)); 
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    var thresholdNoEdge = 

ee.Algorithms.If(hist.contains('bucketMeans'), otsu(hist), 0); 

    thresholdNoEdge = ee.Number(thresholdNoEdge); //.add(0.05) 

    //print(o.threshold, 'thEDGE'); 

    print(thresholdNoEdge, 'Threshold without cannny edge detection'); 

    //var qCB = qualityAssess(Karunki_GroudTruth, WRI_NDWI, 

o.threshold, geometryKarunki, ' edge'); 

    var qC = qualityAssess(Viadana_GroudTruth, WRI_NDWI, 

thresholdNoEdge, geometryViadana, ' no edge'); 

     

    var MNDWIth = thFunction(WRI_NDWI, 'MNDWI'); 

    var NDWIth = thFunction(WRI_NDWI, 'NDWI'); 

    var WRIth = thFunction(WRI_NDWI, 'WRI'); 

    var SintImage = MNDWIth.add(NDWIth).add(WRIth).divide(3); 

    var SintImageSum = MNDWIth.add(NDWIth).add(WRIth); 

    Map.addLayer(SintImageSum, {}, 'somma delle tre immagini'); 

    var qualityAssessBinClass = function(gTruth, SintImageSum, area){ 

      var assessSt = SintImageSum.eq(3).multiply(3); 

      var assess = 

assessSt.add(gTruth).add(S2_Viadana.select(['B3']).lt(2000).eq(4)); 

      Map.addLayer(assess, validationVisParam, 'Validation Result 

sum'); 

      var resultEdge = 

assess.reduceRegion(ee.Reducer.frequencyHistogram(), area, 10); 

      var gtSumm = 

gTruth.reduceRegion(ee.Reducer.frequencyHistogram(), area, 10); 

      var classSumm = 

assessSt.reduceRegion(ee.Reducer.frequencyHistogram(), area, 10); 

      print(resultEdge, 'Error Matrix'); 

      //print(gtSumm, 'Ground Truth'); 

      //print(classSumm, 'Bin classClassification'); 

      return assess; 



138 Annexes 

 
    }; 

     

    var qualityBinClass = qualityAssessBinClass(Viadana_GroudTruth, 

SintImageSum, geometryViadana); 

    //Map.addLayer(SintImage, {}, 'somma degli indici th + 

normalizzatione') 

    Map.addLayer(SintImageSum, {}, 'somma degli indici th') 

    Export.image.toDrive({ 

      image: qualityBinClass, 

      description: 'S2_Viadana_classification', 

      fileFormat: 'GeoTIFF', 

      scale: 10, 

      region: geometryViadana 

    }); 

    */ 

     

    /* 

    // Case Study Karunki [3] 

    Map.addLayer(S2_Karunki, imageVisParam, 'Sint Band Karunki'); 

    Map.addLayer(Karunki_GroudTruth, gTru, 'G Truth'); 

    var WRI_NDWI = SWE(S2_Karunki, geometryKarunki); 

    Map.addLayer(WRI_NDWI, {}, 'Original data no th applied'); 

    /* 

    //Map.addLayer(regionOfInt,{}, 'Buffer Area'); 

    //var S2_clip = S2_Karunki.select(['B1', 'B2', 'B3', 'B4', 'B5', 

'B6', 'B7', 'B8', 'B9', 'B10', 'B11', 'B12']).clip(geometryKarunki); 

    //var o = computeThresholdUsingOtsu(WRI_NDWI.select('CL'), 30, 

regionOfInt, 1, 1, false, true, -0.1); 

     

    //only otsu on the region of int 
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    var hist = 

ee.Dictionary(ee.Dictionary(WRI_NDWI.reduceRegion(ee.Reducer.histogram(1

00), regionOfInt, 30)).values().get(0)); 

     

    var thresholdNoEdge = 

ee.Algorithms.If(hist.contains('bucketMeans'), otsu(hist), 0); 

    thresholdNoEdge = ee.Number(thresholdNoEdge); //.add(0.05) 

    //print(o.threshold, 'thEDGE'); 

    print(thresholdNoEdge, 'Threshold without cannny edge detection'); 

    //var qCB = qualityAssess(Karunki_GroudTruth, WRI_NDWI, 

o.threshold, geometryKarunki, ' edge'); 

    var qC = qualityAssess(Karunki_GroudTruth, WRI_NDWI, 

thresholdNoEdge, geometryKarunki, ' no edge'); 

    //Map.addLayer(WRI_NDWI.gt(0.719), {}, 'test') 

    */ 

    /* 

    // Case Study Karunki SWE modificato [3] 

    Map.addLayer(S2_Karunki, imageVisParam, 'Sint Band Karunki'); 

    Map.addLayer(Karunki_GroudTruth, gTru, 'G Truth'); 

    var WRI_NDWI = SWE(S2_Karunki, geometryKarunki); 

    var thFunction = function(image, bandName){ 

      var hist = 

ee.Dictionary(ee.Dictionary(image.select(bandName).reduceRegion(ee.Reduc

er.histogram(100), regionOfInt, 30)).values().get(0)); 

      var thresholdNoEdge = 

ee.Algorithms.If(hist.contains('bucketMeans'), otsu(hist), 0); 

      var bandTh = image.select(bandName); 

      return bandTh.gt(ee.Number(thresholdNoEdge)).eq(1); 

    }; 

     

    Map.addLayer(S2_Karunki, imageVisParam, 'Sint Band Karunki'); 

    Map.addLayer(Karunki_GroudTruth, gTru, 'G Truth'); 
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    var WRI_NDWI = SWEMod(S2_Karunki, geometryKarunki); 

    Map.addLayer(WRI_NDWI, {}, 'Original data no th applied'); 

     

    //only otsu on the region of int 

    var hist = 

ee.Dictionary(ee.Dictionary(WRI_NDWI.reduceRegion(ee.Reducer.histogram(1

00), regionOfInt, 30)).values().get(0)); 

    var thresholdNoEdge = 

ee.Algorithms.If(hist.contains('bucketMeans'), otsu(hist), 0); 

    thresholdNoEdge = ee.Number(thresholdNoEdge); //.add(0.05) 

    //print(o.threshold, 'thEDGE'); 

    print(thresholdNoEdge, 'Threshold without cannny edge detection'); 

    //var qCB = qualityAssess(Karunki_GroudTruth, WRI_NDWI, 

o.threshold, geometryKarunki, ' edge'); 

    var qC = qualityAssess(Karunki_GroudTruth, WRI_NDWI, 

thresholdNoEdge, geometryKarunki, ' no edge'); 

     

    var MNDWIth = thFunction(WRI_NDWI, 'MNDWI'); 

    var NDWIth = thFunction(WRI_NDWI, 'NDWI'); 

    var WRIth = thFunction(WRI_NDWI, 'WRI'); 

    var SintImage = MNDWIth.add(NDWIth).add(WRIth).divide(3); 

    var SintImageSum = MNDWIth.add(NDWIth).add(WRIth); 

    Map.addLayer(SintImageSum, {}, 'somma delle tre immagini'); 

    var qualityAssessBinClass = function(gTruth, SintImageSum, area){ 

      var assessSt = SintImageSum.eq(3).multiply(3); 

      var assess = 

assessSt.add(gTruth).add(S2_Karunki.select(['B3']).lt(2000).eq(4)); 

      Map.addLayer(assess, validationVisParam, 'Validation Result 

sum'); 

      var resultEdge = 

assess.reduceRegion(ee.Reducer.frequencyHistogram(), area, 10); 

      var gtSumm = 

gTruth.reduceRegion(ee.Reducer.frequencyHistogram(), area, 10); 
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      var classSumm = 

assessSt.reduceRegion(ee.Reducer.frequencyHistogram(), area, 10); 

      print(resultEdge, 'Error Matrix'); 

      //print(gtSumm, 'Ground Truth'); 

      //print(classSumm, 'Bin classClassification'); 

      return assess; 

    }; 

     

    var qualityBinClass = qualityAssessBinClass(Karunki_GroudTruth, 

SintImageSum, geometryKarunki); 

    Map.addLayer(SintImage, {}, 'somma degli indici th + 

normalizzatione') 

    Map.addLayer(SintImageSum, {}, 'somma degli indici th') 

    Export.image.toDrive({ 

      image: qualityBinClass, 

      description: 'S2_Karunki_classification', 

      fileFormat: 'GeoTIFF', 

      scale: 10, 

      region: geometryKarunki 

    }); 

    */ 

     

    //Case study validation and assessment 

    /* 

    // Case Study Puerto [4] 

    Map.addLayer(S2_Puerto, imageVisParam, 'Sint Band Puerto'); 

    Map.addLayer(Puerto_GroudTruth, gTru, 'G Truth'); 

    var WRI_NDWI = SWE(S2_Puerto); 

    Map.addLayer(WRI_NDWI, {}, 'Original data no th applied'); 

    //Map.addLayer(regionOfInt,{}, 'Buffer Area'); 
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    var o = computeThresholdUsingOtsu(WRI_NDWI, 30, regionOfInt, 1, 1, 

false, true, -0.1); 

     

    //only otsu on the region of int 

    var hist = 

ee.Dictionary(ee.Dictionary(WRI_NDWI.reduceRegion(ee.Reducer.histogram(1

00), regionOfInt, scale)).values().get(0)); 

     

    var thresholdNoEdge = 

ee.Algorithms.If(hist.contains('bucketMeans'), otsu(hist), 0); 

    thresholdNoEdge = ee.Number(thresholdNoEdge); //.add(0.05) 

     

    var qCB = qualityAssess(Puerto_GroudTruth, WRI_NDWI, o.threshold, 

geometryPuerto, ' edge'); 

    var qC = qualityAssess(Puerto_GroudTruth, WRI_NDWI, 

thresholdNoEdge, geometryPuerto, ' no edge'); 

    print(o.threshold, 'thEDGE'); 

    print(thresholdNoEdge, 'thNoEDGE'); 

    */ 

     

     

    // Case Study Puerto SWE modificato [4] 

    var thFunction = function(image, bandName){ 

      var hist = 

ee.Dictionary(ee.Dictionary(image.select(bandName).reduceRegion(ee.Reduc

er.histogram(100), regionOfInt, 30)).values().get(0)); 

      var thresholdNoEdge = 

ee.Algorithms.If(hist.contains('bucketMeans'), otsu(hist), 0); 

      var bandTh = image.select(bandName); 

      return bandTh.gt(ee.Number(thresholdNoEdge)).eq(1); 

    }; 

     

    Map.addLayer(S2_Puerto, imageVisParam, 'Sint Band Puerto'); 
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    Map.addLayer(Puerto_GroudTruth, gTru, 'G Truth'); 

    var WRI_NDWI = SWEMod(S2_Puerto, geometryPuerto); 

    Map.addLayer(WRI_NDWI, {}, 'Original data no th applied'); 

     

    //only otsu on the region of int 

    var hist = 

ee.Dictionary(ee.Dictionary(WRI_NDWI.reduceRegion(ee.Reducer.histogram(1

00), regionOfInt, 30)).values().get(0)); 

    var thresholdNoEdge = 

ee.Algorithms.If(hist.contains('bucketMeans'), otsu(hist), 0); 

    thresholdNoEdge = ee.Number(thresholdNoEdge); //.add(0.05) 

    //print(o.threshold, 'thEDGE'); 

    print(thresholdNoEdge, 'Threshold without cannny edge detection'); 

    //var qCB = qualityAssess(Karunki_GroudTruth, WRI_NDWI, 

o.threshold, geometryKarunki, ' edge'); 

    var qC = qualityAssess(Puerto_GroudTruth, WRI_NDWI, 

thresholdNoEdge, geometryPuerto, ' no edge'); 

     

    var MNDWIth = thFunction(WRI_NDWI, 'MNDWI'); 

    var NDWIth = thFunction(WRI_NDWI, 'NDWI'); 

    var WRIth = thFunction(WRI_NDWI, 'WRI'); 

    var SintImage = MNDWIth.add(NDWIth).add(WRIth).divide(3); 

    var SintImageSum = 

MNDWIth.add(NDWIth).add(WRIth)//.mask(S2_Puerto.select(['B3']).lt(2000))

//; 

    Map.addLayer(SintImageSum, {}, 'somma delle tre immagini'); 

    var qualityAssessBinClass = function(gTruth, result, area){ 

      var assessSt = result.eq(3).multiply(3); 

      var assess = 

assessSt.add(gTruth).add(S2_Puerto.select(['B3']).lt(3500).eq(4)); 

      //Map.addLayer(assess, 

{"opacity":1,"bands":["WRI"],"max":4,"palette":["19ff15","ffa434","ff000

0","0726ff"]}, 'Validation Result sum'); 
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      Map.addLayer(assess, validationVisParam, 'Validation Result 

sum'); 

      var resultEdge = 

assess.reduceRegion(ee.Reducer.frequencyHistogram(), area, 10); 

      var gtSumm = 

gTruth.reduceRegion(ee.Reducer.frequencyHistogram(), area, 10); 

      var classSumm = 

assessSt.reduceRegion(ee.Reducer.frequencyHistogram(), area, 10); 

      print(resultEdge, 'Error Matrix'); 

      //print(gtSumm, 'Ground Truth'); 

      //print(classSumm, 'Bin classClassification'); 

      return assess; 

    }; 

     

    var qualityBinClass = qualityAssessBinClass(Puerto_GroudTruth, 

SintImageSum, geometryPuerto); 

    Map.addLayer(SintImage, {}, 'somma degli indici th + 

normalizzatione') 

    Map.addLayer(SintImageSum, {}, 'somma degli indici th') 

    //Puerto 

    Export.image.toDrive({ 

      //image: S2_Puerto.select(['B2', 'B3', 'B4', 'B8', 'B12']), 

      image: qualityBinClass, 

      description: 'S2_Puerto_classification', 

      fileFormat: 'GeoTIFF', 

      scale: 10, 

      region: geometryPuerto 

    }); 

     

    /* 

    // Case Study Magwitz [5] 



 145 

 
    Map.addLayer(S2_Mag, imageVisParam, 'Sint Band Mag'); 

    Map.addLayer(Mag_GroudTruth, gTru, 'G Truth'); 

    var WRI_NDWI = SWE(S2_Mag, geometryMag); 

    var huggel = S2_Mag.normalizedDifference(['B2', 'B8']) 

    Map.addLayer(WRI_NDWI, {}, 'Original data no th applied'); 

    Map.addLayer(huggel, {}, 'huggel'); 

    //Map.addLayer(regionOfInt,{}, 'Buffer Area'); 

    var o = computeThresholdUsingOtsu(WRI_NDWI, 30, regionOfInt, 1, 1, 

false, true, -0.1); 

     

    //only otsu on the region of int 

    var hist = 

ee.Dictionary(ee.Dictionary(WRI_NDWI.reduceRegion(ee.Reducer.histogram(1

00), regionOfInt, scale)).values().get(0)); 

     

    var thresholdNoEdge = 

ee.Algorithms.If(hist.contains('bucketMeans'), otsu(hist), 0); 

    thresholdNoEdge = ee.Number(thresholdNoEdge); //.add(0.05) 

     

    var qCB = qualityAssess(Mag_GroudTruth, WRI_NDWI, o.threshold, 

geometryMag, ' edge'); 

    var qC = qualityAssess(Mag_GroudTruth, WRI_NDWI, thresholdNoEdge, 

geometryMag, ' no edge'); 

    print(o.threshold, 'thEDGE'); 

    print(thresholdNoEdge, 'thNoEDGE'); 

    */ 

    /* 

    // Case Study Magwitz modificato [5] 

    var thFunction = function(image, bandName){ 

      var hist = 

ee.Dictionary(ee.Dictionary(image.select(bandName).reduceRegion(ee.Reduc

er.histogram(100), regionOfInt, 30)).values().get(0)); 
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      var thresholdNoEdge = 

ee.Algorithms.If(hist.contains('bucketMeans'), otsu(hist), 0); 

      var bandTh = image.select(bandName); 

      return bandTh.gt(ee.Number(thresholdNoEdge)).eq(1); 

    }; 

     

    Map.addLayer(S2_Mag, imageVisParam, 'Sint Band Mag'); 

    Map.addLayer(Mag_GroudTruth, gTru, 'G Truth'); 

    var WRI_NDWI = SWEMod(S2_Mag, geometryMag); 

    Map.addLayer(WRI_NDWI, {}, 'Original data no th applied'); 

     

    //only otsu on the region of int 

    var hist = 

ee.Dictionary(ee.Dictionary(WRI_NDWI.reduceRegion(ee.Reducer.histogram(1

00), regionOfInt, 30)).values().get(0)); 

    var thresholdNoEdge = 

ee.Algorithms.If(hist.contains('bucketMeans'), otsu(hist), 0); 

    thresholdNoEdge = ee.Number(thresholdNoEdge); //.add(0.05) 

    //print(o.threshold, 'thEDGE'); 

    print(thresholdNoEdge, 'Threshold without cannny edge detection'); 

    //var qCB = qualityAssess(Karunki_GroudTruth, WRI_NDWI, 

o.threshold, geometryKarunki, ' edge'); 

    var qC = qualityAssess(Mag_GroudTruth, WRI_NDWI, thresholdNoEdge, 

geometryMag, ' no edge'); 

     

    var MNDWIth = thFunction(WRI_NDWI, 'MNDWI'); 

    var NDWIth = thFunction(WRI_NDWI, 'NDWI'); 

    var WRIth = thFunction(WRI_NDWI, 'WRI'); 

    var SintImage = MNDWIth.add(NDWIth).add(WRIth).divide(3); 

    var SintImageSum = 

MNDWIth.add(NDWIth).add(WRIth).mask(S2_Mag.select(['B3']).lt(2000));//; 

    Map.addLayer(SintImageSum, {}, 'somma delle tre immagini'); 
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    var qualityAssessBinClass = function(gTruth, result, area){ 

      var assessSt = result.eq(3).multiply(3); 

      var assess = 

assessSt.add(gTruth)//.add(S2_Mag.select(['B3']).lt(3500).eq(3)); 

      Map.addLayer(assess, validationVisParam, 'Validation Result 

sum'); 

      var resultEdge = 

assess.reduceRegion(ee.Reducer.frequencyHistogram(), area, 10); 

      var gtSumm = 

gTruth.reduceRegion(ee.Reducer.frequencyHistogram(), area, 10); 

      var classSumm = 

assessSt.reduceRegion(ee.Reducer.frequencyHistogram(), area, 10); 

      print(resultEdge, 'Error Matrix'); 

      //print(gtSumm, 'Ground Truth'); 

      //print(classSumm, 'Bin classClassification'); 

      return assess; 

    }; 

    var qualityBinClass = qualityAssessBinClass(Mag_GroudTruth, 

SintImageSum, geometryMag); 

    Map.addLayer(SintImage, {}, 'somma degli indici th + 

normalizzatione') 

    Map.addLayer(SintImageSum, {}, 'somma degli indici th') 

    */ 

     

    /*This function allows to export the results*/ 

    //Magwitz 

    Export.image.toDrive({ 

      //image: S2_Mag.select(['B2', 'B3', 'B4', 'B8', 'B12']), 

      image: qualityBinClass, 

      description: 'S2_Magwitz_classification', 

      fileFormat: 'GeoTIFF', 

      scale: 10, 
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      region: geometryMag 

    }); 

 

2_Code used for the production process 

 

var S2 = ee.ImageCollection("COPERNICUS/S2"), 

    imageVisParam = 

{"opacity":1,"bands":["B4","B3","B2"],"min":828.1,"max":2004.9,"gamma":1

}, 

    falseColorVisParam = 

{"opacity":1,"bands":["B8","B4","B3"],"min":917.3,"max":4463.7,"gamma":1

}, 

    geometry2 = /* color: #d63000 */ee.Geometry.MultiPoint( 

        [[7.232224081009804, 45.009918149223104], 

         [7.7213584224881515, 45.08506671069958], 

         [7.721894369577967, 45.05022751285707], 

         [7.674387522786446, 45.06157011410555], 

         [91.63980936330586, 26.17751179984684], 

         [91.62040364599443, 26.20809583659951]]), 

    table = ee.FeatureCollection("users/consandu/scenario"), 

    geometry3 = /* color: #d9f116 

*/ee.Geometry.Point([91.55054544729023, 26.149316446621473]), 

    samplingPoint = /* color: #2f44d6 

*/ee.Geometry.Point([24.701388842320284, 43.81301881361876]); 

var AOI = table; 

Map.addLayer(AOI, {},'AOI'); 

var start = ee.Date('2017-01-01'); 

var finish = ee.Date(Date.now()); 
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//var start = ee.Date('2017-11-01'); 

//var finish = ee.Date('2018-01-14'); 

var regionOfInt = samplingPoint.buffer(2000); 

 

var filteredS2Collection = S2.filterBounds(samplingPoint) 

                              .filterDate(start, finish) 

                              

.filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20)); 

                               

 

// Return the DN that maximizes interclass variance in each of the 

mask (in the region). 

var otsu = function otsu(histogram) { 

    histogram = ee.Dictionary(histogram); 

 

    var counts = ee.Array(histogram.get('histogram')); 

    var means = ee.Array(histogram.get('bucketMeans')); 

    var size = means.length().get([0]); 

    var total = counts.reduce(ee.Reducer.sum(), [0]).get([0]); 

    var sum = means.multiply(counts).reduce(ee.Reducer.sum(), 

[0]).get([0]); 

    var mean = sum.divide(total); 

 

    var indices = ee.List.sequence(1, size); 
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    // Compute between sum of squares, where each mean partitions the 

data. 

    var bss = indices.map(function (i) { 

        var aCounts = counts.slice(0, 0, i); 

        var aCount = aCounts.reduce(ee.Reducer.sum(), [0]).get([0]); 

        var aMeans = means.slice(0, 0, i); 

        var aMean = aMeans.multiply(aCounts).reduce(ee.Reducer.sum(), 

[0]).get([0]).divide(aCount); 

        var bCount = total.subtract(aCount); 

        var bMean = 

sum.subtract(aCount.multiply(aMean)).divide(bCount); 

        return 

aCount.multiply(aMean.subtract(mean).pow(2)).add(bCount.multiply(bMean.s

ubtract(mean).pow(2))); 

    }); 

 

    // Return the mean value corresponding to the maximum BSS. 

    return means.sort(bss).get([-1]); 

}; 

 

var watFrequency = function(S2WatmaskCollection){ 

  var NumWatObs = S2WatmaskCollection.select('ND').sum(); 

  //print(NumWatObs, 'n obs'); 

  var NumWatObsValid = S2WatmaskCollection.select('ND').count(); 

  //print(NumWatObsValid, 'v obs'); 

  var NumWatObsFrequency = NumWatObs.divide(NumWatObsValid); 

  return NumWatObsFrequency; 
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}; 

 

//Create filter 

var filter = ee.Filter.equals({ 

  leftField: 'system:index', 

  rightField: 'system:index' 

}); 

var filterWRI = ee.Filter.equals({ 

  leftField: 'secondId', 

  rightField: 'system:index' 

}); 

 

//Create Simple Join 

var innerJoin = ee.Join.inner(); 

 

var computeMNDWI = function(image){ 

  var doy = image.date().getRelative('day', 'year'); 

  var doyBand = ee.Image.constant(doy).uint16().rename('doy'); 

  var mndwi = image.normalizedDifference(['B3', 

'B12']).rename('MNDWI'); 

  //remember to update time band 

  var hist = 

ee.Dictionary(ee.Dictionary(mndwi.reduceRegion(ee.Reducer.histogram(100)

, regionOfInt, 30)).values().get(0)); 

  var thresholdNoEdge = ee.Algorithms.If(hist.contains('bucketMeans'), 

otsu(hist), 0); 
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  thresholdNoEdge = ee.Number(thresholdNoEdge);  

  return 

mndwi.gt(thresholdNoEdge).eq(1).mask(image.select(['B3']).lt(2000)).addB

ands(doyBand).set({secondId: image.get('system:index')}); 

}; 

 

var computeNDWI = function(image){ 

  var doy = image.date().getRelative('day', 'year'); 

  var doyBand = ee.Image.constant(doy).uint16().rename('doy'); 

  var ndwi = image.normalizedDifference(['B3', 

'B8']).rename('NDWI')//.addBands(date); 

  var hist = 

ee.Dictionary(ee.Dictionary(ndwi.reduceRegion(ee.Reducer.histogram(100), 

regionOfInt, 30)).values().get(0)); 

  var thresholdNoEdge = ee.Algorithms.If(hist.contains('bucketMeans'), 

otsu(hist), 0); 

  thresholdNoEdge = ee.Number(thresholdNoEdge);  

  return 

ndwi.gt(thresholdNoEdge).eq(1).addBands(doyBand).mask(image.select(['B3'

]).lt(2000)).addBands(doyBand); 

}; 

 

var computeWRI = function(image){ 

  var doy = image.date().getRelative('day', 'year'); 

  var doyBand = ee.Image.constant(doy).uint16().rename('doy'); 

  var wri = 

image.select('B3').add(image.select('B4')).divide(image.select('B8').add

(image.select('B12'))).rename('WRI'); 
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  var hist = 

ee.Dictionary(ee.Dictionary(wri.reduceRegion(ee.Reducer.histogram(100), 

regionOfInt, 30)).values().get(0)); 

  var thresholdNoEdge = ee.Algorithms.If(hist.contains('bucketMeans'), 

otsu(hist), 0); 

  thresholdNoEdge = ee.Number(thresholdNoEdge);  

  return 

wri.gt(thresholdNoEdge).eq(1).mask(image.select(['B3']).lt(2000)).addBan

ds(doyBand); 

}; 

 

var mergeBands = function(aRow) { 

  var anImage = ee.Image.cat(aRow.get('primary'), 

aRow.get('secondary')); 

  return anImage; 

}; 

 

var sumOfThBands = function(image){ 

  var out = 

image.select('MNDWI').add(image.select('NDWI')).add(image.select('WRI'))

.rename('ND'); 

  return out.eq(3).addBands(image.select("doy")); 

}; 

 

var sumOfThBandsNumObs = function(image){ 

  var out = 

image.select('MNDWI').add(image.select('NDWI')).add(image.select('WRI'))

.rename('ND'); 

  return out.eq(3).multiply(100).addBands(image.select("doy")); 



154 Annexes 

 
}; 

 

/*this is the computation of all the NDVI of the period June to 

September 

 of 2018*/ 

  

 

var mndwiCollection = filteredS2Collection.map(computeMNDWI); 

var ndwiCollection = filteredS2Collection.map(computeNDWI); 

var wriCollection = filteredS2Collection.map(computeWRI); 

 

 

 

/* compute the water frequency 

*/ 

 

var ndwiMndwiJoin = innerJoin.apply(mndwiCollection, ndwiCollection, 

filter); 

var mergedMndwiNdwi = ndwiMndwiJoin.map(mergeBands) 

var ndwiMndwiWriJoin = innerJoin.apply(mergedMndwiNdwi, wriCollection, 

filterWRI); 

var mergedNdwiMndwiWRI = ndwiMndwiWriJoin.map(mergeBands) 

//print(mergedNdwiMndwiWRI) 

var mergedSumedNdwiMndwiWRI = 

ee.ImageCollection(mergedNdwiMndwiWRI).map(sumOfThBands); 

var mergedSumedNdwiMndwiWRInumObs = 

ee.ImageCollection(mergedNdwiMndwiWRI).map(sumOfThBandsNumObs); 
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//print(mergedSumedNdwiMndwiWRI); 

var waterFrequency = watFrequency(mergedSumedNdwiMndwiWRI); 

 

//var linearFit = ndwiCollection.reduce(ee.Reducer.linearFit()); 

//Map.addLayer(linearFit.select(['scale']), {min: -90, max: 90, 

palette: ['white','#0088ff', 'navy']}, 'Linear Fit'); 

//this is only for visualize purpose 

//var leastCloudyS2 = filteredS2Collection.first(); 

//Map.addLayer(leastCloudyS2, falseColorVisParam, 'cape town s2'); 

Map.addLayer(mergedSumedNdwiMndwiWRInumObs, {}, 'separate images of 

reelaborated collection', false); 

Map.addLayer(waterFrequency, {min: 0, max: 1, palette: 

['white','#0088ff', 'navy']}, 'Water Occurance'); 

//Map.addLayer(waterFrequency, {}, 'Water frequency', false); 

 

/* 

// Export the image, specifying scale and region. 

Export.image.toDrive({ 

  image: waterFrequency, 

  description: 'Permanent Water', 

  scale: 30, 

  region: AOI 

}); 

*/ 


