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Wavelets and convolution quadrature for the efficient
solution of a 2D space-time BIE for the wave equation ∗

S. Bertoluzza†, S. Falletta‡, L. Scuderi§

Abstract

We consider a wave propagation problem in 2D, reformulated in terms of a Bound-
ary Integral Equation (BIE) in the space-time domain. For its solution, we propose a
numerical scheme which is based on a second order Lubich discrete convolution quadra-
ture formula for the discretization in time, coupled with a classical Galerkin method
in space. It is known that the main advantage of the Lubich formula is the use of the
FFT algorithm to retrieve the discretization in time of the integral operators with a
computational complexity of order R logR, R being twice the total number of time
steps performed. On the other hand, the discretization in space leads in general to a
quadratic complexity, hence the global working storage required is M2R/2, where M
is the number of grid points chosen on the domain boundary.

To reduce the complexity in space, we consider here approximant functions of
wavelet type. According to the properties of the wavelet basis, it turns out that the
discretized integral operators have a rapid decay to zero with respect to the time, and
the overwhelming majority of the associated matrix entries assume negligible values.
Based on an a priori estimate of the decaying behavior in time of the matrix entries, we
devise a time downsampling strategy that allows to compute only the elements which
are significant with respect to a prescribed tolerance. Such approach allows to ob-
tain highly sparse matrices by a downsampled FFT algorithm with a computational
complexity of order R logR, where R � R.

KEY WORDS: wave equation; space-time boundary integral equations; multiresolution
analysis; downsampling; numerical methods

1 Introduction

Let Ωe = R2 \ Ωi be the complement of a bounded rigid obstacle Ωi ⊂ R2, having a
closed smooth boundary Γ. We consider the following exterior Dirichlet problem for
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the wave equation:
1
c2
utt(x, t)−∆u(x, t) = 0 in Ωe × (0, T )

u(x, t) = g(x, t) on Γ× (0, T )

u(x, 0) = 0 in Ωe

ut(x, 0) = 0 in Ωe,

(1)

where c represents the wave propagation velocity.
It is well known that the following single-layer potential representation

u(x, t) =

∫
Γ

∫ t

0
G(||x− y||, t− τ)ϕ(y, τ) dτ dΓy x ∈ Ωe, t ∈ [0, T ] (2)

holds, where G(x, t) denotes the fundamental solution

G(r, t) =
1

2π

H
(
t− r

c

)√
t2 − r2

c2

, r = ||x− y||, (3)

H(·) being the Heaviside function. The function ϕ in (2) is the solution of the following
Time Dependent Boundary Integral Equation (TDBIE)∫

Γ

∫ t

0
G(r, t− τ)ϕ(y, τ) dτdΓy = g(x, t), x ∈ Γ, t ∈ [0, T ] (4)

and represents the jump of the normal derivative of u along Γ.

Several numerical approaches have been proposed for solving wave equation prob-
lems by means of BIEs. In particular, we mention the pioneering work by Bamberger
and Ha Duong for the scattering problems in the frequency domain [2], the Lubich
convolution quadrature method [25] and the energetic approach [1] for solving time
dependent boundary integral equations. In [2, 25], theoretical results on stability and
convergence are proved when a Galerkin scheme in space is considered.

In our recent research we considered the Lubich convolution method for the dis-
cretization of the time integrals appearing in the definition of the single and double-
layer operators; it is based on convolution quadrature formulas associated with A-stable
methods for ordinary differential equations. Rather than using the explicit expression
of the kernel of the integral equation, the Lubich formulas use its Laplace transform,
which, in the case of the wave equation, turns out to have better regularity properties.
The major advantage of this approach is that it allows to reduce the computational
complexity of the time discretization to an order R logR (R = 2N , where N is the
total number of time steps performed), thanks to the use of a fast Fourier transform.
The time scheme is generally coupled with a collocation or a Galerkin method in space,
leading to a quadratic complexity M2, where M denotes the number of grid points cho-
sen on the domain boundary. Therefore, the overall (space-time) complexity is of order
M2R logR. Such approach has been succesfully applied to wave propagation problems
in 2D and in 3D, with Dirichlet, Neumann and mixed boundary conditions (see [12],
[13], [26]). The Lubich convolution quadrature has also been used for the time approx-
imation of non reflecting boundary conditions of exact type prescribed on artificial
boundaries, in a FEM-BEM coupling method for the solution of exterior problems (see

2



[10] and [11] and the very recent work [9] for problems of waves scattered by moving
obstacles).

The main drawback of this approach is the high memory requirement: in fact the
method requires to store all the matrices involved in the final linear system, which,
when standard Lagrangian basis functions are considered for the space approximation,
are generally fully populated, and the required working storage is M2N .

In three dimensions and for the Lubich-collocation approach, the computational
cost and the required memory storage can be significantly reduced when the wave
propagation velocity is much higher than one. Indeed, in [14], the authors showed
that for high velocities only a very small number of matrices, let us say the first
N0, with N0 � N , are significant with respect to a prescribed tolerance, and the
remaining ones can be neglected without affecting the solution accuracy. Contrary to
the 3D case, in 2D this property does not hold, and this makes the application of the
BEMs to 2D large scale problems extremely costly. To overcome this drawback, several
effective techniques have been developed over the last decades, aimed at reducing
computational cost and memory storage. Among these we mention the fast multiple
method ([17]), panel clustering ([18], [15]) and hierarchical matrices ([19]). However,
for these methods, the FFT algorithm cannot be applied. A possible alternative is to
use a wavelet type approximation in space. It is known that the wavelet approximation
has the property of yielding sparse matrices when applied to a wide class of pseudo
differential operators ([7]). Wavelet BEMs have already been considered, for example,
in [20], [3], [21], [23] for stationary problems. In [22] the authors apply a wavelet BEM
for a time dependent wave equation combined with finite differences in time. Up to
our knowledge, there are not further papers dealing with wavelet approximations in
time dependent wave equation problems.

In this paper we combine the good properties of a wavelet Galerkin approximation
in space and those of the Lubich convolution quadrature in time, with the twofold
effect of heavily sparsifying the matrices genereated by the space discretization and of
considerably reducing the computational cost of the time discretization. This combi-
nation turns out to have an effect that goes well beyond the sum of the independent
effects of the two techniques. Indeed, the rapid time decreasing behavior of the matrix
entries allows to devise a time compression strategy consisting in downsampling the
FFT with a resulting computational complexity in time of order R logR, with R � R.
The benefits of the resulting method are, on the one hand, a consistent reduction of
the memory storage and, on the other hand, a significant increase in the efficiency of
the quadrature in time.

The paper is organized as follows. In Section 2 we introduce the proposed method,
by describing the main steps that lead to the time convolution quadrature formula
associated to the single-layer potential BIE (4) and the spatial wavelet discretization,
in a rather abstract setting. Convergence estimates are derived for the full discretized
scheme. In Section 2.3 we present the fundamental properties of the wavelet basis
that will be used to estimate the decaying behavior in time of the matrix entries. In
Section 2.3.3 we describe the time downsampling strategy that we apply in the new
proposed method to retrieve final sparse matrices by maintaining the optimal time
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computational complexity of the FFT algorithm. Finally, in Section 3, we apply the
proposed numerical approach to several problems, to show its efficiency in terms of
accuracy and computational complexity.

2 Lubich-wavelet Galerkin BEM

In this section we present the Lubich-wavelet Galerkin BEM that we apply to equa-
tion (4). It is based on a BDF2 Lubich convolution quadrature formula in time and a
Galerkin method in space, which uses biorthogonal wavelet approximating basis func-
tions. In the sequel whatever refers to this numerical approach will be labeled by using
the superscript W.

2.1 Time discretization

For the time discretization, we split the interval [0, T ] into N steps of equal length
∆t = T/N and collocate equation (4) at the time instants tn = n∆t, n = 0, . . . , N :∫

Γ

∫ tn

0
G(r, tn − τ)ϕ(y, τ) dτ dΓy = g(x, tn), x ∈ Γ, n = 0, . . . , N. (5)

The time integrals are then discretized by means of the Lubich convolution quadrature
rule associated with the BDF method of order 2 (see [24]):∫ tn

0
G(r, tn − τ)ϕ(y, τ) dτ ≈

n∑
j=0

ωn−j(∆t; r)ϕ
j(y) n = 0, . . . , N (6)

where we have set ϕj(y) := ϕ(y, tj). The coefficients ωn are defined by the contour
integrals

ωn(∆t; r) =
1

2πı

∫
|z|=ρ

Ĝ

(
r,
γ(z)

∆t

)
z−(n+1) dz, (7)

where

Ĝ(r, s) =
1

2π
K0

(
s
r

c

)
denotes the Laplace transform of the fundamental solution G, K0 being the modified
Bessel function of second kind and of order 0. In (7) the function γ is the characteristic
quotient of the Backward Differentiation Formula of order 2 (BDF2), i.e γ(z) = 3/2−
2z + 1/2z2 and ρ is such that for |z| ≤ ρ the corresponding γ(z) lies in the domain of
analyticity of Ĝ (for details see [25]).

By introducing the polar coordinate z = ρeıϕ, the integrals in (7) can be efficiently
computed by a trapezoidal rule with R equal steps of length 2π/R:

ωn(∆t; r) ≈
ρ−n

R

R−1∑
m=0

Ĝ

(
r,
γ(ρeı2π

m
R )

∆t

)
e−ı2πn

m
R . (8)

For the computation of the convolution coefficients in (8), a proper choice of the in-
volved parameters, suggested by Lubich in [24], is R = 2N and ρ such that ρN = 10−6.
Indeed, these choices lead to an approximation of ωn with a relative error of order
10−6, if Ĝ is computed with a relative accuracy bounded by 10−12. We point out that
these are the choices we have done in the numerical tests.
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2.2 Space discretization

For the space discretization, we consider a standard Galerkin boundary element method.
For simplicity, we assume that the curve Γ is given by a global parametric repre-
sentation. In this case the integration over Γ is reduced to an integration over the
parametrization interval. Precisely, let

y = η(θ) = (η1(θ), η2(θ)), θ ∈ [0, 2π]

denote the parametrization of the curve Γ. By discretizing the parametrization interval
into 2L subintervals, we introduce a finite dimensional space VL ⊆ C0(0, 2π) satisfying
periodic boundary conditions. In view of the matrix compression technique that we are
going to employ further on, it is convenient to denote the basis of VL by {ψλ, λ ∈ ΛL},
where ΛL denotes a suitable finite index set.

By replacing (6) in (5) and approximating the unknown ϕj by

ϕj(η(θ)) ≈
∑
λ∈ΛL

djλψλ(θ) =: ϕjL(θ), (9)

we obtain the integral equations

n∑
j=0

∑
λ∈ΛL

djλ

∫ 2π

0
ωn−j(∆t; r)ψλ(θ)|η′(θ)| dθ = g(x, tn), n = 0, · · · , N. (10)

By using test functions from the same basis, the Galerkin scheme reads: for all n =
0, · · · , N , find ϕnL ∈ VL such that

n∑
j=0

∑
λ∈ΛL

djλ

∫ 2π

0

∫ 2π

0
ωn−j(∆t; r)ψλ(θ)ψλ′(σ)

∣∣η′(θ)∣∣ ∣∣η′(σ)
∣∣ dθ dσ

=

∫ 2π

0
g(η(σ), tn)ψλ′(σ)

∣∣η′(σ)
∣∣ dσ (11)

for all λ′ ∈ ΛL. Denoting by V W,n and gW,n the matrix and the vector whose generic
elements are

V W,n
λ,λ′ :=

∫ 2π

0

∫ 2π

0
ωn(∆t; r)ψλ(θ)ψλ′(σ)

∣∣η′(θ)∣∣ ∣∣η′(σ)
∣∣ dθ dσ, (12)

and

gW,n
λ′ :=

∫ 2π

0
g(η(σ), tn)ψλ′(σ)

∣∣η′(σ)
∣∣ dσ, (13)

the Lubich-Galerkin method leads to a block Toeplitz lower triangular linear system
of the form

n∑
j=0

V W,n−jdj = gW,n (14)

in the unknown vectors dn = (dnλ)λ∈ΛL , for n = 0, · · · , N .
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By combining (12) with (8), we obtain

V W,n
λ,λ′ ≈

ρ−n

R

R−1∑
m=0

c̃Wλ,λ′(m)e−ı2πn
m
R , (15)

where

c̃Wλ,λ′(m) =

∫ 2π

0

∫ 2π

0
Ĝ

(
r,
γ(ρeı2π

m
R )

∆t

)
ψλ(θ)ψλ′(σ)

∣∣η′(θ)∣∣ ∣∣η′(σ)
∣∣ dθ dσ. (16)

Denoting by

cWλ,λ′(n) =
R−1∑
m=0

c̃Wλ,λ′(m)e−ı2πn
m
R

the Discrete Fourier Transform (DFT) of c̃Wλ,λ′ , the entries of index λ, λ′ of the matrices

V W,n are then approximated by

V W,n
λ,λ′ ≈

ρ−n

R
cWλ,λ′(n) (17)

and can be efficiently computed, simultaneously for all the values n = 0, · · · ,R− 1, by
the FFT algorithm, with a complexity of order R logR.

The stability and the convergence of the proposed method follows from Theorem
5.4 in [25], proved by Lubich for the 3D case but, as asserted in [12], valid in 2D case as
well. For the convenience of the reader, we report here the statement of the theorem.

Theorem 2.1 Let X∆x ⊂ L2(Γ) be a family of finite dimensional approximation
spaces of order m, that is

inf
ψ∆x∈X∆x

‖ψ − ψ∆x‖H−1/2(Γ) ≤ C∆m+1/2
x ‖ψ‖Hm(Γ), for all ψ ∈ Hm(Γ).

Let the time discretization method be A-stable and of order p such that γ(z) has no
poles on the unit circle. Then, for smooth compatible data g, the fully discrete method
(Galerkin in space and convolution quadrature in time) admits a unique solution ϕn∆x

and is unconditionally stable and convergent with optimal order:

‖ϕ(·, tn)− ϕn∆x
‖H−1/2(Γ) = O(∆p

t ) +O(∆m+1/2
x ), (18)

uniformly over bounded intervals.

As asserted in [12], this estimate is valid by assuming g ∈ H6((0, T ), H1/2(Γ))
having all its derivatives up to order 4 vanishing at t = 0.

To apply Theorem (2.1) in our context, in the following section we introduce some
fundamental properties of the wavelet basis.
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2.3 Wavelets, matrix compression and time downsampling
strategy

2.3.1 Wavelets

Let us now put ourselves in the wavelet framework. We assume that we are given a
Multiresolution Analysis of L2(R) (see [8]), that is a sequence of finite dimensional
subspaces VL, satisfying the usual properties:

1. nestedness: VL ⊂ VL+1;

2. scale invariance: f(θ) ∈ VL ⇔ f(2θ) ∈ VL+1;

3. translation invariant basis: there exists a compactly supported function φ ∈
L2(R) such that the set {φ(θ − n), n ∈ Z} forms a Riesz basis for V0;

4. polynomial reconstruction: for p polynomial of degree less or equal than m − 1,
there exists a sequence bn such that

p(θ) =
∑
n

bnφ(θ − n).

It is well known that there exists a compactly supported function ψ ∈ V1 such that
the set

{φ(θ − n), n ∈ Z}∪L−1
`=0 {2

`/2ψ(2`θ − n), n ∈ Z}
forms a basis for the space VL. Moreover, given a target polynomial degree m̃, the
function ψ can be chosen in such a way that∫

R
ψ(θ)p(θ) dθ = 0 for all polynomial p of degree lower or equal than m̃− 1.

The basis functions 2`/2ψ(2`x − n) will, consequently, have m̃ vanishing moments.
Without loss of generality we can assume that suppφ ⊆ [−R,R] and suppψ ⊆ [−R̃, R̃]
for some positive R and R̃.

Basis functions for L2(0, 2π) satifying periodic boundary conditions are easily built
by setting

ψ−1,0(θ) =
1√
2π

∑
n∈Z

φ

(
θ

2π
− n

)
,

ψ`,n(θ) =
2`/2√

2π

∑
m∈Z

ψ

(
2`
θ

2π
− 2`m− n

)
, n = 0, . . . , 2` − 1.

If we now introduce the multi-index λ = (`, k) ∈ ΛL = {(−1, 0)}∪{(`, k), ` = 0, . . . , L−
1, k = 0, . . . , 2` − 1}, we can consider the finite dimensional subspace VL of L2(0, 2π)
generated by the basis {ψλ, λ ∈ ΛL}.

The polynomial reconstruction property implies that the space VL satisfies the
assumption of Theorem 2.1 for ∆x = 2π2−L. Moreover, by using the convolution
quadrature formula associated to the BDF method of order p = 2, for our method we
derive the following estimate:

‖ϕ(·, tn)− ϕnL‖H−1/2(Γ) = O(∆2
t ) +O(∆m+1/2

x ). (19)
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2.3.2 Matrix compression

It is well known that wavelet bases are an efficient tool for the treatment of integral
operators ([6]). In particular, the use of wavelets allows to apply compression strategies
which entail a high sparsification of the associated matrices. Indeed these, thanks to
the localization and vanishing moments properties of the basis functions, turn out to
have a relevant number of negligible entries at each time step. The truncation of the
entries that are below a prescribed tolerance allows to replace the dense system of the
conventional BEM into a sparse one.

In what follows, the notation Q1 . Q2 (resp. Q1 & Q2) ) means that the quantity
Q1 is bounded from above (resp. from below) by C ·Q2, where C is a constant that,
unless explicitely stated, does not depend on any relevant parameter involved in the
definition of Q1 and Q2. The notation ' means that both Q1 . Q2 and Q2 . Q1
hold.

The key result at the basis of wavelet methods for the solution of boundary integral
equations is the following theorem (see [6]).

Theorem 2.2 Assume that the operator K defined by

Ku(σ) =

∫ 2π

0
K(r)u(θ)

∣∣η′(θ)∣∣ dθ
verifies

1. K is of order −1, that is

‖Ku‖H1/2(Γ) ' ‖u‖H−1/2(Γ)

2. K is smooth except on the diagonal and we have

|∂αx ∂βyK(x, y)| . |x− y||α|+|β|.

Then, setting

cλ,λ′ =

∫ 2π

0

∫ 2π

0
K(r)ψλ′(θ)ψλ(σ)

∣∣η′(σ)
∣∣ ∣∣η′(θ′)∣∣ dθ dσ,

and denoting by Ωλ and ΩS
λ respectively the support and the singular support of ψλ (see

[6] for a definition), for λ = (`, n) and λ′ = (`′, n′) we have the following two bounds.

1. Whenever dist(Ωλ,Ωλ′) ≥ κ2−min{`,`′} it holds

|cλ,λ′ | .
2−(`+`′)(1/2+m̃)

dist(Ωλ,Ωλ′)2m̃
,

(the constant in the inequality depending on κ).

2. Otherwise, assuming, to fix the ideas, that `′ < `, it holds

|cλ,λ′ | .
2−`(1+m̃)2`

′

dist(Ωλ,Ω
S
λ′)

m̃−1
.
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The aim of this paper is to combine these compression techniques with the Lubich
convolution quadrature. Theorem 2.2, for the choice of K = Kn with

Kn(r) =
R−1∑
m=0

Ĝ

(
r,
γ(ρeı2π

m
R )

∆t

)
e−ı2πn

m
R ,

tells us that the matrices V W,n can be approximated by sparse matrices for each fixed
n. Actually, it turns out that such matrices become sparser and sparser as n increases.
Indeed, as we will see, when using wavelet bases, the sequence {V W,n

λ,λ′ }
R−1
n=0 (with λ, λ′

fixed) of the matrix entries displays a rapid decay to zero and, from a certain point
on, its elements assume negligible values. By taking advantage of this property, we
will apply a numerical strategy that allows to retrieve the significant elements, up to
a prescribed tolerance, by using a downsampled FFT. Such a strategy (to which we
will refer as time downsampling strategy and that we will described in Section 2.3.3)
will considerably reduce the numerical effort needed for the computation of the matrix
elements (17).

In order to take full advantage of the downsampling strategy, we need to estimate
a priori, for each couple λ, λ′, the value of n̄, such that |V W,n

λ,λ′ | ≤ ε for n ≥ n̄, ε

being a prescribed tolerance. To this aim, we need to provide a bound on how |V W,n
λ,λ′ |

decreases as n increases. While Theorem 2.2 indicates that we can indeed hope in a
compression of the matrix, it does not yield an explicit dependence on n of such a
compression, which we need to choose the parameter n̄. Due to the quite cumbersome
definition of the kernel Kn, which involves a Laplace transform, combined with the
BDF2 scheme and a Discrete Fourier transform, making such a dependence explicit is
not immediately feasible. In order to propose a criterion for the choice of n̄, we instead
recall that, for ∆t sufficiently small, we have (see Theorem 4.1 of [24])

V W,n
λ,λ′ ∼ ∆t

∫ 2π

0

∫ 2π

0
G(r, n∆t)ψλ(θ)ψλ′(σ)

∣∣η′(θ)∣∣ ∣∣η′(σ)
∣∣ dθ dσ.

In order to bound the right hand side term, we recall that ψλ and ψλ′ are orthogonal
to all polynomials of degree less or equal than m̃− 1. For p(x, y) arbitrary polynomial
of degree less or equal than m̃− 1, we then have∣∣∣∣∫ 2π

0

∫ 2π

0
G(r, n∆t)ψλ(θ)ψλ′(σ)|

∣∣η′(θ)∣∣ ∣∣η′(σ)
∣∣ dθ dσ∣∣∣∣

=

∣∣∣∣∫ 2π

0

∫ 2π

0

(
G(r, n∆t)

∣∣η′(θ)∣∣ ∣∣η′(σ)
∣∣− p(θ, σ)

)
ψλ(θ)ψλ′(σ) dθ dσ

∣∣∣∣
. ‖Gn − p‖L2(Ωλ×Ωλ′ )

,

where Ωλ and Ωλ′ denote the support of, respectively, ψλ and ψλ′ ,

Gn(θ, σ) := G(r(θ, σ), n∆t)
∣∣η′(θ)∣∣ ∣∣η′(σ)

∣∣ ,
and where we used that the L2 norm of ψλ(θ)ψλ′(σ) is 1. By the arbitrariness of p,
provided m̃ ≥ 1, we then have∣∣∣∣∫ 2π

0

∫ 2π

0
G(r, n∆t)ψλ(θ)ψλ′(σ)

∣∣η′(θ)∣∣ ∣∣η′(σ)
∣∣ dθ dσ∣∣∣∣ . inf

p∈Pm̃−1(Ωλ×Ωλ′ )
‖Gn−p‖L2(Ωλ×Ωλ′ )

.
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We bound the last term by a standard argument (see [4]) as

‖Gn − p‖L2(Ωλ×Ωλ′ )
. 2−m̃min{`,`′}|Gn|m̃,Ωλ×Ωλ′

. 2−m̃min{`,`′}2−(`+`′)/2 max
(θ,σ)∈Ωλ×Ωλ′

max
|α|=m̃

|DαGn(θ, σ)|, (20)

finally yielding

|V W,n
λ,λ′ | . ∆t2

−m̃min{`,`′}2−(`+`′)/2 max
(θ,σ)∈Ωλ×Ωλ′

max
|α|=m̃

|DαGn(θ, σ)|. (21)

Given λ, λ′ and a threshold ε, the idea is now to look for n̄ such that for n > n̄ the
value of the right hand side of (21) is less or equal than ε. The solution will of course
depend on the shape of the curve Γ via the derivatives of the distance d with respect
to θ and σ.

In practice, assuming that the parametrization of the curve Γ is chosen in such a
way that |η′(θ)| = 1 for all θ ∈ [0, 2π], the computation of n̄ can be performed by
observing that, for r = r(θ, σ) < cn∆t, it holds:

∂2Gn
∂θ2

(θ, σ) =
1

2π

[(
c−2

((n∆t)2 − c−2r2)3/2
+

3c−4r2

((n∆t)2 − c−2r2)5/2

)
r2
θ +

c−2r

((n∆t)2 − c−2r2)3/2
rθθ

]
.

The computation of the derivatives
∂2Gn
∂σ2

and
∂2Gn
∂θ∂σ

yields to an analogous expression.

Therefore, setting
Mλ,λ′ := max

(θ,σ)∈Ωλ×Ωλ′
r(θ, σ),

and

D1,Γ := max
|α|=1

max
(θ,σ)∈Γ×Γ

|Dαr(θ, σ)|, D2,Γ := max
|α|=2

max
(θ,σ)∈Γ×Γ

|Dαr(θ, σ)|,

we get that the final bound for the behaviour of matrix entries reads

|V W,n
λ,λ′ | .

1

2π
∆t2

−m̃min{`,`′}2−(`+`′)/2

[(
c−2

((n∆t)2 − c−2M2
λ,λ′)

3/2

+
3c−4M2

λ,λ′

((n∆t)2 − c−2M2
λ,λ′)

5/2

)
D2

1,Γ +
c−2Mλ,λ′

((n∆t)2 − c−2M2
λ,λ′)

3/2
D2,Γ

]
.(22)

The bound in (22) can not be analytically solved with respect to n. However, for a
fixed time discretization, once the quantities involved therein are evaluated, an upper
bound for n̄ can be numerically computed by seeking the biggest time instant tn̄ beyond
which the quantity (22) is smaller than ε. Just to make an example, let us consider
the case of Γ being a circle of radius R. In this case, it is not difficult to obtain that
the terms D1,Γ and D2,Γ can be bounded by R. Therefore, an estimate for n̄ follows
by computing the quantity to the right hand side of the following estimate

|V W,n
λ,λ′ | .

1

2π
∆t2

−m̃min{`,`′}2−(`+`′)/2

[(
c−2(R2 +Mλ,λ′R)

((n∆t)2 − c−2M2
λ,λ′)

3/2
(23)

+
3c−4M2

λ,λ′R
2

((n∆t)2 − c−2M2
λ,λ′)

5/2

)]
.

We finally remark that estimate (23) will be used in the numerical tests of Section 3.
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2.3.3 Time downsampling strategy

From estimate (22) we deduce that, for fixed λ, λ′, the matrix elements have a rapid
decay to zero for increasing values of the time instants tn = n∆t. Moreover, this
behavior is influenced both by ` and `′ and by the speed c of the wave propagation.
Indeed, as we will notice in the forthcoming numerical tests, for a fixed tolerance ε,
the higher the values of the wavelet basis levels ` and `′ and of the velocity are, the
smaller the value of n̄ is. The decaying behavior to zero of V W,n

λ,λ′ allows us to use
the time downsampling procedure to avoid the useless computation of such negligible
terms, leading both to computational and memory saving advantages.

In order to describe the time downsampling procedure, we start by recalling the
relation between the FFT and its Inverse Discrete Fourier Transform (IDFT). In par-
ticular, the coefficients in (16) can be retrieved by:

c̃Wλ,λ′(n) =
1

R

R−1∑
m=0

cWλ,λ′(m)eı2πm
n
R , n = 0, · · · ,R− 1. (24)

Let us denote by R, with R = QR the smallest integer, submultiple of R, such that
|V W,n

λ,λ′ | ≤ ε for n ≥ R. We remark that R = R(λ, λ′) depends on the pair of wavelet
multi-indices λ, λ′ but, for simplicity of notation, such dependency will be omitted in
the forthcoming notation. According to (17), we have cWλ,λ′(n) ≈ ρnRV W,n

λ,λ′ , and hence

(since ρ < 1) the coefficients |cWλ,λ′(n)| ≤ Rε =: ε̃, for n ≥ R.
We rewrite (24) as

c̃Wλ,λ′(n) =
1

R

R−1∑
m=0

cWλ,λ′(m)eı2πm
n
R +

1

R

R−1∑
m=R

cWλ,λ′(m)eı2πm
n
R

=: c̃W,1
λ,λ′ (n) + c̃W,2

λ,λ′ (n),

with |c̃W,2
λ,λ′ (n)| ≤ (R−R)/R ε̃ ≤ ε̃, for n = 0, · · · ,R− 1.

By neglecting this second small term and evaluating c̃W,1
λ,λ′ (n) at n = pQ, with

p = 0, · · · ,R− 1, we get

c̃W,1
λ,λ′ (pQ) =

1

QR

R−1∑
m=0

cWλ,λ′(m)eı2πm
p

R

from which, applying the DFT, we deduce

cWλ,λ′(n) = Q

R−1∑
p=0

c̃W,1
λ,λ′ (pQ)e−ı2πn

p

R , n = 0, · · · ,R− 1. (25)

Therefore, recalling that c̃W,1
λ,λ′ ≈ c̃Wλ,λ′ (up to a term smaller than ε̃), according

to equation (25), to get the significant coefficients cWλ,λ′(n) for n = 0, · · · ,R, it is

sufficient to compute the coefficients c̃Wλ,λ′(pQ) only at the R downsampled values pQ,

0 ≤ p ≤ R− 1.

11



Using (25) and (15), the computation of the significant entries of the matrices is
therefore given by the following formula:

V W,n
λ,λ′ ≈

ρ−n

R
Q

R−1∑
p=0

c̃Wλ,λ′(pQ)e−ı2πn
p

R , n = 0, · · · ,R− 1. (26)

It is worthwhile noting that the complexity of the downsampled FFT algorithm
turns out to be of order R logR. As we will see in the numerical tests, for many couples
λ, λ′ it results R � R, and this allows a consistent computational cost reduction and,
consequently, a high memory saving.

We remark that, when in (16) piece-wise linear nodal approximating basis functions
are considered instead of the wavelet basis functions ψλ and ψλ′ , a downsampling
strategy could in principle be applied as well. However, in this case, it turns out that
the associated coefficients obtained by the FFT are not negligible, and the cut off
procedure is not effective (see Section 3.1).

In the next section we present some numerical examples to test the Lubich-wavelet
Galerkin approach presented in Sections 2.1 and 2.2, combined with the time down-
sampling strategy described in Section 2.3. The goal of the numerical experiments is
twofold: a) to investigate the sharpness of the estimate (22); b) to apply the new pro-
posed method to problems of type (1) and to test the efficiency of the downsampling
procedure in this context.

3 Numerical results

We start by detailing the choice of the wavelet basis that we use in the implementation
for the spatial approximation. We consider the biorthogonal bior2.2 compactly sup-
ported wavelet functions (see [5]), for which the analytic expression of the functions φ
and ψ is given by

φ(t) =

{
1− |t|, |t| ≤ 1

0, else

and

ψ(t) =

√
2

4
φ(2t+ 1) +

√
2

2
φ(2t)− 3

√
2

2
φ(2t− 1) +

√
2

2
φ(2t− 2) +

√
2

4
φ(2t− 3).

In Figure 1 we show the some basis functions for some levels `. We point out that their
piece-wise linear behavior will be taken into account in the numerical computation of
the matrix entries.

In what follows, although not explicitly stated, the unit measures for the physical
quantities are: meter (m), second (s) and m/s.

3.1 Efficiency of the downsampling strategy

To show the efficiency of the downsampling strategy we consider here, as a benchmark
example, Problem (1) where Γ is the circumference of radius R = 1 and the final time

12



Figure 1: scaling function ψ−1,0 and wavelet basis functions ψ0,0, ψ1,0, ψ1,1, ψ2,0 and ψ3,3 for the
choice L = 5.
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T = 10. The discretization parameters are L = 8 and N = 256, and the threshold
ε = 1.0e− 10.

In what follows, we refer to the approach where piece-wise linear nodal basis func-
tions are used as to the standard approach, and we will label it by the superscript S.
The associated coefficients, corresponding to formula (16), will be denoted by c̃Si,j and

the matrix entries obtained by applying the FFT will be denoted by V S,ni,j .
In Figures 2 and 3 we compare the cut off effects for two choices of the velocity:

c = 1 and c = 343 (speed of propagation of acoustic waves in air). In each figure,
the left plots correspond to the behaviour in time of the coefficients c̃Si,j (standard

approach, top row) and c̃Wλ,λ′ (wavelet approach, middle and bottom rows). The right

plots represent the behavior in time of the matrix entries V S,ni,j (standard approach, top

row) and V W,n
λ,λ′ (wavelet approach, middle and bottom rows) computed by the FFT

algorithm. The graphs in solid lines refer to the application of the FFT algorithm to
the whole set of time instants, while the bullets refer to the FFT algorithm applied to
the downsampled time instants.

As we can see, in the wavelet approach, the downsampling strategy reveals to be
crucial since it significantly reduces the computation of the coefficients c̃Wλ,λ′ at only

R � R = 512 values.
For example, for the fixed values λ = (3, 2) and λ′ = (7, 14), it results R = 64 for

c = 1 and R = 4 for the higher velocity c = 343.
For the wavelets associated to the higher levels, R is even smaller, as expected. For

example, for λ = (7, 1) and λ′ = (7, 124) it results R = 4 for c = 1, and R = 1 for
c = 343.

On the contrary, in the standard approach, the downsampling strategy is not effec-
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tive because the matrix entries V S,ni,j are all greater than the chosen threshold ε when
n increases.

Figure 2: coefficients c̃Si,j(n) and corresponding matrix entries V S,ni,j with (i, j) = (9, 141) (top).

Coefficients c̃Wλ,λ′(n) and corresponding matrix entries V W,n
λ,λ′ with λ = (3, 2), λ′ = (7, 14) (middle)

and with λ = (7, 1), λ′ = (7, 124) (bottom). c = 1m/s.
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Remark 3.1 It is worth noting that, in order to apply the downsampled FFT algo-
rithm, R must be a submultiple of R and, for this reason, some values V W,n

λ,λ′ are
computed even if they are below the threshold ε (see for example Figure 2, middle and
bottom plots on the right). To reduce further the storage, these coefficients will be
dropped successively by applying an a posteriori cut off strategy, based on the same ε.

The above presented benchmark example gives an idea of the computational cost and
memory saving for the computation of the quantities c̃Wλ,λ′ for some fixed values of
λ, λ′. In the forthcoming numerical results, we will show the global memory saving by
computing the quantity mem(%) defined in (30) that takes into account the saving for
all the indices λ, λ′.

We also highlight that the time downsampling strategy produces matrices V W,n

of the final linear system (14) that, for each fixed value of n, turn out to be sparse.
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Figure 3: coefficients c̃Si,j(n) and corresponding matrix entries V S,ni,j with (i, j) = (9, 141) (top).

Coefficients c̃Wλ,λ′(n) and corresponding matrix entries V W,n
λ,λ′ with λ = (3, 2), λ′ = (7, 14) (middle)

and with λ = (7, 1), λ′ = (7, 124) (bottom). c = 343m/s.
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Therefore, the resolution of (14),

V W,0dn = gW,n −
n−1∑
j=0

V W,n−jdj , n = 0, · · · , N,

takes advantage of the fast sparse matrix-vector product, in particular for what con-
cerns the computation of the right hand side term

∑n−1
j=0 V

n−j,Wdj for each n =
0, · · · , N .

3.2 The global algorithm

In the forthcoming numerical tests, we will compare the approach W with the stan-
dard Lubich-Galerkin BEM based on piecewise linear approximating functions in space
(approach S). By virtue of the considerations made in Section 2.3, in this case we will
not apply the downsampling strategy, but only the a posteriori cut off of the matrix
entries below the chosen threshold ε.
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Finally, we will also consider the Lubich-wavelet Galerkin approach where the matri-
ces of the Toeplitz block linear system are obtained by using the fast wavelet transform
(FWT); this latter approach will be detailed later and will be labeled by the capital
letter T . As we will explain, in this case too, we will apply only the a posteriori cut
off procedure.

We remark that the implementation at the current stage of development does not
employ optimized libraries or parallelization, and is based on a standard (i.e., sequen-
tial) Matlab code.

For each approach we will compute the density function ϕ, solution of the BIE (4),
and the associated single layer potential u(x), solution of Problem (1) and defined by
(2), in a chosen point x ∈ Ωe.

We will compare the following algorithms:

Alg. S) It consists of the following two main steps:

S1 : the matrix elements V S,ni,j are computed by using a ν × ν-point Gauss-
Legendre quadrature rule in space applied to each interval of regularity of
the piece-wise linear basis functions, and by performing the complete FFT
algorithm in time.

S2 : subsequently, the a posteriori cutting is applied to set equal to zero the
matrix entries such that |V S,ni,j | ≤ ε for n = 0, · · · , N .

We denote by ϕSM,N and uSM,N the corresponding approximate solutions, obtained

by usingM = 2L subintervals for the discretization of the parametrization interval
[0, 2π] and N subintervals for the time interval [0, T ].

Alg. T ) It consists of the following two main steps:

T 1 : the matrices V T ,n are retrieved by applying the fast wavelet transform to
the matrices V S,n. To this aim we use the Matlab function wavedec, which
returns the wavelet decompositions of the piecewise linear basis functions at
the level L associated to the bior2.2 wavelets. Storing these latter as columns
of a square matrix W , we compute V T ,n as

V T ,n = W−TV S,nW−1, n = 0, · · · , N. (27)

T 2 : then, we apply the a posteriori cutting of the matrix entries such that
|V T ,nλ,λ′ | ≤ ε, for n = 0, · · · , N .

The corresponding approximate solutions are denoted by ϕTM,N and uTM,N .

Alg.W) It consists of the following two main steps:

W1 : for a fixed threshold ε and for R obtained according to the estimate (22),
such that R = QR and |V W,n

λ,λ′ | ≤ ε for all n ≥ R, the matrix elements

V W,n
λ,λ′ are computed by using a ν × ν-point Gauss-Legendre quadrature rule

in space applied to each interval of regularity of the wavelet basis functions,
with ν properly chosen. In time, we apply the downsampled FFT to the set
of coefficients c̃Wλ,λ′(pQ), with p = 0, · · · ,R.
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W2 : subsequently, the elements computed by the downsampled FFT that are
below the threshold ε, are further cut by an a posteriori cut off strategy based
on the same ε (see Remark 3.1). The remaining entries are those actually
stored.

We will denote by ϕWM,N and uWM,N the corresponding approximate solutions.

We point out that, the a posteriori cutting S2 applied to the approach S allows a
low memory saving, in agreement with the remarks done in Section 2.2 about the time
behavior of the matrix entries V S,ni,j . On the contrary, as expected, the a posteriori
cutting T 2 applied to the approach T allows to retrieve sparse matrices as well, as those
obtained by the combination of W1 and W2 associated to the approach W. However,
the cutting procedure in T can be performed only after that the matrices V S,n have
been computed and stored for all the time steps n = 0, · · · , N . Therefore the approach
T can not be taken into account for the memory saving, and is basically considered for
comparison. This drawback will be highlighted in Example 6, in which the approaches
S and T can not be applied because of an out of memory, while the approach W can
be performed.

In the following examples, we take as “exact” reference solutions ϕex
Me,Ne

and uex
Me,Ne

the ones obtained by the standard approach S that uses piece-wise basis functions for
the spatial approximation, and without applying any cutting. The discrete parame-
ters Me and Ne are reference discretization values properly chosen according to the
numerical example to which they refer.

To test the accuracy and the efficiency of the above described approaches ∗ =
{S,W, T }, we will consider:

1) in the plots, for a graphic comparison, the absolute errors

E∗ϕ(x, t) =
∣∣ϕex

Me,Ne
(x, t)−ϕ∗M,N (x, t)

∣∣
and

E∗u(x, t) =
∣∣uex
Me,Ne

(x, t)− u∗M,N (x, t)
∣∣;

associated to ϕ∗M,N and u∗M,N , respectively;

2) in the tables, the maximum in time of the absolute errors

E∗L2,ϕ = max
t∈[0,T ]

‖ϕex
Me,Ne

(·, t)−ϕ∗M,N (·, t)‖L2(Γ) (28)

and
E∗max,u(x) = max

t∈[0,T ]

∣∣uex
Me,Ne

(x, t)− u∗M,N (x, t)
∣∣; (29)

3) the percentage of the memory saving

mem∗(%) =

(
1− nz∗

M2N

)
· 100, (30)

M2N being the total number of matrix elements of the standard approach, and
nz∗ the number of the elements that are stored after the cutting.
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For simplicity, the domain Ωi that we consider in all the forthcoming examples is a
disc of radius R = 1. By varying the velocity of the wave propagation, we can observe
the dependency on c of the sparsity of the discrete integral operators.

Test 1: sparsity pattern of the matrices V ∗,n

As remarked at the end of Section 2.3, the downsampling strategy applied in the
wavelet approach produces matrices V W,n that, for fixed values of n, turn out to be
sparse. In this test, in order to show the sparsity pattern of such matrices, we consider
Problem (1) with T = 10, and for two choices of the velocity: c = 1 and c = 343.
We split the parametrization interval of the unit circumference by using M = 2L

subintervals, with L = 8, and the time interval into N = 256 subintervals. We fix the
threshold parameter ε = 1.0e − 08. In Figures 4 and 5 we present the structure of
the compressed matrices V S,n (first column), V T ,n (second column) and V W,n (third,
fourth and fifth columns), at the time instants t0 (top row), tN/2 (middle row) and
tN (bottom row), for c = 1 and c = 343, respectively. The sparsity pattern of the
matrices V S,n and V T ,n results from the application of the a posteriori cutting S2 and
T 2, respectively. For what concerns the matrices V W,n, to validate the effectiveness
of the a priori estimate (22), we show the sparsity patterns at two different stages: the
number of the effectively computed entries of the matrices obtained by applying only
the a priori compression strategy W1 (fourth column); the number of the effectively
stored entries of the matrices obtained by applying further the compression strategy
W2 (fifth column). For the sake of comparison, we also show the sparsity pattern
of the matrices V W,n obtained by using a compression strategy based on an optimal
truncation value R “a posteriori”, after computing all the entries (third column).

As we can see in Figure 4 (velocity c = 1), at the first time instant the compressed
matrix generated by the approach S is sparse, while for the other instants it is fully
populated; indeed, for tN/2 and tN the number nz of non-zero entries coincides with

M2 = (2L)2 = 65536. Consequently, the total memory saving in this case is low
and turns out to be only memS ≈ 9%. On the contrary, the compressed matrices
in the wavelet case are all highly sparse; they have the typical finger structure at
the first time instant and are even sparser at the subsequent instants. In particular,
at tN = 10, only 62 entries out of 65536 are stored. In this case, it turns out that
memW = memT ≈ 91%.

In Figure 5 (velocity c = 343), the effectiveness of the matrix compression for the
approachesW and T with respect to the approach S is even more evident, as expected,
because of the higher value of the velocity. In fact, in the latter case, all the entries of
the matrices V S,n, for all the time instants, are computed and stored, with a consequent
null memory saving (memS = 0%). For higher velocity the sparsification in the wavelet
approach is on the contrary stronger, especially when t increases. Incidentally, we
point out that for tN/2 = 5 and tN = 10, only a single entry of the matrices V W,n

and V T ,n, out of 65536, is computed and stored. In this case, it turns out that
memW = memT ≈ 99.8%.

In both cases, the comparison between the 3rd and 4th columns shows the good
performance of the a priori cutting strategy.
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Figure 4: Test 1. Sparsity pattern of V S,n (left column), V T ,n (middle column) and V W,n

(right column) at tn, for n = 0, 128, 256. c = 1.

Figure 5: Test 1. Sparsity pattern of V S,n (left column), V T ,n (middle column) and V W,n

(right column) at tn, for n = 0, 128, 256. c = 343.
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Figure 6: Test 2. Comparison of the memory saving for S andW , for T = 10 and increasing
values of df, and different thresholds ε. c = 1 (left plot) and c = 343 (right plot).
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Test 2: storage requirement

To give an idea of the behavior of the storage requirement, with respect to the
space and time refinements, we compare the computed storage requirements with that
needed by the full matrix representation (which is O(M2) for each n = 0, . . . , N , and
O(NM2) globally). In Figure 6, we illustrate the behavior of the memory saving memS

and memW for increasing values of M and N (in particular doubling each of them),
that is for increasing number of degrees of freedom (df) and for the choices of the
threshold ε = 1.0e − 09, 1.0e − 10, 1.0e − 12, 1.0e − 14. As we can see, the behavior
of the quantity memS confirms that the approach S does not benefit from the cutting
strategy, independently of ε and for any choice of the velocity c. On the other hand, the
behavior of the quantity memW clearly illustrates that the cutting strategy is effective
for the approach W and that the memory storage depends on the choice of ε for small
numbers of df, but is asymptotically independent of ε, for any choice of the velocity c.

Figure 7, in which we consider a fix threshold ε = 1.0e − 12, shows the global
complexity O(NM2) of the approach S for both choices of the velocities c = 1 (left
plot) and c = 343 (right plot). On the contrary, we observe a linear growth O(MN)
of the storage requirements for the approach W for the velocity c = 1 (right plot) and
less than linear for the higher velocity c = 343 (right plot).

In the following examples, we apply the matrix compression strategy to solve some
problems of type (1), by exployting the efficiency of the sparsification not only in terms
of memory saving, but also in terms of accuracy of the approximate solutions ϕ∗ and
u∗. In all the examples, for simplicity, the potential u∗ will be evaluated at the external
point x = (2, 0).

20



Figure 7: Test 2. Comparison of the complexity for S and W , for T = 10 and increasing
values of df and ε = 1.0e− 12. c = 1 (left plot) and c = 343 (right plot).
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Example 1

We consider Problem (1) with

g(x, t) = t4e−2t cos(x2
1 + 2x2

2)

and T = 10.
In Tables 1 and 2 we report the quantities (28) and (29) for the approaches S and

T , and the corresponding estimated order of convergence (EOC), for the velocities
c = 1 and c = 343, respectively. In the last two columns of the tables we compare the
memory saving of the two approaches, having chosen ε = 1.0e− 10.

According to the choice of the wavelet basis, for which we recall that m = m̃ = 2,
estimate (19) in our case reads

‖ϕ(·, tn)−ϕnL‖H−1/2(Γ) = O(∆2
t ) +O(∆5/2

x ),

uniformly with respect to tn ∈ [0, T ]. In the numerical tests, we have computed a
discrete L2-norm of the errors produced by the proposed numerical method. In this
case, taking into account a known inverse-type inequality for negative Sobolev norms
(see, for example, [16]), we obtain the following error estimate

‖ϕ(·, tn)−ϕnL‖L2(Γ) = O(∆2
t ) +O(∆2

x),

which is confirmed by the numerical results.
The reference solutions ϕex

Me,Ne
and uex

Me,Ne
have been obtained by choosing the

discretization parameters Me = 29 and Ne = 2048. As it can be seen, in spite of the
high compression, the accuracy of the solutions obtained by the approach T is the
same of the one of the approach S, for which the compression is very low and, in some
cases, even null.

We remark that the approach W has produced the same values (at least up to
the second significant digit) for all the quantities reported in the two tables, with the
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exception of the values M = 256 and N = 1024 of the last row, for which the error
is slightly larger. This mismatch is due to the spatial numerical quadrature employed
for the computation of the matrix entries. Indeed, for the approach W, an “ad hoc”
quadrature strategy is needed, and this will be the object of our study in a forthcoming
research.

Table 1: Example 1. Errors, convergence orders and memory savings for S and T . c=1.

M N ES
L2,ϕ

EOC ET
L2,ϕ

EOC ESmax,u EOC ETmax,u EOC memS memT

4 16 7.90e− 01 7.90e− 01 1.76e− 02 1.76e− 02 0% 63%
1.7 1.7 0.9 0.9

8 32 2.38e− 01 2.38e− 01 9.16e− 03 9.16e− 03 0% 28%
2.0 2.0 1.4 1.4

16 64 5.88e− 02 5.88e− 02 3.55e− 03 3.55e− 03 0% 13%
0.9 0.9 1.8 1.8

32 128 3.07e− 02 3.07e− 02 1.00e− 03 1.00e− 03 3% 7%
1.5 1.5 2.0 2.0

64 256 1.10e− 02 1.10e− 02 2.55e− 04 2.55e− 04 6% 34%
2.1 2.1 1.9 1.9

128 512 2.66e− 03 2.66e− 03 6.89e− 05 6.89e− 05 9% 70%
2.5 2.5 2.3 2.3

256 1024 4.69e− 04 4.83e− 04 1.38e− 05 1.38e− 05 10% 87%

Table 2: Example 1. Errors, convergence orders and memory savings for S and T . c=343.

M N ES
L2,ϕ

EOC ET
L2,ϕ

EOC ESmax,u EOC ETmax,u EOC memS memT

4 16 4.57e− 01 4.57e− 01 6.83e− 05 6.83e− 05 0% 63%
1.0 1.0 −0.6 −0.6

8 32 2.28e− 01 2.28e− 01 1.07e− 04 1.07e− 04 0% 39%
2.7 2.7 4.2 4.2

16 64 3.49e− 02 3.49e− 02 5.97e− 06 5.97e− 06 0% 70%
2.5 2.5 1.9 1.9

32 128 6.01e− 03 6.01e− 03 1.60e− 06 1.60e− 06 0% 90%
2.5 2.5 2.0 2.0

64 256 1.04e− 03 1.04e− 03 4.03e− 07 4.03e− 07 0% 97%
2.6 2.6 2.0 2.0

128 512 1.75e− 04 1.75e− 04 9.69e− 08 9.69e− 08 0% 99%
2.8 2.8 2.3 2.3

256 1024 2.48e− 05 2.53e− 05 2.00e− 08 2.00e− 08 0% 99.7%
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Example 2

We consider Problem (1) with c = 1,

g(x, t) = t4e−2t

and T = 10. Since the resulting solution does not depend on the variable x, it is
sufficient to consider the low level of spatial discretization L = 3. We discretize the time
interval [0, T ] in N = 256 subintervals and we choose the coarse threshold parameter
ε = 1.0e− 04.

In the left plots of Figures 8 and 9 we show the behavior in time of the approximate
solutions ϕWM,N and uWM,N (green dashed line), ϕSM,N and uSM,N (red dotted line), ϕTM,N

and uTM,N (blue dotted-dashed line). In the right plots, we report the corresponding
absolute errors. The reference solutions ϕex

Me,Ne
and uex

Me,Ne
are obtained by choosing

the discretization parameters Me = M = 23 and Ne = N . We remark that the memory
saving quantities are memT = memW ≈ 77% and memS ≈ 6%.

As we can see, the worst solution is the one associated to the approach S, in spite of
the fact that the cutting strategy has maintained almost all the entries with a resulting
low memory saving. It is worth noting that, for this approach, the threshold ε reveals
to be too coarse.

On the contrary, the wavelet approach allows to obtain an accurate solution with a
high memory saving. We point out that the discrepancy in the accuracy between the
approaches W and T is essentially due to the numerical computation of the spatial
integrals involved in the expression of the matrix entries, as already remarked in the
previous example.

Figure 8: Example 2. Approximate density functions ϕ∗(x, t), x = (−1, 0), ∗ = S, T ,W (left) and
corresponding absolute errors (right).
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Example 3
We consider here Problem (1) with c = 343,

g(x, t) = t4e−t cos(x2
1 + 4x2

2)

and T = 10. The discretization parameters are L = 8 and N = 256, and the threshold
is ε = 1.0e− 12. The reference solutions ϕex

Me,Ne
and uex

Me,Ne
are obtained by choosing
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Figure 9: Example 2. Approximate potential functions u∗(x, t), x = (2, 0), ∗ = S, T ,W (left) and
corresponding absolute errors (right).
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the discretization parameters Me = M = 28 and Ne = N . With these choices, it results
that almost the whole storage of the matrices V S,n associated to the standard approach
is necessary, so that the memory saving turns out to be memS ≈ 0.01%; this justifies
the fact that the errors associated to the density function and to the potential solution
are of the order of the machine precision. On the other hand, the total memory saving
for the approaches W and T is memW = memT ≈ 98%. The maximum value of the
corresponding errors is approximately 1.0e− 03 for ϕW , 1.0e− 06 for ϕT , 1.0e− 07 for
uW and 1.0e− 10 for uT .

Figure 10: Example 3. Approximate density functions ϕ∗(x, t), x = (−1, 0), ∗ = S, T ,W (left)
and corresponding absolute errors (right).
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Example 4
We consider the scattered field of a plane incident wave packet, impinging upon the

unit disc with velocity c = 343. The incident wave

uinc(x, t) = e−2(x1−50+ct)2
+ e−2(x1−60+ct)2

+ e−2(x1−70+ct)2
,

x = (x1, x2), consists in the sum of three successive waves spaced at regular intervals.
The time interval of interest [0, 0.4] is subdivided into N = 2048 subintervals; the

parametrization interval of the boundary Γ is discretized by choosing L = 5. We remark
that the chosen fine time discretization is necessary to reproduce the highly oscillating
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Figure 11: Example 3. Approximate potential functions u∗(x, t), x = (2, 0), ∗ = S, T ,W (left)
and corresponding absolute errors (right).
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behavior of the density function (see Figure 12) and the very narrowed and picked
behavior of the scattered field uscatt, solution of Problem (1) with g(x, t) = −uinc(x, t)
(see Figure 13).

The threshold parameter is ε = 1.0e − 08. The reference solutions ϕex
Me,Ne

and

uex
Me,Ne

are obtained by choosing the discretization parameters Me = M = 25 and

Ne = N . With these choices, it results that a high storage for the matrices V S,n

associated to the standard approach is necessary, so that the global memory saving is
memS = 0.4%. On the other hand, the total memory saving for the wavelet approach
is memW = memT ≈ 93%, and the accuracy of the solutions ϕ∗ and u∗, ∗ = T ,W is
preserved, as it can be seen in the plots corresponding to the error behavior. Indeed,
the error is comparable with that of the approach S.

Figure 12: Example 4. Approximate density functions ϕ∗(x, t), x = (−1, 0), ∗ = S, T ,W (left)
and corresponding absolute errors (right).
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Example 5
As last example, we present a case for which the approximate solution requires

very fine space and time discretization parameters, that turn out to be prohibitive
for the approaches S and T in terms of memory space. Indeed our PC prevented
the execution of the schemes S and T because of an out of memory. Therefore, the
compression strategy of the new approach revealed to be crucial for this simulation.
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Figure 13: Example 4. Approximate potential functions u∗(x, t), x = (2, 0), ∗ = S, T ,W (left)
and corresponding absolute errors (right).
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For this example, we consider a wave that propagates with velocity c = 343, gener-
ated by the highly oscillating in time Dirichlet datum

g(x, t) = t2e−t sin(512t) cos(x2
1 + 32x2

2).

We solve the BIE in the time interval [0, 1] using fine spatial and temporal discretiza-
tions, obtained by choosing L = 9 and N = 4096. These are necessary to reproduce
accurately the oscillating behavior of the density function and of the potential. The
threshold parameter is ε = 1.0e − 10. In Figure 14 we show the behavior of the solu-
tions ϕW and uW , computed with a memory saving memW ≈ 99.6%. In particular,
in the left plot we show the behavior in time of ϕW(x, t) at x = (−1, 0), in the middle
plot the behavior of ϕW(x, T ) for x ∈ Γ and in the right plot the behavior in time of
uW(x, t) at the external point x = (2, 0).

4 Conclusions

We have considered a boundary integral formulation of an exterior 2D wave propagation
problem. For the resolution of the corresponding BIE, we have used a wavelet Galerkin
method in space coupled with a Lubich convolution quadrature in time. The coupling of
the two schemes is new and, although wavelet approximations have been successfully
applied to BEMs, there is not much work on their use for the resolution of time-
dependent BIEs. We have devised an approach, denoted byW, that combines the good
properties of the wavelet approximation in space and those of the Lubich convolution
quadrature in time. Based on an a priori estimate of the decaying behavior of the
matrix entries and on a downsampled FFT, this approach offers two main advantages:
a high compression of the matrices and a considerable reduction of the computational
cost for the time discretization.

We have compared this approach with: the approach S that uses piece-wise linear
spatial approximating functions and a Lubich quadrature in time, with an a posteriori
cutting; the approach T that uses wavelet spatial approximating functions, by means
of a wavelet transform, and a Lubich quadrature time, with an a posteriori cutting.
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Figure 14: Example 5. Behavior of the approximate density function ϕW(x, t), in time for x =
(−1, 0) (top-left) and in space for t = T (top-right), and the potential solution uW(x, t), for
x = (2, 0) (bottom).
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As shown in Section 3, the approach S does not permit a matrix compression
strategy (independently of the wave propagation velocity) and, consequently, it does
not allow neither a computational cost reduction nor a memory saving.

On the contrary, thanks to the wavelet properties, the approach T permits a sig-
nificant compression of the matrices (depending on the wave propagation velocity) but
this allows only an a posteriori cutting and a computational cost reduction in the res-
olution of the final linear system. Indeed, this approach can not be taken into account
for the memory saving since the compression is possible only after that the matrices
associated to the approach S have been entirely computed and stored.

Therefore, the approach W, which allows simultaneously the reduction of the com-
putational cost and the memory saving, turns out to be crucial when applied to large
scale problems, for which the computation and the storage of all the matrices becomes
prohibitive.
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[7] W. Dahmen, S. Prössdorf, and R. Schneider. Wavelet approximation methods for
pseudodifferential equations. II. Matrix compression and fast solution. 1:259–335,
1993.

[8] Ingrid Daubechies. Ten Lectures on Wavelets. SIAM, 2004.

[9] S. Falletta. BEM coupling with the FEM fictitious domain approach for the
solution of the exterior Poisson problem and of wave scattering by rotating rigid
bodies. IMA J. Numer. Anal., 38(2):779–809, 2018.

[10] S. Falletta and G. Monegato. An exact non reflecting boundary condition for 2D
time-dependent wave equation problems. Wave Motion, 51(1):168–192, 2014.

[11] S. Falletta and G. Monegato. Exact non-reflecting boundary condition for 3D time-
dependent multiple scattering-multiple source problems. Wave Motion, 58:281–
302, 2015.

[12] S. Falletta, G. Monegato, and L. Scuderi. A space-time BIE method for nonho-
mogeneous exterior wave equation problems. The Dirichlet case. IMA J. Numer.
Anal., 32(1):202–226, 2012.

[13] S. Falletta, G. Monegato, and L. Scuderi. A space-time BIE method for wave
equation problems: the (two-dimensional) Neumann case. IMA J. Numer. Anal.,
34(1):390–434, 2014.

[14] S. Falletta, G. Monegato, and L. Scuderi. On the discretization and application
of two space-time boundary integral equations for 3D wave propagation problems
in unbounded domains. App. Num. Math., 124:22–43, 2018.

[15] S. Falletta and S. Sauter. The panel-clustering method for the wave equation in
two spatial dimensions. J. Comput. Physics, 305:217–243, 2016.

[16] I.G. Graham, W. Hackbusch, and S. Sauter. Finite elements on degenerate meshes:
inverse-type inequalities and applications. IMA J. Numer. Anal., 25:379–407,
2005.

28



[17] L. Greengard and V. Rokhlin. A new version of the fast multipole method for the
Laplace equation in three dimensions. Acta Numerica, 6:229–269, 1997.

[18] W. Hackbusch. The Panel Clustering Technique for the Boundary Element
Method, volume 9/1. Springer, 1987.

[19] W. Hackbusch and Z.P. Nowak. On the fast matrix multiplication in the boundary
element method by panel clustering. Numer. Math., 54(4):463–491, 1989.

[20] H. Harbrecht and R. Schneider. Wavelet Galerkin schemes for 2D-BEM, volume
121 of Oper. Theory Adv. Appl., pages 221–260. Birkhuser, Basel, 2001.

[21] G. C. Hsiao and A. Rathsfeld. Wavelet collocation methods for a first kind bound-
ary integral equation in acoustic scattering. Adv. Comput. Math., 17(4):281–308,
2002.

[22] K. Koro and K. Abe. Application of Haar wavelets to time-domain BEM for the
transient scalar wave equation. IOP Conference Series: Materials Science and
Engineering, 10(1):1–10, 2010.

[23] C. Lage and C. Schwab. Wavelet Galerkin algorithms for boundary integral equa-
tions. SIAM J. Sci. Comput., 20(6):2195–2222, 1999.

[24] C. Lubich. Convolution quadrature and discretized operational calculus. I. Num.
Math., 52:129–145, 1988.

[25] C. Lubich. On the multistep time discretization of linear initial-boundary value
problems and their boundary integral equations. Num. Math., 67:365–389, 1994.

[26] G. Monegato and L. Scuderi. A space-time BIE method for 2D mixed wave
equation problems. Appl. Math. Comp., 259:1046–1070, 2015.

29


